最终版《简单的线性规划问题》课件ppt

合集下载

简单线性规划 课件(48张)

简单线性规划  课件(48张)

22
由 z=x+3y,得 y=-13x+3z,平移直线 x+3y=0 可
知,当直线 y=-13x+3z经过 A 点时 z 取最大值.由
2x+y=4,
得 A(1,2),所以 zmax=1+2×3=7.
x=1,
2021/10/10
23
类型 2 求非线性目标函数的最值 x-y-2≤0,
[典例 2] 设实数 x,y 满足约束条件x+2y-4≥0, 2y-3≤0,
2021/10/10
30
[变式训练] (1)在平面直角坐标系 xOy 中,M 为不
2x-y-2≥0, 等式组x+2y-1≥0,所表示的区域上一动点,则直线
3x+y-8≤0, OM 斜率的最小值为( )
A.2 B.1 C.-13 D.-12
2021/10/10
31
2x+y-5≥0, (2)已知3x-y-5≤0,求(x+1)2+(y+1)2 的最大、
简单的线性规划
2021/10/10
1
[学习目标] 1.了解线性规划的意义,了解线性约束 条件、线性目标函数、可行解、可行域、最优解等基本概 念. 2.掌握线性规划问题的图解法,会用图解法求线性 目标函数的最大值、最小值. 3.训练数形结合、化归等 数学思想,培养和发展数学应用意识.
2021/10/10
x-2y+5≥0, 最小值.
(1)解析:如图所示,
2021/10/10
32
2x-y-2≥0, x+2y-1≥0,所表示的 3x+y-8≤0,
平面区域为图中的阴影部分.
x+2y-1=0,

得 A(3,-1)
3x+y-8=0,
当 M 点与 A 重合时,OM 的斜率最小,
2021/10/10

《简单线性规划》PPT课件

《简单线性规划》PPT课件

y x

x、y
满足约束条件
x
y
1
y 1
x y5
2、 图中阴影部分的点满足不等式组 2 x y 6
在这些点中,使目标函数
k
=
6x
+
8y
x
0,
y
0
取得最大值的点的坐标是__(_0__,_5__)__
2、某木器厂生产圆桌和衣柜两种木料,第一 种有 72 米 3,第二种有 56 米 3,假设生产 每种产品都需要用两种木料,生产一张圆桌和 一个衣柜分别所需要木料如表所示,每生产一 张圆桌可获利润6元,生产一个衣柜可获利润 10元,木器厂在现有木料条件下,圆桌和衣 柜各生产多少,才使获得的利润最多?
y值 y=x
1
1
o
x
-1
x + y -1 = 0
y x
x
y
1
y 1
x 3 0
2x-y+1=0 y
1
1/2
1
o
x
x+y-1=0
y
2x-3y+2=0
2/3
-1 -1o/2
3
x
例3、一个化肥厂生产甲、乙两种混合肥料,生产1车皮 甲种肥料需要的主要原料是磷酸盐4吨,硝酸盐18吨; 生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸 盐15吨.现有库存磷酸盐10吨,硝酸盐66吨.如果在此基 础上进行生产,设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,请列出满足生产条件的数学关系式,并 画出相应的平面区域.
解:x和y所满足的数学关系式为:
y
4 x y 10
4x+y=10
18 x 15 y 66

3.3.2简单的线性规划问题(1).ppt1

3.3.2简单的线性规划问题(1).ppt1
3.3.2简单的线性规划问题(1)
y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。

高中数学《简单的线性规划问题 》课件

高中数学《简单的线性规划问题 》课件

11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升 解线性规划问题的关键是准确地作出可行域,正确理解 z 的几何意义,对一个封闭图形而言,最优解一般在可行域 的边界线交点处或边界线上取得.在解题中也可由此快速找 到最大值点或最小值点.
12
课前自主预习
课堂互动探究
随堂达标自测
27
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
x≥0,
【跟踪训练 3】 记不等式组x+3y≥4, 3x+y≤4
所表示的平
面区域为 D,若直线 y=a(x+1)与区域 D 有公共点,则 a 的 取值范围是___12_,__4_ _.
28
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
24
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
探究3 已知目标函数的最值求参数 例 3 已知变量 x,y 满足约束条件 1≤x+y≤4,-2≤x -y≤2.若目标函数 z=ax+y(其中 a>0)仅在点(3,1)处取得最 大值,则 a 的取值范围为__a_>_1____.
解析 由约束条件画出可行域(如图). 点 C 的坐标为(3,1),z 最大时,即平移 y=-ax 时,使 直线在 y 轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(3)(教材改编 P89 例 6)某公司招收男职员 x 名,女职员 y
5x-11y≥-22, 名,x 和 y 需满足约束条件22xx≤+131y≥,9,

