西电 微波大作业..共16页
微波大作业
四端口网络研究分析1.四端口网络的基本性质性质1无耗互易四端口网络可以完全匹配,且为一理想定向耦合器。
性质2有理想定向性的无耗互易四端口网络不一定四个端口均匹配,即是说四个端口匹配是定向耦合器的充分条件,而不是必要条件。
性质3有两个端口匹配且相互隔离的无耗互易四端口电路必然为一理想定向耦合器,且其余两个端口亦匹配并相互隔离。
2.理想定向耦合器一个可逆无耗四端口网络,各个端口完全匹配,有一个端口同输入端口完全隔离,输入功率在其余两个端口上分配输出,这种网络称为理想定向耦合器。
如①口为输入端口,其它三个为输出口或隔离口。
由隔离口的端口的不同,其相应的矩阵为]S、[]03S、[]04S。
[02性质1 无耗互易四端口网络可以完全匹配,且为一理想定向耦合器。
(可由互易网络的幺正性证明。
)对于上图中(a),其散射矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000][241423132423141302S S S S S S S S S对于上图中(b),其散射矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000][341434232312141203S S S S S S S S S 对于上图中(c),其散射矩阵为[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000342434132412131204S S S S S S S S S 性质2 有理想定向性的无耗互易四端口网络不一定四个端口均匹配,即是说四个端口匹配是定向耦合器的充分条件,而不是必要条件。
[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ΓT Γ-T T -ΓT Γ=0000j jCjC j j jC jC j S 性质 3 有两个端口匹配且相隔离的无耗互易四端口电路必然为一理想定向耦合器,且其余两个端口亦匹配并相互隔离。
[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00000000342434132412131204S S S S S S S S S3..定向耦合器的技术参数以常用的互易无耗][04S 为例。
微波考试用(西电第二版)
[例1- 1]一根特性阻抗为50 Ω、 长度为0.1875m耗均匀传输线, 其工作频率为200MHz, Z l=40+j30 (Ω), 试求其输入阻抗。
解: 由工作频率f =200MHz 得相移常数β=2πf/c =4π/3将Z l=40+j30 (Ω), Z0=50,z =l =0.1875及β值代入式(1- 3),有[例1-2]一根75Ω均匀无耗传输线, 终端接有负Z l=R l+j X l, 欲使线上电压驻波比为3, 则负载的实部R l 虚部X l 应满足什么关系?解: 由驻波比ρ=3, 可得终端反射系数的模值应为将Z l=R l+j X l, Z 0=75整理得负载的实部R l 部X l 应满足的关系式为(R l-125)2+X 21=1002即负载的实部R l 和虚部X l 为(125, 0)、半径为100的圆上, 而下半圆对应负载为容抗。
[例 1- 3]设有一无耗传输线, 终端接有负Z l=40-j30(Ω):①要使传输线上驻波比最小, 多少?②此时最小的反射系数及驻波比各为多少? ③离终端最近的波节点位置在何处? ④画出特性阻抗与驻波比的关系曲线。
解: ① 要使线上驻波比最小, 的模值最小,即 将上式对Z 0求导, 并令其为零, 经整理可402+302-Z 02=0即Z 0=50Ω。
这就是说, 当特性阻抗Z Ω时终端反射系数最小, 从而驻波比也为最小。
② 此时终端反射系数及驻波比分别为③ 由于终端为容性负载, 位置为④ 终端负载一定时, 曲线如图 1- 7 所示。
其中负载阻抗Z l=40-j30 (Ω)可见,当Z 0=50Ω时驻波比最小, 图 1- 7 特性阻抗与驻波系数的关系曲线 [例 1-4]现有同轴型三路功率分配器,如图1-10该功分器在2.5GHz-5.5GHz 波比均小于等于1.5,插入损耗为,配到各个输出端口,试计算(1)输入端的回波损耗贝表示);(2)功率的比值(用百分比表示)。
微波电子线路大作业
微波电子线路大作业学号:000000姓名:111111一、PIN管微波开关1、PIN管基本特性1、直流电压作用下的特性在零偏置下,I 层完全耗尽,反偏等于或大于电压时,I 层完全耗尽。
在零偏与反偏下,PIN管均不能导通,呈现大电阻。
正偏时,分别从两端向I 区注入载流子,他们到达中间区域复合。
PIN管一直呈现导通状态,偏压(流)越大,载流子数目越多,正向电阻越小。
2、交流信号作用下的阻抗特性频率较低时,正向导电,反向截止。
具有整流特性频率较高时,正半周来不及复合,负半周不能完全抽空,I 区总有一定的载流子维持导通。
小信号时I 区的载流子少,大信号时I 区的载流多。
所以,高频大信号时电阻大,小信号时小信号时电阻小。
3、交直流电压作用下的特性I 区的载流子决定于偏压,与微波信号关系不大。
管子阻抗完全决定于偏压。
正偏时,改变I0 可以调整Rf ,反偏时,高频信号再大,也不导通。
按功能分有两种:通断开关和转换开关;按PIN 管与传输线的连接方式分为串联型、并联型和串并联型;从开关结构形式出发可分为反射式开关、谐振式开关、滤波器型开关、阵列式开关等。
