《压力传感器的静态标定实验》指导书

合集下载

压力传感器现场静态标定分析

压力传感器现场静态标定分析

压力传感器现场静态标定分析摘要:本文旨在展示压力传感器的现场静态标定分析方法。

通过介绍不同类型压力传感器以及其原理,分析并讨论了现场静态标定的步骤,并就此提出了相应的解决方案。

最后,强调了正确的静态标定对传感器的重要性。

关键词:压力传感器,现场静态标定,步骤,解决方案正文:1. 绪论本文讨论现场静态标定分析的应用,以压力传感器为例。

首先介绍了不同类型的压力传感器,然后详细介绍了现场静态标定的一般步骤,并使用一个例子来阐述。

最后,提出了解决现场静态标定过程中可能遇到的问题的可行解决方案。

2. 压力传感器及其原理压力传感器是一种通过变化测量压力大小的设备,广泛应用于汽车行业、航空航天行业、制造行业、海洋行业等各个领域。

它通常有两种工作原理:负荷变化压力传感器和电气变化压力传感器。

前者是由流体的负荷变化引起的,当安装在压力容器或管道上时,检测其围界内的压力变化;而后者则是将电气变化与压力变化联系起来的,通过改变元件的物理特性来检测压力变化。

3. 现场静态标定步骤现场静态标定分析是检测压力传感器精度的关键测试环节,一般实施步骤如下:1) 检查传感器:查看传感器尺寸情况,检查安装紧固件是否规范,以确定传感器运行是否正常。

2) 调整零位和满量程:先将零位标定为零,然后将量程标定为上限值。

3) 进行压力曲线测量:根据实际情况,可以进行 10 个或 20个压力点的测量,分别记录传感器读数和实际压力值。

4) 绘制误差曲线:将测量出来的压力点按照压力值排序,绘制出传感器读数与实际压力值之间的误差曲线。

5) 结果分析:检查误差曲线,结合最大允许偏差值,判断标定结果是否满足质量要求。

4. 问题及解决方案在现场静态标定的过程中,会出现一些问题,如精度不高、测量时间过长等。

为了解决这些问题,可采用以下解决方案:1) 采用精度更高的设备,例如压力模拟器,可获得更精确的测量结果;2) 增加标定耗时,确保测量结果的准确性;3) 综合考虑测量场地温度等环境因素,加以考虑,以避免引起测量结果偏差。

实验一静态压力校准实验

实验一静态压力校准实验

实验一静态压力校准实验一、实验目的1.掌握压力的测量方法2.了解活塞式压力杆和压力传感器的工作原理3.掌握活塞式压力校准系统的组成,校准方法和各项静态参数指标的确定二、实验仪器标准压力表,A0B131活塞式压力计,待标定压力表三、实验方法螺旋压力发生器作用于密闭系统内的工作液体,比较被校表与智能数字显示控制台上的示值进行校准四、实验步骤1.用调整螺钉和水平仪将活塞压力计调水平;2.打开油杵针阀,逆时针转动手轮向手摇泵内抽油,转了一定距离然后顺时针排油,目的是排尽油铭中空气,空气会影响标定的结果;3.将活塞式压力计的油针阀打开,逆时针转动手轮向摇手内抽油,油满后,将油针阀关闭,严禁未开油针阀时,用手轮抽油,以防止破坏传感器;4.按0.2μPa逐级给传感器加载至基程,转动手轮使标准压力依次为0.2,0.4,0.6,0.8,1.0同时分别在待定压力表上读出示值,并记录;5.卸载完毕,记录反行程零点,将油阀打开,一次循环测量结果;6.稍等1-2分钟,开始第二次循环,从(4)开始操作,共3次循环。

五、实验原理活塞压力计的工作原理是基于作用在活塞下端面流体压力所形成的力与施加于活塞上端砝码所产生的重力相平衡的原理制成。

六、注意事项1.旋转手轮和针阀,防止用力过猛,形程中,要求保证压力的单调性,如果压力不足或超值,重新进行循环,切忌不要回转手轮,因为压力计会迟滞。

2.严禁未开油杯针阀时用手轮抽油,以防止破坏传感器,或在电压表输出值不变的情况下,严禁连续转动手轮数圈。

七、实验数据记录八、实验数据处理作图并计算出其迟滞(升降回程最大误差与标准压力表最大示值之比)灵敏度(直线斜率)、重复性以及线性度(标定线与拟合直线最大偏差)九、思考题1.用活塞压力计校准压力表时有哪些因素会影响校准精度?。

传感器原理与应用实验指导书

传感器原理与应用实验指导书

《传感器原理与应用》实验指导书朱蕴璞王芳编写孔德仁审定南京理工大学二〇〇九年九月实验须知1.传感器实验仪是贵重实验设备,请在每个实验前认真阅读实验指导书,尤其是每个实验最后的实验注意事项。

2.实验仪器电源的开关原则:连接测量线路,确认准确无误后,开启仪器电源;实验完毕,关闭仪器电源,拆除测量线路。

3.稳压电源不可对地短路。

4.实验过程中,心要细、动作要轻,不可有强制性机械动作出现。

5.实验严格按操作规程进行,否则,出现损坏责任自负。

6.实验完毕,请一切恢复到实验前的状态,然后离开实验室。

目录实验一传感器静态标定实验 (3)实验二应变式传感器特性实验 (10)实验三电感式、涡流式、电容式、霍尔式位移传感器特性实验 (14)实验四重量测量实验(选做) (25)实验五转速测量实验 (29)实验六温度实验 (34)实验一 传感器静态标定实验(注:“压力传感器的静态标定及特性指标的求取”与“光纤位移传感器静态标定及特性指标求取“两实验取其一。

)压力传感器的静态标定及特性指标的求取1、实验目的掌握压力传感器静态标定的基本方法以及压力传感器的静态特性指标的求取。

2、实验内容(1)组建压力测试系统;(2)学习压力测试系统的标定过程; (3)计算压力测试系统静态特性指标。

3、实验原理及方法4活塞压力计一台,数字万用表一只,动态电阻应变仪一台,压力表一只。

5、实验步骤(1)反复排除活塞压力计油腔内的空气,最后将压力泵手轮摇出。

(2)把压力传感器装在活塞压力计的联接螺帽上,关闭油杯。

(3)传感器输出接入可调零的桥盒,电桥输出接入数字万用表。

当输出量很小,无法直接用万用表测得时,可先将传感器接入动态电阻应变仪桥盒(注意电桥的连接),桥盒的另一端连线接应变仪输入(选择一个通道);将应变仪专用电源接好;电阻应变仪电压输出接数字万用表。

(说明:后者标定是整个系统标定,所求得的指标也为系统指标)(4)压力表指示为零时,开启仪器电源(注意:开启仪器电源前应变仪各通道应处于关闭状态),将应变图 1 压力传感器标定系统原理框图仪灵敏度旋钮放在适中位置,按照动态电阻应变仪调零规则(应变仪衰减档从大到小),各档分别调节电阻、电容平衡旋钮将系统输出调整为零,最后将应变仪衰减档放在适中位置上。

