东华大学高频电子电路通信电子电路课件DOC
高频电子技术6.ppt
高频功放:将高频信号进行功率放大的电路,实质是在输入 高频信号的控制下,将电源的直流功率转变成高频功率。
主要功用: 放大高频信号, 以高效率输出大功率,并且尽量保 证非线性失真小。
分类:低频功放:甲类(3600导通,效率50%) 乙类(1800导通,效率78.5%) 甲乙类(大于 1800导通,效率75%)
欠压状态。电压利用率低但可变, 临界状态。 A点在临界饱和线上;
临界状态时的负载电阻 记为:ROPT。
过压状态 A点在饱和区;
Rp 斜率gd 谐振放大器的工作状态由欠压 过压 逐步过渡。
临界
U,I Ic1m Ic0
o 欠压
U cm
P,
临界 过压 Rp
o
ROPT
欠压
Pd P0
Pc 临界 过压 Rp ROPT
6.1 高频功率放大概述
因为工作频率很高,相对频带却很窄,因此一般 都采用选频网络作为负载回路,工作状态选用丙 类、丁类。对于需要在很宽的范围内变换工作频 率的情况,还可采用宽带高频功率放大电路,它 不采用选频网络作负载,而是以频率响应很宽的 传输线变压器作负载。由于受功放管的限制,单 个功率放大电路输出功率是有限的,在大功率无 线电信号发射装置中,采用功率合成技术来增大 输出功率。
结论: 随着负载的增大,电路的工作状态经历了从欠压状
态到临界状态又到过压状态的变化 ; 临界状态:效率与输出功率最佳,是谐振放大器的
最佳工作状态; 欠压状态:效率低,恒流源; 过压状态:效率高,损耗小,恒压源。
图6-12 谐振功率放大电路的测试电路
例6.1 某高频谐振功率放大电路工作于临界状态,输出 功率为15W,且UCC=24V,导通角θ=70°,ξ=0.91。试 问:
高频电子线路课件:高频小信号放大电路
电导、 回路谐振电导和接入系数有关。
(1) 为了增大Au0, 应选取|yfe|大, goe小的晶体管。
(2) 为了增大Au0, 要求负载电导小, 如果负载是下一级放大 器, 则要求其gie小。
(3) 回路谐振电导ge0越小, Au0越大。而ge0取决于回路空 载Q值Q0, 与Q0成反比。
(4) Au0与接入系数n1、n2有关, 但不是单调递增或单调 递减关系。由于n1和n2还会影响回路有载Q值Qe, 而Qe又将 影响通频带,所以n1与n2的选择应全面考虑, 选取最佳值。
谐振放大器的主要性能指标是电压增益、 通频带、 矩形系 数和噪声系数。
本节仅分析由晶体管和LC回路组成的谐振放大器。
高频小信号放大电路是线性放大电路。Y 参数等效电路和混合π型等效电路是分析高频 晶体管电路线性工作的重要工具。
晶体管Y参数等效电路:
Ib
b + U b
- e
Ic
c + U c
- e
向控制)。yfe越大, 表示晶体管的放大能力越强;yre越大, 表
示晶体管的内部反馈越强。yre的存在对实际工作带来很大危害, 是谐振放大器自激的根源, 同时也使分析过程变得复杂, 因此应
尽可能使其减小或削弱它的影响。
晶体管的Y参数可以通过测量得到。根据Y参数方程, 分别 使输出端或输入端交流短路, 在另一端加上直流偏压和交流测试 信号, 然后测量输入端或输出端的交流电压及交流电流的振幅和 相位, 将这些测量值代入式(2.2.1)中就可求得四个导纳参数。 所以,Y参数又称为短路导纳参数。通过查阅晶体管手册也可得 到各种型号晶体管的Y参数。
根据N(f)定义和式(2.2.10), 可写出放大器电压增益振幅
的另一种表达式, 即
基础知识高频电子线路PPT课件
负 载
LC带载并联回路
❖ 信号源会有相应的输出电阻、输出电容; ❖ 负载除了纯电阻外,还有负载电容
第24页/共72页
信号 源
LC 回路
负载
IS
RS CS
L Re0 C RL CL
并联谐振回路与信号源和负载的连接
第25页/共72页
信号源、负载都等效到LC回路:
其中: C Cs C CL g gs ge0 gL
iS ' RS '
C
b
b
其中:C C1C2
