高一必修一函数单调性的应用
浅谈数学中函数的单调性及其应用
浅谈数学中函数的单调性及其应用浅谈数学中函数的单调性及其应用摘要函数的单调性是高一数学课程中所接触到的函数的第一个性质,单调性的判断(用定义证明一个函数的单调性、求复合函数的单调性)及其应用(包括利用单调性求解不等式、利用单调性求函数的值域、利用单调性求函数的最值等)在高中数学中的作用和地位是非常重要的,它可以和高中阶段的很多知识点联系在一起,出题的方式、解题的方法也是多种多样的。
下面就我个人的理解和掌握,对函数的单调性判断及利用函数的单调性求解不等式、利用单调性求最值和参量等问题,举些具有代表性的例子。
关键词:函数;单调性;数学前言函数单调性是中学数学的重要内容之一,是高考的热点,常作为高考压轴题的考查内容,比如,本文通过整理发现陕西近年的高考数学题呈现一个现象,即多次要用函数单调性去做一些较难层次的题,分别是求参数范围、解不等式、证明不等式等。
同时,新课标对于函数单调性的教学目标是,要求学生能够熟练掌握单调性概念的证明方法,并应用单调性来求解一些基础题。
不管是高考趋势,还是新课标所倡导的教学理念,都对学生学习函数单调性提出了较高层次的要求。
但由于函数单调性的证明和应用的复杂性,使得学生在学习和做题过程中存在很多困难,例如,通常掌握单调性的概念证明是远远不够的。
那么,就出现了一个问题,除了它的的概念,是否还有其他可以证明函数单调性的方法,同时这些方法可以用来解决高考题。
针对于以上提到的两点,本文选择了函数单调性的判断和应用进行研究。
函数的单调性,是函数在它的定义域或其子集内如何增减的刻画。
它是研究函数必不可少的内容,不论是现实生活,还是学习其它理论知识,单调性都是一个很有用的工具。
函数是高中数学的中心内容,几乎渗透到数学的每一个角落,它不仅是一条重要的数学概念,而且是种重要的数学思想。
而函数的单调性则是函数的一条重要性质,它是历年高考重点考查的重要内容,它的应用十分广泛。
通过研究函数的单调性可以揭示函数值的变化特性,对于一些学问题,若解题中注意应用函数的单调性,合理巧妙地加以运用,定会带来快捷的解题思路,可以使问题的解决简捷明快。
江苏省响水中学高中数学 第二章《函数单调性的应用》课件 苏教版必修1
1
1
M>N .
=
������������
,因为 a>b>1,
所以 a-b>0,ab-1>0,ab>0,所以 M-N>0, 即 M>N.
2
已知函数 f(x)=ax+b 在 R 上是增函数,那么函数 f(x)=x2+2ax+b 在(0,+∞)上单调递 增 .
【解析】因为函数 f(x)=ax+b 在 R 上是增函数,所以 a>0, 2 函数 f(x)=x +2ax+b 的对称轴是 x=-a<0,所以在(0,+∞)上是 增函数.
问题1
(1)比较两个数a,b的大小可以通过作差来判断,即ab<0⇔ a<b ,a-b=0⇔ a=b ,a-b>0⇔ a>b ,形如这 样比较大小的方法称为作差比较法. (2)判断函数f(x)在区间D上的单调性,可以先给出区 间D上的任意两个数x1,x2,假设x1<x2,再作差f(x1)f(x2),通过化简、因式分解(若有分母,则先通分)等 方法进行变形,判断出f(x1)-f(x2)的符号,若f(x1)f(x2)<0恒成立,则f(x)在区间D上是 增函数 ,若f(x1)f(x2)>0恒成立,则f(x)在区间D上是 减函数 , 以上通过作差法判断单调性的步骤可以简化为3个环 节,即作差→变形→定号.
10 + 2������,������∈[ 0,5], 【解析】(1)P= 20,������∈(5,10], 40-2������,������∈(10,16].
问题3
f(x)≥M反映了函数y=f(x)的所有函数值不小于实数 M ;这个函数的图象特征是有 最低点 ,并且最低点 的 纵坐标 是M.