单刀单掷开关基本原理如果PIN管正、反偏时分别为理想短路和开路,则对上图(a)的串联型开关来说,PIN管理想短路时,开关电路理想导通;PIN管理想开路时,开关理想断开。
对(c)图的并联型开关来说,情况相反,PIN管短路,对应开关断开;PIN管开路,对应开关导通。
由于封装参数的影响,对于单管开关无论是串联型还是并联型,都只能在固定的某几个较窄的频率区间有开关作用,而实际工作频率常常不在这些区域。
为了扩展开关的工作模区,改善开关性能,有的直接把管芯做在微波集成电路上;也有采用改进的开关电路,其中常用的有谐振式开关、阵列式开关和滤波器型开关。
单刀双掷开关开关指标开关时间:τ为载流子寿命,I0为正向电流,IR为反向电流,IR↑,ts↓,功率容量:并联开关:导通时P dn1 = (Z02R f )/24Z0 R f P dm截止时P dn3 =V B2 /2Z0串联开关:导通时P dn 2 =(2Z0R f )2 / 4Z0 R f P dm截止时 P dn 3= V B 2 / 8Z 0当频率升高时,串联或并联一只PIN 管的开关,其性能指标将恶化,因此,可采用多个二极管级联,以提高开关性能。
西电微波电子线路大作业1教材
微波电子线路大作业姓名:班级:021014学号:一 肖特基势垒二极管与混频器1 肖特基势垒二极管利用金属与半导体接触形成肖特基势垒构成的微波二极管称为肖特基势垒二极管。
这种器件对外主要呈现非线性电阻特性,是构成微波混频器、检波器和微波开关等器件的核心元件。
目前绝大多数混频器都采用肖特基势垒二极管,因为肖特基势垒二极管的耗尽电容比PN 结电容小的多,因此肖特基势垒二极管更适合微波频率下工作。
肖特基势垒二极管的等效电路如右图所示:肖特基二极管作为非线性电阻应用时,除结电容之外,其他都是寄生参量,会对电路的性能造成影响,应尽量减小它们本身的值,或在微波电路设计时,充分考虑这些寄生参 量的影响。
一般地,肖特基势垒二极管的伏安特性可以表示为:对于理想的肖特基势垒,;当势垒不理想时,,点接触型二极管,面结合型二极管。
如下图是肖特基势垒二极管的伏安特性曲线:肖特基势垒二极管特性参量:1) 截止频率2) 噪声比(理想情况下) 3) 中频阻抗 4) 变频损耗2 混频器微波混频器的核心元件是肖特基势垒二极管。
混频机理是基于肖特基势垒二极管结电阻的非线性管子在偏压和本振的激励下,跨导随时间变化,加上信号电压后出现一系列频率成分的电流,用滤波器取出所需中频即可。
j R SR j C p C SL描述二极管混频器的混频过程,需要建立一个等效电路。
由于混频二极管是一个单向器件,不仅与和差拍产生新的频率,而其电流在一定的阻抗上所建立起的电压也会反过来加到二极管上该电压与和差拍,也产生新的频率。
混频器等效电路如右图所示:信频、中频和镜频电流的幅值为:由等效电路可以求出变频损耗。
微波混频器的作用是将微波信号转换为中频信,频率变换后的能量损耗即为变频损耗。
变频损耗主要包括三部分:(1) 由寄生频率产生的净变频损耗。
(2) 由混频二极管寄生参量引起的结损耗 。
(3) 混频器输入/输出端的失配损耗。
结论;混频器的变频损耗载镜频开路时变频损耗最低,镜频匹配时变频损耗最高。
微波电子线路大作业
微波电子线路大作业02091411范仕祥一.PIN 管微波开关按功能分有两种:通断开关和转换开关;按PIN 管与传输线的连接方式分为串联型、并联型和串并联型;从开关结构形式出发可分为反射式开关、谐振式开关、滤波器型开关、阵列式开关等。
单刀单掷开关基本原理如果PIN 管正、反偏时分别为理想短路和开路,则对上图(a )的串联型开关来说,PIN 管理想短路时,开关电路理想导通;PIN 管理想开路时,开关理想断开。
对(c )图的并联型开关来说,情况相反,PIN 管短路,对应开关断开;PIN 管开路,对应开关导通。
由于封装参数的影响,对于单管开关无论是串联型还是并联型,都只能在固定的某几个较窄的频率区间有开关作用,而实际的工作频率常常不在这些区域。
为了扩展开关的工作模区,改善开关性能,有的直接把管芯做在微波集成电路上;也有采用改进的开关电路,其中常用的有谐振式开关、阵列式开关和滤波器型开关。
单刀双掷开关开关指标开关时间:τ为载流子寿命,I0为正向电流,IR 为反 向电流,IR ↑,ts ↓, 则: 功率容量:并联开关:导通时 截止时串联开关:导通时 截止时00ln 's s f R I I T T I I ττ==、2010(2)4f dn dm f Z R P P Z R +=2302B dn V P Z =2020(2)4f dn dm f Z R P P Z R +=2308B dn V P Z =当频率升高时,串联或并联一只PIN 管的开关,其性能指标将恶化,因此,可采用多个二极管级联,以提高开关性能。
多管阵列型开关是在均匀传输线上等间隔的并联(或串联)若干个PIN 管而构成,根据微波网络理论可对阵列型开关进行分析。
单管开关级联就可做成阵列式开关,因此阵列式开关的分析可归结为级联网络分析,可用传递矩阵相乘的方法求出阵列开关的衰减特性。
采用多管串联的电路形式,可加大该通道开关的功率容量:而采用多管并联的形式,则可提高该通道开关的隔离度。
西电 微波大作业
