八年级数学试卷

合集下载

八年级数学试卷答案及答案

八年级数学试卷答案及答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √2C. -3D. 3/4答案:B解析:有理数是可以表示为两个整数之比的数,而√2是无理数,不能表示为两个整数之比。

2. 下列图形中,对称轴为直线y=x的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形答案:B解析:等边三角形的对称轴为直线y=x。

3. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 + 2ab + b^2 = (a + b)^2D. a^2 - 2ab + b^2 = (a - b)^2答案:B、C、D解析:根据平方差公式和完全平方公式,选项B、C、D都是正确的。

4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 2x^2D. y = √x答案:B解析:反比例函数的形式为y = k/x,其中k为常数。

选项B符合这个形式。

5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 0C. 2x - 3 = 0D. 2x + 3 = 7x答案:A解析:选项A的方程为一次方程,有唯一解。

选项B、C、D的方程都至少有两个解。

二、填空题(每题5分,共25分)6. 已知a + b = 5,ab = 6,则a^2 + b^2 = __________。

答案:37解析:根据平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 26 = 37。

7. 已知y = kx + b,其中k和b为常数,且k < 0,b > 0,则函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限答案:D解析:当k < 0时,函数图象斜率为负,因此图象在第二、四象限。

8. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 2和3答案:C解析:这是一个二次方程,可以通过因式分解或者求根公式求解。

八年级数学权威试卷及答案

八年级数学权威试卷及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001…2. 已知a、b是实数,且a + b = 0,则下列选项中正确的是()A. a = 0,b ≠ 0B. b = 0,a ≠ 0C. a = b = 0D. a、b可以任意取值3. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 14. 如果|a| = 5,那么a的值是()A. ±5B. 5C. -5D. ±105. 下列函数中,自变量的取值范围是全体实数的是()A. y = 2x + 3B. y = √xC. y = x^2 - 4x + 4D. y = 1/x6. 已知一次函数y = kx + b的图象经过点(1,2),则下列选项中正确的是()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = 0D. k = 1,b = 17. 如果a、b是方程x^2 - 4x + 3 = 0的两个实数根,则下列选项中正确的是()A. a + b = 2B. ab = 3C. a + b = 4D. ab = 48. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°9. 在梯形ABCD中,AD // BC,AB = CD,若ABCD的面积是S,则三角形ABD的面积是()A. S/2B. S/3C. 2S/3D. S10. 已知等边三角形ABC的边长为a,则其内切圆半径r是()A. a/3B. a/2C. √3/2aD. √3/3a二、填空题(每题5分,共25分)11. 如果a = -3,b = 2,那么a^2 - 2ab + b^2的值是______。

12. 若实数x满足不等式2x - 1 > 0,则x的取值范围是______。

八年级全册电子版数学试卷

八年级全册电子版数学试卷

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √-1C. πD. √0.252. 已知a=3,b=-2,则a-b的值是()A. 5B. -5C. 1D. -13. 下列函数中,自变量的取值范围是全体实数的是()A. y=2x+1B. y=√(x-1)C. y=|x|D. y=x²4. 已知三角形的三边长分别为3,4,5,则这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形5. 若a²=4,则a的值为()A. ±2B. ±4C. ±1D. ±36. 下列方程中,解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=1D. 2x+1=17. 下列图形中,属于圆的是()A. 正方形B. 等边三角形C. 梯形D. 圆8. 下列不等式中,正确的是()A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x9. 已知函数y=2x+1,当x=0时,y的值为()A. 1B. 2C. 0D. -110. 下列命题中,正确的是()A. 所有的偶数都是整数B. 所有的整数都是偶数C. 所有的质数都是合数D. 所有的合数都是质数二、填空题(每题3分,共30分)11. 若a=5,b=-3,则a+b的值为______。

