2020年全国高中数学联赛广西赛区预赛试题及参考答案

合集下载

2019年全国高中数学联赛广西赛区预赛试题与参考答案

2019年全国高中数学联赛广西赛区预赛试题与参考答案

由 AD 是角平分线,可得 BAE = BAM + MAE = MAC + MCA = DME . ···········15 分
则有 BHE + BAE = DHE + DME = 180 ,从而 A, B, H , E 四点共圆.
所以 AEB = AHB = 90 . 命题得证. ····································································20 分
从而 MHC = 180 − MHD = 180 − HEC = MEH .
又由 CMH = HME 可知△CMH∽△HME . 故 MH = ME ,从而 MA = ME . ···········10 分
MC MH
MC MA
又因为 CMA = AME ,所以△CMA∽△AME . 故 MCA = MAE .
a
a
a
ห้องสมุดไป่ตู้
a
a
2019 年全国高中数学联赛广西赛区预赛试题参考答案 第1页(共 4 页)
10.(本小题满分
15
分)设
a1
= 1, an
=
n2
n−1 k =1
1 k2
(n 2) . 求证:
(1)
an +1 an+1
=
n2 (n +1)2
(n 2) ;
(2) (1+ 1 )(1+ 1 ) (1+ 1 ) 4 (n 1) .
当 n = 1时,1+ 1 = 2 4 ,不等式成立. ···································································10 分 a1

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛试题及参考答案

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛试题及参考答案

暨2023年全国高中数学联合竞赛加试试题(模拟4)一.(本题满分40分)如图,ABC D 的外接圆为ω,P 为BC 边上一点,满足APB BAC Ð=Ð.过点A 作ω的切线交ABP D 的外接圆于点Q ,Q 关于AB 中点的对称点为T ,AT 交QP 于点D .证明:111AB AC CD+>.(答题时请将图画在答卷纸上)二.(本题满分40分)设c 是非负整数.求所有的无穷正整数数列{}n a ,满足:对任意正整数n ,恰存在n a 个正整数i 使得1i n a a c +≤+.三.(本题满分50分)设正整数6n ≥,图G 中有n 个顶点,每个顶点的度数均至少为3.设12,,,k C C C 是G 中所有的圈,求12gcd(,,,)k C C C 的所有可能值,其中C 表示圈C 中顶点的个数.四.(本题满分50分)对非负整数,a b ,定义位异或运算a b ⊕,是唯一的非负整数,使得对每个非负整数k ,222k k k a b a b ⊕⎡⎤⎡⎤⎡⎤+-⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦都是偶数.例如:2229101001101000113⊕=⊕==.求所有正整数a ,使得对任意整数0x y >≥,都有x ax y ay ⊕≠⊕.暨2023年全国高中数学联合竞赛加试(模拟4)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,ABCD的外接圆为ω,P为BC边上一点,满足APB BACÐ=Ð.过点A作ω的切线交ABPD的外接圆于点Q,Q关于AB 中点的对称点为T,AT交QP于点D.证明:111AB AC CD+>.(答题时请将图画在答卷纸上)二.(本题满分40分)设c 是非负整数.求所有的无穷正整数数列{}n a ,满足:对任意正整数n ,恰存在n a 个正整数i 使得1i n a a c +≤+.三.(本题满分50分)设正整数6n ≥,图G 中有n 个顶点,每个顶点的度数均至少为3.设12,,,k C C C 是G 中所有的圈,求12gcd(,,,)k C C C 的所有可能值,其中C 表示圈C 中顶点的个数.四.(本题满分50分)对非负整数,a b ,定义位异或运算a b ⊕,是唯一的非负整数,使得对每个非负整数k ,222k k k a b a b ⊕⎡⎤⎡⎤⎡⎤+-⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦都是偶数.例如:2229101001101000113⊕=⊕==.求所有正整数a ,使得对任意整数0x y >≥,都有x ax y ay ⊕≠⊕.。