JJG--860—94压力传感器(静态)检定规程

JJG--860—94压力传感器(静态)检定规程

JJG--860—94压力传感器(静态)检定规程压力传感器(静态)检定规程JJG 860—94本规程主要起草人:许新民(航空工业总公司第304研究所)郭春山(中国计量科学研究院)张首君(中国计量科学研究院)参加起草人:陈景文(航空工业总公司第304研究所)目次一概述二技术要求三检定条件四检定项目和检定方法五检定结果处理和检定周期附录1 压力传感器检定记录格式附录2 检定证书内容格式(1)附录3 检定证书内容格式(2)压力传感器(静态)检定规程本检定规程适用于新制造、使用中和修理后的压力传感器的静态检定。

一概述压力传感器是一种能感受压力,并按照一定的规律将压力转换成可用输出信号(一般为电信号)的器件或装置,通常由压力敏感元件和转换元件组成。

按压力测试的不同类型,压力传感器可分为表压传感器、差压传感器和绝压传感器等。

二技术要求1 压力传感器的准确度等级和允许基本误差应符合表1规定。

表1准确度等级允许基本误差准确度等级允许基本误差0.01 ±0.01%F·S 0.5 ±0.5%F·S 0.02 ±0.02%F·S 1 ±1%F·S 0.05 ±0.05%F·S 1.5 ±1.5%F·S 0.1 ±0.1%F·S 2.5 ±2.5%F·S 0.2 ±0.2%F·S 4 ±4%F·S2 压力传感器的配套应完整,外观不应有影响计量性能的锈蚀和损伤。

各部件应装配牢固,不应有松动,脱焊或接触不良等现象。

3 压力传感器在外壳上或外壳的铭牌上应清楚地标明其型号和编号。

压力传感器的名称、测量范围、准确度等级、制造厂家、制造日期及工作电源可在外壳或铭牌上标明,或在相应的技术文件中说明。

4 差压传感器的高压(+)和低压(-)接嘴应有明确的永久性标志。

压力传感器静态标定实验

压力传感器静态标定实验

·压力传感器的静态标定实验一、实验目的要求1、了解压力传感器静态标定的原理;2、掌握压力传感器静态标定的方法;3、确定压力传感器静态特性的参数。

二、实验基本原理标定与校准的概念新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。

例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。

但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢?这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。

简单地说,利用标准器具对传感器进行标度的过程称为标定。

具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1所示。

图1 压电式压力传感器输入――输出关系校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。

因此,校准是指传感器在使用中或存储后进行的性能复测。

在校准过程中,传感器的某些指标发生了变化,应对其进行修正。

标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。

标定的基本方法标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线。

例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图2所示。

压电式传感器标定实验

压电式传感器标定实验
17
2020/11/25
2、量程调节
量程调节
18
2020/11/25
3、触发方式调节
1.按“Trigger” 键
2.按照要求设 置触发方式
19
4、触发电平设置
2020/11/25
判断标准: (1)合适:“Stop”——“Armed”——“Ready”——“Trig’s”——“Stop” (2)噪声触发:“Stop”——“Armed”——“Trig’s”——“Stop”,需增大触发电压 (3)不能触发: “Stop”——“Armed”——“Ready”,需减小触发电压
2020/11/25
❖第三步:实验数据获取
记录曲线及压力跃起时间 打开激波管阀门破膜 示波器“Ready” 放大器置于“工作”
14
2020/11/25
❖15209882093 ❖小白楼201
15
2020/11/25
示波器
16
2020/11/25
1、开机
1.按下“运行/停止”
2.按下“强制触发”
激波管膜片安装
26
2020/11/25
充气及破膜
1.充气时两个 阀门均需拧紧 2.破膜时拧开 靠墙一端的阀 门,听见破膜 声后拧开另一 个阀门放气
27
❖ 第三步:实验数据测量
2.放大器置 于“工作”
1. 砝码 加载
3. 示波器 “运行”, 卸载、触

4.放大器“复 位”,光标测
出电压差
8
5.改变砝码, 重新测量
2020/11/25
2、动态标定
1.基本概念
Outline 2.实验设备
3.实验内容及步骤
9
2.1 基本概念

力传感器标定及称重实验指导书

力传感器标定及称重实验指导书

力传感器标定及称重实验指导书一. 实验目的通过本实验了解和掌握力传感器的测量原理和方法。

二. 力传感器工作原理简介电阻应变计是利用物体线性长度发生变形时其阻值会发生改变的原理制成的,其电阻丝一般用康铜材料,它具有高稳定性及良好的温度、蠕变补偿性能。

测量电路普遍采用惠斯通电桥(如图1所示),利用的是欧姆定律,测试输出量是电压差。

图1 惠斯通电桥本实验采用的电阻应变计采用的是惠斯通全桥电路,当物料加到载物台后,4个应变片会发生变形,产生电压输出,经采样后送到计算机由DRVI快速可重组虚拟仪器平台软件处理。

因为电桥在生产时有一些误差,不可能保证每一个电桥的电阻阻值和斜率保持一致。

所以,传感器在使用之前必须要经过线性校正,这是由于计算机得到的是经过采样后的数字量,与真实质量之间是一种线性关系,需要由标定来得到这个关系。

图2力传感器实物在实验中采用的力传感器是LYB-5-A型应变力传感器具有精度高、复现性好的特点。

其外形见图2。

需要特别强调的是:由于力传感器的过载能力有限(150%),所以,在实际使用过程中应尽量避免用力压传感器的头部或冲击传感器。

否则,极易导致传感器因过载而损坏!三. 实验仪器和设备1. DRVI可重组虚拟实验开发平台1套2. 蓝津数据采集仪(LDAQ-EPP2)1套3. 开关电源(LDY-A)1套4. 称重台1个四. 实验步骤及内容1. 将称重台的传感器输出线与实验台上对应的接口相连。

2. 启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI采集仪主卡检测”进行服务器和数据采集仪之间的注册。

联机注册成功后,分别从DRVI工具栏和快捷工具条中启动“DRVI微型Web服务器”和“内置的Web服务器”,开始监听8600和8500端口。

3. 打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。

实验一 压电晶体传感器基本特性静态标定实验

实验一  压电晶体传感器基本特性静态标定实验

实验一 压电晶体传感器基本特性静态标定实验一、实验目的与要求1.1 观察压电晶体传感器的结构,获得有关的感性认识; 1.2 掌握YU-6活塞式压力计的工作原理及使用方法; 1.3 学会压力计(压电晶体传感器)的校验标定方法;1.4了解本实验中测量误差的主要来源。

二、实验系统原理图三、实验主要设备及仪器仪表本实验共有6套测试装置,每套装置各配:CY -YD 203压电式传感器一只;YU-6活塞式压力计一台;YE5850电荷放大器一台;PZ114型直流数字电压表一台。

