立体几何同步训练15球.

合集下载

立体几何之外接球问题含答案

立体几何之外接球问题含答案

立体几何之外接球问题一讲评课1课时总第课时月日1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的表面积为( ? )A. B. C. D.2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为(??)A.B. C.D.3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( ? ?)A. B. C. D.4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为(?)A.B. C.D.5、已知都在半径为的球面上,且,,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值为()A. B.C. D.6、某几何体的三视图如图所示,这个几何体的内切球的体积为(? )A.B.C. D.7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于(?)A. B. C. D.8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ? )A.B. C.D.9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ?)A.B.C. D.10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ? )A. B. C. D.立体几何之外接球问题二讲评课1课时总第课时月日11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________.12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________.13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________.14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________. 16.已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________. 16、在三棱锥中,平面,,,,则此三棱锥外接球的体积为__________18、底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.17、三棱柱的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为,则三棱柱的最大体积为__________.20、一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为,则这个球的表面积为__________.立体几何之三视图问题1讲评课 1课时 总第 课时 月 日3、一个几何体的三视图如下图所示,则这个几何体的体积是( ) A. B. C. D.4、如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则它的体积为(??? ) A.B.C.D.5、某几何体的三视图如图所示,则它的表面积为( ? ?)A.B.C.D.6、某几何体三视图如图所示,则该几何体的体积为(?? ) A. B. C.D.7、多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为( ???) A.B.C.D.8、某一简单几何体的三视图如图所示,该几何体的外接球的表面积是(?? ) A.B.C.D.9、如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积的最大值是(?? ) A. B.C. D. 10、一个几何体的三视图如图,则这个几何体的表面积是(?? )A.B.C.D.11、若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是(?? ) A.B.C.D.12、某几何体三视图如下图所示,则该几何体的体积是(?? )D.A. B. C.13、一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(?)A. B.C. D.14、已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为(?)A.D.B. C.15、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的的体积为(?)C. D.A. B.立体几何之三视图问题2讲评课1课时总第课时月日16、某长方体的三视图如右图,长度为的体对角线在正视图中的长度为,在侧视图中的长度为,则该长方体的全面积为__________.17、一个空间几何体的三视图如下图所示,则该几何体外接球的表面积为__________.18、一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积__________.19、已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),则该四棱锥的体积为__________.20、一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.21、已知一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.22、某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是__________.23、一个多面体的三视图如图所示,则该多面体的表面积为____.24、2016年11月18日13时59分,神舟十一号飞船返回舱在内蒙古中部预定区域成功着陆. 神舟十一号载人飞行,是我国迄今为止时间最长的一次载人航天飞行,在轨33天飞行中,航天员景海鹏、陈冬参与的实验和实验多达38项. “跑台束缚系统”是未来空间站长期飞行的关键锻炼设备,本次任务是国产跑台首次太空验证. 如图所示是“跑台束缚系统”中某机械部件的三视图(单位:),则此机械部件的表面积为__________.25、一个几何体的三视图如图所示,则该几何体的表面积为__________.立体几何之外接球问题答案解析第1题答案C第1题解析如图所示,∵,∴为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则圆心在过的圆面上,即的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径,球的表面积为,故选.第2题答案B第2题解析设球心为,设正三棱柱上底面为,中心为,因为三棱柱所有棱的长都为,则可知?,,又由球的相关性质可知,球的半径,所以球的表面积为,故选.第3题答案C第3题解析如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选.第4题答案D第4题解析该几何体为三棱锥,设球心为,分别为和的外心,易求得,,∴球的半径,∴该几何体外接球的表面积为.第5题答案B第5题解析∵,∴,∴圆心在平面的射影为的中点,∴,∴.∴,当线段为截面圆的直径时,面积最小,∴截面面积的最小值为.第6题答案C第6题解析此几何体是底面边长为,高为的正四棱锥,可算出其体积为,表面积为. 令内切球的半径为,则,从而内切球的体积为,故选C.第7题答案B第7题解析由题意可知四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的直径,且四棱锥的高半径,进而可知此四棱锥的四个侧面均是边长为的正三角形,底面为边长为的正方形,所以该四棱锥的表面积为?,于是,,进而球的体积. 故选.第8题答案B第8题解析由题可知该三棱锥为一个棱长的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为,则球半径为,则. 故选.第9题答案A第9题解析如图:设、为棱柱两底面的中心,球心为的中点.又直三棱柱的棱长为,可知,,所以,因此该直三棱柱外接球的表面积为,故选.?第10题答案D第10题解析此几何体是三棱锥,底面是斜边长为的等腰直角三角形,且顶点在底面内的射影是底面直角三角形斜边的中点.易知,三棱锥的外接球的球心在上.设球的半径为,则,∵,∴,解得:,∴外接球的表面积为.第11题答案第11题解析过圆锥的旋转轴作轴截面,得及其内切圆⊙和外切圆⊙,且两圆同圆心,即的内心与外心重合,易得为正三角形,由题意⊙的半径为,∴的边长为,∴圆锥的底面半径为,高为,∴.第12题答案第12题解析设球心为,正三棱柱的上下底面的中心分别为,,底面正三角形的边长为,则,由已知得底面,在中,,由勾股定理得,故三棱柱体积,又,所以,则.第13题答案第13题解析底面正三角形外接圆的半径为,圆心到底面的距离为,从而其外接圆的半径,则该球的表面积.第14题答案第14题解析设正四面体棱长为,则正四面体表面积为,其内切球半径为正四面体高的,即,因此内切球表面积为,则.第15题答案第15题解析设正方体棱长为,则正方体表面积为,其外接球半径为正方体体对角线长的,即为,因此外接球表面积为,则.第16题答案第16题解析设正的外接圆圆心为,易知,在中,,故球的表面积为.第17题答案第17题解析根据题意球心到平面的距离为,在的外接圆的半径为,所以球的半径为,所以此三棱锥的外接球的体积为,所以答案为:.第18题答案第18题解析设所给半球的半径为,则棱锥的高,底面正方形中有,所以其体积,则,于是所求半球的体积为.第19题答案第19题解析依题意,外接球的表面积为,所以.如图所示,三棱柱外接圆球心为,设,在直角三角形中,所以.三棱柱的体积为,当且仅当时取得最大值.第20题答案第20题解析由已知可得长方体的体对角线为球的直径:,所以.所以球的面积为.。

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必

高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必

高中数学第一章立体几何初步1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章立体几何初步1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章立体几何初步1.1.6 棱柱、棱锥、棱台和球的表面同步练习(含解析)新人教B版必修2的全部内容。

棱柱、棱锥、棱台和球的表面1.正三棱锥的底面边长为a ,高为66a ,则此三棱锥的侧面积为( ). A .234a B .232a C .2334a D .2332a 2.长方体的高等于h ,底面积等于a ,过相对侧棱的截面面积等于b ,则此长方体的侧面积等于( ).A .222b ah +B .2222b ah +C .2222b ah +D .222b ah +3.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积之比为( ).A .316 B .916 C .38 D .9324.一个几何体的三视图如图,该几何体的表面积是( ).A .372B .360C .292D .2805.已知三个球的半径R 1、R 2、R 3满足R 1+2R 2=3R 3,则它们的表面积S 1、S 2、S 3满足的等量关系是______.6.有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a 的取值范围是______.7.已知正三棱锥S-ABC,一个正三棱柱的一个底面的三顶点在棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm,底面边长为12 cm,内接正三棱柱的侧面积为120 cm2.(1)求三棱柱的高;(2)求棱柱上底面所截棱锥与原棱锥的侧面积之比.8.已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD 内,过C作l⊥CB,以l为轴将梯形ABCD旋转一周,求旋转体的表面积.参考答案1。