C1 C2
,
L
L1
L1 L2
L2 2
M
第28页/共72页
无互感 有互感
L
RL'
1. 纯电感或纯电容阻抗变换电路 (1)自耦变压器电路
1
L
Is
C Rs
N1
2 N2
RL
3
Is Rs
1 C
RL’ L
3
由于两种情况都只有电阻消耗能量则有:
RL得到的功率 RL得到的功率
❖阻抗电路的串-并联等效转换
由电阻元件和电抗元件组成的阻抗电路的串联形式与并联 形式可以互相转换
Zp
Rp
Xp
Zs Xs
Rs
等效互换的原则:保持其等效阻抗和Q值不变。
等效条件:
《高频电子技术》课件
THANKS
谢谢
在此添加您的文本16字
带阻滤波器允许除某一频段外的信号通过,抑制该频段信 号。
滤波器的性能指标
通带和阻带性能
插入损耗
通带和阻带的边缘频率、带宽等参数决定 了滤波器的频率选择性和抑制能力。
滤波器对有用信号的衰减程度,以dB为单 位表示。
群时延
稳定性
滤波器对信号相位变化的量度,反映信号 通过滤波器的速度。
振荡原理
高频电子电路中的元件通 过正反馈和负反馈等机制 ,产生振荡信号,实现信 号的调制和解调等功能。
传输线原理
高频电子电路中的信号传 输遵循传输线理论,信号 在传输过程中会受到线路 的分布参数影响。
03
CHAPTER
高频电子技术中的放大器
放大器的分类与特点
分类
按功能可以分为电压放大器、功率放 大器、跨导放大器等;按频率可分为 低频放大器、高频放大器、微波放大 器等。
特点
高频放大器具有较高的增益和带宽, 能够放大微弱的高频信号;低频放大 器具有较低的噪声系数和较好的线性 度,适用于放大低频信号。
放大器的性能指标
增益
放大器的输出信号幅度与输入信号幅 度之比,反映了放大器的放大能力。
带宽
放大器能够正常工作的频率范围,反 映了放大器的频率响应能力。
线性度
放大器在小信号和大信号输入下的性 能差异,反映了放大器的失真程度。
频率范围
高频电子电路的工作频率范围,通常指几百 千赫兹到几百兆赫兹。
带宽
高频电子电路的频率响应范围,通常指电路 能够正常工作的频率范围。
增益
高频电子电路的放大倍数,用于衡量电路的 放大能力。
噪声系数
高频电子电路的噪声与信号比值,用于衡量 电路的噪声性能。
通信电子电路课件第2章
North China Electric Power University
通信电子电路 第2章无线收发机系统
例: 超外差收音机的中频频率fI=465KHz, 接收电台信号频率fs=931 KHz, 则相应的本振频率fL=fs+fI=1396KHz, 混频器非线性器件产生的组合频率中, 当 p= -1,q=2时,得组合频率-fL+2 fs =466KHz=fn,与fI相差1KHz,中频滤波 器难以滤除 在检波器中形成差拍检波,听到1KHz的 啸叫声。
2.1.1 单次变频超外差接收机
f S : 0 .5 M 3 0 M
fS
f I f L fS 455k (465k )
fL
图2-1-1 单次变频超外差式接收机方框图
超外差的含义: 本振频率始终高出接收频率一个中频,且中频固定
North China Electric Power University
通信电子电路 第2章无线收发机系统
2、镜像干扰 取 p 1 、q 1 得
fn fS 2 fI
fI
fI
fS
fL
f
fn
镜像干扰频率关系
干扰信号频率 f 与有用信号频率 f 相对于本振频率 f 恰好形成镜像对称关系
n S
L
North China Electric Power University
North China Electric Power University
通信电子电路 第2章无线收发机系统
一、啸叫干扰(干扰哨声) 原因:由接近中频的组合频率产生, 当某些组合频率分量满足表达式 ±pfL±qfs≈fI,则混频器输出端的选频 电路就无法剔除这些频率分量的信号 现象:收听到正常信号的同时,伴随 有啸叫声
高频电子线路课件_(7).ppt
以及信道或接收机中的干扰与噪声问题。