人教版高一数学《函数单调性的运用》教案
人教版高一数学《函数单调性的运用》教案一、教学目标1、知识与技能目标(1)学生能够理解函数单调性的定义,并能准确判断函数的单调性。
(2)学生能够熟练运用函数单调性解决比较函数值大小、解不等式等问题。
2、过程与方法目标(1)通过观察函数图象、分析函数表达式,培养学生的观察能力和逻辑推理能力。
(2)通过解决实际问题,让学生体会函数单调性在数学和实际生活中的应用,提高学生的数学应用意识和解决问题的能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,感受数学的魅力,激发学生学习数学的兴趣。
(2)通过解决问题的过程,培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点(1)函数单调性的定义和判断方法。
(2)利用函数单调性解决实际问题。
2、教学难点(1)函数单调性的证明。
(2)运用函数单调性解决复杂的不等式问题。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课(1)展示函数图象,如一次函数 y = x + 1,二次函数 y = x² 2x + 1 等,引导学生观察函数图象的上升和下降趋势。
(2)提问学生:如何用数学语言来描述函数图象的这种上升和下降趋势?从而引出函数单调性的概念。
2、讲解新课(1)函数单调性的定义设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
(2)函数单调性的判断方法①图象法:观察函数的图象,图象上升为增函数,图象下降为减函数。
②定义法:设 x₁,x₂是给定区间上的任意两个自变量,且 x₁<x₂,计算 f(x₂) f(x₁),若 f(x₂) f(x₁) > 0,则函数为增函数;若f(x₂) f(x₁) < 0,则函数为减函数。
函数的单调性及应用
contents
目录
• 函数的单调性定义 • 函数的单调性性质 • 函数的单调性应用 • 反函数的单调性 • 单调性在实际问题中的应用 • 总结与展望
01 函数的单调性定义
增函数的定义
增函数的定义
如果对于函数$f(x)$的定义域内的任 意$x_{1}, x_{2}$($x_{1} < x_{2}$), 都有$f(x_{1}) < f(x_{2})$,则称函数 $f(x)$在其定义域内是增函数。
06 总结与展望
函数单调性的重要性
数学基础
单调性是函数的重要性质之一,是数学分析、微积分等学科的 基础概念,对于理解函数的变化规律和性质具有重要意义。
解决实际问题
单调性在解决实际问题中也有广泛应用,如经济学、生物学、 工程学等领域的研究中,单调性可以帮助我们更好地理解和描
述事物的发展趋势和变化规律。
判断函数值大小
通过比较原函数和反函数的单调性,可以判 断两个函数值的大小关系。
优化问题
在某些优化问题中,可以利用反函数的单调 性来寻找最优解。
05 单调性在实际问题中的应 用
在经济问题中的应用
总结词
单调性在经济分析中有着广泛的应用,可以 帮助我们理解经济现象和预测未来的趋势。
详细描述
在经济学中,单调性可以用于研究商品价格 的变化趋势、消费者需求的变化趋势、劳动 力市场的供求关系等。通过分析这些经济变 量的单调性,我们可以更好地理解经济规律 ,预测未来的经济走势,为决策提供依据。
单调性法
利用函数的单调性,可以确定函数在某个区间 内的最大值或最小值,从而求解最值问题。
导数法
通过求导数,可以判断函数的单调性,从而确 定函数的最值。
数学必修一单调性
目录
• 单调性的定义 • 单调性的判定 • 单调性的应用 • 单调性的性质 • 单调性的扩展知识
01
单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,那么对于该区间内的任意两个数$x_1$和$x_2$, 当$x_1 < x_2$时,都有$f(x_1) leq f(x_2)$;反之,如果函数在某个区间内单调递减,那么对于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,都有$f(x_1) geq f(x_2)$。
导数法
利用导数与函数单调性的关系,通过判断导数的正负来判断函数的单调 性。
03
图像法
通过观察函数的图像来判断函数的单调性。如果图像在某区间内从左到
右逐渐上升,则函数在该区间内单调递增;如果图像在某区间内从左到
右逐渐下降,则函数在该区间内单调递减。
单调性判定例题解析
0102Βιβλιοθήκη 0304例题1
判断函数f(x) = x^3在区间(-∞, +∞)上的单调性。
例子
对于函数 (f(x) = x^3),在 (x = 0) 处函数由递减变为递增,因此 (x = 0) 是该函数的极小值点。
单调性在实际问题中的应用
总结词
单调性在实际问题中有着广泛的应用,通过单调性可以分析各种实际问题的变化趋势,从而做出合理的决策。
详细描述
单调性可以用于分析各种实际问题,如经济问题、物理问题等。例如,在经济学中,通过分析需求函数和供给函数的 单调性,可以预测市场的价格变化趋势;在物理学中,通过分析受力函数的单调性,可以判断物体的运动状态。
单调函数在定义域内是单调的
高一上函数单调性的应用课件
$lbrack - 1,5 - 2sqrt{5}rbrack$
高阶练习题
题目
已知函数$f(x) = log_{2}(x^{2} - (a + 1)x + a)$在区间 $(1, + infty)$上单调递增,则实数$a$的取值范围是____ .