第八章立体几何初步同步练习含解析

第八章立体几何初步同步练习含解析

单元素养评价(三)(第八章)(120分钟150分)一、单选题(每小题5分,共40分)1.下列命题中正确的是()A.棱柱被平面分成的两部分可以都是棱柱B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形D.棱锥的底面一定是三角形【解析】选A.平行于棱柱底面的平面可以把棱柱分成两个棱柱,故A正确;三棱柱的底面是三角形,故C错误;底面是矩形的平行六面体的侧面不一定是矩形,故它也不一定是长方体,故B错误;四棱锥的底面是四边形,故D错误.2.(2020·芜湖高一检测)如图,△ABC的斜二测直观图为等腰Rt△A′B′C′,其中A′B′=2,则△ABC的面积为()A.2B.4C.2D.4【解析】选D.因为Rt△A′B′C′是一平面图形的直观图,直角边长为A′B′=2,所以直角三角形的面积是×2×2=2,因为平面图形与直观图的面积的比为2,所以原平面图形的面积是2×2=4.3.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的【解析】选 C.(1)当平行于三棱锥一底面,过球心的截面如题(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如题(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如题(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以题(4)图是错误的.4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:(1)若m⊥α,n∥α,那么m⊥n;(2)若m⊥n,m⊥α,n∥β,那么α⊥β;(3)若α∥β,m⊂α,那么m∥β;(4)若α⊥γ,β⊥γ,则α∥β,其中正确命题的序号是() A.(1)(2) B.(2)(3)C.(1)(3)D.(2)(4)【解析】选C.对于(1),如果m⊥α,n∥α,根据直线与平面垂直的性质可知m⊥n,所以(1)正确;对于(2),如果m⊥n,m⊥α,n∥β,根据线面垂直与线面平行性质可知α与β可以垂直,也可以平行,还可以相交,所以(2)错误;对于(3),如果α∥β,m⊂α,根据直线与平面平行的判定可知m∥β,所以(3)正确;对于(4),设平面α,β,γ分别是正方体中经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故(4)不正确.5.(2020·杭州高一检测)如图,在正四面体OABC中,D是OA的中点,则BD与OC所成角的余弦值是()A. B. C. D.【解析】选B.取AC的中点E,连接DE,BE,根据题意∠BDE为异面直线BD与OC所成的角,设正四面体的边长为2,则DE=1,BD=BE=,由cos ∠BDE==,所以BD与OC所成角的余弦值是.6.如图所示的粮仓可近似为一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为-1和3,则此组合体的外接球的表面积是()A.16πB.20πC.24πD.28π【解析】选 B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则:O+12=R2,而OO1=+2-R,故R2=1+(+2-R)2,所以R=,所以S=4πR2=20π.7.(2020·西城高一检测)阅读下面题目及其证明过程,在横线处应填写的正确结论是() 如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点,求证:平面PAC⊥平面BDE.证明:因为PO⊥底面ABCD,所以PO⊥BD.又因为AC⊥BD,且AC∩PO=O,所以.又因为BD⊂平面BDE,所以平面PAC⊥平面BDE.A.BD⊥平面PBCB.AC⊥平面PBDC.BD⊥平面PACD.AC⊥平面BDE【解析】选C.因为PO⊥底面ABCD,所以PO⊥BD.又因为AC⊥BD,且AC∩PO=O,所以BD⊥平面PAC.又因为BD⊂平面BDE,所以平面PAC⊥平面BDE.8.(2020·九江高一检测)半正多面体亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为,则该二十四等边体外接球的表面积为()A.4πB.6πC.8πD.12π【解析】选C.由已知根据该几何体的对称性可知,该几何体的外接球即为底面棱长为,侧棱长为2的正四棱柱的外接球,所以(2R)2=()2+()2+22,所以R=,所以该二十四等边体的外接球的表面积S=4πR2=4π×()2=8π.二、多选题(每小题5分,共20分,全部选对的得5分,选对但不全的得3分,有选错的得0分)A.πB.(1+)πC.2πD.(2+π)【解析】选AB.若绕一条直角边旋转一周时,则圆锥的底面半径为1,高为1,所以母线长l=,这时表面积为×2π·1·l+π·12=(1+)π;若绕斜边旋转一周时,旋转体为两个倒立圆锥对底组合在一起,且由题意底面半径为,两个圆锥的母线长都为1,所以表面积S=2××2π·×1=π,综上所述该几何体的表面积为π或(1+)π.10.(2020·潍坊高一检测)正方体ABCD -A1B1C1D1的棱长为2,已知平面α⊥AC1,则关于α截此正方体所得截面的判断正确的是()A.截面形状可能为正三角形B.截面形状可能为正方形C.截面形状可能为正六边形D.截面面积最大值为3【解析】选ACD.显然A,C成立,B不成立,下面说明D成立,如图截得正六边形,面积最大,MN=2,GH=,OE==,所以S=2××(+2)×=3,故D成立.11.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,则下列命题中正确的是()A.若m⊂α,n⊂α,m∥β,n∥β,则α∥βB.若m⊥α,n⊥β且m⊥n,则α⊥βC.若l∥α,α⊥β,则l⊥βD.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n【解析】选BD.由α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线知:A.若m⊂α,n⊂α,m∥β,n∥β,则α与β相交或平行,故A错误;B.若m⊥α,n⊥β,且m⊥n,则由面面垂直的判定定理得α⊥β,故B正确;C.若l∥α,α⊥β,则l与β相交、平行或l⊂β,故C错误;D.若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则由线面平行的性质定理得m∥n.故D正确.12.在三棱锥C -ABD中(如图),△ABD与△CBD是全等的等腰直角三角形,O为斜边BD的中点,AB=4,二面角A-BD -C的大小为60°,下面结论中正确的是()A.AC⊥BDB.AD⊥COC.cos ∠ADC=D.三棱锥C -ABD的外接球表面积为32π【解析】选AD.因为△ABD与△CBD是全等的等腰直角三角形,O为斜边BD的中点,所以CO⊥BD,AO⊥BD,AO∩OC=O,所以BD⊥平面AOC,所以AC⊥BD,因此A正确;假设CO⊥AD,又CO⊥BD,AD∩BD=D,可得CO⊥平面ABD,与∠AOC是二面角A-BD -C的平面角且为60°矛盾,因此B不正确;AB=4,AC=OA=2,AD=CD=4,所以cos ∠ADC==≠,因此C不正确;三棱锥C -ABD的外接球的球心为O,半径为2,表面积S=4π×(2)2=32π,因此D正确.三、填空题(每小题5分,共20分)13.(2020·南京高一检测)在三棱柱ABC -A1B1C1中,点P是棱CC1上一点,记三棱柱ABC -A1B1C1与四棱锥P-ABB1A1的体积分别为V1与V2,则=.【解析】设AB=a,在△ABC中AB边所对的高为b,三棱柱ABC -A1B1C1的高为h,则V1=abh,V2=×ah·b,所以==.答案:14.如图所示,ABCD -A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=.【解析】因为平面ABCD∥平面A1B1C1D1,MN⊂平面A1B1C1D1,所以MN∥平面ABCD,又PQ=平面PMN∩平面ABCD,所以MN∥PQ.因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1∥AC,所以PQ∥AC,又AP=,ABCD-A1B1C1D1是棱长为a的正方体,所以CQ=,从而DP=DQ=,所以PQ=== a. 答案: a15.将一副斜边长相等的直角三角板拼接成如图所示的空间图形,其中AD=BD=,∠BAC=30°,若它们的斜边AB重合,让三角板ABD以AB为轴转动,则下列说法正确的是(填序号).①当平面ABD⊥平面ABC时,C,D两点间的距离为;②在三角板ABD转动过程中,总有AB⊥CD;③在三角板ABD转动过程中,三棱锥D -ABC体积的最大值为.【解析】①取AB中点O,连接DO,CO,因为AD=BD=,所以DO=1,AB=2,OC=1.因为平面ABD⊥平面ABC,DO⊥AB,DO⊂平面ABD,所以DO⊥平面ABC,DO⊥OC,所以DC=,①正确;②若AB⊥CD,AB⊥OD,OD∩CD=D,则AB⊥平面CDO,所以AB⊥OC,因为O为AB中点,所以AC=BC,∠BAC=45°与∠BAC=30°矛盾,所以②错误;③当DO⊥平面ABC时,棱锥的高最大,此时V棱锥=××AC·BC·DO=××1×1=,③正确.答案:①③16.在四面体S-ABC中,SA=SB=2,且SA⊥SB,BC=,AC=,则该四面体体积的最大值为,该四面体外接球的表面积为.【解析】四面体的体积最大时即面SAB⊥面ABC,SA=SB=2,且SA⊥SB,所以AB=2,因为BC=,AC=,所以AC2+BC2=AB2,所以∠ACB=90°,取AB的中点H,连接CH,SH,SH⊥AB,面SAB∩面ABC=AB,SH在面SAB内,所以SH⊥面ABC,而SH=×SA=,所以V S-ABC=S△ABC·SH=××××=;则外接球的球心在SH所在的直线上,设球心为O,连接OC,CH=AB=×2=,因为SH=,所以O与H重合,所以R=CH=SH=,所以四面体的外接球的表面积为4πR2=8π.答案:8π四、解答题(共70分)17.(10分)某个实心零部件的形状是如图所示的几何体,其下部是正四棱台ABCD -A1B1C1D1,其上部是底面与四棱台的上底面重合的正四棱柱ABCD -A2B2C2D2.现需对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:cm),若加工处理费为0.2元/cm2,求需支付的加工处理费.【解析】因为四棱柱ABCD -A2B2C2D2的底面是正方形,侧面是全等的矩形,所以该零部件上部的表面积S1=S四棱柱上底面+S四棱柱侧面=A2+4AB·AA2=102+4×10×30=1 300(cm2),又四棱台ABCD -A1B1C1D1的上下底面均是正方形,侧面是全等的等腰梯形,所以该零部件下部的表面积S2=S四棱台下底面+S四棱台侧面=A1+4××(AB+A1B1)×h等腰梯形的高=202+4××(10+20)×=1 120(cm2),则该实心零部件的表面积S=S1+S2=1 300+1 120=2 420(cm2),0.2×2 420=484(元),故需支付加工处理费484元.(1)求证:AC⊥BA1;(2)求圆柱的侧面积.【解析】(1)依题意AB⊥AC.因为AA1⊥平面ABC,所以AA1⊥AC.又因为AB∩AA1=A,所以AC⊥平面AA1B1B.因为BA1⊂平面AA1B1B,所以AC⊥BA1.(2)在Rt△ABC中,AB=2,AC=2,∠BAC=90°,所以BC=2.S侧=2π×3=6π.19.(12分)(2020·全国Ⅰ卷)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为π,求三棱锥P-ABC的体积.【解题指南】(1)根据已知可得PA=PB=PC,进而有△PAC≌△PBC,可得∠APC=∠BPC=90°,即PB⊥PC,从而证得PB⊥平面PAC,即可证得结论;(2)将已知条件转化为母线l和底面半径r的关系,进而求出底面半径,求出正三角形ABC的边长,在等腰直角三角形APB中求出AP,结合PA=PB=PC即可求出结论.【解析】(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB.△PAC≌△PBC.又∠APC =90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,因为PB在平面PAB内,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.解得r=1,l=,从而AB=.由(1)可得PA2+PB2=AB2,故PA=PB=PC=.所以三棱锥P-ABC的体积为××PA×PB×PC=××=.20.(12分)如图,在直三棱柱ABC -A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【证明】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC -A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为DE⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC -A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.21.(12分)如图①,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图②中△A1BE的位置,得到四棱锥A1-BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.【解析】(1)在题图①中,因为AB=BC=AD=a,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图②中,BE⊥A1O,BE⊥OC,又A1O∩OC=O,从而BE⊥平面A1OC.因为BC AD ED,所以四边形BCDE为平行四边形,所以CD∥BE,所以CD⊥平面A1OC.(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE.即A1O是四棱锥A1-BCDE的高.由题意知,A1O=AO=AB=a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1-BCDE的体积为V=S·A1O=×a2×a=a3.由a3=36,得a=6.22.(12分)如图,在直三棱柱ABC -A1B1C1中,AA1=AC且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)点D在边A1C1上且C1D=C1A1,证明在线段BB1上存在点E,使DE∥平面ABC1,并求此时的值.【解析】(1)因为三棱柱ABC -A1B1C1是直三棱柱,所以四边形ACC1A1是矩形.因为AA1=AC,所以AC1⊥A1C.又BC1⊥A1C,AC1∩BC1=C1,所以A1C⊥平面ABC1.因为A1C⊂平面A1ACC1,所以平面ABC1⊥平面A1ACC1.(2)当=时,DE∥平面ABC1,如图,在A1A上取点F,使=,连接EF,FD.因为===,所以EF∥AB,DF∥AC1.因为AB∩AC1=A,EF∩DF=F,所以平面EFD∥平面ABC1,因为DE⊂平面DEF,所以DE∥平面ABC1.。

基本立体图形 同步练习-高一下学期数学人教A版(2019)必修第二册

基本立体图形 同步练习-高一下学期数学人教A版(2019)必修第二册

8.1基本立体图形同步练习一一、单选题1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的16,经过这3个点的小圆的周长为4π,那么这个球的半径为()A.3B.3C.2D32.通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm和4cm)制作该容器的侧面,则该圆台形容器的高为()A3B.1cm C3D333.在古代,斗笠作为挡雨遮阳的器具,用竹篾夹油纸或竹叶棕丝等编织而成,其形状可以看成一个圆锥体,在《诗经》有“何蓑何笠”的句子,说明它很早就为人所用.已知某款斗笠如图所示,它的母线长为2)A.4B.42C2D.24.如图,已知正三棱柱111ABC A B C的底面边长为lcm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达1A点的最短路线的长为()A.12B.13C.D.155.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成三棱锥的个数为A.1B.2C.3D.06.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45︒,过圆柱的轴的平面截该几何体所得的四边形ABB A''为矩形,若沿AA'将其侧面剪开,其侧面展开图形状大致为()A.B.C.D.7.我们把底面是正三角形,顶点在底面的射影是正三角形中心的三棱锥称为正三棱锥.现有一正三棱锥-P ABC放置在平而α上,已知它的底面边长为2,高h,该正三棱锥绕BC边在平面α上转动(翻转),某个时刻它在平面α上的射影是等腰直角三角形,则h的取值范围是()A.6⎛⎝⎦B.66,13⎛⎡⎤⎢⎥⎝⎦⎣⎦C.6⎛⎝⎦D.66,12⎛⎛⎫⎪⎪⎝⎦⎝⎭8.如图,在棱长为1的正方体ABCD A B C D-''''中,点P是线段AD'上的动点,E是A C''上的动点,F是BD上的动点,则PE PF+长度的最小值为()A.1B2C6D.31二、多选题9.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径可能是A .2πB .2π C .4π D .4π10.如图在四面体ABCD 中,2AB CD ==,3AC BD ==5AD BC ==E 、F 分别是AD ,BC 的中点.若用一个与直线EF 垂直,且与四面体每个面都相交的平面a 去截该四面体,由此得到一个多边形截面,则下列说法正确的是( )A .EF AD ⊥且EF BC ⊥B .四面体ABCD 6C .多边形截面为矩形D 611.在正四棱台1111ABCD A B C D -中,1124A B AB ==,12AA =,则( ) A 2B .该棱台的表面积为203+C .该棱台的体积为282D .该棱台外接球的表面积为40π12.如图所示,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别是AD ,1CC 的中点,P 是线段AB 上的动点,则下列说法正确的是( )A .当点P 与A ,B 两点不重合时,平面PMN 截正方体所得的截面是五边形 B .平面PMN 截正方体所得的截面可能是三角形C .MPN △一定是锐角三角形D .MPN △21 三、填空题13.圆锥的底面半径为1,其侧面展开图是一个圆心角为23π的扇形,则此圆锥的母线长为______.14.若圆台上底面半径为5cm ,下底面半径为10cm ,母线AB (点A 在下底面圆周上,点B 在上底面圆周上)长为20cm ,从AB 中点拉一根绳子绕圆台侧面转到A ,则绳子最短的长度___________.15.如图,四面体ABCD 中,DA =DB =DC =1,且DA 、DB 、DC 两两互相垂直,在该四面体表面上与点A 23的点形成一条曲线,这条曲线的长度是____________.16.“牟和方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它是由两个相同的圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体(如图1).如图2所示的“四脚帐篷”为“牟和方盖”的上半部分,点O 为四边形ABCD 的中心,点P 为“四脚帐篷”的“上顶点”,1OP =.用平行于平面ABCD 的平面α去截“四脚帐篷”,当平面α经过OP 的中点时,截面图形的面积为___________.四、解答题17.如图,一个三棱柱的底面是边长为2的正三角形,侧棱1CC ⊥底面ABC ,13CC =.有一只小虫从点A 沿三个侧面爬到点1A ,求小虫爬行的最短路程.18.如图,已知ABC 各顶点均在球O 的球面上,若球半径为10,分别求球心到平面ABC 的距离.(1)ABC 是边长为3的正三角形;(2)ABC 是边长分别为8AB =,7AC =,6BC =的三角形. (以上结果均保留2位小数)19.三角形ABC 中,AC =3、BC =4、AB =5,各边都与半径为2的球O 相切.(1)求球心O 到三角形各边的距离;(2)求球心O 到三角形ABC 所在平面的距离; (3)求球心O 到三角形各顶点的距离.20.已知圆锥SO 的底面半径5R =,高12H =. (1)求圆锥SO 的母线长;(2)圆锥SO 的内接圆柱'OO 的高为h ,当h 为何值时,内接圆柱'OO 的轴截面面积最大,并求出最大值.21.已知圆锥的底面半径为8,点Q 为半圆弧AC 的中点,点P 为母线SA 的中点(1)若母线长为10,求圆锥的体积;(2)若PQ 与SO 所成角为arctan 2,求,P Q 两点在圆锥侧面上的最短距离.22.已知棱长为2cm 的正方体容器内盛满水,把半径为1cm 的钢球放入水中,刚好被淹没;然后放入一个铁球,使它也淹没于水中.要使流出的水量最多,这个铁球的半径应为多少?参考答案1--8BDCCC ABC9.AD 10.ABD 11.ABD 12.AD 13.3 14.50 cm 153π16.317.解:沿1AA 将三棱柱的侧面展开,则展开后的图形是矩形11AA D D ,如下图所示:且326AD =⨯=,13DD =,所以,小虫爬行的最短路程为1AD 的长, 且221135AD AD DD + 18.(1)记ABC 所在小圆的半径为1r ,球心到平面ABC 的距离为1d ,则有22211d R r =-,因为ABC 是边长为3的正三角形,利用正弦定理1223sin 603AB r ==︒13r 所以221197d R r =-=19.85d ≈. (2)记ABC 所在小圆的半径为2r ,球心到平面ABC 的距离为2d ,则有22222d R r =-,因为ABC 是边长分别为8AB =,7AC =,6BC =,所以由余弦定理得22222287611cos 228716AB AC BC A AB AC +-+-===⋅⨯⨯,又0A π<<,所以2315sin 1cos A A =- 再由正弦定理得22sin 31515BC r A ===215r =, 所以2222246659.1115d R r =-=≈. 19.(1)由各边都与半径为2的球O 相切可得球心O 到三角形各边的距离为球的半径2; (2)过三角形的平面截此球所得截面为小圆1O ,在Rt ABC △中,设l 为ABC 的周长,r 为ABC 内切圆的半径, 则12ABCSl r =⋅,得1r =,则球心O 到圆心1O 的距离为221213OO -O 到三角形ABC 3 (3)连接111,,O A O B O C ,由(2)得ABC 内切圆的半径为1,则1112OC =+()211315O A =+-()2114110O B =+-=O 到顶点A 的距离3522OA =+=O 到顶点B 的距离31013OB =+=球心O 到顶点C 的距离325OC=+=20.(1)∵圆锥SO 的底面半径5R =,高12H =, ∵圆锥SO 的母线长2213L H R =+; (2)作出圆锥、圆柱的轴截面如图所示,其中12SO =,5OA OB ==,()012OK h h =<<. 设圆柱底面半径为r ,则12512r h -=,即()51212h r -=.设圆柱的轴截面面积为()()()2255'21263601266S r h h h h h ⎡⎤=⋅=-=--+<<⎣⎦.∵当6h =时,'S 有最大值为30.21.(1)圆锥的底面半径为8, 母线长为10,根据勾股定理得到: 222SO AO SA += 解得6SO =22118612833V R h πππ==⨯=(2)如图所示:M 为AO 中点,连接,PM QMP 为母线SA 的中点,M 为AO 中点,则PM SO ‖,PQ 与SO 所成角为QPM ∠tan 2,452545QMQPM QM PM SO PM∠=====故22214412SA SO AO SA =+=∴=将圆锥沿SA 展开得到侧面平面图:对应圆心角为β 42812343ASQ πβππββ⨯=∴=∴∠==在SPQ ∆中,利用余弦定理得到:2222cos 1083PQ SP SQ SP SQ ASQ PQ =+-⋅∠=∴=故最短距离为322.解:过正方体对角面的截面图如图所示,设两球的交点为S123AC =3,31AO AS AO OS =-=设铁球的半径r ,12tan C AC ∠= 在1AO D 中,13AO r , 11AS AO O S ∴=+, 313r r =+.计算得出:23(cm)r =为所求要使流出来的水量最多,这个铁球的半径应该为23.。