3.1 CY -YD 203压电式传感器该传感器为压电晶体传感器。

其作用力方向垂直于受压面,因此受压面本身(传感器的外壳)便是一个电极,位于传感器内部的另一个电极与传感器尾部的内孔相连。

将专用接头旋于传感器尾部,便可输出压电晶体两电极间的电位差。

活塞式压力计是利用连通器原理工作的,其结构如图3所示: 活塞式压力计主要适用于校验低于0.25级精度的精密压力表,亦可用来校验低一级的活塞式压力计、各种工业用压力表或其它各类压力测量仪器。

通常用专用砝码对压力表等进行校验,本次实验为方便起见则是利用0. 25级的标准压力表对压电传感器进行静态标定,但这种方法的测量误差会更大些。

压力计适合应在环境温度为20±5℃,相对湿度不大于80%的条件下工作。

当温度超过20±5℃时,应用式Δp =p (a 1+a 2)(20-t )进行温度修正。

其中21,a a 为活塞和活塞缸材料的线性膨胀系数。

本压力计的活塞杆材料为GC r 15滚珠轴承钢,61107.11-⨯=a (1/℃),活塞缸材料为铝铁锰青铜,62106.17-⨯=a (1/℃);t 为环境温度(℃)。

图 1图 2该压力计的基本参数为:型号:YU-600 测量范围:1~60 MPa 活塞公称面积:1(cm)2 承重托盘及活塞公称质量:1.020kg ,产生压力:1 MPa专用砝码公称质量:1.02kg4块;5.10kg11块 工作液体及传压介质:蓖麻油(酸值<1.6mgKOH/g)压力计重量(连砝码):80kg 联接螺帽的螺纹:M20×1.5精度等级:2等。

压力传感器静态标定指导书

压力传感器静态标定指导书

用以上数据绘制电荷量-压力曲线.(例)
电荷量(pc)
90
80Biblioteka 706050y=13.5728×x-0.2697 40
30
20
10
0
-10
0
1
2
3
4
5
6
压 力 (bar)
用最小二乘法拟合后的直线是: y = 13.5728 × x − 0.2697
可见, 静标实验测得的石英传感器的电荷灵敏度是 13.5728pc/bar。
注意:活塞式压力计底盘重 0.4 千克力/平方厘米, 不要漏掉。另外, 由于 噪声的影响, 使得最小压力值受到限制, 试验者可以试着把可以测量的最小压 力值找出来, 这里的 0.7 千克力/平方厘米, 只是一个参考值。
五、数据处理
目的:用所得数据绘制电荷量 pc –压力 bar 曲线, 并用最小二乘法求出传
(3)放大器灵敏度档置于 10.0 pc/unit (即将灵敏度左边档置于 10, 中间和右 边档置于 0), 输出置于 10 mv/unit, 下限频率置于 L 档(此时下限频率小 于 0.0001HZ),上限频率置于 0.3kHz.,输入端选择电荷输入。
注意:将放大器的灵敏度设置在 1-10.99pc/unit 时, 调节下方的×10 档置于 下方, 面板上的左边小数点亮。
三、测试仪器设备
1 记忆示波器 1 台(TDS210); 2 电荷放大器 YE5850 一台; 3 活塞式压力计 1 台 4 石英压力传感器 CY-YD-205 1 只;
三、实验内容:
1 熟悉记忆示波器和电荷放大器使用方法; 2 用活塞式压力计标定传感器的电荷灵敏度系数;
四、实验步骤:
1. 熟悉记忆示波器,看清各个调节旋钮的位置,对照说明书了解:

压电式传感器标定实验

压电式传感器标定实验
30
y=13.5728 ?x-0.2697
20
10
0
-10
0
1
2
3
4
5
6
压 力 (bar)
4
1.2 实验设备
2020/4/6
活塞式压力机
电荷放大器
示波器
石英传感器
5
1.3 实验内容及步骤
2020/4/6
?第一步:实验接线
6
1.3 实验内容及步骤
2020/4/6
?第二步:参数设置及使用方法
示波器
14
2020/4/6
?15209882093 ?小白楼201
15
2020/4/6
示波器
16
2020/4/6
1、开机
1.按下“运行/停止”
2.按下“强制触发”
17
2020/4/6
2、量程调节
量程调节
18
2020/4/6
3、触发方式调节
1.按“er” 键
2.按照要求设 置触发方式
19
2.放大器置 于“工作”
1. 砝码 加载
3. 示波器 “运行”, 卸载、触

4.放大器“复 位”,光标测
出电压差
8
5.改变砝码, 重新测量
2020/4/6
2、动态标定
1.基本概念
Outline 2.实验设备
3.实验内容及步骤
9
2.1 基本概念
2020/4/6
?激波管中的(1)区和(5)区
10
2.2 实验设备 激波管(含压气机) 电荷放大器 示波器 石英、压电陶瓷传感器
26
2020/4/6
充气及破膜
1.充气时两个 阀门均需拧紧 2.破膜时拧开 靠墙一端的阀 门,听见破膜 声后拧开另一 个阀门放气

《自动检测技术》实验指导书

《自动检测技术》实验指导书

《自动检测技术》实验指导书北京交通大学机电学院测控系2006年9月实验一压力传感器的静态标定实验一、实验目的要求1、了解压力传感器静态标定的原理;2、掌握压力传感器静态标定的方法;3、确定压力传感器静态特性的参数。

二、实验基本原理传感器的标定,就是通过实验建立传感器输入量和输出量之间的关系,同时也确定出不同使用条件下的误差关系。

压力传感器的静态标定,主要指通过一系列的标定曲线得到其静态特性指标:非线性、迟滞、重复性和精度等。

三、实验系统1、系统连接2、实验设备活塞式压力计(型号:YS/YU-600型)、标准压力表(精度:0.4级,量程:0~10MPa)、被标定的压力传感器(型号:AF1800,量程:0~10MPa)、数字万用表、标准砝码、工作液体(蓖麻油)。

3、活塞式压力计结构原理测量活塞以及砝码的重力与螺旋压力发生器共同作用于密闭系统内的工作液体,当系统内工作液体的压力与此重力相平衡时,测量活塞1将被顶起而稳定在活塞筒3内的任一平衡位置上。

这时有压力平衡关系:g m m Ap )(10+=式中:p 为系统内的工作液体压力;m 与m 0分别为活塞与砝码的质量;g 为重力加速度;A 为测量活塞的有效面积。

对于一定的活塞压力计,A 为常数。

在承重托盘上换不同的砝码,由螺旋压力发生器推动工作活塞,工作液体就可处于不同的平衡压力下,因此可以方便而准确地由平衡时所加的砝码和活塞本身的质量得到压力p 的数值。