解析
利用复合函数的单调性,结合对数函数的性质,确定参数 $a$的取值范围。
题目
已知函数$f(x) = log_{2}(x^{2} - (2t + 1)x + t^{2} + 1)$,若函数$f(x)$在区间$lbrack t + 1,t + 3rbrack$ 上有意义,则实数$t$的取值范围是____.
解析
根据对数函数的定义域,结合一元二次不等式的解法, 确定参数$t$的取值范围。
要点二
详细描述
如果函数在某个区间上是增函数,那么当自变量取值范围 为该区间时,因变量取值范围为该区间对应的函数值的上 界和下界之间的所有实数;如果函数在某个区间上是减函 数,那么当自变量取值范围为该区间时,因变量取值范围 为该区间对应的函数值的下界和上界之间的所有实数。因 此,通过利用函数单调性,我们可以更方便地求解函数的 值域。
的取值范围是____.
解析:首先确定二次函数的对称轴为 $x=1$,然后根据对称轴和区间的关
系确定$a$的取值范围。
答案:$( - infty,1rbrack$
题目:已知函数$f(x) = log_{2}(x + 3) - 1$的定义域为$( - 3,a)$,则实数 $a$的值为____.
解析:根据对数函数的定义域,确定 $a$的取值范围。
详细描述
在区间上任取两点$x_{1}$和$x_{2}$,如果$x_{1} < x_{2}$都有$f(x_{1}) leq f(x_{2})$, 则函数在此区间上单调递增;如果$x_{1} < x_{2}$都有$f(x_{1}) geq f(x_{2})$,则函数
函数单调性的应用
y=2x+1
性质: (1)当k>0时, y随x的增大而增大; (2)当k<0时, y随x的增大而减小。
二次函数y=ax2+bx+c的单调性
a>0
y y
a<0
x 0 0
x
反比例函数
y
1
k y x
的单调性
y y1
1 y x1x1o Nhomakorabeax
x
-1
o
K>0
K<0
2 例1:(1)若函数 f ( x) 4x mx 5 m在 [2, ) 上是增 函数,在 (, 2] 上是减函数,则实数m的值 为 ; (2)若函数 f ( x) 4x2 mx 5 m在 [2, ) 上是增函 数,则实数m的取值范围为 ; f ( x) 4x2 mx 5 m的单调递增区间 (3)若函数 为 [2, ) ,则实数m的值为 .
如果函数y=f(x)在区间M上是增函数或减函数, 那么就说函数y=f(x)在这一区间具有严格的单调性, 区间M叫做函数y=f(x)的单调区间.