25
本书的内容:
(1)信号的放大(第3章) (2)信号的产生(第4章)
(3)信号的频率变换(第5、6、7章)
这些基本单元电路的组成、原理及有关技 术问题,就是本书的研究对象。
26
1.1 无线通信系统概述
二、无线通信系统的类型 可根据不同的方法来划分: (1) 按工作频段或传输手段 有中波通信、短波通信、超短波通信、微波通信 和卫星通信等。 工作频率主要指发射与接收的射频(RF)频率。
21
1.1 无线通信系统概述
一、无线通信系统的组成 在接收设备中有相应的两种反变换。 (1)将接收到的已调信号变换为基带信号的过程称 为解调(Demodulating) 。 (2)将基带信号通过输出换能器转换为原始信息形式。
22
1.1 无线通信系统概述
一、无线通信系统的组成 分析三种信号: 调制信号、载波、已调波。 (1)调制后的信号称为已调信号(Modulated Signal);
1.2 无线电信号与调制 不同频段信号的产生、放大和接收的方法 不同,传播的能力和方式也不同,因而它们的 分析方法和应用范围也不同。 表中关于传播方式和用途的划分是相对而 言的,相邻频段间无绝对的分界线。
32
1.2 无线电信号与调制
高频的解释: 频段划分中的“高频”段,其范围为3~30 MHz, 这是“高频”的狭义解释,它指的就是短波频段。
9
振荡器:产生 fosc 的高频振荡信号,几十千赫以上。高 频放大器: 多级小信号谐振放大器,放大振荡信号, 使频率倍增至 fc,并提供足够大的载波功率。调制信 号放大器:多级放大器,前几级为小信号放大器,放 大微音器的电信号;后几级为功放,提供功率足够的 调制信号。振幅调制器:实现调幅功能,将输入的载 波信号和调制信号变换为所需的调幅波信号,并加到 天线上。
高频电子线路课件:反馈控制电路原理及其分析方法
利用拉氏变换的终值定理可求得系统稳态误差值为
es
lim e(t)
t
lim
s0
sE(s)
(1.4.8)
7.5 自动频率控制电路
7.5.1 工作原理
自动频率控制(AFC)电路由频率误差信号控制电 路、 低通滤波器和可控频率器件三部分组成, 其方框图如 图7.5.1所示。
r r(s)
频 率 误差 信 提 取 电路
的输出信号振幅,Ux0和Ag(0)是相应的输入信号振幅和放大 器增益, kc和kg皆为常数, 表示均为线性控制。
若低通滤波器对于直流信号的传递函数 H(s)=1, 当误 差信号ue=0时, 由图6.7.1可写出UR 和Uy0、Ux0之间的关系,
即
UR=k2k3Uy0=k2k3Ag(0)Ux0
(6.7.2)
Ux
UR
电 压 比 较 器 ue
控 制 信 号 uc
可 控 增益
Uy
kb
发 生 k器1
放 大 A器g
直 流 放大 器 k3
低通 滤波器
电 平 检测 器 k2
图 6.7.1 自动增益控制电路的组成
3. 滤波器的作用
整个环路应具有低通传输特性, 这样才能保证仅对信号电 平的缓慢变化有控制作用。
尤其当输入为调幅信号时, 为了使调幅波的有用幅值变化 (例如普通调幅波的包络变化)不会被自动增益控制电路的控制 作用所抵消(此现象称为反调制), 也就是说,环路截止频率必 须低于调制信号的最低频率,才不会出现反调制。
高放
混频
中放
检波
预视放
ⅠⅡ Ⅲ
延迟 AG C
AG C 放大
AG C 检波
消噪
图 6.7.5 电视机AGC系统方框图
高频电子线路第5章ppt课件
载波uc
已调波uAM
振荡器
倍频
高频 放大器
调制
话筒
调制信号 放大器 调制信号 uΩ
无线电通信发射机的组成框图
3
5.1.1 普通调幅波
所谓调制,就是使幅度、频率、或相位随调制信号 的大小而线性变化的过程。分别称为振幅调制、频率调 制或相位调制,简称调幅、调频和调相。
解调是调制的相反过程,即从已调波信号中恢复原 调制信号的过程。与调幅、调频和调相相对应,有振幅 解调、频率解调和相位解调,简称检波、鉴频和鉴相。