此压力可以作为标准压力,用以校验压力表。

如果把被校压力表6上的示值与这一准确的压力p 相比较,便可知道被校压力表的误差大小。

也可以关闭a 阀,在b 阀上部接入标准压力表,由压力发生器改变工作液压力,比较被校表和标准表上的示值进行校准。

同样,将被校压力表换成压力传感器,就可以通过比较压力传感器测量的压力值和标准表上的示值进行校准,对压力传感器进行静态标定。

4、扩散硅压力传感器扩散硅压力传感器在单晶硅的基片上扩散出P 型或N 型电阻条,接成电桥。

线性压力传感器的静态标定

线性压力传感器的静态标定

1996年9月Sep.1996 天 津 大 学 学 报JOURNAL OF TIANJIN UNIVERSITY 第29卷 第5期Vo l.29 N o.5线性压力传感器的静态标定董健康*(中国民用航空学院,天津,300300)韩庆奎(天津大学) 本文1994年9月8日收到.1995年3月14日收到修改稿. *1960年生,男,硕士,讲师,Born in 1960,m ale ,M ,lecturer .摘要 以静态标定理论为基础,对原航空工业部线性压力传感器静态检定标准存在的问题进行了研究,并提出一种线性压力传感器全自动静态标定方法.该方法能减少过去对压力标准源精度的依赖及检定循环次数,提高标定工作效率,降低标定设备的成本,弥补现行标准中的不足.关键词:标准,传感器,静态标定分类号:T P212A STUDY ON THE STATIC CALIBRATION FOR THELINEAR PRESSURE TRANSDUC ERSDong Jinkang(Civ il Av iation Institute o f China,T ianjin,300300)Han Qingkui(T ianjin U niver sity ) Abstract T o impr ov e the curr ent met ho d o f stat ic calibr atio n fo r linear pressure tr ansduc-ers,this pa per puts for w ard a new m ethod.It can r ealize the autom atic st atic calibr ation o f lin-ear pr essure t ransducers o n t he basis o f modern er ro r theor y,by analy sing t he pr oblems in standar ds issued by the Av iat ion Industry M inistr ys co ncer ning the linear pressure transducer calibr ation.U sing this met hod,w e can attach less impo rt ance o n the pr ecisio n of t he pr essur e standar d so urce ,and cut do wn the number o f cycles o f needed ca libr atio n ,so that the efficiency of calibrat ion can be g reatly incr eased and the cost o f t he equipment r educed,and the disa dv an-tag es in t he cur rent standa rd remedied .Key words :st andar d ,tr ansducer ,stat ic ca libr atio n1 目前线性压力传感器静态标定中存在的问题1.1 标定原理 目前国际及国内传感器的检定标准尚未统一,但无论是国际标准还是国家及各部颁标准,数据处理总体方法及其理论依据是一致的,故可根据原航空工业部部颁标准对现使用的静态标定数据的处理方法作一简介. 在进行标定数据处理时,对实验测得数据做如下假设:(1)每个校准点上多次测量值是相互独立的,且各测量值与传感器输出均值之差 服从正态分布,即 i ~N (0, );(2)在整个量程上,每次测量都是等精度的,即传感器输出中随机误差的标准偏差均相等;(3)在每个校准点上,相同行程多次测量的系统误差均相等. 根据上述假设,航空部检定标准中规定,对被标传感器的正反行程各做3~5次测量,且每次测量中设定6或11个校准点.若设第i 个校准点反行程的第j 次测量值为y Dij ,则可用下式表达 y Dij =y Di + j(1)式中:y Di 为反行程第i 个校准点上传感器输出均值; j 为第j 次测量值中随机误差分量,服从零均值正态分布.按最大似然估计法,可对m 次测量求取均值与标准偏差的估计值 y Di =1m mj =1y D ij(2) SDi =1m m j =1(y Dij -y D i )2(3) 经证明y D i 是y Di 的无偏估计,且其估计的稳定性用下式表示 D (y D i = 2Di /m (4)式中: D i 是测量值的标准偏差,其无偏估计为 S ′Di =1m -1 mj =1(y Dij -y Di )2(5) 基于上述理论,一般检定标准中规定正反行程及平均校准曲线均用式(2)求得,其中用yDi 近似代替了y Di 值.1.2 现行标定方法中的问题1.2.1 重复性计算中包含了系统误差 在原航空工业部线性压力传感器静态检定标准中(以下简称标准)规定,对正反行程的检定,新研制定型的传感器应连续进行5次循环,即传感器测试样本容量为3~5次.在实际操作时,如按每次检定6点计算,一个循环的检定大约需20min,则整个检定约需1~1.5h,在此较长的时间内保证一切条件不变,且传感器本身特性不发生变化是比较困难的.如此将给标定结果带来附加误差,由传感器经较长时间的漂移引起,因此为系统误差.从实测数据也可看出此点.表1列出了一组传感器的测试数据(选自航空部标准中的典型数据),可以看出,每次测试数据都比前次在同一点的测试值稍大.这是由传感器通电后的漂移作用引起,其产生的误差不是随机误差,因此不服从正态分布,如果用随机误差方法处理,将使重复性指标的计算中包含系统误差成分.在此可用下式表示测得数据 y ij =y i +e ij + j(6)式中:y i 表示被标传感器在第i 个校准点上的输出均值;e ij 表示在第i 个校准点上第j 次测量时的漂移分量; j 表示按零均值正态分布的随机分量.对式(6)取其数学期望 E (y ij )=E (y i )+E (e ij )+E ( j )=y i +E (e ij )(7) 可见测试数据的数学期望并不等于传感器的输出均值.・710・天 津 大 学 学 报 1996年9月 将式(6)代入式(2)中,有 y i =1m m j =1y ij =1m m j =1(y i +e ij + j )≈y i +1m m j =1e ij =y i +e -i (8) 将式(8)代入式(5)中,得 Si =1m -1 m j =1 2j +1m -1 mj =1[(e ij -e -i )2+2 j (e ij -e -i )](9)式中:1m -1 mj =1[(e ij -e -i )2+2 j (e ij -e -i )]项是S i 的误差因素,若(e ij -e -i )>2 j ,该误差大于零;当(e ij -e-i )<2 j 时,该误差也可能大于零.因此,按标准计算的重复性指标一般偏大,且随着漂移影响的增大而增大. 表1 压力传感器校准数据Tab .1 The calibration data of pressure transducers压力(k gf/cm 2)被标传感器输出(mV)123450.0- 2.744- 2.714- 2.681- 2.672- 2.6630.20.5600.6100.6370.6520.6570.4 3.945 3.987 4.022 4.037 4.0420.67.3857.4227.4517.4747.4700.810.87510.92010.94010.94410.9641.014.42014.46714.46414.47814.4921.014.42014.46714.46414.47814.49200.810.94410.98110.98510.98511.0110.67.4897.5177.5187.5507.5510.4 4.052 4.090 4.107 4.106 4.1220.20.6550.6800.6980.7080.7210 - 2.714- 2.681- 2.664- 2.681- 2.6401.2.2 被检传感器的重复性包含了压力标准源的重复性 标准中假设标准源的误差忽略不计,但实际情况下,如果标准源的精度仅为被标传感器精度的3~5倍,则标准源的误差对计量检定结果影响较大. 