证明:函数f(x)=-x3+1在(-∞,+∞)上是 减函数。 证明:设x1<x2,则
x x2 x1 0
y f ( x2 ) f ( x1 ) x13 x23 ( x1 x2 )(x12 x1 x2 x22 )
1 2 3 2 ( x1 x 2 )[(x1 x 2 ) x 2 ]. 2 41 3 2 2 由x1<x2,x1-x2<0且 ( x1 x2 ) x2 >0 2 4
y 0
因此,f(x)=-x3+1在(-∞,+∞)上是减函数。
一次函数y=kx+b的单调性
人教版高中数学必修一《1.3.1 函数的单调性》教学设计
1.3.1函数的单调性教学设计一、教学内容分析:函数的单调性是学生在掌握了函数的概念、函数的表示方法等基础知识后,学习的函数的第一个性质,主要让学生掌握函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据。
如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。
同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。
所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。
二、教学目标设置:(1)知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法及单调性的简单运用。
(2)过程与方法:引导学生通过观察、归纳、抽象、概括、自主构建单调增函数、减函数的概念;能运用函数单调性的定义解决一些简单的问题;让学生领会数学结合的数学思想方法,培养学生发现、分析、解决问题的能力。
(3)情感态度价值观:在函数单调性的学习过程中,使学生体验数学的应用价值,培养学生善于观察、勇于探索的良好学习习惯与学习态度。
(三)情感态度与价值观:创设情境引出课题,让学生充分认识到数学源于生活,又能应用于生活,进而激发学生自主学习和主动探究的学习兴趣;在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认知的提升;在概念应用阶段,通过对定义法证明单调性过程的具体分析,以及证明过程的严格板书,帮助学生掌握用定义证明函数单调性的方法和步骤,培养学生清晰地思维、严谨的数学推理能力;最后先由学生自己独立完成再进行小组合作交流,展示自己用单调性定义证明函数单调性的全过程,培养了学生运用所学知识解决实际问题的能力,增强了学生学好数学的信心.三、学生学情分析:学生在初中只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。
高一数学必修1_函数的单调性和奇偶性的综合应用
高一数学必修1 函数的单调性和奇偶性的综合应用对称有点对称和轴对称:数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。
1、函数的单调性:应用:若()y f x =是增函数,12()()f x f x > ⇒ 1x 2x应用:若()y f x =是减函数,12()()f x f x > ⇒ 1x 2x 相关练习:若()y f x =是R 上的减函数,则(1)f 2(22)f a a ++2、熟悉常见的函数的单调性:y kx b =+、k y x =、2y ax bx c =++ 相关练习:若()f x ax =,()b g x x=-在(,0)-∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是 函数(增、减)3、函数的奇偶性:定义域关于原点对称,()()f x f x -= ⇒ ()f x 是偶函数定义域关于原点对称,()()f x f x -=- ⇒ ()f x 是奇函数(当然,对于一般的函数,都没有恰好()()f x f x -=±,所以大部分函数都不具有奇偶性) 相关练习:(1)已知函数21()4f x ax bx a b=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b(2)若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。
(3)若函数()f x 是定义在R 上的奇函数,则(0)f = 。
(4)函数()y f x =的奇偶性如下:画出函数在另一半区间的大致图像 O点对称:对称中心O 轴对称:4、单调性和奇偶性的综合应用 【类型1 转换区间】相关练习:(1)根据函数的图像说明,若偶函数()y f x =在(,0)-∞上是减函数,则()f x 在(0,)+∞上是 函数(增、减)(2) 已知()f x 为奇函数,当0x >时,()(1)f x x x =-,则当0x <时,()x =(3)R 上的偶函数在(0,)+∞上是减函数,3()4f - 2(1)f a a -+ (4)设()f x 为定义在((,)-∞+∞上的偶函数,且()f x 在[0,)+∞为增函数,则(2)f -、()f π-、 (3)f 的大小顺序是( )A. ()(3)(2)f f f π->>-B. ()(2)(3)f f f π->->C. ()(3)(2)f f f π-<<-D. ()(2)(3)f f f π-<-<(5)如果奇函数()f x 在区间[3,7]上的最小值是5,那么()f x 在区间[7,3]--上( )A. 