试验结果表明,蒸汽杀青由于蒸汽含水量高,原料外层受高温 影响,因此杀青后的茶叶几乎无减重,部分叶绿素受破坏,原料所含 营养物质随冷凝水而部分流失,品质不太理想。微波杀青与炒青方 式加工的茶叶品质均好,色泽方面无明显差异,但微波杀青升温迅 速、温度均匀、热效率高、杀青时间短(为炒青时间的1/8),可连 续进行,且微波杀青所用能源为电能,对加工环境没有污染。 微波作为一种新的 能量传递方法,已被日 本、新加坡、印尼等国 用于茶叶的杀青和烘干, 提高了茶叶的品质档次, 取得了明显的经济效益。 但微波杀青也在茶叶香 气、滋味上存在不足, 可对微波加工参数作进 一步的试验调整,或采 用组合式杀青方法。
安徽岳西将微波冷 冻干燥生产工艺成功应 用于茶叶制作中,实现 了高效、节能、环保、 安全,兼有杀菌功能, 更好的保证了岳西翠兰 品质。
于其热由重 够长细电的应死效较到由 茶杀效于组 强发胞子电使亡应好较于茶 、 饮菌应微, 的育膜和径微;使的大高饮 料温对波从 微受的离分波而蛋效损温料 香度生杀而中波到通子布电微白果失长在 气低物菌诱的电抑透的,场波质。。时常 的于的利发氢场制性浓影改对变微而,规 保常破用遗键可而能度响变微性波微会热 持规坏了传松以死,,了了生,对波使 。方作热基弛导亡使从细细物导微杀茶力 法用效因、致。微而胞胞的致生菌叶杀 ,,应突断生此生改膜膜生微物,香菌 有因和变裂物外物变周断物生的具气中 利此非。和的足生了围面效物热有受, , RNA
DNA
茶叶在贮运过程中 易生虫,在黑茶的渥堆 过程中也常发生昆虫污 染的现象。过去常用药 物熏蒸的杀虫方法,但 存在药物残留的问题。 采用微波处理可以取得 良好的杀虫效果,杀虫 效果与茶叶和虫体的介 电性质密切相关,当茶 叶的含水量小于12%时, 有利于增强杀虫的效果。
西电微波电子线路作业
微波电子线路作业班级:020911姓名:张盎农学号:02091086ADS混频器设计耦合器设计仿真结果J"尺*人¥申.* *rr”:M «SHW®I噩I逼AHKOD I A低通滤波器设计仿真结果川尸r« Lwp 1|代年*甲r *包誓爭欽》国■* H 4 4| |b b 种吐母和週输出频谱仿真1按照文档所连D-■10-错误提示2直接代入数值修改后端口 1:P=dbmtow (-20),功率源输出信号功率为 -20dBmFreq=3.6GHz,射频输入频率 端口 2:P=dbmtow ( 10),功率源输出信号功率为 10dBmFreq=3.8GHz,本振输入频率谐波平衡仿真控制器设置如图所示■■I ■ i>li 1 -b -i.i -1 ■ I I"Ha > bl HO" »9 D 戈4■也申會譽令墓览熔样 囲園、 a«i.«i<rt 吉盥::*" VJt 趣理1J JIL- +fiL.罪询 HL N guU肛I —IN. [uiLcE>rJ U阿 py MET +省申申mu * »国■'看警%嗚宀Tij*r*<77*9144本振与输出修改端口 2重新设置:P=dbmtow ( LO_pwr ),即设置变量 LO_pwr 增加变量设置VAR ,设置如图所示{■L B |J I ^ £*L M I fi.Ku^j UisEr-1.2 ■Qind^l 1F*7mm¥"MU :I 器 y RM MIIC 囲心珂泗帕目■ I F 1 HB*1 .M|pjnn^i :r»4f GMfFmq 可二3 tS GHz 0就讪叮 ◎隹羽冃W-0 靜 rfru L=2 bamC_JMW _ _ .TU &*5f-TW^*r vw-1島『mmL=10 2 Hl1L7*ct、ni氯i 斡训><1财tttn L=1£] 4G imnr&SmTL«Ua 匕 Wub 「 L=25niMMW F_M11I 伽3 比刚 hhlfitabJ *1利 C7 mrn> iM 二P 9fi mm 加』却«mMLH TL5宫 g.二1血 T 训■!斛HIIWL-10.2 ffV•:皿」f hSKi>[o CIA亍••ronnMum-3 九血oimP=dbmlD«4^FnH|=3c 6<«H±」 J 四臨・ idllLI 中Akij j fi : uUh-uOttMlQd h F<PORT2Num---27=9OIMH 円如11晦■巩1训 rreqj-3B 0H1仿真结果从图像结果可看出 Vout 输出与本振功率有关三阶交调分析将的端口 1的单品功率源更换为多频功率源 P_n To ne ,对其设置如图所示修改端口 2和VAR 的设置,如图所示修改谐波平衡仿真控制器,设置如图所示 插入测量方程控件 Meas Eqn ,并对其参数如图设置EH"HARM Qh 心 BALANCEEDft□Cfh ■-iiirnriTsi R 斗1肿個H01l •iw&PddE 屮戸-9 GHz 电 IW*討盲(j-H/On»12|=Jfiwaapl别pg □ pi XtEL □ _pw r~ Art liTABnceNHSTBllj^lflB T M IHtDHiEVNiBrvP'lF Swii 如imNwepih ■ >M ■”理 rinNtvw 烛S*i lnw«»Nm[5> 5<n 5®r1-1 Sbp=X SfcU-l話MUM世IULn_prn 10tM <U :B F=1gm i E 呻NwilSuniflr ----------|TP 0D5 ranJW^D-AJ LFWU5j I i!B“in Rgm«D BCdioPOPTi rjNum-1b-^n-'CetWW=D 価 moi回asPAfiAUErtR:PlH=t12 um=? £-30 Ohm(a zQt!mKraCLO_pwrj Fnqi=3 ・ GH EmmTU bU3M :"MMubr 吩0 N Him rrilll仿真结果vf(E g U L cos L t) (E o U L cos L t)I sa eI sa SPE gU L cos L t二,理论分析 微波混频器1、 微波混频器的作用与用途微波混频器是通信、雷达、电子对抗等系统的微波接收机以及很多微波测量 设备所不可缺少的组成部分。