高中数学立体几何外接球专题练习(含解析)

高中数学立体几何外接球专题练习(含解析)

高中数学立体几何外接球专题练习(含解析)1.已知菱形ABCD满足|AB|=2,∠ABC=120°,将菱形ABCD沿对角线AC折成一个直二面角B-AC-D,则三棱锥B-ACD外接球的表面积为()。

A。

πB。

8πC。

7πD。

4π2.如图,四面体ABCD中,面ABD和面BCD都是等腰直角三角形,AB=BD=BC=1,∠CBD=60°,且二面角A-BD-C的大小为120°,∠BAD=45°,若四面体ABCD的顶点都在球O上,则球O的表面积为()。

A。

12πB。

20πC。

24πD。

36π3.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()。

A。

28πB。

32πC。

41πD。

31π4.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()。

A。

4/3B。

2/3C。

8/3D。

16/35.已知一个几何体的三视图如图所示,则该几何体的表面积是()。

A。

2+2+2B。

4+4+2C。

2+4+4D。

4+4+46.某三棱锥的三视图如图所示,则它的外接球表面积为()。

A。

25πB。

20πC。

16πD。

40π7.如图是某几何体的三视图,则该几何体的表面积是()。

A。

18+2B。

15+2C。

12+2D。

18+48.在四面体ABCD中,AD⊥底面ABC,DE⊥AC,E为棱BC的中点,DG⊥BE,点G在AE上且满足AG=2GE,若四面体ABCD的外接球的表面积为S,则tan∠AGD=S/12.A。

1/2B。

1C。

2D。

49.在三棱锥S-ABC中,∠ASB=90°,SA=SB=SC=2,且三棱锥S-ABC的体积为8/3,则该三棱锥的外接球的表面积为()。

A。

4πB。

16πC。

36πD。

72π10.如图所示,正方形ABCD的边长为2,切去阴影部分围成一个正四棱锥,则当正四棱锥体积最大时,该正四棱锥外接球的表面积为()。

立体几何《球》 专题(提高题)(题目及答案)

立体几何《球》 专题(提高题)(题目及答案)

《球》【类型1:求长度】1、设正三棱锥A BCD -的所有顶点都在球O 的球面上,1BC =,,E F 分别是,AB BC 的中点,EF DE ⊥,则球O 的半径为2、点S 、A 、B 、C 2的同一球面上,点S 到平面ABC 的距离为12,3AB BC CA ===则点S 与ABC ∆中心的距离为( )A 3B 2C .1D .123、已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .4、高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为5、(2013年辽宁卷)已知三棱柱111C B A ABC - 的6个顶点都在球O 的球面上,若AB = 3,AC = 4 ,AB AC ⊥ 121=AA ,则球O 的半径为( )A 317B .210C .132D .3106、已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=32,则球心到平面ABC的距离为()A.1 B.2C.3D.27、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.2C.3D.28、已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.9、(2013年天津卷)已知一个正方体的所有顶点在一个球面上. 若球的体积为92, 则正方体的棱长为______.【类型2:求面积】1、在四面体ABCD 中,若AB CD ==2AC BD ==,AD BC ==ABCD 的外接球的表面积为( )A .2πB .4πC .6πD .8π2、四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.3、已知点A 、B 、C 、D 均在球O 上,AB =BC =错误!未找到引用源。

高中数学 第一章 立体几何初步 1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2(

高中数学 第一章 立体几何初步 1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2(

高中数学第一章立体几何初步1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章立体几何初步1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章立体几何初步1.1.7 柱、锥、台和球的体积同步练习(含解析)新人教B 版必修2的全部内容。

柱、锥、台和球的体积1.若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .2B .1C .23D .132.直三棱柱ABC -A 1B 1C 1的体积为V ,已知点P 、Q 分别为AA 1,CC 1上的点,而且满足AP =C 1Q ,则四棱锥B -APQC 的体积是( ).A .12VB .13VC .14VD .23V3.64个直径均为4a的球,记它们的体积之和为V 甲,表面积之和为S 甲,一个直径为a 的球,记其体积为V 乙,表面积为S 乙,则( ).A .V 甲>V 乙,S 甲>S 乙B .V 甲<V 乙,S 甲<S 乙C .V 甲=V 乙,S 甲>S 乙D .V 甲=V 乙,S 甲=S 乙4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积( ).A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关5.正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14 cm 3,则棱台的高为______. 6.一个几何体的三视图如图所示,则这个几何体的体积为______.7.在棱长为1的正方体内,有两球外切,并且分别与正方体相内切.(1)求两球的半径之和;(2)球的半径为多少时,两球的体积之和最小?8.一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:(1)圆锥的侧面积;(2)圆锥的内切球的体积.9。

2015届吉林地区高三数学一轮复习----立体几何 (球)

2015届吉林地区高三数学一轮复习----立体几何 (球)

1.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值为( )A. 4B.8C. 12D. 162.三棱锥S﹣ABC的四个顶点都在球面上,SA是球的直径,AC⊥AB,BC=SB=SC=2,则该球的表面积为A.4πB.6πC.9πD12π3.一个四面体的每个面都是有两条边长为3,一条边长为2的三角形,则该四面体的外接球的表面积A.9πB.πC.11πD.π4棱锥P﹣ABCD的所有侧棱长都为,底面ABCD是边长2的正方形,则四棱锥P﹣ABCD的外接球的表面积A.3πB.8πC.9πD.36π 5.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=120°,若点P,A,B,C,D都在同一球面上,则此球的表面积等于( )A.8πB.12πC.16πD.20π6.在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外接球半径A.B.C.D. 3 7.已知正四棱锥P﹣ABCD的底面边长和高都为4,O是底面ABCD的中心,以O为球心的球与四棱锥P﹣ABCD的各个侧面都相切,则球O的表面积为( )A.B.C.D.8.点A,B,C,D在同一个球面上,AB=BC=,AC=2,若球的表面积为,则四面体ABCD体积最大值为A.B.C.D. 29.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,则球O的表面积为A.4πB. 12πC.16πD. 64π10.已知三棱锥P﹣ABC的底面是以AB为斜边的等腰直角三角形,且AB=2,PA=PB=PC=2,则该三棱锥的外接球的表面积为( )A.B.C.D.11.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值为( )A. 4B.8C. 12D. 1612.一个空间四边形ABCD的四条边及对角线AC的长均为,二面角D﹣AC﹣B的余弦值为,则下列正确的A.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为3πB.空间四边形ABCD的四个顶点在同一球面上且此球的表面积为4πC.空间四边形ABCD的四个顶点在同一球上且此球的表面积为D.不存在这样的球使得空间四边形ABCD的四个顶点在此球面上13.三棱锥S﹣ABC所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O表面积A.B.C. 3πD. 12π14.已知正三棱柱ABC﹣A′B′C′的所有顶点都在球O的球面上,AB=3,AA′=2,则球O的体积为( )A.B.C.D.15.已知四面体ABCD中,AB=AD=6,AC=4,CD=2,AB⊥平面ACD,则四面体ABCD外接球的表面积为A. 36πB.88πC. 92πD. 128π16.点A,B,C,D在同一球球面上,AB=BC=2,AC=2,若四面体ABCD体积最大值为,则该球表面积为A.B. 8πC. 9πD. 12π17.已知四面体P﹣ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,则球O的表面积为( )A.7πB. 8πC. 9πD. 10π18.在三棱椎A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则该三棱椎外接球的表面积为( )A. 2πB. 6πC.πD. 24π19.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为( )A.B. 12πC. 16πD. 32π20.已知球O,过其球面上A,B,C三点作截面,若O点到该截面的距离等于球半径的一半,且AB=BC=2,∠B=120°,则球O的表面积为( )A.B.C. 4πD.21.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面积为A. 25πB. 45πC. 50πD.100π22.已知三棱锥D﹣ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则三棱锥的外接球的表面积为A.πB. 6πC. 5πD. 8π23.如图,在三棱锥S﹣ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM,若AB=2,则此正三棱锥外接球的体积是( )A. 12πB. 4πC.πD. 12π24.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为 ____.25.将长、宽分别为4和3的长方形ABCD沿对角线AC折起,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的体积为 _________ .26.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于 _________ .27.将长、宽分别为6和8的长方形ABCD沿对角线AC折起,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的表面积为 _________ . 28.正四棱锥P﹣ABCD的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为 _________ .29.(三棱锥P‐ABC的四个顶点均在同一球面内,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积是 _________ .30.若三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为 _________ .31三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的表面积为 _________ .。