最小值是5B. 最小值是-5C. 最大值是-5D. 最大值是5(6)如果偶函数()f x 在[3,7]上是增函数,且最小值是-5那么()f x 在[7,3]--上是( )A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5(7) 已知函数()f x 是定义在R 上的偶函数,且在(,0)-∞上()f x 是单调增函数,那么当10x <,20x >且120x x +<时,有( )A. 12()()f x f x ->-B. 12()()f x f x -<-C. 12()()f x f x -=-D. 不确定(8)如果()f x 是奇函数,而且在开区间(,0)-∞上是增函数,又(2)0f =,那么()0x f x ⋅< 的解是( )A. 20x -<<或02x <<B. 20x -<<或2x >C. 2x <-或02x <<D. 3x <-或3x >偶函数奇函数奇函数奇函数。
高一数学1.3.1《函数的单调性》教案(新人教A版必修1)
⾼⼀数学1.3.1《函数的单调性》教案(新⼈教A版必修1)§1.3.1函数的单调性⼀、三维⽬标1、知识与技能:(1)建⽴增(减)函数的概念通过观察⼀些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的⼤⼩⽐较,认识函数值随⾃变量的增⼤(减⼩)的规律,由此得出增(减)函数单调性的定义 . 掌握⽤定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学⽣通过⾃主探究活动,体验数学概念的形成过程的真谛。
2、过程与⽅法(1)通过已学过的函数特别是⼆次函数,理解函数的单调性及其⼏何意义;(2)学会运⽤函数图象理解和研究函数的性质;(3)能够熟练应⽤定义判断与证明函数在某区间上的单调性.3、情态与价值,使学⽣感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感. ⼆、教学重点与难点重点:函数的单调性及其⼏何意义.难点:利⽤函数的单调性定义判断、证明函数的单调性.三、学法与教学⽤具1、从观察具体函数图象引⼊,直观认识增减函数,利⽤这定义证明函数单调性。
通过练习、交流反馈,巩固从⽽完成本节课的三维⽬标。
2、教学⽤具:投影仪、计算机. 四、教学思路:(⼀)创设情景,揭⽰课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增⼤,y 的值有什么变化?○2 能否看出函数的最⼤、最⼩值?○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:(1)f(x) = x○1 从左⾄右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增⼤,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左⾄右图象上升还是下降 ______?⼤,f(x)的值随着________ .(3)f(x) = x2○1在区间____________ 上,f(x)的值随着x的增⼤⽽________ .○2在区间____________ 上,f(x)的值随着x的增⼤⽽________ .3、从上⾯的观察分析,能得出什么结论?学⽣回答后教师归纳:从上⾯的观察分析可以看出:不同的函数,其图象的变化趋势不同,同⼀函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的⼀个重要性质——函数的单调性(引出课题)。
函数的单调性的应用
例4:作出函数f(x)= x2 6 x 9 + x2 6 x 9 的图象,并指出函数f(x)的单调区间
分析:作出函数图象,直观地判断函数的单调区间 解: 原函数可化为: -2x f(x)=|x-3|+|x+3|= 6 2x x -3 -3<x<3 x3
Y=-2x 6 y
总结:此函数以下单调规律: 两边为增,中间为减.
-a
0
-a
点拨:含参函数,不能化为基本函数类型,常采用定义 法解题.
例3.已知定义在(0,+)上的函数f(x)满足 : 对x,y (0,+)都有f(xy)=f(x)+f(y), 当x>1时,f(x)>0. 试证明:f(x)在(0,+)上是增函数
a(x+2)-2a+1 2a 1 解: f(x)= a x2 x2 当-a+1>0时 a<1 f(x)在(-2,+)上是减函数 当-a+1<0时 a>1 f(x)在(-,-2)上是增函数
点拨:含参函数,能够化归为常见函数的单调性时,直接 讨论参数.
二.证明:根据函数单调性定义解题.
Y=2x
如图可得:在(-,-3]上为减函数, 在[3,+)上为增函数,
-3 3
x
在[-3,3]上为常函数,不具有单调性
例3:已知f(x)=8+2x-x , 若g ( x) f (2 x ),
2 2