由于系统误差对重复性指标的计算无影响,为方便起见,暂忽略系统误差,认为压力标准源和传感器的输出只含随机误差成分,如图1所示,其中 x 为标准压力源输出的标准压力值,j 为标准源输出的随机误差成分,且 j ~N (0, x ), y 为 x 输入下对应压力传感器的输出均值, j 为传感器的随机误差.设工作特性直线为 y =ax +b(10)则有 y j =a( x + j )+b + j =ax +b +a j + j (11)求得测量子样的方差・711・ 第29卷第5期 董健康等:线性压力传感器的静态标定 图1 系统精度的合成 Fig .1 The composition of system precision D(y j )=E(a 2 2j )+2E(a 2j j ) +E( 2j )(12)由于 j 、j 均服从零均值正态分布,且 j 与 j 相互独立,因此式(12)可写为 D(y j )=a 2 2x + 2y(13)令 2=D(y j ),则通过标定得到的被标传感器的标准偏差为 =(a x )2+ 2y(14) 由上式可知,用 代替 y 计算重复性指标,将使结果大于实际值,且这一偏差将随着被标传感器工作特性斜率的增大而增加.1.2.3 被检传感器的标定指标中包含了 标准压力源系统误差成分 在1.2.2节中,为讨论方便,忽略了压力标准源中系统误差对标定结果的影响.但在实际标定过程中,标准源的系统误差同样会给标定结果带来影响.这一影响主要反映在系统误差指标中.若设标准压力源的系统误差用e x 表示,被标传感器的系统误差用e y 表示,且设e 表示对被标传感器标定得到的系统误差,则三者的关系为 e =ae x +e y =e y (ae xe y +1)(15) 式(15)中,若ae x /e y 1,则e ≈e y ,否则在标定结果中将包含了标准源的系统误差,最终使标定结果偏大或偏小,造成标定指标的不可信.1.2.4 用测量点的重复性估值代替整个量程上的重复性 标准中规定,使用中的传感器校准点为6个,新研制传感器的校准点为11个.如果测量量程较大,则点与点之间的距离较大,非校准点上的真实情况未能反映.此外,在计算传感器重复性时,是按每个校准点的重复性估计的,非校准点上的重复性并未涉及,所以由标定得到的重复性指标只是对传感器少数几个校准点上重复性的综合结果,故很难反映传感器在整个量程上的真实重复性指标.1.2.5 每个校准点上的测试次数较少 标准中规定,每个校准点上的测试随机误差服从正态分布,而正态分布的均值和标准偏差用其估计值代替.由于估计值y i 与Si 是统计量,其估计精度如式(4)(样本容量为m ),总体数字特征估计精度随样本容量的增大而增高.因此按标准中规定的容量,估计精度不是很高.2 静态标定新技术的原理方案 通过对标准中存在问题的研究,可以归纳出以下两条解决问题的途径. (1)利用计算机的快速采集特点增加样本容量及校准点数. (2)利用计算机与压力源配合,使压力缓慢上升,进而在正反程完成快速的准静态标・712・天 津 大 学 学 报 1996年9月定,减弱了标定结果对压力标准源精度的依赖. 图2所示新型自动静态标定系统的最大特点是不需要压力的精确调节装置,并且可以在两个甚至一个循环的测试过程中完成压力传感器的静态标定,具有易实现自动化,硬设备价格低廉,标定速度快之优点. 在图2系统工作之前,先对贮压罐充压,使其内部压力大于被标传感器的工作压力,在系统开机工作时,先打开电磁阀K 1,关闭K 2.此时靠气泵贮压罐与系统气路内的压力差,使气流通过K 1流向系统气路,并使气路内压力缓慢上升,同时系统进入正行程标定.当系统正行程标定结束后,由计算机控制关闭K 1,打开K 2使气路与大气连通.由于气路内压力大于大气压力,使得气流在压力差的作用下流向大气,气路内压力下降,与此同时,系统进入反行程标定过程,直至气路内相对压力回零,系统标定完毕.图2 自动标定系统连接Fig .2 Automatic calibration system block diagram 由于压力随时间变化是连续且单调的,必然由一个方向通过各校准点,为了叙述方便,设某被标传感器的量程为0~50kPa,在该量程范围内进行6点校准,若按平均分配校准点原则,各校准点位置如图3所示. 在系统工作时,设标准定位通道的A/D 处于连续转换状态,其转换速度尽可能快(系统中实际转换速度为100 s/次).计算机连续采集标准定位通道数据,并与机内存储的设定值进行比较.如果二者相等,则程序控制转入标定数据的采集.由此,标准定位通道完成了确定设定值(即校准点)位置的工作.值得说明的是,在标准定位通道中使用的标准传感器精度应大大高于被标传感器,其中主要是重复性指标应相当高,而系统误差指标可以适当放宽.由于在系统设计过程中,可以对标准传感器进行标定,因此标准传感器的静态校准曲线是预知的,该曲线存于计算机内,以便系统定位通道工作时,解算设定值之用. 在计算机确定了校准点位置继而转入标定数据采集通道之后,计算机控制该通道按等时间间隔进行数据采集,顺序如下: 标准传感器数据 被标传感器数据1 被标传感器数据2 被标传感器数据m 标准传感器数据 此顺序采集有两个目的:(1)可以计算出被标传感器标定数据中的输入压力值.在第i・713・ 第29卷第5期 董健康等:线性压力传感器的静态标定个校准点处标准传感器数据对应的输入值p i0、p im+1为已知数,而被标传感器m次测试数据对应的输入值p i1,p i2,…,p im为未知数,若设在小范围内压力随时间的变化近似呈线性关系,则各标定数据对应的输入值为 p ij=p im+1-p i0m+1j+p i0(16)图3 校准点位置Fig.3 The location of calibration point图4 标定数据分布Fig.4 The distribution of calibration data在实际工作中,由于速度很快,完成所有数据采集所需时间很短,因此完全可以满足上述假设.(2)对被标传感器进行多次采集可以增加样本容量,此外还可减少标定循环次数,即用每次循环所增加的样本容量来弥补由于减少循环次数带来的影响. 使用该系统进行静态标定时,其指标计算方法所依据的理论没有改变,只是具体指标的计算方法做相应的变动,主要区别在于重复性指标及各校准点均值的计算.图4为该系统在某个校准点处被标传感器标定数据的分布.各标定数据均值的连线组成一条直线,因此可以用一阶最小二乘回归的方法计算出此直线.设第i个校准点处第j次测量值为 y ij= ij+ ij(17)式中: ij~N(0, ),最小二乘回归直线为 yij=ai p ij+bij(18) ai=mj=1p ij y ij-y-i m j=1p ijmj=1p2ij-p-i m j=1p ij(19) bi=y-i-ai p i(20)式(19)中:m表示样本容量:i表示第i个校准点:y-i表示y ij的平均值;p-i表示p ij的平均值. 在计算重复性时,将p ij代入式(18)中,计算出yij并用yij作为 ij的估计值,可以证明该估计是无偏的. 将式(17)进行变换即可得到随机误差 ij的计算公式 ij=y ij- ij≈y ij-yij(21)・714・天 津 大 学 学 报 1996年9月 将式(21)代入式(5)可得第i 个校准点上随机误差的标准偏差 Si =1m -1 mj =12ij (22)此后的计算均与标准中方法一致.为了计算迟滞及线性度等指标,还应求出各校准点上传感器输出的均值,在此用y -i 和p -i 作为第i 个校准点上的均值.可以证明,(y -i ,p -i )一定在均值的最小二乘法回归线上,该系统标定中系统误差指标及精度合成方法与标准相同. 目前该系统已进行了测试实验,结果基本上能反映被标传感器的实际情况,但在系统工作稳定性方面尚有一些问题需进一步改进.例如,在考虑标定设备的结构方面,应尽可能使标准传感器和被标传感器的压力采样点靠近,并在压力采样点设置一个容腔,以缓冲气压扰动,逼近假设条件,减少系统工作误差等.参 考 文 献1 周秀银.误差理论与实验数据处理.北京:北航出版社2 张世箕.测量误差及数据处理.北京:科学出版社,19793 W ax man M .Automated Pres sure Reyu lator.Review Scientific Instrum ent,1984,55:1467~1470・715・ 第29卷第5期 董健康等:线性压力传感器的静态标定。