u A M =U cm (1+M acosΩ t)cosω ct
=U cm cosω ct+M a 2 U cm cos(ω c+Ω )t+M a 2 U cm cos(ω c-Ω )t
载波分量
上边带分量
下边带分量
电 压 振 幅
U Ωm
调幅波的频谱图
U cm
MaUcm / 2
MaUcm / 2
0Ω
ω c - Ω ω c ωc + Ω
过调幅失真
Ma >1
8
U m (t)= U c m (1+ M a c o sΩ t)
U m m ax=U cm (1+M a) Um m in=Ucm(1-M a)
包络的振幅为:
Um=Umm ax2 -Umm in=UcmM a
调制度
包络振幅
Ma 载波振幅
Um Ucm
9
3. AM调幅波的频谱及带宽
ω
u A M = U c m (1 + M a c o s Ω t)c o s ω c t
= U c m c o s ω c t+ M a 2 U c m c o s ( ω c + Ω ) t+ M a 2 U c m c o s ( ω c -Ω ) t
高频电子线路教材
2
高频电子线路在卫星通信系统中扮演着至关重要 的角色,能够提高信号的覆盖范围和传输质量。
3
卫星通信系统中的高频电子线路涉及信号调制、 变频、放大和抗干扰等多个方面,以确保信号的 可靠传输和通信稳定性。
04
高频电子线路的发展趋势
高频电子线路的新技术
无线通信技术
随着无线通信技术的不断发展,高频电子线路在无线通信领域的应 用越来越广泛,如移动通信、卫星通信等。
高频电子线路概述
定义
高频电子线路是研究高频信号传 输、处理和应用的电子学分支, 主要涉及无线电通信、雷达、电 视、广播等领域。
特点
高频信号具有频率高、波长短、 传播特性与低频信号显著不同。 高频电路设计需考虑分布参数效 应、信号传输形式、干扰和噪声 等问题。
应用
高频电子线路广泛应用于通信、 导航、雷达、广播、电视等领域, 是现代电子信息技术的重要基础。
引入多媒体教学资 源
随着信息技术的发展,多媒体 教学资源在教育领域的应用越 来越广泛,高频电子线路教材 可以引入多媒体教学资源,如 视频、动画等,以更加生动、 形象的方式呈现知识内容。
THANKS
感谢观看
高速数字信号处理技术
高速数字信号处理技术能够实现对高频信号的快速、准确处理,为 高频电子线路的发展提供了新的技术支持。
集成电路技术
集成电路技术的发展使得高频电子线路的集成度越来越高,性能越 来越稳定,为高频电子线路的应用提供了更好的基础。
高频电子线路的发展方向
高效化
高频电子线路的发展方向之一是 实现更高的传输效率和更低的能 耗,以满足日益增长的数据传输
03
高频电子线路的应用
无线通信系统中的应用
01
高频电子线路_第3章.ppt
C
1 1( ) Ucm 2 0 ( ) VCC
1 2
g1( )
其中 Ucm
VCC
为集电极电压利用系数
g1( )=
1( ) 0 ( )
Ic1m IC0
为波形系数
值越小,g1( )越大,放大器的效率也越高。
在 1时,可看不同工作状态下放大器的效率分别为: 甲类工作状态 180 , g1( ) 1,C =50% 乙类工作状态 90 , g1( ) 1.57,C =78.5% 丙类工作状态 60 , g1( ) 1.8,C =90%
若VCC、VBB、Vim参变量不变,则放大器的工作状态就由负 载电阻Re决定。此时放大器的电流、输出电压、功率、效 率等随Re而变化的特性,叫做放大器的负载特性(曲线)。
1、欠压、临界和过压工作状态
——根据集电极电流是否进入饱和区
绿线:欠压状态——未进入饱和状态的工作 状态。
为尖顶余弦脉冲。
蓝线:临界状态——刚好不进入饱和状态 的工作状态。
ic gc VBB Uim cost UBE(on)
余弦电流脉冲的主要参量
iC
和
max
,如c 图
当 t c 时,iC 0
cos UBE(on) VBB
Uim
ic gcUim cost cos
而当t 0时,ic iC max