试确定g ( x)的单调区间,及单调性
(重点班、实验班)
解:设u=2-x ,则 y g ( x) f (u ) 8 2u u (u 1) 7
函数的单调性的应用
B、今非昔比的圆明园 标题:_________(填序号) 理由:______________________________________________________________________ 2、艾青在
《我爱这土地》中写“为什么我的眼里常含泪水”,上文结尾也写到了“流泪”,简要分析“眼泪”背后两位作者思想感情的异同。 3、文中的语言富有表现力,请结合句中加点的词语作简要分析。 一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。 ? 4、文
她的自尊心 4、先是自卑怯懦后来变得自信开朗 同学们真诚的帮助改变了她的性格 5、(写出感动的地方1分,写出理由2分) 磨难,人生的一份财富 ? 追求生活的圆满是人生的良好愿望,然而真正实现这个愿望,又何其难呀!漫漫人生,失缺和倾斜几乎是永远的,于是出现了不满足,
出现了苦痛。在形式上,你有满意的爱人和美满的家庭,但事业不一定顺利;你事业上大有可为,却不免失去家庭的温馨;你有平稳的家庭生活,不一定懂得爱;你有爱,但并非拥有幸福。人常常遭遇到意想不到的磨难。在内涵上,你当怎样把握生活的哲学命题?你当怎样直面严肃的人
该题分层赋分 (1)不存在关联。 第一层:理解肤浅,只是笼统地说二者无关系。 示例一:父女的善良和文字的力量是两回事。 实例 现代文阅读训练题及答案 圆明园 ? 阅读下面文章,完成文后问题。 ①一直以为,圆明园是哭泣的。英法联军蹂躏着她的肌体,摧毁着她的骨骼,冲
天大火燃烧的是一个民族的自尊,百多年的疼痛如那西洋楼的残臂断垣穿越百年的风雨永远存在——伫立在那西洋楼大水法的遗址前,我无法不感受圆明园的疼痛,感受一个民族的屈辱和疼痛,是那种切肤的痛。 ②是十年前,去的圆明园。没有人愿去,说是那么远,又没啥看的。我说
(重点班、实验班)
高一数学上函数的单调性知识点
高一数学上函数的单调性知识点函数的单调性是高一数学中重要的知识点之一。
对于一个给定的函数,我们可以通过研究它的单调性来了解函数的增减变化规律。
在本篇文章中,将介绍函数的单调性的基本概念、判断方法和应用。
一、函数的单调性的概念函数的单调性是指函数在定义域内的增减变化规律。
基本上,函数的单调性可以分为三种情况:递增、递减和不变。
当函数的值随着自变量的增加而增加时,我们称该函数为递增函数。
相反地,当函数的值随着自变量的增加而减少时,我们称该函数为递减函数。
若函数在自变量取值范围内既递增又递减,或者在某些区间内递增,在其他区间内递减,我们则称该函数是不变函数。
二、函数单调性的判断方法判断函数的单调性,一般可以通过函数的导数、变化率和二阶导数等方法进行推导。
1. 函数的导数法对于给定的函数f(x),我们通过求函数的导数f'(x)来判断函数的单调性。
若函数在定义域内的导数恒大于0,则函数递增;若导数恒小于0,则函数递减。
例如,对于函数f(x) = x^2,求导得到f'(x) = 2x。
由于函数的导数f'(x)在定义域内恒大于0,所以该函数是递增的。
2. 函数的变化率法利用函数的变化率来判断函数的单调性是另一种常用的方法。
对于给定的函数f(x),通过计算任意两个点(x1, f(x1))和(x2, f(x2))之间的斜率来判断函数的单调性。
若对于任意两个不同的点(x1, f(x1))和(x2, f(x2)),斜率k = (f(x2) - f(x1)) / (x2 - x1) 恒大于0,则函数递增;若斜率k恒小于0,则函数递减。
若存在某些点斜率为0,则表示函数的区间不变。
例如,对于函数f(x) = 2x + 1,选择两个不同的点(-1, f(-1))和(1,f(1)),计算斜率为(3 - (-1)) / (1 - (-1)) = 2 > 0,故该函数是递增的。
3. 函数的二阶导数法二阶导数法是判断函数的单调性的另一种常见方法。
函数单调性的应用教案
函数单调性的应用教案第一章:函数单调性的基本概念1.1 函数单调性的定义引入函数单调性的概念,解释函数单调递增和单调递减的定义。
通过图形和实例来说明函数单调性的直观含义。
1.2 函数单调性的性质探讨函数单调性的几个基本性质,如传递性、复合函数的单调性等。
通过例题和练习题来巩固对函数单调性性质的理解。
第二章:利用函数单调性解不等式2.1 单调性在不等式解中的应用解释如何利用函数单调性来解决不等式问题,如求解函数的定义域、值域等。
提供实例和练习题,让学生熟悉运用函数单调性解不等式的方法。
2.2 单调性在函数最值问题中的应用介绍如何利用函数单调性来求解函数的最值问题,包括最大值和最小值。
通过具体例题和练习题,展示函数单调性在解决最值问题中的应用。
第三章:函数单调性与方程的解3.1 单调性在函数零点问题中的应用讲解如何利用函数单调性来寻找函数的零点,即解方程f(x)=0。
提供实例和练习题,让学生掌握利用函数单调性求解零点的方法。
3.2 单调性在函数不等式问题中的应用介绍如何利用函数单调性来解决函数不等式问题,如求解f(x)>0或f(x)<0的解集。