压力传感器的标定实验

压力传感器的标定实验

压力传感器的标定实验为了确保测试仪器的精确度和灵敏度,保证测试仪器测量数据的误差不超出规定的范围,应进行测试仪器示值与标准值校对工作,这一工作过程称为对测试仪器的标定(或称为率定)。

测试仪器的标定分为强制性检验和经常性自检。

标定的方法可分为对单件测试仪器进行标定和对整个测试系统进行标定。

一、实验目的学习结构试验常用力传感器原理、使用方法并掌握力传感器的标定。

二、实验仪器及设备1 静态应变仪一台2 空心圆管一个3.电阻应变片,万用表,电烙铁,焊锡,游标卡尺等工具一套三、实验原理圆筒式力传感器应变片粘贴在弹性体外壁应力均匀的中间部分,并均匀对称地粘贴多片。

因为弹性元件的高度对传感器的精度和动态特性有影响。

所以对空心圆柱一般取H≥D-d+l,式中H为圆柱体高度,D为圆柱外径,d为空心圆柱内径,l 为应变片基长。

贴片在圆柱面上的展开位置及其在桥路中的连接,如图2-20所示,其特点是R1、R3串联,R2、R4串联并置于相对位置的臂上,以减少弯矩的影响。

横向贴片作温度补偿用。

柱式力传感器的结构简单,可以测量大的拉压力,最大可达107N。

(1)打座、清洗:试件表面处理,为了使应变片牢固地粘贴在试件表面上,必须将要贴片处的表面部分打磨,使之平整光洁。

清洗使之无油污、氧化层、锈斑等。

(2)定位划线(3)贴片:粘贴应变片,并压合,使粘合剂的厚度尽量减薄(4)焊线:引线的焊接处固定以及防护与屏蔽处理等(5)接桥路(6)封装(7)标定结论:力与ε是呈线性关系的,使用标准的计量仪器对所使用仪器的准确度(精度)进行检测是符合标准的.通过这次试验我了解到了一些有关传感器的知识,并且动手做了一个电测试验的力学传感器,我们八人合作共同完成了八个应变片的定位焊接工作。

并且在老师的指导下完成了标定工作,而在这一过程中我们还是遇到了很多麻烦,例如贴片后线路太复杂,导致与承载体接触,标定时始终无法调零成功,这说明我们的动手能力还有待提高。

压力传感器静态特性测试实验报告

压力传感器静态特性测试实验报告
这学期的医学仪器及设备试验课程,虽然没有严格的考核和要求,但是让我们真正接触了医疗仪器,可谓作用巨大,以前的各种实验和课程都是各种基础及理论,可以比作大厦根基,但是对这个专业乃至这个行业都缺乏全面地认识,通过课程中多实际产品的操作及参观等活动,对我本人可谓启发巨大,医疗行业的任何产品都是很多前人心血的结晶,我们想做到正真的创新是谓难上加难,现在站在巨人的肩膀上是展现自我的不二选择!
图1.输液泵系统框图
2.1.1微电脑系统:是整个系统的“大脑”,对整个系统进行智能控制和管理,并对检测信号进行处理,一般采用单片机系统。
2.1.2泵装置:是整个系统的“心脏”,是完成输液的动力源。一般是在微电脑控制下的步进电机来提供动力的。主要由泵片、步进电机和传动系统组成。
2.1.3检测装置:主要是各种传感器,如红外滴数传感器(负责对液体流速和流量的检测)、压力传感器(负责堵塞及漏液的检测)和超声波传感器(负责对气泡的检测)等,它们可感应相应的信号,这些信号经过放大处理后,送入微机系统进行信号处理,并得出控制指令,然后进行相应的控制操作。
2.1.4报警装置:传感器感应到的信号经微电脑处理后,得出报警控制信号,再由报警装置响应,引起人们的注意,同时进行正确的处理。主要有光电报警(发光二极管)和声音报警(扬声器和蜂鸣器)等。
2.1.5输入及显示装置:输入部分负责设定输液的各参数,如输液量和输液速度等。显示部分负责显示各参数和当前的工作状态等,多采用LED数码管显示
2.2.12.2.1指状蠕动泵:目前广泛使用的是指状蠕动泵(finger like peristaltic pump),又称线性蠕动泵(linear peristaltic pump),它体积小,重量轻,定量准确,使用方便,输液管安装方便。如图2所示,这种泵有一根凸轮轴,凸轮轴上有多个(一般为12个)凸轮,这些凸轮的运动规律相差一定的角度,每个凸轮与一个“手指”(即滑块)相连。

10-1 压力传感器的静态标定

10-1 压力传感器的静态标定
活塞部分由具有精确截面的活塞、活塞缸及与活塞直接相连的承重托 盘及砝码组成。
压力计是利用活塞和加在活塞中的砝码重量所产生的压力与手摇压力
泵所产生的压力相平衡的原理进行标定工作,其精度可达 ±0.05 % 以上。
§10-1 压力传感器的静态标定 标定时,把传感器装在连接螺帽上,然后,按照活塞压力计的操作
上面的标定方法不适合压电式压力测量系统,因为活塞压力计的加 载过程时间太长,致使传感器产生的电荷有泄漏,严重影响其标定精度。 所以对压电式测压系统一般采用杠杆式压力标定机或弹簧测力计式压力标 定机。
§10-1 压力传感器的静态标定
图10-3是杠杆式压力标定机的示意图。标定时,按要求的压力间距,选 定待标的压力点数,按下式计算所需加的砝码重量 W
§10-1 压力传感器的静态标定
式中
P F S
P——所需标定的受力面积。
压力标定曲线的绘制,如同活塞式压力计中所述的相同,并可算出其 静态特性参数。
规程,转动压力泵的手轮,使托盘上升到规定的刻线位置;按所要求的压 力间隔,逐点增加砝码重量,使压力计产生所需的压力;同时用数字电压 表记下传感器在相应压力下的输出值。这样就可以得出被标定传感器或测 压系统的输出特性曲线(即输出与压力间的关系曲线)。根据这条曲线可 确定出所需要的各个静态特性指标。
在实际测试中,为了确定整个测压系统的输出特性,往往需要进行 现场标定。为了操作方便,可以不用砝码加载,而直接用标准压力表读取 所加的压力。测出整个测试系统在各压力下的输出电压值或示波器上的光 点位移量h,就可得到如图10-2所示的压力标定曲线。
§10-1 压力传感器的静态标定
目前,常用的静态标定装置有:活塞压力计、杠杆式和弹簧测力计式 压力标定机。