西电微波实验报告
实验一传输线理论一、实验目的(1) 了解基本传输线、微带线的特性。
(2) 熟悉RF2000教学系统的基本构成和功能。
(3) 利用实验模组实际测量微带线的特性。
(4) 利用Microwave Office或Ansoft Designer软件进行基本传输线和微带线的电路设计和仿真。
(5) 掌握射频微波电路的指标内容和记录格式。
二、实验设备三、理论分析(1) 基本传输线理论。
(2) 无耗传输线的工作状态。
(3) 微带线理论的设计。
四、硬件测量1)测量开路传输线(MOD-1A)、短路传输线(MOD-1B)、50Ω微带线(MOD-1C),使用频率均为50~500MHz。
2)准备好实验用的仪器和设备以及相关软件。
3)测量步骤:(1)MOD-1A的S11测量:设定频段BAND-3,对模组P1端口做S11测量,并将测量结果记录于表1-1。
(2)MOD-1B的S11测量:设定频段BAND-3,对模组P2端口做S11测量,并将测量结果记录于表1-2。
(3)MOD-1C的S11测量:设定频段BAND-3,对模组P3端口做S11测量,并将测量结果记录于表1-3。
(4)MOD-1C的S21测量:设定频段BAND-3,对模组P3及P4端口做S21测量,并将测量结果记录于表1-3。
4)实验记录:BdFre(MHz)表1-1 MOD-1A的S11测量BdFre(MHz)表1-2 MOD-1B的S11测量300350400450500-30-25-20-15-10-50510d BFre(MHz)MOD-1C S11 MOD-1C S12 MOD-1C S21表1-3 MOD-1C 的S 参数测量5) 硬件测量结果的参考值:RF2KM1-1A MOD-1A S11≥ -1dBMOD-1B S11≥ -1dB MOD-1C S11≤ -15dB MOD-1C S21≥ -0.5dB五、软件仿真利用Microwaveoffice 软件仿真模型图,并作出数据图。
西电通信原理大作业
西电通信原理大作业一.微波通信技术综述1.1微波通信技术概念微波常指频率在1O00兆赫()以上(波长在30厘米以下)的电磁波,利用微波传播进行的通信称为微波通信微波的传播特性类似于光的传播,一般沿直线传播,绕射能力很弱,一般进行视距内的通信,对于长距离通信可采用接力的方式,为微波接力通信,或称微波中继通信,也可利用对流层传播进行通信,称为对流层散射通信;或利用人造卫星进行转发,即卫星通信1.2微波通信特点1)通信频段的频带宽,传输信息容量大微波频段占用的频带约,而全部长波、中波和短波频段占有的频带总和不足30一套微波中继通信设备可以容纳几千甚至上万条话路同时工作,或传输电视图像信号等宽频带信号2)通信稳定、可靠当通信频率高于时工业干扰、天电干扰及太阳黑子的活动对其影响小由于微波频段频率高,这些干扰对微波通信的影响极小数字微波通信中继站能对数字信号进行再生,使数字微波通信线路噪声不逐站积累,增加了抗于扰性因此,微波通信较稳定和可靠3)接力在进行地面上的远距离通信时,针对微波视距传播特性和传输损耗随距离增加的特性,必须采用接力的方式,发端信号经若干中间站多次转发才能到达收端 4)通信灵活性较大微波中继通信采用中继方式,可以实现地面上的远距离通信,并且可以跨越沼泽、江河、高山等特殊地理环境在遭遇地震、洪水、战争等灾祸时,通信的建立及转移都较容易,这些方面比有线通信具有更大的灵活性 5)天线增益高、方向性强当天线面积给定时,天线增益与工作波长的平方成反比由于微波通信的工作波长短天线尺寸可做得很小,通常做成增益高,方向性强的面式天线这样可以降低微波发信机的输出功率,利用微波天线强的方向性使微波电磁波传播方向对准下一接收站,减少通信中的相互于扰6)投资少、建设快与其他有线通信相比,在通信容量和质量基本相同的条件下,按话路公里计算,微波中继通信线路的建设费用低,建设周期短 7)数字化对于数字微波通信系统来说,是利用微波信道传输数字信号,因为基带信号为数字信号,所以称为数字微波通信系统2.关键技术与发展趋势 2.1关键技术1)编码( ,自适应调制编码)应用于移动通信,根据信道质量来调整编码速率来获得较高的吞吐量无线通信速率较低时,信道估计会比较准确,因此能获得较好效果随着终端移动速度的增加,信道质量估计会跟不上信道的变化,在错误的信道测量下,采用的调制编码方式与实际情况不一致,会对系统容量、误码率,吞吐量等性能指标带来很大的负面影响 