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。

全国高中数学联赛广西赛区预赛试题

全国高中数学联赛广西赛区预赛试题

全国高中数学联赛广西赛区预赛试题参考解答及评分标准一、选择题(每小题6分,共36分) 1、选C.解:关于t 的方程02=++c bt t 最多有两不同的解n m ,,从而n x f m x f ==)(,)(,必有一个方程有两个不相等的实根,另一个方程有三个不同的实数解.而由已知,只有1)(=x f 有三个不同的实数解.不妨设54321x x x x x <<<<,由于)(x f 关于直线2=x 对称,必有23=x ,451=+x x ,442=+x x ,故12345,,,,,()x x x x x f x x x x x ++++则=81|210|1)10(=-=f .2、选D.解:根据题意,令 21kn m += (1)201l n m += (2)其中.k l l k m >均为正整数,且、、 (1)),2(10-⨯得 .39)10(,9102==-=--kl klkm m m m 即于是有以下三种可能:I .4,2,3,110,9===⇒⎪⎩⎪⎨⎧=-=-l k m m m kl k经检验这组符合条件,此时.4=nII .,0,0,,910,1矛盾为任意正整数===⇒⎪⎩⎪⎨⎧=-=-n l k m m m kl kIII .,310,3该方程组无正整数解⎪⎩⎪⎨⎧=-=-kl k m m 综上所述,n 只能取4.3、选A.解:对于正整数x ,2x被7除的余数规律是2,4,1,2,4,1,…;2x 被7除的余数规律是1,4,2,2,4,1,0,…. 所以,22x x -被7除所得余数的规律将呈周期性变化,周期为21,且一个周期内恰有6个x 的值使22xx -能被7整除,故在小于10000的正整数中,共有2857个正整数满足条件.4、选A.解:以P 为公共顶点,正四面体的各面为底面,将正四面体分为四个三棱锥,它们的体积之和即为正四面体的体积,所以点P 到各面距离之和等于正四面体的高.四面体每个面三角形的高 h ==,从而 3h =, 于是正四面体的高 2H == .5、选B.解:设双曲线的方程为),0,0(12222>>=-b a by a x 半焦距为c ,则.222b a c +=由,22121a B F B F A F A F =-=- ,1221B F B F A F A F =+=解得a B F A F 222==,这表明AB ⊥x 轴,又易知此时ab B F A F 222==,结合.222b a c +=解得双曲线的离心率.3==ace 6、选D.解:欲使方程有实根,应有240m n -≥.如上表,适合条件的m,n 共有19组,故36=P . 二、填空题(每小题9分,共54分)1、 1 .解:由 )()()(2121x f x f x x f ⋅=+ 得 )0()0(2f f =,而0)0(≠f ,所以1)0(=f , 又)()()0(x f x f f ⋅-=,故1)0()2010()2009()1()0()1()2009()2010(4021==⋅⋅⋅--⋅-f f f f f f f f .21 .解:不妨设 0a b c d ≥≥≥>,则由条件,22224,8a b c d a b c d +++=+++=,于是,22224,8b c d a b c d a ++=-++=-. 由 Cauchy 不等式,22223()()b c d b c d ++≥++, 即 223(8)(4)a a -≥-,2220a a --≤,所以01a <≤, 因此 a1(此时13b c d ===-).3、[10,18] . 解:由条件,有2446a b a b a b a b -≥⎧⎪-≤⎪⎨+≥⎪⎪+≤⎩……①,而 (2)42f a b -=-,所以问题即求在条件①下目标函数42a b -的最值. 经从图像分析可知,由24a b a b -=⎧⎨+=⎩得到的交点A (3,1)为(2)f -的最小值,即432110⨯-⨯=;由46a b a b -=⎧⎨+=⎩得到的交点B (5,1)为(2)f -的最大值,即452118⨯-⨯=. 因此,10(2)18f ≤-≤.4、,1)2. 解:设点(cos ,sin )P a b θθ,则 (cos ,sin ),(cos ,sin )OP a b AP a a b θθθθ==-. 于是,0OP AP ⋅=2222cos (cos 1)cos cos (cos )(sin )0sin 1cos b a a a b a θθθθθθθθ-⇒-+=⇒=-=+, 所以 211cos e θ=+. 由 cos (1,1)θ∈-,知 1cos (0,2)θ+∈.故 21(,1)2e ∈, 即 ,1)2e ∈.5、 64 .解:令2x =-,得 064a =. 已知等式两边同时对x 求导,得251112126(22)(22)2(2)12(2)x x x a a x a x +-+=+++++.再令1x =-,由上式得12122120a a a +++=.因此 01212021264a a a a a ++++==.6、 160 .解:设至少经过3点的直线有k 条,每条上的点数从多到少依次为:12,,,(3,1)k i a a a a i k ≥≤≤则由已知,有 12222211(1)(1)(1)487ka a a C C C C -+-++-=-=. 又由 21312i a C -≥-= 知 3k ≤.当1k =时 128a C = 无解; 当2k =时 12229a a C C +=,解得 124,3a a ==; 当3k =时 12322210a a a C C C ++= 无解. 故有1条直线过其中4点,1条过3点, 即三角形个数为 3331143160C C C --=.三、解答题(每小题20分,共60分)1、解:由112(32)(1)0(2)n n n na n a n a n +--+++=≥,得11(2)(1)(2)n n n n n a a n a a +--=+-,于是 11111()22n n n n n a a a a n +-+-=-.……………………5分从而 11111()22n n n n n a a a a n +-+-=- =1211()12n n n n a a n n --+⋅-- =21131122n na a n n +⎛⎫=⋅⋅⋅- ⎪-⎝⎭=12n +. ……………………10分 令 []11(1)2n n a xn y a x n y +-+=--+, 则 1111()222n n a a xn x y +-=+-比较系数,得x=1,y=0。