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题提高练【答题技巧】1.“切”“接”问题的处理规律(1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时要找准切点,通过作截面来解决.(2)“接”的处理:把一个多面体的顶点放在球面上即球外接于该多面体.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.2.当球的内接多面体为共顶点的棱两两垂直的三棱锥、共顶点的三个侧面两两垂直的三棱锥或三组对棱互相垂直的三棱锥时,常构造长方体或正方体以确定球的直径.3.与球有关的组合体的常用结论 (1)长方体的外接球: ①球心:体对角线的交点;②半径:,,r a b c =为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱都相切的球:①外接球:球心是正方体的中心,半径(r a =为正方体的棱长); ②内切球:球心是正方体的中心,半径(2ar a =为正方体的棱长);③与各条棱都相切的球:球心是正方体的中心,半径r =(a 为正方体的棱长). (3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):①外接球:球心是正四面体的中心,半径(r a =为正四面体的棱长);②内切球:球心是正四面体的中心,半径(r a =为正四面体的棱长). 【练习】1.在三棱锥P-ABC 中,△ABC 的内切圆圆O 的半径为2,PO ⊥平面ABC ,且三棱锥P-ABC 的三个侧面与底面所成角都为60°,则该三棱锥的内切球的体积为( )C.16π3D.4π32.已知在三棱锥P-ABC 中,△ABC 是以A 为直角的三角形,AB=AC=2,△PBC 是正三角形,且PC 与底面ABC所成角的正弦值为34,则三棱锥P-ABC外接球的半径为( )A.43B.32C.133D.2233.张衡是中国东汉时期伟大的天文学家、数学家等,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A-BCD的每个顶点都在球O的表面上,AB⊥底面BCD,BC⊥CD,且AB=CD=3,BC=2,利用张衡的结论可得球O的表面积为( )A.30B.1010C.33D.12104.已知三棱锥P-ABC中,PA PB PC ABC==,是边长为42的正三角形,D,E分别是PA,AB上靠近点A 的三等分点,DE PC⊥,则三棱锥P-ABC的内切球的表面积为( )A.(5763203)π-B.(2881603)π-C.(64323)π-D.(64323)π-5.取两个相互平行且全等的正n边形,将其中一个旋转一定角度,连接这两个多边形的顶点,使得侧面均为等边三角形,我们把这种多面体称作“n角反棱柱”.当6n=时,得到如图所示棱长均为2的“六角反棱柱”,则该“六角反棱柱”外接球的表面积等于( )A.(53)π+ B.(1243)π+ C.(2553)π+ D.(2843)π+6.已知在菱形ABCD中,23AB BD==ABCD沿对角线BD折起,得到三棱锥A BCD-,且使得棱33AC=A BCD-的外接球的表面积为( )A.7πB.14πC.28πD.35π7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛.问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟10 000斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则该粮仓的外接球的体积是( )A.133π4立方丈 B.133π48立方丈 C.133133π4立方丈 D.133133π48立方丈 8.已知正方形ABCD 中,E ,F 分别是AB ,BC 的中点,沿DE ,DF ,EF 折起得到如图所示的空间几何体,若2AB =,则此几何体的内切球的体积为( )A.3π2B.π4C.π48D.π169.在平面四边形ABCD 中,2,2AB AD BC CD DB =====,现将ABD 沿BD 折起,使二面角A BD C --的大小为60︒.若,,,A B C D 四点在同一个球的球面上,则球的表面积为( ) A.13π3B.14π3C.52π9D.56π910.已知三棱锥S-ABC 的顶点都在球O 的球面上,且该三棱锥的体积为23,SA ⊥平面,4,120ABC SA ABC =∠=︒,则球O 的体积的最小值为_________.11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为_________________.12.设正四面体的内切球半径为r ,外接球半径为R ,则rR=___________. 13.已知底面为正方形的四棱锥P ABCD -的五个顶点在同一个球面上,,2,1PD BC AB PC ⊥==,3PD =则四棱锥P ABCD -外接球的体积为________.14.已知有两个半径为2的球记为12,O O ,两个半径为3的球记为34,O O ,这四个球彼此相外切,现有一个球O 与这四个球1234,,,O O O O 都相内切,则球O 的半径为____________.15.在三棱锥P-ABC 中,PA ⊥平面,,12ABC AB BC PA AB AC ⊥===,三棱锥P-ABC 的所有顶点都在球O 的表面上,则球O 的半径为__________;若点M 是ABC 的重心,则过点M 的平面截球O 所得截面的面积的最小值为__________.16.已知正三棱柱111ABC A B C -,底面边长为3,高为2,P 为上底面三角形111A B C 中线上一动点,则三棱锥P ABC -的外接球表面积的取值范围是_____________.17.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P-ABQ 的体积最大时,三棱锥P-ABQ 的外接球的表面积为_________________.答案以及解析1.答案:A解析:设三棱锥P ABC -的内切球的半径为R ,过O 作OD AC ⊥于点,D OE BC ⊥于点,E OF AB ⊥于点F ,则2OD OE OF ===.连接PD ,易证PD AC ⊥,因为三棱锥P-ABC 的三个侧面与底面所成角都为60°,所以60PDO ∠=︒,则22tan 6023,4cos60PO PD ===︒=︒.由题意可知三棱锥P-ABC 的内切球的球心'O 在线段PO 上,在Rt POD 中,sin OD RDPO PD PO R∠==-,即2423R =-,解得23R =.所以该三棱锥的内切球的体积为334423323πππ33R ⎛⎫== ⎪ ⎪⎝⎭,故选A. 2.答案:C解析:如图,不妨令二面角P BC A --为钝二面角,取BC 的中点D ,连接AD , 因为2AB AC ==,90BAC ∠=︒,所以2BC =,且D 为ABC 外接圆的圆心.作PH ⊥平面ABC 于H ,易知H 在直线AD 上,连接,HC HA ,则PCH ∠为PC 与底面ABC 所成角, 则3sin 4PH PCH PC ∠==,又2PC BC ==,所以32PH =,又3PD =,则332sin 3PH PDH PD ∠===. 设1O 为PBC 的外心,O 为三棱锥P ABC -外接球的球心,连接1,OO OD ,则1OO ⊥平面PBC ,OD ⊥平面133,,cos ABC O D PDO =∠=,则12cos 3O D OD PDO ==∠,设外接球的半径为R ,则222413131,99R OD DA R =+=+==,故选C.3.答案:B解析:因为BC CD ⊥,所以7BD 又AB ⊥底面BCD ,所以10AD O 的球心为侧棱AD 的中点,从而球O 10利用张衡的结论2π5168=,可得π10=所以球O 的表面积为2104π10π1010==⎝⎭故选B.4.答案:C解析:因为PA PB PC ==,ABC 是边长为42的正三角形,所以三棱锥P ABC -为正三棱锥, 由正棱锥对棱垂直可知PB AC ⊥.又D ,E 分别是PA ,AB 上靠近点A 的三等分点,所以//DE PB , 所以DE AC ⊥.又,DE PC PC AC C ⊥⋂=,所以DE ⊥平面PAC ,所以PB ⊥平面PAC ,所以90APB ∠=︒,所以4PA PB PC ===,所以,,PA PB PC 两两互相垂直. 设三棱锥P ABC -的内切球的半径为r ,则由等体积法可得,()1133PABPACPBCABCPACSSSSr S PB ⋅+++=⋅,即11(88883)8433r ⨯+++=⨯⨯,解得2(33)r -=,故三棱锥P ABC -的内切球的表面积为222(33)(64323)π4π4πS r ⎡⎤--==⨯=⎢⎥⎣⎦.故选C. 5.答案:B解析:如图,设上、下正六边形的中心分别为1O ,2O ,连接12O O ,则其中点O 即为所求外接球的球心. 连接2O C ,取棱AB 的中点M ,作2MN O C ⊥于点N ,连接1O M ,MC ,则13O M MC ==.而22O C =, 则22212NC O C O N O C O M =-=-=-3,222123(23)231O O MN MC NC ∴==-=--=-,则131OO -.连接OA ,1O A ,设所求外接球的半径为R ,则有2222211(31)233R OA OO O A ==+=+=+∴该“六角反棱柱”外接球的表面积24π(1243)πS R ==+.故选B.6.答案:C解析:由题意可知,ABD BCD 为等边三角形.如图所示,设外接球的球心为O ,等边三角形BCD 的中心为,O '取BD 的中点F ,连接,,,AF CF OO ',,,OB O B OA '由AB AD BC BD DC ====,得,,AF BD CF BD ⊥⊥又AF CF F ⋂=,所以BD ⊥平面AFC ,且可求得AF =3,CF =而33,AC =所以AFC ∠=120.︒在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E ,由BD ⊥平面AFC 得.BD AE ⊥又,,AE EC BD EC F ⊥⋂=所以AE ⊥平面BCD .过点O 作OG AE ⊥于点G ,则四边形O EGO '是矩形. 又2sin 6023O B BC '︒=⨯=,所以13331.sin 60,sin3022O F O B AE AF EF AF ''︒︒======. 设外接球的半径为,,R OO x '=则由222222,OO O B OB OA AG GO ''+==+, 得2222223332,1,2x R x R ⎛⎫⎛⎫+=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭解得23,7,x R == 故三棱锥A BCD -外接球的表面积24π28π.S R ==故选C.7.答案:D解析:由题意可得粮仓的高2723 4.5h ==⨯(丈),设外接球的半径为R , 则2222133133(2)23 4.533.25,4R R =++==该粮仓的外接球的体积是34133133133π3⨯⨯⎝⎭(立方丈),选D. 8.答案:C解析:在等腰DEF 中,2222215,112DE DF EF ==+=+=D 到EF 的距离为h , 则22293(5)2222h ⎛⎫-= ⎪ ⎪⎝⎭令该几何体的内切球的球心为O ,且球心O 到三个面的距离均为半径r .又因为,DP PE DP PF ⊥⊥,且PE PF P ⋂=,所以DP ⊥平面PEF .由等体积法知O PEF O PFD O PDE O DEF D PEF V V V V V -----+++=,即11113111121212211232323232232r r r r ⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯,解得14r =, 则3 441πππ336448O V r ==⨯⨯=球,故选C.9.答案:C解析:如图所示,设M 为BD 的中点,连接,MA MC ,依题意,折起后AMC ∠是二面角A BD C --的平面角,则60AMC ∠=︒.易知,四面体ABCD 的外接球的球心O 在平面MCA 上,于是点O 在底面BCD 上的射影是正BCD的中心,设为点Q,而点O在侧面ABD上的射影是M,易得3MQ=,又30OMQ∠=︒,因此13OQ=,进而22221231333R OC OQ QC⎛⎫⎛⎫==+=+=⎪⎪ ⎪⎝⎭⎝⎭,所以球O的表面积为21352π4π9⎛⎫⨯=⎪⎪⎝⎭,故选C.10.4010π解析:由题意得,三棱锥S ABC-的体积11342332S ABCV AB BC-=⨯⋅=,则6AB BC⋅=,、当球O 的体积最小时,ABC外接圆的半径最小,即AC最小,在ABC中,由余弦定理和基本不等式得222123182AC AB BC AB BC AB BC⎛⎫=+-⋅⨯-⋅=⎪⎝⎭,当且仅当6AB BC=取等号,则min32AC=,此时ABC外接圆的直径min32226sin1203ACr===O的半径22210R r=+=O的体积的最小值为344010ππ3R=.11.答案:2821π解析:解法一由题意知PAD为正三角形,取AD的中点M,PAD的中心N,记AC BD F⋂=,连接,PM FM,过,N F分别作平面11AA D D与平面ABCD的垂线,两垂线交于点O,则点O为四棱锥P ABCD-的外接球球心.由题意知22362333PN PM===132ON MF AB===,所以四棱锥P ABCD-的外接球半径22223(23)21R ON PN++所以四棱锥P ABCD-的外接球的体积34π2821π3V R==.解法二连接1111,,,AC BD AC B D,记1111,AC BD F AC B D E⋂=⋂=,连接EF,易知四棱锥P ABCD-的外接球的球心O在线段EF上.取AD的中点G,连接PG,设OF x=,球O的半径为R,易知1122AF AC==⨯36232,633PG==则22222(32)(33)3R x x =+=-+,得3x =,则21R =, 所以四棱锥P ABCD -的外接球的体积34π2821π3V R ==. 12.答案:13解析:如图,在正四面体PABC 中,D ,E 分别为BC ,AC 的中点,连接AD ,BE 交于点F ,则点F 为正三角形ABC 的外心,连接PF ,则PF ⊥底面ABC ,且正四面体PABC 的外接球球心与内切球球心为同一点,应在线段PF 上,记作点O ,如图所示.不妨设正四面体PABC 的棱长为a ,则在ABC 中,22233sin 60333AF AD AC ==⋅⋅==°. PF ⊥底面,ABC AF ⊂底面,ABC PF AF ∴⊥,2222363PF AP AF a a ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 正四面体PABC 的外接球、内切球球心均为O ,,OP OA R OF r ∴===.OF PF OP =-,且在Rt AFO 中有222AF OF OA +=,22236R R ⎫⎫∴+-=⎪⎪⎪⎪⎝⎭⎝⎭, 6666,R r ∴==-=,611236r R a ∴==. 13.答案:82π3. 解析:由题意知,BC DC BC PD ⊥⊥,所以BC ⊥平面PCD ,而BC ⊂平面ABCD ,则平面PCD ⊥平面ABCD .由条件知222CD PC PD =+,所以PC PD ⊥.如图,取CD 的中点G ,连接,AC BD ,交于点O , 则O 为正方形ABCD 的中心,过点G 作平面CDP 的垂线,则点O 在该垂线上, 所以O 为四棱锥P ABCD -外接球的球心,由于2AO , 所以四棱锥P ABCD -外接球的体积为3482ππ(2)3=.14.答案:6解析:由题意可得121314234,O O O O O O O O ====24345,6O O O O ==.如图,取12O O 的中点34,M O O 的中点N ,连接1234,,,,,MN O N O N O M O M 则12O O ⊥3124,.O M O O O M ⊥ 又3412,O M O M M O O ⋂=∴⊥平面34.O O M 同理可证34O O ⊥平面2,.O O N 平面12O O N ⋂平面34,O O M MN =∴球心O 在线段MN 上. 设球O 的半径为R ,则142442, 3.5,3,OO R OO R O O O N =-=-==2222222114,23,O N MN O N O M OM OO O M ∴==-==-=222244(2)4,(3)9R ON OO O N R --=-=--.,MN OM ON =+即22(2)4(3)923,R R --+--=解得6R =.故球O 的半径为6.15.答案:3;4π9解析:(1)PA ⊥平面,ABC BC ⊂平面ABC ,,PA BC ∴⊥又AB BC ⊥,且,PA AB A BC ⋂=∴⊥平面,PAB PB ⊂平面,PAB BC PB ∴⊥,所以PC 是两个直角三角形PAC 和PBC 的斜边,取PC 的中点O ,点O到四点P ,A ,B ,C 的距离相等,即点O 是三棱锥P ABC -的外接球的球心,2231(2)3,PC R =+==(2)当点M 是截面圆的圆心时,此时圆心到截面的距离最大,那么截面圆的半径最小,即此时的面积最小,点N 是AC 的中点,M 是ABC 的重心,112,366MN BN AC ON ∴====1122PA =,所以22116OM ON MN =+=,截面圆的半径222()3r R OM =-=,所以2min 4ππ9S r ==16.答案:25π,8π4⎡⎤⎢⎥⎣⎦解析:如图,设正三棱柱111ABC A B C -上、下底面中心分别为1,O O ,点P 是111A B C 中线1C D 上一点,G 是三棱锥P ABC -的外接球的球心.因为A ,B ,C 在球面上,所以球心在线段1O O 上,点P 也在球面上, 设三棱锥P ABC -外接球的半径为R ,ABC 外接圆的半径为r ,由正弦定理有260sin 32==r ,所以1r =,设11,O P x O G y ==,则OG =2,y PG CG R -==,在1Rt PGO 中,222R x y =+,在Rt CGO 中,2221(2)R y =+-,于是2221x y +=+2(2)y -,解得254.x y =-因为点P 是111A B C 中线1C D 上一点,所以10≤≤x ,于是451≤≤y ,所以222222554(2)1,216R x y y y y ⎡⎤=+=-+=-+∈⎢⎥⎣⎦,所以外接球的表面积225π4π,8π4S R ⎡⎤=∈⎢⎥⎣⎦球.17.答案:41π16解析:如图,由题意知三棱锥P-ABQ 的体积最大时,点Q 与点C 重合,即求三棱锥P-ABC 外接球的表面积.因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以51,2,AB BC AC BP PC =====.过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P-ABC 外接球的球心为O ,AC 的中点为1O ,连接1OO , 则1OO ⊥平面ABC.延长1O O 到点H ,使1O H PG =.连接PH ,OP ,OA ,设1OO x =, 则2222211,(1)22OH x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得38x =, 设三棱锥P-ABC 外接球的半径为R ,则2221314128264R x ⎛⎫=+=+= ⎪⎝⎭.故所求表面积241414π4ππ6416S R ==⨯=.。