iCmax gcUim 1 cos
iC
iC max
直流分量只能通过回路电感线圈去路,其直流电阻较小,对
直流也可看成短路。
集电极电流流经谐振回路时,只有基波电流才产生压降,
因而LC谐振回路两端输出不失真的高频信号电压。若回路谐振 电阻为Re,则
uc Ic1m Re cost Ucm cost,
(高频电子线路)第二章高频电路基础
低通滤波器的应用包括信号处理、 电源滤波等,可以有效地抑制高
频噪声,提高信号的信的电路。其特点是通带范围较 窄,阻带范围较宽。
高通滤波器的电路结构也有多种形式,如RC、LC等。不同结构的高通滤波器具有不 同的性能指标和适用场景。
对信号进行放大,提高信号的 幅度和功率。
振荡器
产生高频振荡,为电路提供所 需频率的信号。
信号源
产生高频信号,提供电路所需 输入信号。
滤波器
对信号进行滤波,提取所需频 率成分,抑制无用频率成分。
调制解调器
对信号进行调制和解调,实现 信号的传输和处理。
02
高频电子器件
电感器
01
02
03
04
电感器定义
差。
调相振荡器的应用
调相振荡器广泛应用于信号处理、 电子对抗和通信等领域。
锁相环路
锁相环路的定义
锁相环路是一种自动控制系统,它通过比较输入信号和输出信号的 相位差,自动调节输出信号的频率和相位。
锁相环路的工作原理
当输入信号和输出信号的相位差在一定范围内时,锁相环路会自动 调节其内部参数,使输出信号的频率和相位与输入信号保持一致。
标和适用场景。
带通滤波器的应用包括信号选频、 消除干扰等,可以有效地提取特 定频段的信号,提高信号的准确
度。
带阻滤波器
带阻滤波器是一种阻止某一频段内的信 号通过而允许其他频段信号的电路。其 特点是阻带范围较窄,通带范围较宽。
带阻滤波器的应用包括消除特定频段干 扰、抑制噪声等,可以有效地抑制特定 频段的噪声,提高信号的清晰度。
高频电路的应用领域
通信领域
高频电路广泛应用于通信 领域,如无线通信、卫星
GP《高频电子线路》
(一)丙类谐振高功放的原理电路
(核心器件)高频大功率管:换能器件、频率转换器件 (关键部件)LC调谐回路:从众多频率分量中选出所需要分量, 以避免失真。 VBB:改变其大小能调整放大器的工作状态【甲 (靠VBB与Von比较大小来实现) VCC:放大器的能源
高频电子教案
乙
丙】
Ube:需要放大的信号源(大信号)
高频电子教案
因此 ULC= Ic1m cosωt× Re= Ucmcosωt ,从而放大了输 入信号,也有效地避免了失真。
2、解析分析法 定量计算【导通角】 定量计算【导通角】分量电流、功率及效率 ①求导通角:电流流通期间所对应的角度为流通角,流 通角的一半称为导通角θ。 通角的一半称为导通角 UBE=Ube-VBB=Ubmcosωt-VBB (输入回路方程)
高频电子教案
1、组成
§1—2 无 线 电 收 发 信 设 备 的 组 成 框 图
§1—2 无 线 电 收 发 信 设 备 的 组 成 框 图 AM FM PM uc(t)=UcmCOS (ωct+θ) Ucm ωc
θ
对应于发信机的三种调制方式,收信 机有三种解调方式:鉴幅、鉴频和鉴相。 调制的必要性: 调制的必要性: 1、提高频率有利于天线向外幅射电磁波 2、能够实现一个信道的多路复用 解调的重要性: 解调的重要性 不失真的还原成原调制信号
2ω Ic2mcos2ωt × Z(2ω)
nω Icnmcosnωt × Z(nω)
很小
最大
较小
几乎为0
由表发现:LC调谐回路两端的电压ULC主要成分是 基波电流分量Ic1m cosωt流过Re引起的,而除ω以外的其 它频率流过LC回路形成的电压相对基波电流分量Ic1m cosωt流过Re形成的电压而言几乎可以忽略不计。
《高频电子线路》课件
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路中的信号传输 • 高频电子线路中的放大器 • 高频电子线路中的滤波器 • 高频电子线路中的混频器与变频