2020年全国高中数学联赛广西赛区预赛试题参考答案

2020年全国高中数学联赛广西赛区预赛试题参考答案

2020年全国高中数学联赛广西赛区预赛试题(考试时间:2020年6月21日9:00—11:30)一、填空题(本大题共8小题,每小题10分,共80分.)1.已知集合{1=M ,2,…,}2020,对M 的任意非空子集A ,A λ为集合A 中最大数与最小数的和,则所有的这样的A λ的算术平均数是▲.2.已知关于x 的方程2290bx x b ++-=有唯一实数解x a =,则a b +的值为▲.3.已知复数z满足3i 4+=z z ,则i -z 的最小值为▲.4.设集合{1=M ,2,…,}2020,A M ⊆,且对集合A 中的任意元素x ,4x A ∉,则集合A 的元素个数的最大值为▲.5.已知数列{}n a 的前两项分别是12=a ,24=a ,设1+=-n n n b a a .若数列{}n b 是公差为1的等差数列,则=2020a ▲.6.之和是▲.7.设1θ、2θ为锐角,且20202020112018201822sin cos 1cos sin θθθθ+=,则12θθ+=▲.8.已知点O 为坐标原点,曲线1C :221x y -=和曲线2C :22y px =相交于点M 、N .若OMN △的外接圆经过点7,02P ⎛⎫ ⎪⎝⎭,则曲线2C 的方程为▲.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(本小题满分15分)已知正整数m 、n 中有且仅有一个是3的倍数,设d 是222m n ++和223m n +的最大公约数.证明:d 不是平方数.10.(本小题满分15分)已知()333222330x y z xyz x y z xy yz zx ++--++---=,其中x 、y 、z 为不全相等的正实数.证明:(1)3x y z ++=;(2)()()()2221116x y y z z x +++++>.11.(本小题满分20分)如图,设点H 为ABC △内一点,点D 、E 、F 分别是AH 、BH 、CH 的延长线与BC 、CA 、AB 的交点,点G 为FE 的延长线与BC 的延长线的交点,点O 为DG 的中点,以O 为圆心、OD 为半径作圆交线段FE 于点P .求证:(1)BD BG DC GC =;(2)PB BD PC DC=.12.(本小题满分20分)空间中8个点,其中任意四点不共面,在这些点之间连接17条线段.证明:在这17条线段之中必存在3条线段,其长度a 、b 、c 满足不等式()()()22234a b c p p a p b p c ++≥---2a b c p ++=.2021363161620412113532π232y x =2020年全国高中数学联赛广西赛区预赛试题参考答案一、填空题(本大题共8小题,每小题10分,共80分.)1.;2.;3.;4.;5.;6.;7.;8..1.已知集合{1=M ,2,…,}2020,对M 的任意非空子集A ,A λ为集合A 中最大数与最小数的和,则所有的这样的A λ的算术平均数是▲.参考答案:考查M 的子集{}2021|A x x A '=-∈.若A A '=,则=2021A A λλ'=.若A A '≠,设A 中最大数为a ,最小数为b ,则A '中最大数为2021b -,最小数为2021a -,此时,+20212A A λλ'=.故所求算术平均数为2021.2.已知关于x 的方程2290bx x b ++-=有唯一实数解x a =,则a b +的值为▲.参考答案:方程2290bx x b ++-=有唯一实数解x a =,则0a =,此时29b =,经检验3b =时满足题意.故3a b +=.3.已知复数z满足3i 4+=z z ,则i -z 的最小值为▲.参考答案:z 在复平面上对应的曲线方程为:2214+=y x .cos 2sin i θθ=+z ,[)0,2θπ∈,则i -z ()cos 2sin 1i θθ=+-.故i 3-==≥=z ,当且仅当2sin 3θ=时等号成立.4.设集合{1=M ,2,…,}2020,A M ⊆,且对集合A 中的任意元素x ,4x A ∉,则集合A 的元素个数的最大值为▲.参考答案:首先,构造404个集合{}418931127128505k k k =⋅⋅⋅⋅⋅⋅,:;,,,;,,.其次,集合M 中的数除前述已提到的808个外,剩下的每个数x 单独构成一个集合{}x ,有1212个.一共40412121616+=个集合,根据抽屉原理,如果集合A 中有多于1616个数,则必有两个数取自上述同一集合,从而存在x ,4x A ∈,矛盾.故集合A 中至多有1616个数,满足条件的一个集合是{}23732331265065072020A =⋅⋅⋅⋅⋅⋅⋅⋅⋅,,,;,,,;,,,.5.已知数列{}n a 的前两项分别是12=a ,24=a ,设1+=-n n n b a a .若数列{}n b 是公差为1的等差数列,则=2020a ▲.参考答案:易知121=2=-b a a ,因为公差为1,所以1=+n b n .故而201920201122320202041211==+=+++⋅⋅⋅+=∑i i a a b .6.之和是▲.参考答案:设三个正四面体的棱长分别为a 、b 、c ,不妨0a b c <≤≤.由()33312a b c ++=,得333153a b c ++=.其中,3125c ≤,即5c ≤.因为33333153c a b c ≥++=,所以351c ≥,4c ≥.进而有4c =或者5c =.若4c =,不存在符合条件的a ,b ;若5c =,易得1a =、3b =.所求表面积的和为:))2222222221114sin 60sin 60sin 60135222a b c a b c ︒︒︒⎛⎫++++=++= ⎪⎝⎭7.设1θ、2θ为锐角,且20202020112018201822sin cos 1cos sin θθθθ+=,则12θθ+=▲.参考答案:20202221222201821009sin cos cos cos cos θθθθθ+++⋅⋅⋅+ 个11010202022122201821009sin 1010cos cos cos θθθθ⎛⎫ ⎪≥⋅⋅⋅ ⎪⎝⎭ 个211010sin θ=;同理,20202221222201821009cos sin sin sin sin θθθθθ+++⋅⋅⋅+ 个211010cos θ≥.所以,20202020112018201822sin cos 1cos sin θθθθ+≥,取等号当且仅当122πθθ+=.8.已知点O 为坐标原点,曲线1C :221x y -=和曲线2C :22y px =相交于点M 、N .若OMN △的外接圆经过点7,02P ⎛⎫ ⎪⎝⎭,则曲线2C 的方程为▲.参考答案:如上图,不妨设点M 、N 的坐标分别为()00x y ,、()00x y -,,T 为MN 与x 轴的交点,则T 的坐标为()00x ,.因为O 、M 、P 、N 四点共圆,所以由相交弦定理,得OT TP MT TN ⋅=⋅,即20000722x x y px ⎛⎫⋅-== ⎪⎝⎭,其中00x >.解得0722x p =-,2200274y px p p ==-.代入曲线1C 的方程,得()22727412p p p ⎛⎫---= ⎪⎝⎭,即23284450p p -+=.解得,158p =(舍去)或34p =.故曲线2C 的方程为232y x =.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(本小题满分15分)已知正整数m 、n 中有且仅有一个是3的倍数,设d 是222m n ++和223m n +的最大公约数.证明:d 不是平方数.参考答案:不妨设m 是3的倍数,n 不是3的倍数,则()20mod3m ≡,()21mod3n ≡,()20mod9m ≡,()220mod9m n ≡.······················5分所以,()2220mod3m n ++≡,()2233mod9m n +≡.········································10分从而d 是3的倍数,但不是9的倍数,故d 不是平方数.·····································15分10.(本小题满分15分)已知()333222330x y z xyz x y z xy yz zx ++--++---=,其中x 、y 、z 为不全相等的正实数.证明:(1)3x y z ++=;(2)()()()2221116x y y z z x +++++>.参考答案:(1)()()22203x y z x y z xy yz zx =++-++---()()()()222132x y z x y y z z x ⎡⎤=++--+-+-⎣⎦.因为x 、y 、z 不全相等,所以()()()2220x y y z z x -+-+->,从而30x y z ++-=.故3x y z ++=.····························································································5分(2)()()()222111x y y z z x +++++222222x y z x y y z z x=+++++()()()()222222x y z x y y y z z z x x x y z =++++++++-++··························10分()222222x y z xy yz zx x y z >+++++-++()()2x y z x y z =++-++233=-6=.·····················································15分11.(本小题满分20分)如图,设点H 为ABC △内一点,点D 、E 、F 分别是AH 、BH 、CH 的延长线与BC 、CA 、AB 的交点,点G 为FE 的延长线与BC 的延长线的交点,点O 为DG 的中点,以O 为圆心、OD 为半径作圆交线段FE 于点P .求证:(1)BD BG DC GC =;(2)PB BD PC DC=.参考答案:(1)在ABC △中,根据塞瓦定理,因为AD 、BE 、CF 三线交于点H ,所以1AF BD CE FB DC EA⋅⋅=.根据梅涅劳斯定理,因为直线()F E G 与ABC △的三边分别交于F 、G 、E ,所以1AF BG CE FB GC EA⋅⋅=.因此,BD BG DC GC=.························································································5分(2)因为22BD BG OD DC GC OC -=-,所以BD OD DC OC=.·················································10分连接OP ,由BD BG DC GC =,得OB OD OB OD OD OC OD OC -+=-+,即OD OB OC OD =,从而OP OB OC OP=.························································································15分而COP POB ∠=∠,所以COP POB ∽△△.因此,PB OP OD BD PC OC OC DC===,命题得证.·······················································20分12.(本小题满分20分)空间中8个点,其中任意四点不共面,在这些点之间连接17条线段.证明:在这17条线段之中必存在3条线段,其长度a 、b 、c 满足不等式2224a b c ++≥2a b c p ++=.参考答案:(1)这17条线段之中必有3条线段构成三角形.(反证法)假设这17条线段之中任意3条不构成三角形.设点P 是这8个点中连接线段最多的一个点,连接线段数为x ,则有7x -个点不与点P 连线,以这7x -个点为端点的线段数不超过(7)x x -,故所连线段总数不超过()7x x x +-.而()2781617x x x x x +-=-+≤<,这与题设矛盾,故17条线段中必有3条线段构成一个三角形.······························10分(2)据海伦公式,原不等式222a b c ⇔++≥,其中S 为该三角形的面积.·····15分由于222a b c ++≥222sin 0a b c C ⇔++-≥()22222cos sin 0a b a b ab C C ⇔+++--≥2222sin 06a b ab C π⎛⎫⎛⎫⇔+-+≥ ⎪ ⎪⎝⎭⎝⎭而22222sin 206a b ab C a b ab π⎛⎫+-+≥+-≥ ⎪⎝⎭,故上式成立.因此,综上(1)(2),命题得证.································································20分。