立体几何---球的问题

立体几何---球的问题

立体几何---球的问题立体几何——球的问题1.直线EF被球O截得的线段长为多少?在球O的表面上,正方体ABCD-A1B1C1D1的8个顶点分别为A、B、C、D、A1、B1、C1、D1,棱长为1.E、F分别是棱AB1和棱CD1的中点。

我们需要求出直线EF被球O 截得的线段长度。

2.一个四棱柱的各顶点在一个球面上,这个球的表面积是多少?一个四棱柱的底面是正方形,侧棱与底面垂直,长度为4.已知棱柱的体积为16,且各顶点在一个球面上。

我们需要求这个球的表面积。

3.一个正四面体的所有棱长都为2,四个顶点在同一个球面上,此球的表面积是多少?一个正四面体的所有棱长都为2,四个顶点在同一个球面上。

我们需要求出此球的表面积。

4.用与球心距离为1的平面去截面面积为π,这个球的体积是多少?用与球心距离为1的平面去截球的面积为π。

我们需要求这个球的体积。

5.已知S、A、B、C是球O表面上的点,BC=2.若SA=AB=1,SA垂直平面ABC,求球O的表面积。

已知S、A、B、C是球O表面上的点,BC=2,SA=AB=1,SA垂直平面ABC。

我们需要求球O的表面积。

6.已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N。

若该球面的半径为4,圆M的面积为4π,求圆N的面积。

已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N。

该球面的半径为4,圆M的面积为4π。

我们需要求圆N的面积。

7.在半球内有一个内接正方体,这个半球的体积与正方体的体积之比是多少?在半球内有一个内接正方体。

我们需要求这个半球的体积与正方体的体积之比。

8.已知正三棱锥P-ABC,点P、A、B、C都在半径为3的球面上,且PA、PB、PC两两互相垂直。

求球心到截面ABC 的距离。

已知正三棱锥P-ABC,点P、A、B、C都在半径为3的球面上,且PA、PB、PC两两互相垂直。

我们需要求球心到截面ABC的距离。

立体几何同步训练 菁优网

立体几何同步训练 菁优网

立体几何同步训练一、填空题(共9小题,每小题5分,满分45分)1.(5分)(2010•松江区二模)一个与球心距离为1的平面截球所得的圆面面积为π,则球的体积V=_________.2.(5分)(2010•锦州二模)在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则该三棱锥的体积为_________.3.(5分)(2012•西山区模拟)已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是_________.4.(5分)若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为_________.5.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于_________.6.(5分)(2009•江西)体积为8的一个正方体,其全面积与球O的表面积相等,则球O的体积等于_________.7.(5分)若长方体的三个共顶点的面的面积分别是,,,则长方体的体积是_________.8.(5分)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为_________.9.(5分)正方体ABCD﹣A1B1C1D1的棱长为,则四面体A﹣B1CD1的外接球的体积为_________.二、解答题(共3小题,满分0分)10.(2009•宁夏)如图,在三棱锥P﹣ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.(1)证明:AB⊥PC;(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P﹣ABC的体积.11.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.(1)求证:AF⊥平面CDE;(2)求证:AF∥平面BCE;(3)求四棱锥C﹣ABED的体积.12.(2009•广州一模)如图,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任=A意一点,A1A=AB=2.(1)求证:BC⊥平面A1AC;(2)求三棱锥A1﹣ABC的体积的最大值.立体几何同步训练参考答案与试题解析一、填空题(共9小题,每小题5分,满分45分)1.(5分)(2010•松江区二模)一个与球心距离为1的平面截球所得的圆面面积为π,则球的体积V=π.考点:球的体积和表面积.专题:计算题;综合题.分析:先求小圆半径,再求球的半径,然后求球的体积.解答:解:如图,由已知小圆O1半径为O1M=1,又OO1=1,∴球半径R=,∴球体积=πR3=π.故答案为:8π.点评:本题考查球的体积,考查空间想象能力,是基础题.2.(5分)(2010•锦州二模)在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则该三棱锥的体积为.考点:棱柱、棱锥、棱台的体积.专题:计算题;综合题.分析:根据面积直接求出三棱锥的棱长,然后求出体积.解答:解:AB•AC=,AD•AC=,AB•AD=,∴AB=,AC=1,AD=.∴V=••1••=.故答案为:点评:本题考查棱锥的面积、体积的计算,考查计算能力,是基础题.3.(5分)(2012•西山区模拟)已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是.考点:棱柱、棱锥、棱台的体积;球的体积和表面积.专题:计算题.分析:先求球的半径,求出棱柱的高,求出底面边长,然后求其体积.解答:解:由πR3=,得R=2.∴正三棱柱的高h=4.设其底面边长为a,则•a=2.∴a=4.∴V=(4)2•4=48.故答案为:48点评:本题考查学生空间想象能力,考查球的表面积,棱柱的体积的计算公式,是中档题.4.(5分)若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:先求该正方体各个面的中心为顶点的凸多面体的底面棱长,求出它的高然后求出体积.解答:解:所求八面体体积是两个底面边长为1,高为的四棱锥的体积和,一个四棱锥体积V1=×1×=,故八面体体积V=2V1=.故答案为:点评:本题考查棱柱的结构特征,几何体的内接体问题,考查空间想象能力,逻辑思维能力,是中档题.5.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于16π.考点:球的体积和表面积.专题:计算题;压轴题.分析:由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.解答:解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4.∴S球=4πR2=16π.故答案为:16π点评:本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.6.(5分)(2009•江西)体积为8的一个正方体,其全面积与球O的表面积相等,则球O的体积等于.考点:球的体积和表面积.专题:计算题.分析:求解本题,只需作出正方形的面积,在用公式求出球的半径,再求解体积即可.解答:解:设球的半径为R,依题设有,则,球的体积为点评:本题考查学生对球面积和体积公式的熟练运用,是基础题.7.(5分)若长方体的三个共顶点的面的面积分别是,,,则长方体的体积是.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:长方体的体积是共顶点的三个棱的长度的乘积,故求出三者乘积即可,由于本题中知道了共顶点的三个面的面积,即知道了共顶点的三边两两边长的乘积,故可以用共顶点的三个棱的长度表示出三个面积,得到关于三个量的三个方程,由此方程组解出三条棱的长度,即可求出长方体的体积.解答:解:可设长方体同一个顶点上的三条棱长分别为a,b,c,列出方程组解得所以长方体的体积V=1××=.故答案为点评:本题考点是棱柱、棱锥、棱台的体积,考查根据题目中所给的条件求出三个棱长的长度,再由长方体的体积公式求出体积的能力,本题直接利用公式建立方程求解,题目较易.8.(5分)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为1:(3﹣1).考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:由一个锥体被平行于底面的截面所截得的小锥体与原锥体体积之比等于相似比的立方,截面面积与底面面积之比等于相似比的平方,容易得出答案.解答:解:设锥体的底面面积为S,高为h,截面面积为S′,高为h′;则==,∴=;所以,所截锥体的体积V′与原锥体的体积V的比为:===;故所截得的上下两部分的体积之比为1:(3﹣1)故答案为:1:(3﹣1)点评:本题考查了一个锥体被平行于底面的截面所截得的小锥体与原锥体体积之比,和截面面积与底面面积之比的关系,是基础题.9.(5分)正方体ABCD﹣A1B1C1D1的棱长为,则四面体A﹣B1CD1的外接球的体积为36π.考点:球内接多面体;球的体积和表面积.专题:计算题.分析:四面体A﹣B1CD1的外接球即为正方体的外接球,球的直径就是正方体的对角线的长,求出半径即可求出球的体积.解答:解:四面体A﹣B1CD1的外接球即为正方体的外接球,所以2r=.∴r=3,V球=πr3=π×27=36π.故答案为:36π点评:本题是基础题,考查正方体的外接球的体积,注意四面体A﹣B1CD1的外接球即为正方体的外接球,是解题的关键,考查计算能力.二、解答题(共3小题,满分0分)10.(2009•宁夏)如图,在三棱锥P﹣ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.(1)证明:AB⊥PC;(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P﹣ABC的体积.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:证明题;转化思想.分析:(1)利用△PAB是等边三角形,证明AC=BC.取AB中点D,连接PD、CD,通过证明AB⊥平面PDC,然后证明AB⊥PC.(2)作BE⊥PC,垂足为E,连接AE.通过Rt△PBC≌Rt△PAC,Rt△AEB≌Rt△PEB,说明△AEB,△PEB,△CEB都是等腰直角三角形.然后求出三棱锥P﹣ABC的体积解答:解:(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,PC=PC所以Rt△PBC≌Rt△PAC,可得AC=BC.如图,取AB中点D,连接PD、CD,则PD⊥AB,CD⊥AB,所以AB⊥平面PDC,所以AB⊥PC.(2)作BE⊥PC,垂足为E,连接AE.因为Rt△PBC≌Rt△PAC,所以AE⊥PC,AE=BE.由已知,平面PAC⊥平面PBC,故∠AEB=90°.因为Rt△AEB≌Rt△PEB,所以△AEB,△PEB,△CEB都是等腰直角三角形.由已知PC=4,得AE=BE=2,△AEB的面积S=2.因为PC⊥平面AEB,所以三棱锥P﹣ABC的体积V=×S×PC=.点评:本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.是中档题.11.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.(1)求证:AF⊥平面CDE;(2)求证:AF∥平面BCE;(3)求四棱锥C﹣ABED的体积.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:证明题.分析:(1)欲证AF⊥平面CDE,根据直线与平面垂直的判定定理可知只需证AF与平面CDE内两相交直线垂直,而AF⊥CD,AF⊥DE,CD∩DE=D,满足定理条件;(2)取CE的中点G,连FG、BG,欲证AF∥平面BCE,根据直线与平面平行的判定定理可知只需证AF与平面BCE内一直线平行即可,而AF∥BG,满足定理;(3)取AD中点M,连接CM,而CM⊥平面ABED,则CM为四棱锥C﹣ADEB的高,根据体积公式V=CM•S ABED求解即可.解答:解:(1)证明:∵F为等边三角形CD边上的中点,∴AF⊥CD,∵DE⊥平面ACD,AF⊂平面ACD,∴AF⊥DE,又CD∩DE=D,∴AF⊥平面CDE.(2)证明:取CE的中点G,连FG、BG.∵F为CD的中点,∴GF∥DE且GF=DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=DE,∴GF=AB.∴四边形GFAB为平行四边形,则AF∥BG.∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.(3)取AD中点M,连接CM,∵△ACD为等边三角形,则CM⊥AD,∵DE⊥平面ACD,且DE⊂平面ABED,∴平面ACD⊥平面ABED,又平面ACD∩平面ABED=AD,∴CM⊥平面ABED,∴CM为四棱锥C﹣ADEB的高,∴V=CM•S ABED=AF•S ABED=.点评:本小题主要考查直线与平面垂直,以及棱柱、棱锥、棱台的体积等基础知识,考查空间想象能力,运算能力和推理论证能力.12.(2009•广州一模)如图,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任=A意一点,A1A=AB=2.(1)求证:BC⊥平面A1AC;(2)求三棱锥A1﹣ABC的体积的最大值.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:证明题.分析:(1)欲证BC⊥平面AA1C,根据直线与平面垂直的判定定理可知只需证BC与平面AA1C内两相交直线垂直,而BC⊥AC,AA1⊥BC,AA1∩AC=A满足定理条件;(2)设AC=x,在Rt△ABC中,求出BC,根据体积公式VA1﹣ABC=S△ABC•AA1表示成关于x的函数,根据二次函数求出其最大值.解答:解:(1)证明:∵C是底面圆周上异于A、B的任意一点,且AB是圆柱底面圆的直径,∴BC⊥AC.∵AA1⊥平面ABC,BC⊈平面ABC,∴AA1⊥BC.∵AA1∩AC=A,AA1⊊平面AA1C,AC⊊平面AA1C,∴BC⊥平面AA1C.(2)设AC=x,在Rt△ABC中,BC==(0<x<2),故V A1﹣ABC=S△ABC•AA1=••AC•BC•AA1=x(0<x<2),即V A1﹣ABC=x==.∵0<x<2,0<x2<4,∴当x2=2,即x=时,三棱锥A1﹣ABC的体积最大,其最大值为点评:本小题主要考查直线与平面垂直,以及棱柱、棱锥、棱台的体积等基础知识,考查空间想象能力,运算能力和推理论证能力.参与本试卷答题和审题的老师有:qiss;xintrl;minqi5;742048(排名不分先后)菁优网2014年10月11日。