通过具体例题和练习题,展示函数单调性在解决不等式问题中的应用。
第四章:函数单调性与数列极限4.1 单调性在数列极限问题中的应用解释如何利用函数单调性来求解数列极限问题,特别是涉及到函数极限的情况。
提供实例和练习题,让学生熟悉运用函数单调性解决数列极限问题的方法。
4.2 单调性在函数极限问题中的应用讲解如何利用函数单调性来求解函数极限问题,即当x趋向于某个值时,函数的极限值。
通过具体例题和练习题,展示函数单调性在解决函数极限问题中的应用。
第五章:函数单调性与微分中值定理5.1 单调性在拉格朗日中值定理中的应用介绍如何利用函数单调性来证明拉格朗日中值定理,即导数存在性定理。
提供实例和练习题,让学生掌握利用函数单调性证明拉格朗日中值定理的方法。
5.2 单调性在柯西中值定理中的应用讲解如何利用函数单调性来证明柯西中值定理,即两个函数的导数之间的关系。
高一数学必修一中的函数单调性与最值问题
高一数学必修一中的函数单调性与最值问题在高一数学必修一的学习中,函数的单调性与最值问题是非常重要的一部分内容。
它不仅是后续数学学习的基础,也在实际生活和其他学科中有着广泛的应用。
首先,我们来理解一下什么是函数的单调性。
简单来说,单调性就是函数值随着自变量的增大或减小而呈现出的一种变化规律。
如果函数值随着自变量的增大而增大,我们就说这个函数在某个区间上是单调递增的;反之,如果函数值随着自变量的增大而减小,那么这个函数在这个区间上就是单调递减的。
为了判断函数的单调性,我们通常会采用定义法。
假设给定函数$f(x)$,定义域为$I$,对于定义域$I$内某个区间$D$上的任意两个自变量的值$x_1$,$x_2$,当$x_1<x_2$时,如果都有$f(x_1)<f(x_2)$,那么就称函数$f(x)$在区间$D$上是单调递增的;如果都有$f(x_1)>f(x_2)$,则称函数$f(x)$在区间$D$上是单调递减的。
比如说,对于一次函数$y = 2x + 1$,我们可以任取两个自变量的值$x_1$和$x_2$,且$x_1 < x_2$。
那么$f(x_1) = 2x_1 + 1$,$f(x_2) = 2x_2 + 1$。
因为$x_1 < x_2$,所以$2x_1 < 2x_2$,从而$f(x_1)< f(x_2)$,所以这个一次函数在其定义域内是单调递增的。
再比如,二次函数$y = x^2$。
当$x < 0$时,随着$x$的增大,$y$的值逐渐减小,函数是单调递减的;当$x > 0$时,随着$x$的增大,$y$的值逐渐增大,函数是单调递增的。
除了定义法,我们还可以通过函数的导数来判断单调性。
这对于一些复杂的函数会更加方便和高效,但这是后续学习的内容,在高一阶段,我们主要还是掌握定义法。
接下来,我们谈谈函数的最值问题。
函数的最大值和最小值,简单理解就是函数在定义域内所能取到的最大和最小的函数值。
如果函数在某个区间上是单调递增的,那么在区间的左端点处取得最小值,在右端点处取得最大值;如果函数在某个区间上是单调递减的,那么在区间的右端点处取得最小值,在左端点处取得最大值。
函数单调性教案函数单调性教学设计(6篇)
函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。
《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。
把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。
从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。
【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(B) y 3x2 1
(D) y 2x2 x 1
x 1 x 0 x 1 x 0
________
成果运用
若二次函数f (x) x2 ax 4在区间 ,1 上单调递
增,求a的取值范围。
y
y
o1
x
o1
x
解:二次函数 f (x) x2 ax 4的对称轴为 x a ,
(
x1
x2
)
x12
x1x2
x2 2
2
3 4
x2 2
1
( x1
x2
) ( x1
x2 2
)2
3 4
x2 2
1
x1 x2 x1 x2 0
而(x1
x2 2
)2
3 4
x2 2
1
0
f (x1) f (x2 ) 0,即f (x1) f (x2 )
f (x) x3 x在R上是增函数。
例4:证明函数 f (x) x2 1 x 在其定义域内 是减函数。
例4:证明函数 f (x) x2 1 x 在其定义域内 是减函数。
证明: f (x)的定义域为 ,
设任意的 x1, x2 f (,), 且x1 x2
f (x1) f (x2 ) ( x12 1 x1) ( x22 1 x2 )
0,1 上是
(3)若函数f(x)在区间(1,2]和(2,3)上均为增函数, 则函数f(x)在(1,3)上为增函数。
1
(上4都)是因减为函函数数,f(x所)=以xf(在x)区= 1间(在-(∞-,∞0,)0和 )( ∪0(,0+,∞+)∞)
上是减函数。
x
例1 证明函数 f (x) x 在区间[0,+∞)上单调递增。
单调性.