2020年全国高中数学联赛广西赛区预赛试题

2020年全国高中数学联赛广西赛区预赛试题

2020年全国高中数学联赛广西赛区预赛试题(考试时间:2020年6月21日9:00—11:30)一、填空题(本大题共8小题,每小题10分,共80分.)1.已知集合{1=M ,2,…,}2020,对M 的任意非空子集A ,A λ为集合A 中最大数与最小数的和,则所有的这样的A λ的算术平均数是▲.2.已知关于x 的方程2290bx x b ++-=有唯一实数解x a =,则a b +的值为▲.3.已知复数z满足3i 4+=z z ,则i -z 的最小值为▲.4.设集合{1=M ,2,…,}2020,A M ⊆,且对集合A 中的任意元素x ,4x A ∉,则集合A 的元素个数的最大值为▲.5.已知数列{}n a 的前两项分别是12=a ,24=a ,设1+=-n n n b a a .若数列{}n b 是公差为1的等差数列,则=2020a ▲.6.之和是▲.7.设1θ、2θ为锐角,且20202020112018201822sin cos 1cos sin θθθθ+=,则12θθ+=▲.8.已知点O 为坐标原点,曲线1C :221x y -=和曲线2C :22y px =相交于点M 、N .若OMN △的外接圆经过点7,02P ⎛⎫ ⎪⎝⎭,则曲线2C 的方程为▲.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(本小题满分15分)已知正整数m 、n 中有且仅有一个是3的倍数,设d 是222m n ++和223m n +的最大公约数.证明:d 不是平方数.10.(本小题满分15分)已知()333222330x y z xyz x y z xy yz zx ++--++---=,其中x 、y 、z 为不全相等的正实数.证明:(1)3x y z ++=;(2)()()()2221116x y y z z x +++++>.11.(本小题满分20分)如图,设点H 为ABC △内一点,点D 、E 、F 分别是AH 、BH 、CH 的延长线与BC 、CA 、AB 的交点,点G 为FE 的延长线与BC 的延长线的交点,点O 为DG 的中点,以O 为圆心、OD 为半径作圆交线段FE 于点P .求证:(1)BD BG DC GC =;(2)PB BD PC DC=.12.(本小题满分20分)空间中8个点,其中任意四点不共面,在这些点之间连接17条线段.证明:在这17条线段之中必存在3条线段,其长度a 、b 、c 满足不等式()()()22234a b c p p a p b p c ++≥---2a b c p ++=.。