高中数学立体几何外接球专题练习(含解析)

高中数学立体几何外接球专题练习(含解析)

外接球专题练习1.已知菱形ABCD满足,|AB|=2,∠ABC=,将菱形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D,则三棱锥B﹣ACD外接球的表面积为()A.πB.8πC.7πD.2.如图,四面体ABCD中,面ABD和面BCD都是等腰Rt△,AB=,∠BAD=∠CBD=,且二面角A﹣BD﹣C的大小为,若四面体ABCD的顶点都在球O上,则球O的表面积为()A.12πB.20πC.24πD.36π3.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.B.C.41πD.31π4.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A.B.C.D.5.已知一个几何体的三视图如图所示,则该几何体的表面积是()A.2+2+2B.4+4+2C.2+4+4D.4+4+4 6.某三棱锥的三视图如图所示,则它的外接球表面积为()A.25πB.C.D.40π7.如图是某几何体的三视图,则该几何体的表面积是()A.18+2+B.15++C.12++D.18++ 8.在四面体ABCD中,AD⊥底面ABC,,E为棱BC的中点,点G在AE上且满足AG=2GE,若四面体ABCD的外接球的表面积为,则tan∠AGD=()A.B.2C.D.9.在三棱锥S﹣ABC中,,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的表面积为()A.4πB.16πC.36πD.72π10.如图所示,正方形ABCD的边长为2,切去阴影部分围成一个正四棱锥,则当正四棱锥体积最大时,该正四棱锥外接球的表面积为()A.B.C.D.11.已知三棱锥P﹣ABC所有顶点都在球O的球面上,底面△ABC是以C为直角顶点的直角三角形,AB=2,PA=PB=PC=,则球O的表面积为()A.9πB.C.4πD.π12.四棱锥P﹣ABCD的侧面PAB垂直于底面ABCD,且三角形PAB是等边三角形,底面ABCD是边长为2的正方形,则四棱锥P﹣ABCD外接球的表面积为()A.πB.C.4πD.π13.已知三棱锥D﹣ABC所有顶点都在球O的球面上,△ABC为边长为的正三角形,△ABD是以BD为斜边的直角三角形,且AD=8,二面角C﹣AB﹣D 为120°,则球O的表面积为()A.B.124πC.D.31π14.已知直三棱柱(侧棱垂直于底面的三棱柱)ABC﹣A1B1C1的顶点在球O上,∠ABC=120°,AA1=BC=AB=1,则球O的表面积为()A.7πB.6πC.5πD.4π15.三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,则三棱锥P﹣ABC的外接球的表面积为()A.23πB.C.D.64π16.已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,且AB=SA=SB=SC=2,则该三棱锥的外接球的表面积为()A.B.C.D.17.在正方体ABCD﹣A1B1C1D1中,E为BC的中点,已知平面α经过点A1,且平行于平面B1D1E,平面α与平面ABCD交于直线m,与平面ABB1A1交于直线n,则直线m,n所成角的余弦值为()A.B.C.D.18.如图,在四棱锥P﹣ABCD中,PO⊥平面ABCD,E为线段AP的中点,底面ABCD为菱形,若BD=2,PC=4,则异面直线DE与PC所成角的余弦值为()A.B.C.D.19.已知异面直线a,b所成的角为60°,过空间一点O的直线与a,b所成的角均为60°,这样的直线有()A.1条B.2条C.3条D.4条20.在正方体ABCD﹣A1B1C1D1中,E是侧面ADD1A1内的动点,且B1E∥平面BDC1,则直线B1E与直线AB所成角的正弦值的最小值是()A.B.C.D.21.四个同样大小的球O1,O2,O3,O4两两相切,点M是球O1上的动点,则直线O2M与直线O3O4所成角的正弦值的取值范围为()A.[]B.[]C.[]D.[]第Ⅱ卷(非选择题)二.解答题(共19小题)22.如图,已知四棱锥P﹣ABCD,BC∥AD,CD⊥AD,PC=AD=2CD=2CB=PA=PD,F为AD的中点.(1)证明:PB⊥BC;(2)求直线CF与平面PBC所成角的正弦值.23.如图,四棱锥S﹣ABCD的底面是正方形,CD=SB=,SD=4,P为侧棱SD 上的点,SD⊥面APC.(1)求二面角S﹣AC﹣D的余弦值;(2)侧棱SC上是否存在一点E,使得BE∥平面APC,若存在,求出SE:EC的值;若不存在,试说明理由.24.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,PD=AD=,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)求平面PAD与平面PBC所成的锐二面角的大小.25.如图,三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.现以边AC的中点D为坐标原点,平面ABC内垂直于AC的直线为x轴,直线AC为y轴,直线DA1为z轴建立空间直角坐标系,解决以下问题:(1)求异面直线AB与A1C所成角的余弦值;(2)求直线AB与平面A1BC所成角的正弦值.26.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是边长为2的等边三角形,直线PB与底面ABCD所成的角为45°,PA=2CD,PD=,E是棱PD的中点.(1)求证:CD⊥AE;(2)在棱PB上是否存在一点T,使得平面ATE与平面APB所成锐二面角的余弦值为?若存在,请指出T的位置;若不存在,请说明理由.27.已知几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)连接B1C,若M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1?若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C﹣NB1﹣C1的余弦值.28.已知四棱锥S﹣ABCD,四边形ABCD是正方形,BA=AS=SD=2,S△ABS=2.(1)证明:平面ABCD⊥平面SAD;(2)若M为SD的中点,求二面角B﹣CM﹣S的余弦值.29.如图1,ABCD为梯形,AB∥CD,∠C=60°,点E在CD上,AB=EC=DE=2,BD⊥BC.现将△ADE沿AE折起如图2,使得平面DBC⊥平面ABCE.(Ⅰ)求证:BD⊥平面ABCE;(Ⅱ)求二面角D﹣AE﹣C的平面角的余弦值.30.如图,在四棱锥P﹣ABCD中,BC⊥PB,AB⊥BC,AD∥BC,AD=3,PA=BC=2AB=2,.(1)求二面角P﹣CD﹣A的余弦值;(2)若点E在棱PA上,且BE∥平面PCD,求线段BE的长.参考答案与试题解析一.选择题(共21小题)1.已知菱形ABCD满足,|AB|=2,∠ABC=,将菱形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D,则三棱锥B﹣ACD外接球的表面积为()A.πB.8πC.7πD.【解答】解:由题意菱形ABCD满足,|AB|=2,∠ABC=,∴AC=2,DB=,将菱形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D,∴三棱锥B﹣ACD高为.底面ACD外接圆半径为,外接球半径为R,球心与圆心的距离为d,d2+r2=R2……①……②由①②解得:R2=外接球的表面积S=.故选:A.2.如图,四面体ABCD中,面ABD和面BCD都是等腰Rt△,AB=,∠BAD=∠CBD=,且二面角A﹣BD﹣C的大小为,若四面体ABCD的顶点都在球O上,则球O的表面积为()A.12πB.20πC.24πD.36π【解答】解:取CD中点E,BD中点F,连结BE、AF、EF,∵四面体ABCD中,面ABD和面BCD都是等腰Rt△,AB=,∠BAD=∠CBD=,且二面角A﹣BD﹣C的大小为,∴AF⊥BD,EF⊥BD,∴∠AFE是二面角A﹣BD﹣C的平面角,,BD=BC==2,CD=,CE=DE=,AF=BF=DF=EF=1,,则点E为△BCD外接圆的圆心,点F为△ABD外接圆的圆心,过点E作平面BCD的垂线EO,过点F作平面ABD的垂线FO,且直线EO与直线FO交于点O,则点O为四面体ABCD外接球的球心,如下图所示,易知,,所以,,所以,,则四面体ABCD的外接球半径为,因此,球O的表面积为,故选:B.3.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.B.C.41πD.31π【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,A,D为棱的中点,根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:4﹣x,∴R2=x2+(2)2,R2=22+(4﹣x)2,解得出:x=,R=,该多面体外接球的表面积为:4πR2=41π,故选:C.4.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A.B.C.D.【解答】解:由题意可知几何体的直观图如图:A﹣BCD,E为CD的中点,由题意可知AB=4,OE=,OA=OB=2,OD=2,则DE=,所以三棱锥A﹣BCD的体积为:×=.故选:C.5.已知一个几何体的三视图如图所示,则该几何体的表面积是()A.2+2+2B.4+4+2C.2+4+4D.4+4+4【解答】解:由题意几何体的直观图如图:是正方体的一部分,正方体的棱长为:2,可知几何体的表面积为:=4+4+2.故选:B.6.某三棱锥的三视图如图所示,则它的外接球表面积为()A.25πB.C.D.40π【解答】解:由三视图还原几何体的直观图如图:该几何体为三棱锥,底面三角形ABC为直角三角形,面PAC为等边三角形,且面PAC⊥底面ABC,取BC中点G,则G为三角形ABC的外心,过G作平面ABC的垂线,取等边三角形PAC的外心为H,过H作平面PAC的垂线,则两垂线交于点O,O为三棱锥P﹣ABC外接球的球心,OG=PH=,GC=BC=,∴OC==,∴三棱锥外接球表面积为4π×()2=.故选:C.7.如图是某几何体的三视图,则该几何体的表面积是()A.18+2+B.15++C.12++D.18++【解答】解:几何体的三视图,可知几何体是组合体,下部是四棱柱,上部是四棱锥,底面是直角梯形,下底为2,上底边长为1,高为2,四棱柱的高为2,棱锥的高为1,如图:该几何体的表面积是:++=15++.故选:B.8.在四面体ABCD中,AD⊥底面ABC,,E为棱BC的中点,点G在AE上且满足AG=2GE,若四面体ABCD的外接球的表面积为,则tan∠AGD=()A.B.2C.D.【解答】解:由题意可得,点G是△ABC的重心,∴AG=AE=,设△ABC的外心为O,由题意点O在AE上,令OA=r,则OE2+EC2=OC2,即(3﹣r)2+12=r2,解得r=,∵AD⊥平面ABC,∴四面体ABCD的外接球的半径R2=r2+()2=+,由题意得4πR2=4π(+)=,解得AD=4,∴tan∠AGD=.故选:B.9.在三棱锥S﹣ABC中,,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的表面积为()A.4πB.16πC.36πD.72π【解答】解:如图,取SC的中点O,连接OB,OA,∵SB⊥BC,SA⊥AC,SB=BC,SA=AC,∴OB⊥SC,OA⊥SC,OB=SC,OA=SC,∴SC⊥平面OAB,O为三棱锥的外接球的球心,SC为球O的直径,设球O得半径为R,则AB=SC=R,∴△AOBRt正三角形,则∠BOA=90°,=V S﹣OAB+V C﹣OAB===,∴V S﹣ABC∴R=2,则该三棱锥的外接球的表面积为4πR2=16π.故选:B.10.如图所示,正方形ABCD的边长为2,切去阴影部分围成一个正四棱锥,则当正四棱锥体积最大时,该正四棱锥外接球的表面积为()A.B.C.D.【解答】解:由题意,正方形ABCD的边长为2,可得对角线的一半为,折成正四棱锥后,设正四棱锥边长为a,高为h,可得:h2=2﹣,(0).正四棱锥体积V=最大时,即.由y=,则y′=8,令y′=0,可得a=,即当a=体积取得最大值;∴h=.正四棱锥底面正方形外接圆r=.正四棱锥外接球的半径R,可得解得:正四棱锥外接球的表面积S=.故选:D.11.已知三棱锥P﹣ABC所有顶点都在球O的球面上,底面△ABC是以C为直角顶点的直角三角形,AB=2,PA=PB=PC=,则球O的表面积为()A.9πB.C.4πD.π【解答】解析:设AB中点为D,则D为△ABC的外心,因为PA=PB=PC=,易证PD⊥面ABC,,所以球心O在直线PD上,又PA=,AB=2,算得PD=1,设球半径为R,则△AOD中,(R﹣1)2+2=R2,可得:R=.则球O的表面积S=4πR2=9π,故选:A.12.四棱锥P﹣ABCD的侧面PAB垂直于底面ABCD,且三角形PAB是等边三角形,底面ABCD是边长为2的正方形,则四棱锥P﹣ABCD外接球的表面积为()A.πB.C.4πD.π【解答】解:由题意,可以将四棱锥P﹣ABCD补成以△PAB为底面的直三棱柱,直三棱柱外接球的半径,△PAB是边长为2的等边三角形,其外接圆的半径为;所以球的半径r=,则球的表面积S=4πr2=.故选:D.13.已知三棱锥D﹣ABC所有顶点都在球O的球面上,△ABC为边长为的正三角形,△ABD是以BD为斜边的直角三角形,且AD=8,二面角C﹣AB﹣D 为120°,则球O的表面积为()A.B.124πC.D.31π【解答】解:作图如下:O1为经过△ABC外接圆圆心,O2为经过△ABD外接圆圆心,则O2为BD中点,取AB中点M,则∠CMO2为二面角C﹣AB﹣D的平面角,易得|O2M|=4,|O1M|=1,,由余弦定理得|O1O2|=,由正弦定理得,所以R2=|OM|2+|AM|2=31⇒S=124π,故选:B.14.已知直三棱柱(侧棱垂直于底面的三棱柱)ABC﹣A1B1C1的顶点在球O上,∠ABC=120°,AA1=BC=AB=1,则球O的表面积为()A.7πB.6πC.5πD.4π【解答】解:如图:外接球的球心为O,底面三角形的外心为:O1,由正弦定理可得:2A1O1=,可得A1O1=1,R2=12+=,外接球的表面积为:4π•R2=5π.故选:C.15.三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,则三棱锥P﹣ABC的外接球的表面积为()A.23πB.C.D.64π【解答】解:根据题意,得到三棱锥P﹣ABC的外接球的球心在等边三角形PAC 的中线高线和过直角三角形ABC斜边BC的中点的高的交点位置,如图所示:三棱锥P﹣ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,所以PF=,,在直角三角形ABC中,BC2=AB2+AC2,解得:BC=2,所以CD=,三棱锥的外接球半径r==,则S=4,故选:C.16.已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,且AB=SA=SB=SC=2,则该三棱锥的外接球的表面积为()A.B.C.D.