简单的线性规划问题(4课时)PPT课件

简单的线性规划问题(4课时)PPT课件

12 5
.
3
x-4y+3=0
B
2
1C
3x+5y-25=0
0 1 234567 X
13
y
例2 已知x、y满足: x
y
求z=2x+y的最大值. y
2x+y=0
最优解(3,3),
最大值9.
O
x y2 3x 6
y=x
M
x
y=3x-6
x+y=2
14
小结作业
1.在线性约束条件下求目标函数的最大 值或最小值,是一种数形结合的数学思 想,它将目标函数的最值问题转化为动 直线在y轴上的截距的最值问题来解决.
19
20
探究(一):营养配置问题 t
p
1 2
5730
【背景材料】营养学家指出,成人良好
的日常饮食应该至少提供0.075kg的碳
水化合物,0.06kg的蛋白质,0.06kg的
脂肪.已知1kg食物A含有0.105kg碳水化
合物,0.07kg蛋白质,0.14kg脂肪,花
费28元;而1kg食物B含有0.105kg碳水
(3)线性规划问题: 在线性约束条件下,求线性目标函数
的最大值或最小值问题,统称为线性规 划问题.
(4)可行解: 满足线性约束条件的解(x,y)叫
做可行解.
10
(5)可行域: 由所有可行解组成的集合叫做可行域.
(6)最优解: 使目标函数取得最大或最小值的可行
解叫做最优解.
11
理论迁移
例1 设z=2x-y,变量x、y满足下列条件
3.3.2 简单的线性规划问题
第一课时
1
问题提出
t
p
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
y1x z
33
zmax 2 3 3 11
四个步骤:
1。画(画可行域) 2。作(作z=Ax+By中令z=0时的直线L:Ax+By=0 。) 3。移(平移直线L 。寻找使纵截距取得最值时的点) 4。答(求出点的坐标,并转化为最优解)
[练习]解下列线性规划问题:
1、求z=2x+y的最大值,使x、y满足约束条件:
(2)求z= x2 y2 的最小值(可看成可行域内点 (x, y)到原点的距离的平方)
A1, 22 5
1求z x 32 y2最值
将(3,0)带入x 4 y 3 0的距离公式得
d 3 4 0 3 6 17 半径 12 (4)2 17
zmin
d2
36 17
x4y3 0
Q(3,0)
求线性目标函数,在线性约束下的最值问题, 统称为线性规划问题,
满足线性约束的解(x,y)叫做可行解,
所有可行解组成的集合叫做可行域
x 使目标函数取得最值的可行解叫做这个
问题的最优解
变式:求利润z=x+3y的y最大值.
x2y 8
44
x y
16 12
x
0
y 0
4 N(2,3) 3
0
4
8x
y1 x4
x y 0k 1
B 1,3
A C
与C点的连线是最小值,
将C点带入得 Zmin
1 1 2
1 3
与B点的连线是最大值,
将B点带入得
Zmax
3 1 2
1
x 1
x
x y40
x y 4 0 例1、已知变量x, y满足 x y 0 , x 1
变式:求z y 的最大值与最小值(取值范围) x
问题:求z=2x+3y的最大y 值.
x2y 8
44
x y
16 12
x
0
y 0
4
3
M(4,2)
4
8x
0
y2x z 33
Zmax 4 2 2 3 14
x2y 8
44
x y
16 12
x
0
y 0
y
4 3
48
0
象这样关于x,y一次不等式组的 约束条件称为线性约束条件
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数
x4y3 0
1,1
x 1
3x 5y 25 0
小结 : (1) 的几何意义:
的几何意义
表示点(x,y)与(a,b)的距离
(2)
的几何意义:
表示点(x,y)与原点(0,0)的距离
所以,形如