2)多天线技术分集接收应用于微波中继系统中,是对抗多径衰落、提高数字微波电路传输质量的重要手段在微波系统中,由于采用多状态调制方式,对频率选择性衰落更敏感,因而分集接收的应用广泛分集改善很大程度上取决于各分集支路的信号之间的不相关性为了对抗多径衰落和降雨衰落的影响,将多个特性不相同的收信信号合成或切换,得到良好信号的技术称为分集技术,在微波中继系统中,常用的分集技术有频率分集、空间分集、角度分集、路由分集应用于移动通信中,它是在发送端和接收端采用多天线传输无线信号的一种技术,属于智能天线的一种技术将用户数据分解为多个并行的数据流,在指定的宽带内由多个发射天线同时刻发射,经过无线信道后,由多个接收天线接收,并根据各个并行数据流的空间特性解调出原来的数据流技术核心是空时信号处理,即利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理技术能提高频谱利用率,在有限的无线频带下传输更高速率的数据业务与其他智能天线技术相比,天线安装和维护成本低;技术在发送端工作时可以不需要信道信息,适用于移动环境中信道估计复杂的情况3)线性功放与自动功率控制射频功率放大器是无线通信系统发射机的主要部件,其内在的非线性会使信号产生失真,并引起邻信道干扰多载波系统,如,比单载波系统对放大器的线性范围要求更高,要求更为严格的线性传输采用功率回退的传统设计方法所得的线性放大器的线性度不高,已无法满足现代无线传输系统越来越严格的线性要求放大器的线性化已成为保证其他高效的无线技术得以应用的重要前提目前射频放大器的线性化技术主要有反馈线性化、前馈线性化和预失真三种技术自动功率控制主要用于补偿功放器件特性随时间改变和无线信道衰落给信号传输带来的影响,使得信号能以合适的功率到达接收机2.2发展趋势当前,光纤通信以其巨大带宽、超低损耗和较低成本而成为干线传输的主要手段,对微波中继通信形成巨大的冲击,而移动通信技术则取得了迅速发展综合分析认为微波通信技术发展趋势主要有以下几个方面 1)向高速大容量发展数字微波中继通信将继续向更高容量发展,采用多状态的调制移动通信则凭借技术开发更快速的宽带互联技术 2)向更高频段发展根据电信主管部门的规划,3以下频段要分配给移动和个人通信,而3-10的频段也已十分拥挤许多数字微波通信设备厂家及时调整发展方向,向10以上的高频段进军 3)向高集成度、微型化方向发展采用微波单片集成、数字专用集成电路等,朝着设备体积更小、重量更轻、功耗更低的方向发展,天线也进一步朝微型化方向发展 4)向智能化、低成本方向发展采用软件无线电技术,使数字微波通信系统成为一个较为通用的平台,能够根据用户的不同要求完成各种功能3.结语光纤通信和移动通信已成为当前通信网的两大主流,形成了完整的产业链,拥有庞大的用户群微波中继系统应用于干线光纤传输的备份和补充,以及其他不适合使用光纤或卫星的场合,因而必不可少由于移动通信网络与互联网的融合,微波频段的移动通信承担了用户的大量无线宽度数据业务,得到迅速发展移动通信仍将在今后很长一段时间内保持业务的高速增长和技术的更新演变是微波通信技术发展的热点目前,微波通信技术在各个行业的应用已经很广泛,在应用中需要注意影响应用的因素,这种技术在应用中已经形成了很大的用户群,承担了大量的数据业务,发展速度非常快,在一段时间内,要保持业务的有效增长,这是微波技术发展的重点过程因此作为光纤通信的补充,微波通信在特殊地段发挥着重要的作用,未来它的前景必将十分广阔二.编程完成3的实现xn=[1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1];% 输入单极性码 yn=xn;% 输出yn初始化=0;% 计数器初始化 k=1:(xn) xn(k)==1=+1; % "1"计数器/2 == (/2) % 奇数个1时输出-1进行极性交替 yn(k)=1; yn(k)=-1;% 3编码=0; % 连零计数器初始化 yh=yn; % 输出初始化=0; % 极性标志初始化为0V=(1(yn));% V脉冲位置记录变量 B=(1(yn));% B脉冲位置记录变量 k=1:(yn)yn(k)==0=+1; % 连“0”个数计数==4 % 如果4连“0” =0; % 计数器清零 yh(k)=1*yh(k-4);% 让的最后一个0改变为与前一个非零符号相同极性的符号V(k)=yh(k); % V脉冲位置记录yh(k)== % 如果当前V符号与前一个V符号的极性相同yh(k)=-1*yh(k); % 则让当前V符号极性反转以满足V符号间相互极性反转要求yh(k-3)=yh(k); % 添加B符号与V符号同极性 B(k-3)=yh(k); % B脉冲位置记录 V(k)=yh(k); % V脉冲位置记录yh(k+1:(yn))=-1*yh(k+1:(yn));% 并让后面的非零符号从V符号开始再交替变化=yh(k); % 记录前一个V符号的极性=0; % 当前输入为“1”则连“0”计数器清零% 编码完成re=[xn'yn'yh'V'B']; % 结果输出: xn 3 V&B符号 % 3解码 =yh; % 3码输入=; % 输出初始化 =0; % 极性标志初始化k=1:(yh) (k) ~= 0==yh(k) % 如果当前码与前一个非零码的极性相同 (k-3:k)=[0 0 0 0];% 则该码判为V码并将*00V清零=(k); % 极性标志=(); % 整流=([xn'-']); % 解码的正确性检验作图(311);([0:(xn)-1]xn);([0 (xn) -2 2]); (312);([0:(xn)-1]yh);([0 (xn) -2 2]); (313);([0:(xn)-1]);([0 (xn) -2 2]);。
西电微波网络-课后题答案
第2讲习题本作业针对微波网络的参量矩阵,介绍了Z 矩阵,Y 矩阵,A 矩阵,S 矩阵和T 矩阵的定义以及各矩阵间的相互转换。