【解答】解:如图所示:三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,且AB=SA=SB=SC=2,则:SD=,设外接球的半径为R,则:在△BOD中,利用勾股定理:,解得:R=所以:S=4π•R2=4.故选:D.17.在正方体ABCD﹣A1B1C1D1中,E为BC的中点,已知平面α经过点A1,且平行于平面B1D1E,平面α与平面ABCD交于直线m,与平面ABB1A1交于直线n,则直线m,n所成角的余弦值为()A.B.C.D.【解答】解:设正方体的边长为2,取CD的中点F,AB的中点为M,AD的中点为N,连接EF,DB,MN,可得MN∥BD∥EF∥B1D1,由于平面α经过点A1,且平行于平面B1D1E即有平面A1MN即为平面α,直线MN即为直线m,直线A1M即为直线n,∠A1MN即为直线m,n所成角,由A1M=A1N==,MN=,可得cos∠A1MN==.故选:B.18.如图,在四棱锥P﹣ABCD中,PO⊥平面ABCD,E为线段AP的中点,底面ABCD为菱形,若BD=2,PC=4,则异面直线DE与PC所成角的余弦值为()A.B.C.D.【解答】解:由题意,连接EO,O是底面ABCD为菱形的中点,又E为线段AP的中点,∴EO∥PC,则异面直线DE与PC所成角的平面角为∠DEO,∵PO⊥平面ABCD,底面ABCD为菱形,AC⊥BD,POC是直角三角形,∴PC⊥BD,则EO⊥BD,∴△DEO是直角三角形,∵BD=2,PC=4,∴OD=1,EO=2,则ED=.∴cos∠DEO=.故选:A.19.已知异面直线a,b所成的角为60°,过空间一点O的直线与a,b所成的角均为60°,这样的直线有()A.1条B.2条C.3条D.4条【解答】解:过O作a′∥a,b′∥b,设直线a′、b′确定的平面为α,∵异面直线a、b成60°角,∴直线a′、b′所成锐角为60°①当直线l在平面α内时,若直线l平分直线a′、b′所成的钝角,则直线l与a、b都成60°角;②当直线l与平面α斜交时,若它在平面α内的射影恰好落在直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.此时l与a′、b′所成角的范围为[30°,90°],适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.综上所述,过点P与a′、b′都成60°角的直线,可以作3条∵a′∥a,b′∥b,∴过点O与a′、b′都成60°角的直线,与a、b也都成60°的角.故选:C.20.在正方体ABCD﹣A1B1C1D1中,E是侧面ADD1A1内的动点,且B1E∥平面BDC1,则直线B1E与直线AB所成角的正弦值的最小值是()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,设E(a,0,c),0≤a≤1,0≤c≤1,B1(1,1,1),B(1,1,0),D(0,0,0),C1(0,1,1),=(a﹣1,﹣1,c﹣1),=(1,1,0),=(0,1,1),设平面DBC1的法向量=(x,y,z),则,取x=1,得=(1,﹣1,1),∵B1E∥平面BDC1,∴=a﹣1+1+c﹣1=0,解得a+c=1,∴a2+c2=(a+c)2﹣2ac=1﹣2ac,ac≤()2=,设直线B1E与直线AB所成角为θ,∵=(0,1,0),∴cosθ==,∵ac≤()2=,∴2﹣2ac≥,∴,∴sinθ====≥=.∴直线B1E与直线AB所成角的正弦值的最小值是.故选:B.21.四个同样大小的球O1,O2,O3,O4两两相切,点M是球O1上的动点,则直线O2M与直线O3O4所成角的正弦值的取值范围为()A.[]B.[]C.[]D.[]【解答】解:如图O1O2O O4是正四面体,设边长为2r,过O1作O1O⊥底面O2O3O4,可得O为底面的中心,由O2O⊥O3O4,可得O2O1⊥O3O4,则M在直线O1O2上,可得直线O2M与直线O3O4垂直,即有所成角的正弦值为1,过O2作大圆的切线,设切点为M,可得O2M与O1O2成30°的角,由O2N∥O3O4,可得O3O4与O2M成60°的角,即有所成角的正弦值为,则直线O2M与直线O3O4所成角的正弦值的取值范围为[,1].故选:C.二.解答题(共19小题)22.如图,已知四棱锥P﹣ABCD,BC∥AD,CD⊥AD,PC=AD=2CD=2CB=PA=PD,F为AD的中点.(1)证明:PB⊥BC;(2)求直线CF与平面PBC所成角的正弦值.【解答】解:(1)证明:在△PAD中,PA=PD,F为AD的中点,可得AD⊥PF,在四边形ABCD中,连接BF,由题意可得四边形BCDF为平行四边形,可得BF∥CD,由CD⊥AD,可得AD⊥BF,而BF∩PF=F,可得AD⊥平面PBF,由AD∥BC,可得BC⊥平面PBF,则BC⊥PB;(2)设PC=AD=2CD=2CB=PA=PD=2,可得CD=CB=1,PA=PD=,过F在△PBF中作FH⊥PB于H,连接CH,由BC⊥平面PBF,可得BC⊥FH,即有FH⊥平面PBC,则∠FCH为CF和平面PBC所成角,由BC⊥PB,可得PB==,由PF==1,BF=CD=1,cos∠PFB==﹣,可得∠PFB=120°,可得H为PB的中点,即有FH⊥PB,即有FH=BFcos∠BFH=1×=,则直线CF与平面PBC所成角的正弦值为==.23.如图,四棱锥S﹣ABCD的底面是正方形,CD=SB=,SD=4,P为侧棱SD 上的点,SD⊥面APC.(1)求二面角S﹣AC﹣D的余弦值;(2)侧棱SC上是否存在一点E,使得BE∥平面APC,若存在,求出SE:EC的值;若不存在,试说明理由.【解答】解::(1)连BD,设AC交BD于O,SD⊥面APC,可得SD⊥AP,SD⊥PC,可得△PAD≌△PCD,可得∠SDA=∠SDC,可得SA=SC,SO⊥AC,在正方形ABCD中,AC⊥BD,可得∠SOD为二面角S﹣AC﹣D的平面角,在△SBD中,SB=2,BD=4,SD=4,可得cos∠SBD==,SO==2,可得cos∠SOB==,即有二面角S﹣AC﹣D的余弦值为﹣;(2)若SD⊥平面PAC,则SD⊥OP,正方形ABCD的边长为2,SD=4,OD=BD=2,则PD=ODcos∠SDB=2•=,故可在SP上取一点N,使PN=PD,过N作PC的平行线与SC的交点即为E,连BN.在△BDN中知BN∥PO,又由于NE∥PC,故平面BEN∥面PAC,得BE∥面PAC,由于SN:NP=2:3,故SE:EC=2:3.24.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,PD=AD=,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)求平面PAD与平面PBC所成的锐二面角的大小.【解答】证明:(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,…………(1分)从而BD2+AD2=AB2,故BD⊥AD,…………(3分)又PD⊥底面ABCD,可得BD⊥PD,…………(4分)所以BD⊥平面PAD.…………(5分)故PA⊥BD…………(6分)解:(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴,建立空间直角坐标系D﹣xyz,…………(7分)则B(0,,0),C(﹣1,,0),P(0,0,1),=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),平面PAD的一个法向量为=(0,1,0),…………(8分)设平面PBC的法向量为=(x,y,z),则,…………(9分)取y=1,得=(0,1,),…………(10分)|cos<>|==,…………(11分)故平面PAD与平面PBC所成的锐二面角的大小为60°.…………(12分)25.如图,三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.现以边AC的中点D为坐标原点,平面ABC内垂直于AC的直线为x轴,直线AC为y轴,直线DA1为z轴建立空间直角坐标系,解决以下问题:(1)求异面直线AB与A1C所成角的余弦值;(2)求直线AB与平面A1BC所成角的正弦值.【解答】解:(1)三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.以边AC的中点D为坐标原点,平面ABC内垂直于AC的直线为x轴,直线AC为y轴,直线DA1为z轴建立空间直角坐标系,根据题中空间直角坐标系可知:A(0,﹣1,0),C(0,1,0),B(2,1,0),A1(0,0,),…(1分)∴=(2,2,0),=(0,1,﹣),∴cos<>===,…(3分)设异面直线AB与A1C的所成角为α,则,∴异面直线AB与A1C所成角的余弦值为.…(4分)(2)由(1)得:=(2,1,﹣),=(﹣2,0,0),设平面A1BC的法向量为=(x,y,z),∴,取z=1,则=(0,),…(7分)∴cos<,>===.…(9分)设直线AB与平面A1BC所成角为β,β∈(0,],则sinβ=|cos<,>|=.故直线AB与平面A1BC所成角的正弦值为.…(10分)26.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是边长为2的等边三角形,直线PB与底面ABCD所成的角为45°,PA=2CD,PD=,E是棱PD的中点.(1)求证:CD⊥AE;(2)在棱PB上是否存在一点T,使得平面ATE与平面APB所成锐二面角的余弦值为?若存在,请指出T的位置;若不存在,请说明理由.【解答】(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD,CD⊂平面ABCD,AD ⊂平面ABCD,∴PA⊥AB,PA⊥CD,PA⊥AD,∵直线PB与底面ABCD所成的角为45°,∴∠PBA=45°,∵△ABC是边长为2的等边三角形,∴PA=AB=2,又PA=2CD,∴CD=1.在Rt△PAD中,∵PD=,PA=2,∴AD=,在三角形ADC中,AD=,CD=1,AC=2,∴AD2+CD2=AC2,可得CD⊥AD,又AD∩PA=A,∴CD⊥平面PAD,又AE⊂平面PAD,∴CD⊥AE;(2)解:假设在棱PB上存在一点T,满足题意,则(0<λ≤1),由(1)可知,∠DAC=30°,∴∠DAB=90°,以A为原点,分别以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系.则A(0,0,0),B(2,0,0),P(0,0,2),D(0,,0),E(0,,1).设T(x1,y1,z1),则,又,∴(x1,y1,z1﹣2)=(2λ,0,﹣2λ),得x1=2λ,y1=0,z1=2﹣2λ,∴,.设平面ATE的法向量为.则有,取y2=2,得.而平面PAB的一个法向量为,∴|cos<>|=||==,解得.故在棱PB上存在一点T,使得平面ATE与平面APB所成锐二面角的余弦值为.27.已知几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)连接B1C,若M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1?若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C﹣NB1﹣C1的余弦值.【解答】解:建立空间直角坐标系如图,则由该几何体的三视图可知:C(0,0,4),N(4,4,0),B1(0,8,0),C1(0,8,4).(1)设平面CNB1的法向量为,由,,得,其x=1,得.设P(0,0,a)(0≤a≤4),由于M(2,0,0),则.∵MP∥平面CNB1,∴,得a=1.∴在线段CB上存在一点P,使得MP∥平面CNB1,此时BP=1;(2)设平面C1NB1的法向量为,由,得,取x=1,可得.∴cos<>=.由图可知,所求二面角为锐角,故二面角C﹣NB1﹣C1的余弦值为.28.已知四棱锥S﹣ABCD,四边形ABCD是正方形,BA=AS=SD=2,S△ABS=2.(1)证明:平面ABCD⊥平面SAD;(2)若M为SD的中点,求二面角B﹣CM﹣S的余弦值.【解答】证明:(1)∵,∴sin∠BAS=1,即BA⊥AS,又∵ABCD为正方形,∴BA⊥AD,∵BA∩AS=A,∴BA⊥平面SAD,∵BA⊂平面ABCD,∴平面ABCD⊥平面SAD.解:(2)设AD的中点为O,∵AS=SD,∴SO⊥AD,由(1)可知平面ABCD⊥平面SAD,且平面ABCD∩平面SAD=AD,∴SO⊥平面ABCD,在平面ABCD内,过O作直线Ox⊥AD,则Ox,OD,OS两两垂直.以O为坐标原点,Ox,OD,OS所在直线为x轴,y轴,z轴,建立空间直角坐标系,则,∴,设平面BCM的法向量为,则,,即,取,设平面CMS的法向量为,则,,即,取,,由图可知,二面角B﹣CM﹣S的余弦值为.29.如图1,ABCD为梯形,AB∥CD,∠C=60°,点E在CD上,AB=EC=DE=2,BD⊥BC.现将△ADE沿AE折起如图2,使得平面DBC⊥平面ABCE.(Ⅰ)求证:BD⊥平面ABCE;(Ⅱ)求二面角D﹣AE﹣C的平面角的余弦值.【解答】(本题满分15分)证明:(Ⅰ)∵DF⊥AE,BF⊥AE,∴AE⊥面BDF,又BD⊂面BDF,∴AE⊥BD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵面BCD⊥面ABCE,BC∥AE,BF⊥AE,∴BF⊥BC,∴BF⊥面BCD,∵BD⊂面BCD,∴BF⊥BD,又∴BF∩BC=B,∴BD⊥面BCEF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)解:(Ⅱ)∵DF⊥AE,BF⊥AE,∴∠BFD即为二面角D﹣AE﹣C的平面角.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)又∵﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)在Rt△BDE中,,∴二面角D﹣AE﹣C的平面角的余弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分)30.如图,在四棱锥P﹣ABCD中,BC⊥PB,AB⊥BC,AD∥BC,AD=3,PA=BC=2AB=2,.(1)求二面角P﹣CD﹣A的余弦值;(2)若点E在棱PA上,且BE∥平面PCD,求线段BE的长.【解答】解:(1)∵在四棱锥P﹣ABCD中,由PA=2AB=2,,得PB2+AB2=PA2,则PB⊥AB,又BC⊥PB,AB⊥BC,∴以B为原点,BA为x轴,BC为y轴,BP为z轴,建立空间直角坐标系,则B(0,0,0),A(1,0,0),C(0,2,0),D(1,3,0),P(0,0,),=(0,1,0),=(0,2,﹣),由图可知,平面ABCD的一个法向量为=(0,0,1),设平面PCD的法向量为,则,取z=2,得,设二面角P﹣CD﹣A的平面角为α,则cosα=|cos<>|=.∴二面角P﹣CD﹣A的余弦值为;(2)∵点E在PA上,∴,λ∈[0,1],∵,∴,=(1﹣λ,0,),又∵BE∥平面PCD,为平面PCD的法向量,∴,即,解得,∴,则BE=||=.。