全国高中数学联赛广西赛区预赛试题

全国高中数学联赛广西赛区预赛试题

全国高中数学联赛广西赛区预赛试题参考解答及评分标准一、选择题(每小题6分,共36分) 1、选C.解:关于t 的方程02=++c bt t 最多有两不同的解n m ,,从而n x f m x f ==)(,)(,必有一个方程有两个不相等的实根,另一个方程有三个不同的实数解.而由已知,只有1)(=x f 有三个不同的实数解.不妨设54321x x x x x <<<<,由于)(x f 关于直线2=x 对称,必有23=x ,451=+x x ,442=+x x ,故12345,,,,,()x x x x x f x x x x x ++++则=81|210|1)10(=-=f .2、选D.解:根据题意,令 21kn m += (1)201l n m += (2)其中.k l l k m >均为正整数,且、、 (1)),2(10-⨯得 .39)10(,9102==-=--kl klkm m m m 即于是有以下三种可能:I .4,2,3,110,9===⇒⎪⎩⎪⎨⎧=-=-l k m m m kl k经检验这组符合条件,此时.4=nII .,0,0,,910,1矛盾为任意正整数===⇒⎪⎩⎪⎨⎧=-=-n l k m m m kl kIII .,310,3该方程组无正整数解⎪⎩⎪⎨⎧=-=-kl k m m 综上所述,n 只能取4.3、选A.解:对于正整数x ,2x被7除的余数规律是2,4,1,2,4,1,…;2x 被7除的余数规律是1,4,2,2,4,1,0,…. 所以,22x x -被7除所得余数的规律将呈周期性变化,周期为21,且一个周期内恰有6个x 的值使22xx -能被7整除,故在小于10000的正整数中,共有2857个正整数满足条件.4、选A.解:以P 为公共顶点,正四面体的各面为底面,将正四面体分为四个三棱锥,它们的体积之和即为正四面体的体积,所以点P 到各面距离之和等于正四面体的高.四面体每个面三角形的高 h ==,从而 3h =, 于是正四面体的高 2H == .5、选B.解:设双曲线的方程为),0,0(12222>>=-b a by a x 半焦距为c ,则.222b a c +=由,22121a B F B F A F A F =-=- ,1221B F B F A F A F =+=解得a B F A F 222==,这表明AB ⊥x 轴,又易知此时ab B F A F 222==,结合.222b a c +=解得双曲线的离心率.3==ace 6、选D.解:欲使方程有实根,应有240m n -≥.如上表,适合条件的m,n 共有19组,故36=P . 二、填空题(每小题9分,共54分)1、 1 .解:由 )()()(2121x f x f x x f ⋅=+ 得 )0()0(2f f =,而0)0(≠f ,所以1)0(=f , 又)()()0(x f x f f ⋅-=,故1)0()2010()2009()1()0()1()2009()2010(4021==⋅⋅⋅--⋅-f f f f f f f f .21 .解:不妨设 0a b c d ≥≥≥>,则由条件,22224,8a b c d a b c d +++=+++=,于是,22224,8b c d a b c d a ++=-++=-. 由 Cauchy 不等式,22223()()b c d b c d ++≥++, 即 223(8)(4)a a -≥-,2220a a --≤,所以01a <≤, 因此 a1(此时13b c d ===-).3、[10,18] . 解:由条件,有2446a b a b a b a b -≥⎧⎪-≤⎪⎨+≥⎪⎪+≤⎩……①,而 (2)42f a b -=-,所以问题即求在条件①下目标函数42a b -的最值. 经从图像分析可知,由24a b a b -=⎧⎨+=⎩得到的交点A (3,1)为(2)f -的最小值,即432110⨯-⨯=;由46a b a b -=⎧⎨+=⎩得到的交点B (5,1)为(2)f -的最大值,即452118⨯-⨯=. 因此,10(2)18f ≤-≤.4、,1)2. 解:设点(cos ,sin )P a b θθ,则 (cos ,sin ),(cos ,sin )OP a b AP a a b θθθθ==-. 于是,0OP AP ⋅=2222cos (cos 1)cos cos (cos )(sin )0sin 1cos b a a a b a θθθθθθθθ-⇒-+=⇒=-=+, 所以 211cos e θ=+. 由 cos (1,1)θ∈-,知 1cos (0,2)θ+∈.故 21(,1)2e ∈, 即 ,1)2e ∈.5、 64 .解:令2x =-,得 064a =. 已知等式两边同时对x 求导,得251112126(22)(22)2(2)12(2)x x x a a x a x +-+=+++++.再令1x =-,由上式得12122120a a a +++=.因此 01212021264a a a a a ++++==.6、 160 .解:设至少经过3点的直线有k 条,每条上的点数从多到少依次为:12,,,(3,1)k i a a a a i k ≥≤≤则由已知,有 12222211(1)(1)(1)487ka a a C C C C -+-++-=-=. 又由 21312i a C -≥-= 知 3k ≤.当1k =时 128a C = 无解; 当2k =时 12229a a C C +=,解得 124,3a a ==; 当3k =时 12322210a a a C C C ++= 无解. 故有1条直线过其中4点,1条过3点, 即三角形个数为 3331143160C C C --=.三、解答题(每小题20分,共60分)1、解:由112(32)(1)0(2)n n n na n a n a n +--+++=≥,得11(2)(1)(2)n n n n n a a n a a +--=+-,于是 11111()22n n n n n a a a a n +-+-=-.……………………5分从而 11111()22n n n n n a a a a n +-+-=- =1211()12n n n n a a n n --+⋅-- =21131122n na a n n +⎛⎫=⋅⋅⋅- ⎪-⎝⎭=12n +. ……………………10分 令 []11(1)2n n a xn y a x n y +-+=--+, 则 1111()222n n a a xn x y +-=+-比较系数,得x=1,y=0。

2020年全国高中数学联赛试题及详细解析.docx

2020年全国高中数学联赛试题及详细解析.docx

2020 年全国高中数学联赛试题及详细解析说明:1. 评阅试卷时,请依据本评分标准。

选择题只设6 分和 0 分两档,填空题只设9 分和 0 分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。

2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分, 5 分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36 分,每小题 6 分)本题共有 6 小题,每小题均给出 A , B ,C ,D 四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内。