2.1 证明Z 矩阵与A 矩阵的关系式二端口Z 矩阵电压-电流关系为2121111I Z I Z V +=(1)2221212I Z I Z V +=(2)由(2)得2212222111I Z ZV Z I -=(3)将(3)带入(1)得221221111I Z V Z Z V ∆-=证毕2.2 求图2-13所示网络的Z 矩阵cb a bc a I Z Z Z Z Z Z I V Z +++===)(|011112 c b a c b a I Z Z Z Z Z Z I V Z +++===)(|022221c b a c b I Z Z Z Z Z I V Z ++===021121| cb ac b I Z Z Z Z Z I V Z ++===012212| 2.3 求图2-14所示网络的A 矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡βθθβθθβθθβθθβθθθθβsin cos sin sin cos 2sin sin cos 1101cos sin 1sin cos 110102000000Z j Z Z j j jZ Z j Z j jZ j2.4 已知图2-11所示网络的[]⎥⎦⎤⎢⎣⎡=22211211A A A A A ,端口2接阻抗l Z ,求端口1的输入阻抗。
⎩⎨⎧-=-=22222112122111I A V A I I A V A V则 2221121122222121221111A Z A A Z A I A V A I A V A I V Z l lin ++=--==2.5⎩⎨⎧+=+=22222122122111i a u a i i a u a u 利用111b a u +=222b a u += 111b a i -=222b a i -=得⎩⎨⎧--+=---+=+)()()()()()(22222221112212221111b a a b a a b a b a a b a a b a两式相加2222112112222112111)()(2b a a a a a a a a a a ++++-+-=2222112112221121112221121122a a a a a a a a a a a a a a b ++++-+-++++=即 22211211212a a a a s +++=222112112221121122a a a a a a a a s ++++-+-=222112112221121111--a a a a a a a a s ++++=[]2221121112det 2a a a a a s +++=2.6 (a )[]⎥⎦⎤⎢⎣⎡=101z A根据电路理论,得⎩⎨⎧-=-=22121ZI V V I I 利用01111)(Z b a I -= 02222)(Z b a I -= 01111)(Z b a V += 02222)(Z b a V +=得01220211)()(Z b a Z b a --=-Z b a Z b a Z Z b a )()()(220222020111--+=+于是⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡+-210202010102210202010102)(a a Z Z Z Z Z Z b b Z Z Z Z Z Z⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡+-+-++=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--⎥⎥⎦⎤⎢⎢⎣⎡-+++=⎥⎦⎤⎢⎣⎡2102020101020102020102020102210202010102020201010202010221)(22)()(1)(1a a Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z a a Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Zb b即ZZ Z ZZ Z s +++-=020*******ZZ Z ZZ Z s +++-=020*******ZZ Z Z Z s s ++==0201020121122由t 矩阵与s 矩阵的关系得02010*********Z Z ZZ Z s t ++==020102012122122Z Z Z Z Z s s t +--=-=020101022111212Z Z Z Z Z s st +-== )(2)(020102012020122122Z Z Z Z Z Z Z Z s t ++--=∆-= (b)[]⎥⎥⎦⎤⎢⎢⎣⎡=N N A 100根据电路理论,得21nV V = 211I nI -=利用01111)(Z b a I -= 02222)(Z b a I -= 01111)(Z b a V += 02222)(Z b a V +=得02220111)()(Z b a n Z b a +=+ 01220211)()(Z b a Z b a n --=-于是⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-21010202012101020201a a Z Z n Z n Z b b Z Z n Z n Z ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-+-+=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡210220102010201022010220121010202010102020102201212211a a Z n Z Z Z n Z