器
01
高频电子线路概述
高频电子线路的定义与特点
总结词
高频电子线路是研究高频信号传输、处理和应用的电子线路。其特点包括信号频率高、频带宽、信号传输速度快 、信号失真小等。
02
高频电子线路基础知识
高频电子线路的基本元件
电阻器
用于限制电流,调节电 压,起到分压、限流的
作用。
电容器
用于存储电荷,实现信 号的滤波、耦合和旁路
。
电感器
用于存储磁场能量,实 现信号的滤波、选频和
延迟。
晶体管
高频电子线路中的核心 元件,用于放大和开关
信号。
高频电子线路的基本电路
01
02
03
04
混频器与变频器的应用实例
混频器的应用实例
在无线通信中,混频器常用于将信号从低频转换为高频,或者将信号从高频转 换为低频。例如,在接收机中,混频器可以将射频信号转换为中频信号,便于 后续的信号处理。
变频器的应用实例
在雷达系统中,变频器可以将发射信号的频率改变,从而实现多普勒测速或者 目标识别。在电子对抗中,变频器可以用于干扰敌方雷达或者通信系统。
传输。
音频系统中的扬声器驱动电路
02
利用音频放大器将音频信号放大后驱动扬声器,实现声音的重
放。
测量仪器中的前置放大器
03
利用电压或电流放大器将微弱信号放大后传输至后续电路,实
现信号的处理和分析。
05
高频电子线路中的滤波器
高频电子线路第2章高频电路基础
2021/2/26
15
串联回路电流:
谐振时回路电流:表示为I0,取得最大值I0=U/r。
U为回路两端信号电压。
非谐振时回路电流:
L
I
U ZS
1
1 j
I0
I 1
U
I0
1 2
r
谐振曲线与回路品质因数的关系:
I
I0
Q1 Q2
_ C
Q2
Q1
0
2021/2/26
16
串联回路谐振时电压的相位关系:
回路通频带与矩形系数:与并联谐振回路相同。
p U1 C1 UT C1 C2
R
R1 p2
C1
UT
L
U1
C2 R1
(e)
20
(c). 输入电感抽头(抽头电感L1),输出电容抽头。
p1
U UT
L1 L
L1 L
,
p2
U1 UT
C2 C1 C2
UT
回路谐振电阻:R0 R1 / p22
L
U
谐振时等效输入电阻:R p12R0 p12R1 / p22
U R0 L
−
jL 1
r
jC jL 1
, r L
jC
上图是用R0表示的等效电路
L
1
C r jL
1
L Cr
0
jC
2021/2/26
9
用广义失谐表示回路阻抗:
重写回路阻抗Z p
L C
r
1
jL
1
jC
1
R0
jQ
0
,
0
r L
定义广义失谐
Q
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5克拉泼(Clapp)振荡电路考比兹(Colpitts)振荡器虽然有电路简单,波形好的优点,在许多场合得到应用,但从提高振荡器频率稳定性的角度考虑,电容三点式振荡器存在许多需要完善的不足之处。
原因:晶体管的极间电容直接和谐振回路电抗元件并联,极间电容(即结电容)是随环境温度、电源电压和电流变化的不稳定参数,它的变化会导致谐振回路谐振频率的变化,因为振荡器的振荡频率基本上由谐振回路的谐振频率决定。
极间电容的数量级一定要知道,这样才能了解哪些电容在特定情况下是必须考虑的。
参看课本P32⇒谐振回路L、C元件参数不稳定将直接影响振荡器频率的稳定性。
结果:三点式振荡电路的频率稳定性不10-量级,为提高频率稳高。
一般在3定度,必须设法减小晶体管极间电容的不稳定性对振荡器频率稳定度的影响。
因为考比兹(Colpitts)振荡器存在不足,有必要对其进行改进,所以产生了——克拉泼(Clapp)振荡电路改进的方法:串联改进型电容三点式振荡器—克拉泼(Clapp)振荡电路。
图(a )克拉泼振荡器的实用电路, 与普通电容三点式(Colpitts)电路相比,其区别仅在于b-c 间的电感支路串入一个小电容3C ,满足3132,C C C C <<<<,这就是串联改进型电路命名的来由。