每小题选对得 6 分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得 0 分。

1.使关于 x 的不等式 x 36 x k 有解的实数 k 的最大值是()A . 63B. 3C. 63D . 62.空间四点 A 、 B 、 C 、 D 满足 | AB | 3, | BC | 7 , | CD | 11 , | DA | 9 , 则 AC BD 的取值()A .只有一个B .有二个C .有四个D .有无穷多个a 1 a 2 a 3a 4| a iT , i 1,2,3,4}, 将 M 中的元素按从大到小的6. 记集合 T { 0,1,2,3,4,5,6}, M {7 27 3747序排列, 第2020 个数是()A . 5 5 6 3B . 55 6 2 7 7273 74 772 73 7 4 C .11 0 4 D .11 0 3 7 72737477273 7 4二、填空 (本 分54 分,每小 9 分) 本 共有 6 小 ,要求直接将答案写在横 上。

7. 将关于 x 的多 式 f ( x)1 x x2 x 3x 19x 20 表 关于 y 的多 式 g( y)a 0 a 1 y a 2 y 2 a 19 y 19 a 20 y 20, 其中 y x 4. a 0a 1a20.8. 已知 f (x) 是定 在 ( 0,) 上的减函数, 若 f (2a 2a1) f (3a 24a 1) 成立, a 的取 范是。

2020年全国高中数学联赛试题简析,附试卷真题、答案

2020年全国高中数学联赛试题简析,附试卷真题、答案
二、解答题
第9题 考察基本的三角恒等式的记忆和使用,有一定的计算量,相较于往年一试
第一道解答题来说难度持平或者略有上升。 第 10 题
虽然的定义比较复杂,但是经过适当的分组之后仍然是比较常规的恒等变 形,本题难度不大,但是需要细心的计算,否则容易算错或者得不出答案。 第 11 题
较为常规的解析几何试题,思路是容易想到的,计算量相比于 2018 年的 那一道题来说也小许多,难度上放在高考中也不为过,只是一试的时间相对紧 张,考生不一定有时间来做本题。
论都知道的学生来说本题是加试中最难的题,总体难度中档偏难。
考试真题
一试:
二试
参考答案
一试:
二试
数情形的处理只要知道递推数列的一个基本结论,和二次剩余之后就能够做出
来,奇数情形相对困难一些,需要观察数列的前若干项找出规律,当然也没有
比偶数情形难太多,总体难度中档偏难。
组合、通过试一些常见的剖分可以猜到结果,因此归纳的方法是可以猜到
的,但是具体细节仍然具有一定的难度,对于准备充分,二三两题涉及到的结
二试
总评
本次二试难度相对平均,难度下限和上限都有所收拢,没有特别突 出的难题或者特别水的题目,对具备一定实力的考生来说能够着手处理 的题目变多了,但是对于实力尚弱的考生来说二试拿分变难了。
几何、较为简示性,
没有卡手的地方,是加试最简单的一道题,但是比 2019 年高联的几何题要难
2020 年全国高中数学联赛试题简析,试卷真题、答案
一试 总评
本次一试大部分的题目都不难,但是整体计算量偏大,对考生的计 算能力进行了考察,此外,能否在有限的时间内对试题进行取舍,保证 自己会做的题目的正确率,在本次考试中也非常重要。
一、填空题