Z n Z n Z Z n Z a a Z Z n Z n Z Z Z n Z n Z Z n Zb b即022010220111Z n Z Z n Z s ++-= 022010220122Z n Z Z n Z s +-= 02201020121122Z n Z Z Z n s s +== 由t 矩阵与s 矩阵的关系得020102201211121Z Z n Z n Z s t +==02010********122Z Z n Z n Z s s t --=-= 0201022012111212Z Z n Z n Z s s t +-== )(2)(0220102012022012122Z n Z Z Z n Z n Z s t +--=∆-= 2.7 已知一双端口网络的s 矩阵满足21122211,s s s s ==。
西电简明微波大作业
微波电路中匹配网络软件的研制及其应用摘要:利用Smith 圆图可以快速精确地设计微波电路匹配网络。
本文建立了微波电路匹配网络软件设计模型, 给出了各模块实现的功能, 以及用MATLAB 实现该软件的具体方法。
最后用该软件设计了一个L 形匹配网络和卫星电视接收机输入电路的共轭匹配网络。
关键词: 匹配网络, Smith 圆图, MATLAB引言:在微波电路设计中, 通常在信号源与负载之间插入一个匹配网络, 变换负载的阻抗, 使两者匹配。
理论证明, 当负载阻抗Z L 和源阻抗Z S 共轭匹配,即Z L = Z S* 时, 信号源和负载之间实现最大功率传输。
如果采用解析方法设计匹配网络, 复杂程度和计算量都会很大。
利用Smith 圆图, 可以快速精确地设计匹配网络。
虽然国外已经开发出利用Smith圆图设计匹配网络的CAD 软件, 但是价格比较昂贵。
我们根据文献 , 设计出了简单易用的软件。
利用该软件, 可以设计L 形、T 形、P形和微带短截线匹配网络, 并具有显示匹配网络的传递函数图, 计算微带线的参数等功能。
该软件使用起来非常简单, 大大简化了匹配网络的设计工作。
1、Smith圆图和匹配网络简介Smith 圆图是由P. H. Smith 在1936 年发明的。
Smith 圆图反映了归一化阻抗、反射系数和驻波比之间的关系, 是被广泛利用于微波电路设计中有效的工具。
在微波电路中, 要实现最大的功率传输, 就必须使源阻抗和负载阻抗相匹配。
匹配网络是这样一个网络: 它是在源阻抗和负载阻抗之间, 对负载阻抗起阻抗变换作用, 使负载阻抗和源阻抗共轭相等的网络。
本文所指的匹配网络均为无源匹配网络。
匹配网络按照组成的元件可以分为: 分立元件匹配网络和微带线匹配网络。
前者用于GHz 频段的低端及更低的频段。
后者用于GHz 频段的高端及更高频段。
其中分立元件匹配网络根据拓扑结构又可以分为L 形、T 形、P形。
L 形是最简单可行的双元件匹配网络, 但是它的品质因数Q 无法控制。
西电微波射频导论大作业
微波射频导论大作业授课老师:专业: 电子信息工程姓名:班级:学号:1.文献简介Miniature Four-Way and Two-Way 24 GHz Wilkinson Power Dividers Jeong-Geun Kim ; Gabriel M. RebeizIEEE Microwave and Wireless Components LettersYear: 2007 V olume: 17 , Issue: 9Pages: 658 - 660Cited by: Papers (44) | Patents (3)IEEE Journals & Magazines2. 概述这篇论文呈现24GHz 四路和双路微型威尔金森功率分配器(Wilkinson Power Divider )。
在标准的CMOS 技术下,使用集总单元设计大大减小了芯片面积。
四路和双路威尔金森功分器的有效面积分别为2mm 0.330.33⨯和2mm 0.290.12⨯。
从22到26 GHz ,四路威尔金森功分器导致插入损耗小于2.4 dB ,即输入/输出回波损耗优于15.5 dB ,端口到端口隔离大于24.7 dB ,双路威尔金森功分器导致插入损耗1.4 dB ,输入/输出回波损耗优于8.9 dB ,并且端口到端口隔离14.8 dB 。
主要面向短程汽车雷达与相控阵天线应用。
3. 设计与仿真(1) 原理图(2) 参数选取说明L 和C 的选取是依靠T T fZ C f Z ππ21,2L ==这两个公式决定的。
T Z 是4λ传输线等效特性阻抗,在四路威尔金森功分器中4λ传输线等效特性阻抗是20Z 并且这个隔离电阻阻抗为0Z ,计算得出在24GHz 下电感值为660pH 电容值为66fF ,输入输出端口阻抗为50Ω.(3) 电路图(4) 仿真S 参数图总结:从22到26 GHz,四路威尔金森功分器,插入损耗小于2.4 dB,端口到端口隔离大于24.7 dB,输入端口回波损耗小于13.8dB。
微波技术作业ppt课件
4、 单阶梯四分之一波长阻抗变换器等效电路,如书153页图5-9(c)所示。试证明单阶梯四分之一波长阻
抗变换器插入衰减量为 L 1[1 ( R 1 )2 1]cos2
4
R
其中,R为阻抗比, R Z02 , l
Z01
课后习题10题
第六章
• 1、一空气填充的矩形谐振腔尺寸为:3*1.5*4cm, 求:(1)当它工作于H101模时的谐振频率;(2)若在腔中 全填充某种介质后,在同一工作频率上它谐振于H102 模,则该介质的相对介电常数为多少?