例2:证明函数 f (x) x 2 在( 2, )上是增函数。
x
证明:任取 x1, x2 2, ,且x1 x2
2
2
因 f
( x1 )
f
(x2 )
( x1
) x1
(x2
x2
)
式分x2
)
(x1
x2)
2(x2 x1) x1x2
(x1
x2)(1
2 x1x2
( x12 1
x22 1) (x1 x2 )
x12
x12 1
x22 x2 2
1
( x1
x2
)
有 理 化
(x1 x2 x12 1
)(x1 x2 ) x22 1
( x1
x2
)
( x1
x2
)
( x1
x2
)( x12
x12 1
1 x2 2
x2 2 1
1)
(x1 x2 ) (x1
x12 1) (x2 x22 1) x12 1 x22 1
判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的 一般步骤:
1 取值:任取 x1,x2∈D,且x1<x2; 2 作差:f(x1)-f(x2); 3 变形:通常是因式分解、配方和有理化; 4 定号:即判断差f(x1)-f(x2)的正负; 5 下结论:即指出函数f(x)在给定的区间D上的
)
(x1
x2)( x1xx12x2
2)
解
2 x1 x2 x1 x2 0, x1x2 2, x1x2 2 0 f (x1) f (x2 ) 0,即f (x1) f (x2 )
f (x) x 2 在( 2, )上是增函数 x
例3:证明函数 f (x) x3 x在R上是增函数。
x1 x2 x1 x2 0,且 x12 1 x22 1 0 又 对任意x R,都有 x2 1 x2 x x
x2 1 x,即有x x2 1 0 x1 x12 1 0, x2 x22 1 0 f (x1) f (x2 ) 0 即f (x1) f (x2 ) f (x) x2 1 x在其定义域内是减函数。
证明:任取 x1, x2 R,且x1 x2
则f (x1) f (x2 ) (x13 x1) (x23 x2 )(x13 x23) (x1 x2 )
(x1 x2)(x12 x1x2 x22 ) (x1 x2 ) (x1 x2 )( x12 x1x2 x22 1)
配 方 法
证明:任x1取,x2 [0,+∞),且x1 < x2,
取值
则: f (x1 ) f (x2 ) x1 x2
x1 x2 x1 x2
由0≤ x1 < x2 得 x1 x2 0 x1
作差 变形 x2 0 定号
于是 f(x1)-f(x2)<0。 即 f(x1)<f(x2)
所以函数f (x) x 在区间[0,+∞)上为增函数。下结论
增,求a的取值范围。
变式1
若二次函数 f (x) x2 ax 4 的单调增区间是 ,1 ,
则a的取值情况是 ( )
A. a 2 B. a 2 C. a 2 D. a 2
变式2
请你说出一个单调减区间是 , 1 的二次函数
变式3
请你说出一个在 , 1上单调递减的函数
(A) y 2x 1
f (x) 是定义在R上的单调函数,且 f (x) 的图
象过点A(0,2)和B(3,0)
(1)解方程 f (x) f (1 x) (2)解不等式 f (2x) f (1 x) (3)求适合 f (x) 2或f (x) 0 的 x 的
取值范围
返回
成果运用
若二次函数f (x) x2 ax 4在区间 ,1 上单调递
函数单调性的应用
知识回顾
❖ 1.函数单调性的定义。 ❖ 2.定义里面有什么关键词? ❖ 3.什么叫函数的单调区间? ❖ 4.如何判断函数的单调性?我们介绍了几种
方法?
练习:判断正误: (1)已知f(x)= 1 ,因为f(-1)<f(2),所以函数f(x)是
增函数。 x
(2)若函数f(x)满足f (2)<f(3),则函数f(x)在区间[2,3] 上为增函数。
2
由图象可知只要 x a 1 ,即a 2即可.
2
小结
1.函数单调性的定义中有哪些关键点? 2.判断函数单调性有哪些常用方法? 3.你学会了哪些数学思想方法?
作业
1、教材 p39 1,2,3,4
2、证明函数 f(x)=-x2在 0, 上是 减函数。
3、证明函数
f(x)=
x
1
在
单调递增的。
x