的目标函数的
几何意义:
表示平面区域内的点(x,y)与点(a,b)的距离的平方
• 已知目标函数的最值求参数
x
y
o
x
复习回顾:
(1)画出不等式4x―3y≥12表示的平面区域
y 4x―3y-12=0 x
复习回顾:
y 2、画出不等式组表示的平面区域。
x-y+5≥0
x+y≥0
x≤3
5
-5 o 4
x-y+5=0
x
x+y=0 x=3
问题1:画出下列不等式组所表示的平面
区域. y
x2y 8
44
x y
16 12
y
y k
Ak,
k
在z 2x y移动到Ak, k 点时取到最小值
z 2k k 6 k 2
• 小结
• 解答此类问题必须明确线性目标函数的最值一般在可 行域的顶点或边界取得
x 1 变式:已知a 0, x, y满足约束条件 x y 3 .若z 2x y的最小值为1,则a ()
2.解:作出平面区域
y
A
B
oC
x
5x+3 y 15
y
x+1
x-5 y 3
z=3x+5y
作出直线3x+5y =z 的 求得A(1.5,2.5),
图像,可知直线经过A点时,B(-2,-1),则
Z取最大值;直线经过B点 Zmax=17,
时,Z取最小值。
Zmin=-11。
非线性规划问题的最值(值域)
y ax 3
A. 1
x
0
4
3
4
8x
0
y 0
问题2:在上述条件下,求z=2x+3y的最大值.
问题2:求z=2x+3y的最大值. y
把z=2x+3y变形为y=
z 3
,这是斜率为-
2 3
,
在y轴上的截距为 z 的直3 线,
3
4
8x
当点P在可允许的取值范围变0化时,
求截距 z 的最值,即可得z的最值. 3
• 斜率的探究(倾斜角或顺时针判断) 思路一:(0,90)和90,180 分别都符合倾斜角越大,斜率越大 思路二:(0,90)和90,180 分别符合直线顺时针转动,斜率变大
所以形如
的目标函数的几何意义就是:
平面区域内的点(x,y)与点(a,b)连线的斜率
类型二:距离型非线性规划问题的最值(值域)
探究1 对形如 z (x a)2 ( y b)2
目标函数的最值(距离型)
例1、设变量x,y满足x 4 y 3 0 3x 5y 25 0 x 1
1 求z x 3 2 y 2最值 (可看成可行域内点 (x, y)到(3,0)的距离的平方)
y x
x+y
1
y -1
2、求z=3x+5y的最小值,使x、y满足约束条件:
5x+3 y 15
y
x+1
x-5 y 3
1.解:作出平面区域
y
A
o
x
B
C
y x
x+y
1
y -1
z=2x+y
作出直线y=-2x+z的图像,可知 z要求最大值,即直线经过C点时。
求得C点坐标为(2,-1),则 Zmax=2x+y=3
思路点播:可以看成平 面区域内的点 x, y与0,0连线的斜率
即z y 0 x0
y
x y 0k 1
B 1,3
A C
x 1
Zmin 1 30
Zmax 1 0 3
x
x y40
小结 (1) 的几何意义:表示点(x,y)与点(a,b)连

线的斜率.
(2)
表示(x,y)与原点(0,0)连线的斜率;
类型一:斜率型非线性规划问题的最值(值域)
探究1 对形如
目标函数的最值(斜率型)
x y 4 0 例1、已知变量x, y满足 x y 0 , x 1
求z y 的最大值与最小值(取值范围) x2
思路点播:可以看成平面区域内的点x, y与- 2,0连线的斜率
即z
x
y
0
2
y
2,0
x 1
3x 5y 25 0
Q(3,0)与A1,,22 点的距离最大,公式得 5
AQ
3
-12
0
-
22
2
2
146
5
5
zmax
AQ 2
584 25
(2)求z= x2 y2 的最小值
可将Z x2 y2转化成Z x - 02 y 02 通过观察圆的大小可以判断出1,1点距离原点最近。 Zmin 1 02 1 02 2
相关文档
最新文档