ab 2
1
A1
b 2 E10
(4-2-8)
于是唯一确定了矩形波导TE10模的等效电压和等效电流,即
U (z)
b 2
E10e j z
I (z) a
E10
e j z
(4-2-9)
2 ZTE10
此时波导任意点处的传输功率为
Pk
1 2
Re[Uk
(z)
I
(z)]
ab 4
E120 ZTE10
(4-2-10)
s12
b1 a2
|a10
e j
S
0 e j
e j
0
s21
b2 a1
|a2 0
e j
5、试简单证明无耗网络的么阵性,即
[S ]†[S ] [1]
6、证明无耗互易三端口微波网络三个端口不能同时 匹配的特性
7、如果二端口微波网络的S参量为
S11 S11 e j11
S12 S12 e j12
S21 S21 e j21
S22 S22 e j22
试证明无耗、互易、对称网络的S矩阵为
[S]
西安电子科技大学微波大作业——Smith_chart在计算慢波微带线特征阻抗中的应用
当中的Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,ZL是归一负载值,即ZL/ Z0。当中电路的负载值Z0是传输线的特性阻抗值,通常会使用50Ω。图表中的圆形线代表电阻抗力的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻力,当中向上的是正数,向下的是负数。图表最中间的点(1+j0)代表一个已匹配(matched)的电阻数值(ZL),同时其反射系数的值会是零。图表的边缘代表其反射系数的长度是1,即100%反射。在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。有一些图表是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。”
史密斯图的基本在于以下的算式:
史密斯圆图的应用
用史密斯图求
我们知道,传输线上前向和后向的行波合成会形成驻波,其根本原因在于源端和负载端的阻抗不匹配。我们可以定义一个称为电压驻波比(voltage standing-wave ratio, VSWR)的量度,来评价负载接在传输线上的不匹配程度。VSWR定义为传输线上驻波电压最大值与最小值之比:
特征参数
从应用角度看,描述波导的特征参数有以下四点
色散特性
色散特性表示波导纵向传播常数
与频率
的关系,常用 平面上的曲线表示
西电微波电子线路课后习题答案
微波电子线路习题(3-2)(1)分析:电路a 、b 线路相同,信号、本振等分加于二管,混频电流叠加输出,1D 、2D 两路长度差4λ,是典型的双管平衡混频器电路。
但a 、b 两路本振、信号输入位置互换。
在a 电路中,本振反相加于两管,信号同相加于两管,为本振反相型平衡混频器。
B 电路则为信号反相型平衡混频器。
(2)电流成分①a 电路输出电流成分:*中频分量 1,0=-=n t s ωωω *和频分量 1,=+=+n t s ωωω*本振噪声 ()πωω-==t v u t v u nl nl n nl nl n cos ,cos 21 *外来镜频干扰s l s ωωω-=2/t v g i i i i s i i i 0/1/2/1/cos 2ω=-= 不能抵消,二倍输出。
*镜频分量 2,2=-=n s l i ωωω0=io i 镜频输出抵消,但流过输入回路,在源电阻上损耗能量。
*高次分量n 奇数 两路相差πn 反相 输出叠加 n 偶数 两路相差πn 2 同相 输出抵消 ②b 电路输出电流成分:()111s u t g i =,()222s u t g i =*中频分量 1,0=-=n t s ωωω *和频分量 1,=+=+n t s ωωω*本振噪声 ()πωω-==t v u t v u nl nl n nl nl n cos ,cos 21 *外来镜频干扰s l s ωωω-=2/t v g i i i i s i i i 0/1/2/1/cos 2ω=-= 不()t v g t v g i io s l s s i ωωωcos cos /1//1/1=-=()tv g t v g i io s l s s i ωωωcos cos /1//1/1=-=能抵消,二倍输出。
*镜频分量 2,2=-=n s l i ωωω12i io i i = 镜频输出不能抵消,也会流过输入回路,在源电阻上损耗能量。
西安电子科技大学2021学年上学期 大作业-电力系统自动化技术
学习中心/函授站_姓名学号西安电子科技大学网络与继续教育学院2021 学年上学期《电力系统自动化技术》期末考试试题(综合大作业)题号一二三四五六总分题分20 25 15 15 10 15得分考试说明:1、大作业试题于2021 年4 月23 日公布:(1)学生于2021 年4 月23 日至2021 年5 月9 日在线上传大作业答卷;(2)上传时一张图片对应一张A4 纸答题纸,要求拍照清晰、上传完整;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院标准答题纸》手写完成,要求字迹工整、卷面干净。
一、选择题(每小题 2 分,共20 分)1.线性整步电压的周期与发电机和系统之间的频率差()。
A.无关B.有时无关C.成正比关系D.成反比关系2.机端直接并列运行的发电机的外特性一定不是()。
A.负调差特性B.正调差特性C.无差特性D.正调差特性和无差特性3.可控硅励磁装置,当控制电压越大时,可控硅的控制角( ),输出励磁电流()。
A.越大越大B.越大越小C.越小越大D.越小越小4.构成调差单元不需要的元器件是()。
A.测量变压器B.电流互感器C.电阻器D.电容器5.通常要求调差单元能灵敏反应()。
A.发电机电压B.励磁电流C.有功电流D.无功电流6.电力系统有功负荷的静态频率特性曲线是()。
A.单调上升的B.单调下降的C.没有单调性的D.水平直线7.自动低频减负荷装置的动作延时一般为()。
A.0.1~0.2 秒B.0.2~0.3 秒C.0.5~1.0 秒D.1.0~1.5 秒8.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。
A.相同B.各不相同C.一部分相同,一部分不同D.稳定9.造成系统频率下降的原因是()。
A.无功功率过剩B.无功功率不足C.有功功率过剩D.有功功率不足10.当导前时间脉冲后于导前相角脉冲到来时,可判定()。
A.频差过大B.频差满足条件C.发电机频率高于系统频率D.发电机频率低于系统频率二、名词解释(每小题5 分,共25 分)1.整步电压2.远方终端3.低频减负荷装置4.准同期5.AGC三、填空题(每空1 分,共15 分)1.低频减负荷装置的应由系统所允许的最低频率下限确定。