专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题01集合第一缉1.【2021年江西预赛】集合M 是集合A={1,2,…,100}的子集,且M 中至少含有一个平方数或者立方数,则这种子集M 的个数是.【答案】288(212‒1).【解析】集合 中的平方或者立方数构成集合 ,100},A ={1,2,⋯,100}B ={1,4,8,9,16,25,27,36,49,64,81其中有12个元素,从 中挖去集合 后剩下的元索构成集合 ,则 中有88个元索,A B C C 由于 的子集有 个, 的非空子集有 个,C 288B 212‒1集 可表示为 形式,其中 是 的任一非空子集, 是 的任一子集,因此 的个数为M M =B 0∪C 0B 0B C 0C M 288(212‒1).2.【2021年浙江预赛】给定实数集合A,B,定义运算 .设A ⊗B ={x∣x =ab +a +b,a ∈A,b ∈B} ,则 中的所有元素之和为.A ={0,2,4,⋯,18},B ={98,99,100}A ⊗B 【答案】29970【解析】由 ,x =(a +1)(b +1)‒1则可知所有元素之和为 .(1+3+⋯+19)×300‒3×10=299703.【2021年广西预赛】集合 的所有子集的元素的和等于 .M ={1,2,3,4,5,6}【答案】672【解析】所有子集的元素的和为 .25(1+2+3+4+5+6)=6724.【2021年新疆预赛】若实数集合 的最大元素与最小元素之积等于该集合的所有元素之和,则{3,6,9,x}x 的值为 .【答案】94【解析】若 是最大元素,则 ,解得 ,不合题意;x 3x =18+x x =9若 是最小元素,则 ,解得 ;x 9x =18+x x =94若 既不是最大元素也不是最小元素,则 ,解得 ,不合题意;x 27=18+x x =9所以 .x =945.【2021年全国高中数学联赛A 卷一试】设集合,其中为实数.令.若的A ={1,2,m }mB ={a 2∣a ∈A },C =A ∪B C 所有元素之和为6,则的所有元素之积为 .C【答案】‒8【解析】由条件知(允许有重复)为的全部元素.1,2,4,m ,m 2C 注意到,当为实数时,,故只可能是,且m 1+2+4+m +m 2>6,1+2+4+m 2>6C ={1,2,4,m }1+2+4+m =6.于是(经检验符合题意),此时的所有元素之积为.m =‒1C 1×2×4×(‒1)=‒86.【2020高中数学联赛B 卷(第01试)】设集合,A 是X 的子集,A 的元素个数至少是2,且A X ={1,2,⋯,20}的所有元素可排成连续的正整数,则这样的集合A 的个数为 .【答案】190【解析】每个满足条件的集合A 可由其最小元素a 与最大元素b 唯一确定,其中a ,b ∈X ,a <b ,这样的的(a,b)取法共有种,所以这样的集合A 的个数为190.C 220=1907.【2020年福建预赛】已知[x]表示不超过实数的最大整数,集合,x A ={x∣x 2‒x ‒6<0}B =则.{x∣2x 2‒3[x]‒5=0}.A ∩B =【答案】{‒1,222}【解析】易知, .若 ,则A =(‒2,3)x ∈A [x]=‒2,‒1,0,1,2.当 时,若 ,则 ,[x]=‒2x ∈B 2x 2+6‒5=0 不存在.x 当 时,若 ,则[x]=‒1x ∈B 2x 2+3‒5=0⇒x =±1.经检验, 不符合要求, 符合要求.x =1x =‒1当 时,若 ,则 ,[x]=0x ∈B 2x 2‒0‒5=0⇒x =±102均不符合要求.当 时,若 ,则 ,[x]=1x ∈B 2x 2‒3‒5=0⇒x =±2均不符合要求.当 时,若 ,则 .[x]=2x ∈B 2x 2‒6‒5=0⇒x =±222经检验, 符合要求, 不符合要求.故 .x =222x =‒222A ∩B ={‒1,222}8.【2020年甘肃预赛】设集合: , 若 ,则 的取值范A ={(x,y)∣log a x +log a y >0}B =|(x,y)|x +y <a}.A ∩B =∅a 围是.【答案】(1,2]【解析】若 ,则 a >1A ={(x,y)∣xy >1}.而当 与 相切时,x +y =a xy =1.x +1x =a⇒x 2‒ax +1=0⇒a =2于是,当 时, .若 ,则 ,此时, .a ∈(1,2]A ∩B =∅a <1A ={(x,y)∣xy <1}A ∩B ≠∅综上, .a ∈(1,2]9.【2020年广西预赛】已知集合 ,对 的任意非空子集 为集合 中最大数与最小数的M ={1,2,⋯,2020}M A,λA A 和.则所有这样的 的算术平均数为 .λA 【答案】2021【解析】考虑 的子集 若 ,则 若 ,设 中最大数为 ,最小M A '={2021‒x∣x ∈A}.A '=A λA'=λA =2021.A '≠A A a 数为 ,则 '中最大数为 ,最小数为2021- ,此时,b A 2021‒b a λA'+λA2=2021.故所求算术平均数为2021.10.【2020年广西预赛】设集合 ,且对集合 中的任意元素 则集合 的元索M ={1,2,⋯,2020},A ⊆M A x,4x ∉A.A 个数的最大值为 .【答案】1616【解析】首先,构造404个集合 ,其中,{k,4k}k =1;8,9,⋯,31;127,128,⋯,505.其次,集合 中的数除前述已提到的808个外,剩下的每个数 单独构成一个集合 ,有1212个.M x {x}共 个集合.404+1212=1616据抽臣原理,知若集合 中有多于1616个数,则必有两个数取自上述同一集合.从而,存在 ,矛盾.A x,4x ∈A 故集合 中至多有1616个数,满足条件的一个集合是A .A ={2,3,⋯,7,32;33,⋯,126,506,507,⋯,2020}11.【2020年吉林预赛】已知集合 若 ,则 的取值范围是 .A ={x∣log a (ax ‒1)>1}.2∈A a 【答案】(12,1)∪(1,+∞).【解析】由题意,得log 则 或a (2a ‒1)>1.{0<a <1,0<2a ‒1<a {a >1,2a ‒1>a.解得 或12<a <1a >1.12.【2020年浙江预赛】一个正整数若能写成形式,就称其为“好数".则集合20a +8b +27c (a ,b ,c ∈N) 中好数的个数为.{1,2,⋯,200}【答案】153【解析】先考虑 20a +8b =4(5a +2b). 可取5a +2b 2,4,5,6,⋯,50.则 可取 .20a +8b 8,16,20,24,⋯,200故当 时共有48个非零好数 型);c =0(4k 时共有42个好数 型),此时好数为 ;c =1(4k +327,35,43,47,⋯,199 时共有35个好数 型),此时好数为 c =2(4k +254,62,70,74,⋯,198; 时共有28个好数 型),此时好数为c =3(4k +181,89,97,101,⋯,197.综上,共有 个好数.48+42+35+28=15313.【2020年新疆预赛】已知集合 ,对于集合 的每一个非空子集的所有元素,计算它们A ={1,2,3,⋯,2020}A 乘积的倒数.则所有这些倒数的和为 .【答案】2020【解析】集合的 个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2020,1×2,1A 22020‒1 ,它们的倒数和为×3⋯,2019×2020,⋯,1×2×⋯×2020 1+12+…+12020+11×2+11×3+…+12019×2020+⋯+11×2×⋯×2020 .=(1+1)(1+12)⋯(1+12020)‒1=2×32×⋯×20212020‒1=202014.【2019年全国】若实数集合的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值{1,2,3,x }为.【答案】‒32【解析】由题意知,x 为负值,.∴3‒x =1+2+3+x⇒x =‒3215.【2019年江苏预赛】已知集合,,且,则实数A ={x|x 2‒3x +2≥0}B ={x|x ‒a ≥1}A ∩B ={x|x ≥3}a 的值是 .【答案】2【解析】,.又,故,解得.A ={x|x ≥2或x ≤1}B ={x|x ≥a +1}A ∩B ={x|x ≥3}a +1=3a =216.【2019年江西预赛】将集合中每两个互异的数作乘积,所有这种乘积的和为 .{1,2,⋯,19}【答案】16815【解析】所求的和为12[(1+2+⋯+19)2‒(12+22+⋯+192)]=12[36100‒2470]=1681517.【2019年新疆预赛】已知集合,,,则是集合的子集但U ={1,2,3,4,5,6,7,8}A ={1,2,3,4,5}B ={4,5,6,7,8}U 不是集合的子集,也不是集合B 的子集的集合个数为 .A B 【答案】196【解析】解法一:因为,且,所以满足题意的集合所含的元素至少在中取一个A ∪B =U A ∩B ={4,5}{1,2,3}且至少在中取一个,集合中的元素可取或不取,于是满足题意的集合共有{6,7,8}{4,5}(23‒1)(23‒1)×22个.=196解法二:集合的子集个数为,其中是集合或集合的子集个数为.所以满足条件的集合个数为U 28A B 25+25‒22个.28‒(25+25‒22)=19618.【2019年浙江预赛】已知集合为正整数,若集合中所有元素之和为,A ={k +1,k +2,⋯,k +n },k,n A 2019则当取最大值时,集合A =.n 【答案】A ={334,335,336,337,338,339}【解析】由已知.2k +n +12⋅n =3×673当时,得到;n =2m (2k +2m +1)m =3×673⇒m =3,n =6,k =333当时,得到.n =2m +1(k +m +1)(2m +1)=3×673⇒m =1,n =3所以的最大值为,此时集合.n 6A ={334,335,336,337,338,339}19.【2019年重庆预赛】设为三元集合(三个不同实数组成的集合),集合,若A B ={x +y|x,y ∈A, x ≠y},则集合________.B ={log 26, log 210, log 215}A =【答案】{1, log 23, log 25}【解析】设,其中A ={log 2a, log 2b, log 2c}0<a <b <c.则解得,从而。