图(b)是其高频等效电路。
①克拉泼振荡电路的组态:图中输入端(反馈接入端)与发射极相连,输出回路与集电极相连,基极通过旁路电容b C接地,所以电路为共基组态。
②用于分析振荡频率的简化等效电路图5 —30 (忽略直流偏置电路)该电路满足“射同(1C 、2C )基反(3L C 、串联呈现感抗)。
③振荡频率的分析振荡频率由选频回路决定,选频回路由1122,ce be C C C C C C ’'(=+)(=+)和3C 串联,再与L 并联构成。
谐振回路的总电容1231231111111ce be C C C C C C C C C ∑=++=++++’’满足3132,,ce be CC C C C C <<+<<+所以有 3C C ∑≈ 注意:串联电容的总电容取决于小电容,而并联电容的总电容取决于大电容。
振荡器的振荡频率1122oscf ππ≈≈(5.3.8)结论:由式(5.3.8)可知:当满足123,C C C 时,osc f 几乎不受晶体管极间电容(即输入输出电容)的影响,3C 越小,晶体管极间电容对振荡频率的影响就越小。
电路的频率稳定性就越好。
实际电路设计中谐振回路中元件的取值规则根据需要的振荡频率确定3L C 、的值,12C C 、的取值应远大于3C 。
仅从振荡频率的稳定度考虑,3C 越小越好,但3C 过小会影响振荡器的起振。
(下面分析)了解 “晶体管对输出回路的接入系数”计算接入系数的目的是计算晶体管输出的等效电阻,以便计算放大器的增益。
下面给出接入系数与等效负载计算的方法。
图5 —30 接入系数与等效负载计算示意图晶体管输出回路的两个端点c 、b 对谐振回路A 、B 两端的接入系数121121233121111111()cbABu C C n C C u C C C C C C ωωωωω+===++++(5.3.9)(注:对谐振回路的接入系数以电感为基准。
)谐振回路A 、B 两端的等效电阻0//L L e R R R '=,将LR'折算到输出回路c 、b 两端,得到晶体管的等效阻抗''LR221123121()1()L L L R n R R C C C C C "''==++(5.3.10)由式(5.3.10)可得如下结论:33T L C R A C ω⇒⎧⎪↓⎨"⇒↓⎪↵⎩⇒↓⇒↓⇒对改善振荡器的稳定性有力(是共基放大器的等效负载)共基放大器的增益过小,则环路增益()无法起振 Clapp 振荡电路是以牺牲环路增益的方法来换取回路振荡频率稳定性能的改善。
综上分析,Clapp振荡电路有以下几点不足:ⅰ)在减小3C以提高振荡频率osc f的同时,使环路增益减小,减小到一定程度会导致电路无法起振,这就限制了振荡频率osc f的提高;ⅱ)Clapp振荡电路不适合作波段振荡器。
波段振荡器要求振荡频率在一定区间内可调,且输出信号的振荡幅值基本保持不变。
由于Clapp电路是通过改变3C来调节振荡频率的,根据式(5.3.10)可知,3C的改变,导致L R 变化,致使共基电路的增益变化,最终导致输出信号的幅值发生变化,使所调波段频率范围内输出信号的幅度不平稳。
所以Clapp电路可以调节的频率范围不够宽,只能用作固定振荡器或波段覆盖系数(maxmin osc osc f f =)较小的可变频率振荡器。
一般Clapp电路的波段覆盖系数为1.2~1.3。
6西勒(Seiler)振荡电路在对Clapp振荡电路的不足之处进行改进的基础,产生了西勒电路。
图(a)给出Seiler振荡电路的实用电路,Seiler电路是在克拉泼电路中的电感L两端并联了一个可变小电容4C,且满足C、2C?4C,这就是并联改进型电路命1名的来由。
图(b)是其高频等效电路。
Seiler 振荡电路的回路总电容C ∑ 由123,,C C C 串联,再与4C 并联构成。