最新-立体几何综合练习题(附详解)[原创] 精品

最新-立体几何综合练习题(附详解)[原创] 精品

立体几何练习题 一、选择题1.两条异面直线在同一平面内的射影不可能是( )A.两条相交直线B.两条平行直线C.两条重合直线D.一条直线和这条直线外一点2.设命题甲:“直四棱拄1111D C B A ABCD -中,平面1ACB 与对角面D D BB 11垂直”;命题乙:“直四棱柱1111D C B A ABCD -是正方体”。

那么,甲是乙的( )A .充分必要条件 B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件3.某电视台的颁奖礼盒用如下方法做成:先将一个奖品放入一个正方体内,再将正方体放在一个球内,使正方体内接于球;然后再将该球放入一个正方体内,球内切于该正方体,再将正方体放入一个球内,正方体内接于球,……如此下去,正方体与球交替出现.如果正方体与球共有13个,最大正方体的棱长为162cm ,奖品为羽毛球、篮球、乒乓球拍、手表、项链之一,则奖品只能是(构成礼品盒材料的厚度忽略不计)( ) A .项链 B.项链或手表 C.项链或手表,或乒乓球拍 D.项链或手表,或乒乓球拍,或篮球4.已知平面α//平面β,直线α⊂l ,点l P ∈,平面βα、间的距离为8,则在β内到点P 的距离为10且到直线l 的距离为9的点的轨迹是( )A.一个圆B.两条直线C.四个点D.两个点5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛原来水的( )A .2923 B.2723 C.2719 D.5531(第5题)二、填空题6.一个十二面体共有8个顶点,其中两个顶点处各有6条棱,其他顶点处各有相同数目的棱,则其他顶点各有 条棱7.AB 是异面直线b a 、的公垂线段,b a AB 、,2=成30角,在a 上取P 点使4=AP ,则点p 到b 的距离等于SCBA8.如图所示,二面角βα--CD 的大小为θ,点A 在平面α内,ACD ∆的面积为S ,且m CD =,过A 点的直线交平面于B ,CD AB ⊥,且AB 与平面β所成的角为 30,则当=θ 时,BCD ∆的面积取得最大值。

高三数学立体几何第15课时作业练习苏教版

高三数学立体几何第15课时作业练习苏教版

第15课时平面与平面垂直分层训练1. 一条直线与两个平面所成角相等,那么这两个平面的位置关系是()A. 平行B.相交C.平行或相交D.以上都不对2. 设m、n是两条不同的直线,a、B、丫是三个不同的平面,给出下列四个命题:①若m丄a , n / a ,贝U m± n ;②若a // 3 , 3 〃Y , m丄a ,贝U m丄丫;③若m // a , n // a ,贝U m // n ;④若a丄丫, 3丄丫,则a // 3 .其中正确命题的序号是()A.①②B.②③C.③④D.①④3. 在空间四边形ABCD中AD丄BC,BD丄AD , 且三角形BCD是锐角三角形,那么必有()A. 平面ABD丄平面ADCB. 平面ABD丄平面ABCC. 平面ADC丄平面BCDD. 平面ABC丄平面BCD4. 已知平面a丄3 , aA3 = I , P是空间一点,且P到a、3的距离分别是1、2 ,则点P 到I的距离为 _____________________ .5. 已知点A(3 , 2) , B(—2 , —3),沿y轴把直角坐标平面折成90°的二面角后,AB的长为 ______________ .6 .如图,a 丄3 , aA3 = l , AB 1 a , AB 丄l, BC 1 3 , DE 1 3 , BC 丄DE ,求证:AC 丄DE . 7在正方体ABCD-A 1B1C1D1中,求证:平面B1AC 丄面B1D1DB .拓展延伸已知:如图,△ ABC 为正三角形,EC 丄平面ABC , DB 丄平面ABC , EC 、DB 在平面ABC 的同侧,M 为EA 的中点, CE=CA=2BD 。

求证:(1).DE=DA ;(2) .平面BDM 丄平面ECA(3) .平面DEA 丄平面ECADB。

立体几何练习题(含答案)精选全文完整版

立体几何练习题(含答案)精选全文完整版

可编辑修改精选全文完整版《立体几何 》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行C 、相交不垂直D 、不确定2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( )A. BDB. CDC. BCD. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥B.m ⊥n ,α∩β=m ,n ⊂αC.αβ⊆⊥m n n m ,,//D.βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC 的( )A.内心B.外心C.重心D.垂心7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.A.3B.2C.1D.09. 设m.n 是两条不同的直线,α.β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β10. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 二、填空题11、在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC ,BD=CD 则BC ⊥AD ;②若AB=CD ,AC=BD 则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD 则BC ⊥AD ;④若AB ⊥CD , BD ⊥AC 则BC ⊥AD ;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形参考答案 选择题:AACDA,BCCCB填空题:11、1312、①④ 13、//b b ββ⊂或 14、4A B C P欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

永年二中高一假期作业(数学十五球的专题)学生版

永年二中高一假期作业(数学十五球的专题)学生版

永年二中高一假期作业(数学十五球的专题)姓名 知识储备1.正方体的内切球:与正方体的各条棱相切:正方体的外接球: 长方体的外接球:2.正四面体的外接球: 正四面体的棱长a 与外接球半径R 的关系为:2R =62a.类型一、正四面体与球【例】若棱长为a 的正四面体的各个顶点都在半径为R 的球面上,求球的表面积.解析: 【例】若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析: 类型二:直三棱柱与球【例】已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.解析: 【例】设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为________. 解析: 类型三:正方体(长方体)与球【例】将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为________.解析:【例】已知矩形ABCD 的顶点都在半径为2的球O 的球面上,且AB =3,BC =3,过点D 作DE 垂直于平面ABCD ,交球O 于E ,则棱锥E -ABCD 的体积为________.解析: 类型四:四棱锥(三棱锥)的外接球【例】体积为163的正四棱锥S -ABCD 的底面中心为O ,SO 与侧面成的角的正切值为22,那么过S -ABCD 的各顶点的球的表面积为( )A .32πB .24πC .16πD .12π 解析: 【例9】球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为____.解析: 【练】如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面面积和球的表面积之比为( ) A .4∶3 B .3∶1 C .3∶2 D .9∶4 解析: 【练】已知正四棱锥O ﹣ABCD (底面是正方形且顶点在顶面的射影是底面正方形的中心的棱锥叫做正四棱锥)的体积为12,底面边长为2,则正四棱锥O ﹣ABCD 内切球的表面积为.解析: 【练】已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为________.解析:。

立体几何同步训练15球.

立体几何同步训练15球.

立体几何同步训练15球(A )班级_______ 姓名___________一、 选择题1、,A B 是球面上相异两点,则经过,A B 可作的大圆个数为 ( )(A)只有一个 (B)无数个 (C)两个 (D)一个或无数个2、半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( )(A) 4 (B) 3 (C)2.5 (D) 23、自半径为1的球面上一点Q ,作球的三条互相垂直弦,,QA QB QC ,则222QA QB QC ++= ( )(A) 4 (B) 2 (C) 1 (D)不能确定4、已知地球的半径为R ,在南纬α的纬度圈上有A,B 两点,若沿纬度圈这两点间的 距离为cos R πα,则A,B 两点间的球面距离为 ( )(A) R π (B) cos R πα (C) R α (D) (2)R πα-5、球的半径为R ,,A B 是球面上两点,且球面距离为3R π,则球心到过,A B 的所有平面的距离中,最大距离为 ( )(A) R (C) 12R (D) 不存在 6、两个平行平面去截半径为5的球,若截面面积分别为9,16ππ,则这两个平行 平面间的距离是 ( )(A) 1 (B) 7 (C) 3或4 (D) 1或7二、 填空题7、正方体的内切球与外接球的半径之比为____________。

8、球的半径为10,经过球面上任意一点作截面,若截面与经过该点的半径成045角, 则截面面积是_________。

9、已知球的半径为12,过球的直径的三等分点作垂直于该直径的截面,则截面面积为___________。

10、下面三个命题(1)球面上不同的三点不可能在同一直线上。

(2)球面上两点的最短距离即为这两点的球面距离。

(3)球面上两点的球面距离就是过这两点的大圆弧长。

其中正确命题的序号是_________。

(正确的全部写上)三、 解答题11、在半径为13的球面上,有,,A B C 三点,若6,10,8AB BC CA ===,(1)求球心到平面ABC 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何同步训练15
球(A )
班级_______ 姓名___________
一、 选择题
1、,A B 是球面上相异两点,则经过,A B 可作的大圆个数为 ( )
(A)只有一个 (B)无数个 (C)两个 (D)一个或无数个
2、半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( )
(A) 4 (B) 3 (C)2.5 (D) 2
3、自半径为1的球面上一点Q ,作球的三条互相垂直弦,,QA QB QC ,则222QA QB QC ++= ( )
(A) 4 (B) 2 (C) 1 (D)不能确定
4、已知地球的半径为R ,在南纬α的纬度圈上有A,B 两点,若沿纬度圈这两点间的 距离为cos R πα,则A,B 两点间的球面距离为 ( )
(A) R π (B) cos R πα (C) R α (D) (2)R πα-
5、球的半径为R ,,A B 是球面上两点,且球面距离为3R π
,则球心到过,A B 的
所有平面的距离中,最大距离为 ( )
(A) R (B) 2R (C) 12
R (D) 不存在 6、两个平行平面去截半径为5的球,若截面面积分别为9,16ππ,则这两个平行 平面间的距离是 ( )
(A) 1 (B) 7 (C) 3或4 (D) 1或7
二、 填空题
7、正方体的内切球与外接球的半径之比为____________。

8、球的半径为10,经过球面上任意一点作截面,若截面与经过该点的半径成0
45角, 则截面面积是_________。

9、已知球的半径为12,过球的直径的三等分点作垂直于该直径的截面,则截面面积为___________。

10、下面三个命题(1)球面上不同的三点不可能在同一直线上。

(2)球面上两点的最短距离即为这两点的球面距离。

(3)球面上两点的球面距离就是过这两点的大圆弧长。

其中正确命题的序号是_________。

(正确的全部写上)
三、 解答题
11、在半径为13的球面上,有,,A B C 三点,若6,10,8AB BC CA ===,
(1)求球心到平面ABC 的距离。

(2)求BC 间的球面距离。

12、,,A B C 是半径为1的球面上的三点,任意两点间的球面距离为2π
,(
O 为球心) 求球心到截面ABC 的距离。

相关文档
最新文档