力准lz-801f压力传感器说明书

力准lz-801f压力传感器说明书

力准lz-801f压力传感器说明书为了进行精确的测试,应校准压力测试传感器。

静态测试只需要静态校准。

要求动态响应的压力传感器需要动态标定。

(1)静态标定。

静标定是指标定系统在静态压力作用下确定压力传感器输出和输入之间的对应关系,确定反映传感器精度的相关指标。

为取得较好的标定精度,作为标定基准的仪器,其精度至少比标定传感器高一个数量级。

常用的静态标定方法有:砝码、杠杆秤、标准测力环、标准测力环、标准测力仪等。

(2)动态标定。

压力传感器动态标定的目的是确定其动态特性,即频率或脉冲响应,从而确定其工作频率范围和动态误差。

动态校准可用正弦响应法和瞬态响应法。

前一种方法是用正弦激振器输入激振信号,得到正弦响应。

正激振器有活塞筒正弦压力发生器、凸轮喷嘴正弦压力发生器等多种装置。

该方法利用专用装置对瞬变力进行振动激励,得到瞬态响应曲线,根据测试记录的数据,用相似方法得到频率特性。

柱塞缸正弦压力源结构图。

柱塞的行程是固定的,通过调节缸体体积可以改变输出压力的幅值,从而实现了输出压力的幅度和频率范围。

该凸轮表面轮廓为正弦波形,其气阻随凸轮面形状的变化而变化,产生压力信号。

当压力传感器的振幅较大、频率范围较大时,其动态响应也是确定的,应答器可以应用于压力传感器的高速响应。

由于激波管加工精度高、设备复杂,在工程实践中,有时采用冲击测试方法对其进行动态测试。

冲击法是一种机械装置撞击被标物传感器,产生瞬时冲击力,记录数据,获取压力传感器动态特性。

撞击法结构简单,使用方便,但误差大。

电子设计毕业设计-压电式压力传感器的静态标定实验指导书-

电子设计毕业设计-压电式压力传感器的静态标定实验指导书-

实验指导书压电式压力传感器的静态标定一、实验目的:1、熟悉记忆示波器和电荷放大器使用方法;2、用活塞式压力计标定传感器的电荷灵敏度系数;二、实验所涉及的一些基本原理:1、理想数学模型:准静态载荷(输入信号特征频率远低于传感器固有频率):输入(压力)和输出(电荷)近似成线性关系(石英压力传感器的线性度较好);动态载荷(输入信号特征频率接近甚至高于传感器固有频率):二阶线性系统模型。

2、真实情况和数学模型之间的偏差:电荷泄漏:理想模型认为传感器绝缘电阻为无穷大,而真实传感器的绝缘电阻并非无穷大(石英晶体:1013Ω;压电陶瓷:1010Ω),必将导致一定程度的电荷泄漏;另一方面,电荷放大器为了对传感器的微弱信号进行放大,必然要从传感器中取一定电流,从而增加了传感器电荷的泄漏。

所以通常的电荷放大器的输入级都具有极高的输入阻抗,并要求设备防潮,以避免由于受潮带来的阻抗下降。

但是,由于外加压力而产生的电荷量很少,即使少量的电荷泄漏也会对输出信号造成明显的影响,该影响不可忽略。

电荷放大器的频率响应:对于静标试验,输入载荷的特征频率很低,故对二次仪表(电荷放大器)的低频响应有较高的要求,否则经过二次仪表的高通滤波,信号将会失真,因此,电荷放大器做定标时,要将下限频率调到较低的数值。

噪声:由于本实验采用的传感器量程很大(100 bar ~300 bar),而实际载荷只有数个大气压,必然导致得到的信号信噪比较低。

但实验表明,以如此小的压力加载,输出信号的噪声幅值依然较小,可以接受。

U(t)忽略电荷泄漏的理想输出信号(考虑阀门开启时间)受到电荷泄漏影响的输出信号(考虑阀门开启时间)t图1. 电荷泄漏对传感器输出的影响(示意图)三、测试仪器设备1 记忆示波器1台(TDS210);2电荷放大器YE5850一台;3 活塞式压力计1台;4 石英压力传感器CY-YD-205 1只。

三、实验要求:1.熟悉记忆示波器,看清各个调节旋钮的位置,对照说明书了解:(1)调节电压量程、时间量程方法;(2)触发方式、触发电平,触发位置等的设置方法;( 3 ) 用光标读取电压、时间值的方法;(4)用TDS-210数据处理程序采集数据的方法。

压力传感器静态特性校准

压力传感器静态特性校准

压力传感器静态特性校准1. 实验目的1.1 掌握压力传感器的原理1.2 掌握压力测量系统的组成1.3 掌握压力传感器静态校准实验和静态校准数据处理的一般方法2. 实验设备本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,5位半数字电压表,直流稳压电源和采样电阻组成。

实验系统框图如下图所示。

实验设备型号及精度3. 实验原理在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力。

信号调理器为压力传感器提供恒电源,将压力传感器输出电压信号放大并转换为电流信号。

信号处理器输出为二线制4~20mA信号,在250 采样电阻上转换为1~5V 电压信号,由5位半数字电压表读出。

4. 实验操作4.1 操作步骤(1)用调整螺钉和水平仪将活塞压力计调至水平。

(2)核对砝码重量及个数,注意轻拿轻放。

(3)将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭。

严禁未开油杯针阀时,用手轮抽油,以防破坏传感器。

(4)加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。

反复1-2次,以消除压力传感器内部的迟滞。

(5)卸压后,重复(3)并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。

(6)按0.05Mpa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。

(7)加压至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。

此后逐级卸载,并在电压表读出相应的电压值。

(8)卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。

(9)稍停1~2分钟,开始第二次循环,从(5)开始操作,共进行5次循环。

4.2 注意事项保持砝码干燥,轻拿轻放,防止摔碰。

轻旋手轮和针阀,防止用力过猛。

正、反行程中,要求保证压力的单调性,如遇压力不足或压力超值,应重新进行循环。

当活塞压力计测量系统的活塞升起是,请注意杆的标记线与两侧固定支架上的标记对齐,同时,用手轻轻旋动托盘,以保持约30转/分的旋转速度,用此消除静摩擦,此后方可进行读数。