2020年全国高中数学联赛试题及详细解析(2)

2020年全国高中数学联赛试题及详细解析(2)

16 4
3y 8 2 3 0
上 . 当 F1PF2 取最大值时,比
PF1 的值为 PF2
.
10. 底面半径为 1cm 的圆柱形容器里放有四个半径为
1 cm 的实心铁球,四个球两两相切, 2
其中底层两球与容器底面相切 . 现往容器里注水, 使水面恰好浸没所有铁球, 则需要注
水 cm 3.
11. 方程 ( x2006 1)(1 x 2 x4 L x 2004 ) 2006 x 2005 的实数解的个数为
( 1 ),又由圆幂定理,
PF2 AF2
2
AP AF1 AF2 ( 2),而 F1( 2 3,0) ,F2(2 3,0) ,A( 8 2 3,0) ,从而有 AF1 8 ,
AF2
8 4 3 。代入( 1),( 2)得 PF1 PF 2
AF1 AF 2
8 8 43
4 23
3 1。
12. 【答案】 0.0434 【解析】第 4 次恰好取完所有红球的概率为
.
12. 袋内有 8 个白球和 2 个红球,每 次从中随机取出一个球,然后放回
次恰好取完所有红球的概率为
.
三、解答题(本题满分 60 分,每小题 20 分)
1 个白球,则第 4
15. 设
f ( x) x2 a . 记 f 1 (x) f (x) ,
n
f ( x)
f
(
f
n
1
( x))
,n
2,3,L ,
【解析】建立直角坐标系,以A为坐标原点,AB为
x轴,AC为 y轴,AA 1为z轴,
1
1
则 F (t1,0,0) ( 0
t1
1 ),
E(0,1, ) 2

2020年全国高中数学联赛广西赛区预赛

2020年全国高中数学联赛广西赛区预赛

2021年第2期27 2020年全国高中数学联赛广西赛区预赛中图分类号:G424.79 文献标识码:A文章编号:1005 - 6416(2021)02 - 0027 - 03一、填空题(每小题10分,共80分)1. 已知集合M= j 1020!,对M的任意非空子集为集合4中最大 数与最小数的和.则所有这样的^的算术平均数为______•2. 设关于;c的方程bx2 + I ai I+ 62-9=0有唯一实数解x= a•则a+ 6的值为______.3. 已知复数z满足\z+^3i l+ lz-V3 il= 4.则I2- i I的最小值为______.4. 设集合 M=丨1,2,…,2 0201且对集合4中的任意元素x,4;c芒尤则集合4的元素个数的最大值为_____.5. 设数列|a…j的前两项分别为=2, a2 = 4.设= an+1 - an•若数列| 丨是公差 为1的等差数列,则%。

2。

=______•6. 设三个正四面体的棱长均为整数,它们的体积之和为则这些正四面体的表面积之和为______•7. 设为锐角,且sin2020^cos2020^ _cos201802sin201802则 A +6»2 =______.8. 已知0为坐标原点,曲线 :x2-/= 1 与曲线 C2:y2=2pc交于点M、/V•若A 〇M V的外接圆经过点P(|,〇),则曲线C2的方程为__________.二、解答题(共70分)9. (15分)已知正整数m、n中有且仅有 —'个为3的倍数,d为m2 + n2 + 2与m2A i2 +3的最大公约数.证明d不为平方数.10. (15分)已知x3 +y3 + z3 - 3xyz -3 (x2 + y2+z2 —xy - yz - zx) = 0,其中4、y、z为不全相等的正实数.证明:(\)x + y + z = 3 ;{2)x2{\ +y)+ y2{\ +z)+z{\+^)>6.11. (20分)如图1,设/f为A A f i C内一 点,£>77分别为的延长线与S C、C4、/lfi的交点,C为F E的延长线与5C 的延长线的交点,0为J5C的中点,以0为圆 心、0Z)为半径作圆交线段路于点证明:…BD BG(l)DC = GC;[} PC ~ DC'A12. (20分)空间中八个点,其中任意四点不共面,在这些点之间连接17条线段.证明:在这17条线段之中必存在三条线段,其 长度a、6、c 满足28中等数学° ^4 ^° ^-a)(p~b)(p~c),其中,参考答案—、1.2 021•考虑M的子集A'=丨2 021 - a;1% 6 4}•若i4' =4, 则 =2 021.若,#4,设4中最大数为a,最小数为 6,则f中最大数为2 021 - 6,最小数为2 021 -a,此时,^^=2021.故所求算术平均数为2 021.个数,则必有两个数取自上述同一集合.从而,存在x,4t:6矛盾.故集合4中至多有1 616个数,满足条 件的一个集合是A= {2,3, •••,?,32,33, •••,126,506,507, •••,2 020}.5.2 041 211.易知,-0^2 - 一2.由丨的公差为1知bn = n+ I.2019故 a202。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档