4341231111C C C C C C C ∑=+≈+++(5.3.11)振荡器的振荡频率11osc ω== (5.3.12)图5 —32 给出计算接入系数与晶体管等效负载的结构示意图下面讨论晶体管c、b两端对谐振回路A、B两端的接入系数问题:为什么要计算c、b两端对谐振回路两端A、B的接入系数?Seiler电路的组态→共基;射极e输入,集电极c输出→输出回路在c、b之间计算c 、b 两端对谐振回路两端A 、B 的接入系数就是为了计算真实负载对晶体管呈现的等效负载。
也就是上图中的'"L L R R 。
求得"L R 之后,就可求出基本放大器的增益A 。
真实负载通常并在谐振回路两端,而谐振回路是以电感为参照的,因此实际负载是并接在电感两端的结论:晶体管c、b两端对谐振回路A、B两端的接入系数与Clap电路的完全相同。
Seiler电路晶体管c、b两端对谐振回路A 、B 两端的接入系数121121233121111111()cb AB u C C n C C u C C C C C C ωωωωω+===++++ 当通过调节4C 来改变振荡频率时,不会影响回路的接入系数,结论:通过调节4C来改变振荡频率时,输出回路c—b端的等效负载''L R不会随之变化,→共基电路增益也保持不变,→在波段范围内输出信号的幅值基本保持不变,振幅的稳定性较好。
且调谐电容4C直接与电感L并联,所以对回路的谐振频率影响较大,使西勒电路的调谐带宽较Clap电路大。
Seiler电路可用作波段振荡器,其波段覆盖系数可达1.6~1.8左右。
另外,通过减小4C来提高振荡频率时,不会影响环路增益和振荡器的起振,因此,Seiler电路适合于更高频段的振荡器。
5.4 振荡器的频率稳定度(自行学习了解)满足起振、平衡和稳定三个条件 产生等幅持续的振荡波形。
当受到外界或振荡器内部不稳定因素干扰 振荡器的瞬时相位(或频率)会在平衡点附近随机变化。
频率稳定度是振荡器最为重要的性能指标之一。
现代电子技术的飞速发展对振荡器的频率稳定度提出了越来越高的要求。
振荡器的频率不稳定可能造成下述不良影响:通信系统的频率不稳定,就会因漏失信号而无法通信,如调频广播发射机的频率不稳,调频接收机就不能准确接收,如调频广播发射机的频率准确、稳定,则接收机在不需要调谐的情况下能够实现自动收听和转播;在数字电路中,时钟不稳会引起时序关系的混乱;测量仪器的频率不稳定会引起较大的测量误差;军事保密通信及空间技术对频率稳定度提出了更为严格的要求。
例如,要实现与火10-数量星通信,频率的相对误差不能大于11级。
倘若给距离地球5600万千米卫星定位,10-数量级。
要求频率的相对误差不能大于121 频率准确度和频率稳定度评价振荡频率的主要指标是频率准确度和频率稳定度。
实际振荡频率f与标称频率0f偏离的程度。
分为绝对osc频率准确度和相对频率准确度。
绝对频率准确度是实际工作频率oscf 与标称频率0f 的偏差0osc f f f ∆=- (5.4.1)相对频率准确度是频率偏差f ∆与标称频率之比000osc f f f f f -∆= (5.4.2)准确度变化的最大值。
也分为绝对频率稳定度和相对频率稳定度。
最常用的是相对频率稳定度,简称频率稳定度,以δ表示0max0osc f f f δ-=时间间隔(5.4.3) 其中0max osc f f -是某一间隔内的最大频率偏移。
如某振荡器标称频率为5MHz ,在一天所测的频率中,与标称值偏离最大的一个频率点为 4.99995MHz ,则该振荡器的频率稳定度为605max60(4.99995 5)10110/510osc f f day f δ--⨯-===⨯⨯day day 在频率准确度与频率稳定度两个指标中,频率稳定度更为重要。
因为只有频率稳定,才有频率准确。
频率不稳,准确度也就失去了意义。
下面主要讨论频率稳定度。
频率稳定度按时间间隔分为长期频率稳定度:以月甚至年为观测时间长度,观测的是长时间的频率漂移。
主要取决于构成振荡器的有源、无源器件和石英晶体的老化特性。
它主要用于评价天文台或国家计量单位高精度频率标准和计时设备;短期频率稳定度:以一天,小时、分钟为测量时间间隔。
短稳主要取决于振荡器的电源电压、电。