航空测试系统实验指导书

航空测试系统实验指导书

航空测试系统:压力传感器静态校准实验实验指导书1.实验目的1.1 掌握压力传感器的原理。

1.2 掌握压力测量系统的组成。

1.3 掌握压力传感器静态校准实验和静态校准数据处理的一般方法。

2.实验设备本实验系统分为软件系统和硬件系统,其中硬件系统包含气路部分和电路部分,软件系统包含服务器软件和客户端软件,其组成图如图1所示。

图1 实验系统组成示意图图1中由压力源(包括空气压缩机和真空泵)产生正压和负压,通过气路管路系统中的电磁阀将正压和负压传递到压力稳定装置中,便于压力传感器得到稳定的压力信号。

由多功能数据采集卡PCI9111获得到传感器输出的电压信号,在上位机中使用LabVIEW软件获得压力数据,并通过多功能数据采集卡的数字I/O 向电磁阀驱动电路输出控制信号,由电磁阀驱动电路将信号进行功率放大,进而通过控制电磁阀的开关来控制整个气路中气体的流向。

每个功能模块的具体功能如下:真空泵及控器压缩机:提供大气参数测量系统的总压或静压;电磁阀阵列:能实时精确控制输出压力值的气体压力控制环节;电磁阀驱动:将数据采集卡输出的TTL电平的数字信号放大成能够控制电磁阀的信号;气压稳定装置:在气路加压、减压时起到缓冲作用,保障系统安全;压力传感器:能实时精确测量气体压力值的气体压力测量环节;数据采集卡:完成压力信号的采集功能和控制信号输出的功能;服务器计算机:通过数据采集卡采集到传感器输出的电压值,将得到的电压信号转换成相应的大气压力,并显示出来;通过控制程序中按钮来控制气压的增大和减小,并将控制信号传递给数据采集卡。

客户端计算机:通过网络获取服务器计算机发送的数据,完成数据记录以及参数解算。

表1 实验设备型号及精度3.实验原理在实验中,以标准压力传感器作为基准器,为待标定传感器提供标准压力0~0.3Mpa。

通过使用全静压模拟器(电磁阀驱动部分),将气路中的气压控制在一个稳定的气压值上,从而方便标准压力传感器对待标定压力传感器的标定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动检测技术》实验指导书
北京交通大学机电学院测控系
2006年9月
实验一压力传感器的静态标定实验
一、实验目的要求
1、了解压力传感器静态标定的原理;
2、掌握压力传感器静态标定的方法;
3、确定压力传感器静态特性的参数。

二、实验基本原理
传感器的标定,就是通过实验建立传感器输入量和输出量之间的关系,同时也确定出不同使用条件下的误差关系。

压力传感器的静态标定,主要指通过一系列的标定曲线得到其静态特性指标:非线性、迟滞、重复性和精度等。

三、实验系统
1、系统连接
2、实验设备
活塞式压力计(型号:YS/YU-600型)、标准压力表(精度:0.4级,量程:0~10MPa)、被标定的压力传感器(型号:AF1800,量程:0~10MPa)、数字万用表、标准砝码、工作液体(蓖麻油)。

3、活塞式压力计结构原理
测量活塞以及砝码的重力与螺旋压力发生器共同作用于密闭系统内的工作液体,当系统内工作液体的压力与此重力相平衡时,测量活塞1将被顶起而稳定在活塞筒3内的任一平衡位置上。

这时有压力平衡关系:
g m m A
p )(1
0+=
式中:p 为系统内的工作液体压力;m 与m 0分别为活塞与砝码的质量;g 为重力加速度;A 为测量活塞的有效面积。

对于一定的活塞压力计,A 为常数。

在承重托盘上换不同的砝码,由螺旋压力发生器推动工作活塞,工作液体就可处于不同的平衡压力下,因此可以方便而准确地由平衡时所加的砝码和活塞本身的质量得到压力p 的数值。

此压力可以作为标准压力,用以校验压力表。

如果把被校压力表6上的示值与这一准确的压力p 相比较,便可知道被校压力表的误差大小。

也可以关闭a 阀,在b 阀上部接入标准压力表,由压力发生器改变工作液压力,比较被校表和标准表上的示值进行校准。

同样,将被校压力表换成压力传感器,就可以通过比较压力传感器测量的压力值和标准表上的示值进行校准,对压力传感器进行静态标定。

4、扩散硅压力传感器
扩散硅压力传感器在单晶硅的基片上扩散出P 型或N 型电阻条,接成电桥。

在压力作用下,根据半导体的压阻效应,基片产生压力,电阻条的电阻率产生很大变化,引起电阻的变化,把这一变化引入测量电路。

则其输出电压的变化反映了所受到的压力变化。

四、实验方法和要求
1、根据实验设备设计实验电路连线图,装配、检查各种仪器、传感器及压
力表。

2、检查实验电路及油路。

3、加载、卸载,注意数据变化,并记录。

压力表加载、卸载实验记录
压力传感器加载、卸载实验记录
4、分析、计算、处理实验数据,作出压力传感器的静态特性图,非线性、
迟滞、重复性。

5、用方和根法计算系统误差。

五、实验注意事项
1、每次加砝码时注意一定要放稳;
2、在正行程测量时,当压力由5MP增加到6MP需要更换大砝码时,一定
要将工作液体的压力值降低到1MP以下后才能进行更换操作;同样在
反行程测量时,压力由6MP降低到5MP需要更换小砝码时,也一定要
将工作液体的压力降低到1MP以下后才能进行更换操作。

3、实验数据应记录清楚、准确;
4、加减压操作时,注意正反行程的含义,不能反复进行调节。

实验二力矩检测实验
一、实验目的:1、掌握测力传感器的工作原理。

2、掌握力矩检测系统设计方法。

3、掌握数据采集及处理方法。

二、基本原理:通过应用应变式力传感器进行力矩参量的检测,采用电桥电路及
放大器电路将力参量转换为电压量,通过单片机对该电压量进行采集,并进行数据处理及工程量变换,最终得到力矩值。

三、实验设备:
1.力传感器实验模板。

2.测力传感器。

3.砝码(每枚50克,共10枚)。

4.单片机开发系统及用户应用板。

5.放大器芯片等电子元件。

6.标准±12V稳压电源。

7.PC机。

四、实验方法和要求:
1.根据实验设备设计实验电路、绘制连线图,并完成单片机数据采集系统
的设计及线路连接。

2.检查实验电路。

3.合上开关,进行力的检测,乘以力臂值,得到力矩值,对应各个力矩点,
测量输出电压,并利用LM324集成芯片调整输出电压幅值。

4.通过单片机进行数据采集,在实验中,给出连续变化的力矩参量,使系
统进行连续的力矩参量的检测并进行数据记录。

5.分析、计算、处理实验数据,采用相应的数据处理方法以减小随机误差
及系统误差。

6.进行工程量变换,在用户板的数码管上显示力矩值。

选作:
通过串行口进行单片机和PC机的数据通讯,采用高级语言编程作出显
示界面,以数据值的形式或图形图表的形式显示力矩参。

相关文档
最新文档