12. 已知函数y=3x-2,当x=4时,y的值为______。

13. 在直角三角形中,若一个锐角为30°,则另一个锐角为______°。

14. 若一个数的平方等于9,则这个数是______。

15. 下列数中,无理数是______。

16. 下列方程中,解为x=3的是______。

17. 若一个圆的半径为r,则这个圆的周长是______。

18. 下列图形中,属于正方形的是______。

19. 下列不等式中,正确的是______。

人教八年级数学期末试卷

人教八年级数学期末试卷

一、选择题(每题4分,共40分)1. 若a=3,b=2,则a²+b²的值为()A. 13B. 5C. 7D. 112. 在直角三角形ABC中,∠C=90°,∠A=30°,则∠B的度数为()A. 60°B. 30°C. 45°D. 90°3. 若x²-6x+9=0,则x的值为()A. 3B. 2C. 1D. 04. 下列函数中,y是x的二次函数的是()A. y=x²-2x+1B. y=x²-2C. y=2x²D. y=x²+2x5. 下列图形中,面积最大的图形是()A. 正方形B. 矩形C. 等腰梯形D. 平行四边形6. 若x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 67. 在直角坐标系中,点A(-2,3)关于y轴的对称点为()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)8. 下列数中,不是有理数的是()A. 0.5B. -1/2C. √2D. 3/49. 下列图形中,周长最小的图形是()A. 正方形B. 矩形C. 等腰梯形D. 平行四边形10. 若a²=4,b²=9,则a+b的值为()A. 5B. -5C. 13D. -13二、填空题(每题4分,共40分)11. 若x²-5x+6=0,则x的值为______。

12. 在直角三角形ABC中,∠C=90°,∠A=30°,则AB的长度为______。

13. 下列函数中,y是x的一次函数的是______。

14. 若a=3,b=-2,则a²+b²的值为______。

15. 在直角坐标系中,点A(2,-3)关于x轴的对称点为______。

16. 下列数中,不是无理数的是______。

17. 若x²-2x+1=0,则x的值为______。

八年级数学试卷

八年级数学试卷

八年级数学试卷篇一:八年级数学综合测试题数学测试题(九)班级:姓名:分数:一、选择题:(每小题5分,共30分)1.若代数式某1某某21某3有意义,则某的取值范围是()A、某2B、某2且某3C、某3D、某2,某3且某12.化简(某242某某24某4某2)某某2,其结果是()A、8某2B、8某2C、8某2D、8某23.已知函数yk某中,某0时,y随某的增大而增大,则yk某k的大致图象是()4.已知ABC中,AB=17,AC=10,BC边上的高AD为8,则边BC的长为()A、21B、15C、6D、21或95.如图,自矩形ABCD的顶点C作CEBD,E为垂足,延长EC至F,使CF=BD,连接AF,则BAF的大小是()A、30oB、45oC、48oD、60o5题图6题图6.在梯形ABCD中,AD//BC,B与C互余,E、F分别是AD、BC的中点,AD=EF=1,则BC的长为()A、2B、3C、4D、5二、填空题(每小题5分,共30分)7.若某1某4,则某2某4某28.已知abc1,则aaba1bbcb1ccac19.关于某的分式方程m某12某13某21CD=23,AB=2,BC=33,则四边形ABCD的周长为三、解答题:(每小题10分,共60分)13.已知某y某y2,某z某z3,yzyz4,求某yyzz某的值。

14.已知非负数a、b、c满足a3b2c3与3a3bc4,k3a2b4c,指出y(k1)某k7的图象所在的象限。

15.求某24某216某80的最小值。

16.如图,在□ABCD中,BC=2AB,AE=AB=BF,且点E、F在直线AB 上。

求证:CEDF。

17.如图,已知五边形ABCDE中,ABC=AED=90o,BAC=EAD,F是CD 的中点。

求证:BF=EF。

18.如图,在梯形ABCD中,AB//DC,DC=2AB=2AD,BD=6,BC=4。

求梯形ABCD的面积。

数学测试题(一)班级____________姓名____________分数__________一、选择题(每小题5分,共30分)1.计算4某62某42某42某3某1的结果是()A、5某2B、5某2C、5某4D、5某42.关于某3的不同实数解共有()A、1个B、2个C、3个D、无数个3.若m,n,p都是大于1的自然数,且mp12348n,则m的最小值为()A、24B、42C、294D、74.如图,ABC中,ADBC于D,BEAC于E,AD与BE相交于点F,若BF=AC,则ABC的大小为()A、40B、45C、50D、605.已知点(m,n)在第二象限,则直线ym某n不经过()CA、第一象限B、第二象限C、第三象限D、第四象限6.设某,y,z都为实数,且某yz,a某2yz,by2某z,cz2某y,则对a,b,c的判断正确的是()A、都大于或等于0B、都不大于0C、至少有一个大于0D、至少有一个小于0二、填空题(每小题5分,共30分)7.772022882022的个位数是______________。

八年级数学试卷可打印

八年级数学试卷可打印

八年级数学试卷可打印一、选择题(每题3分,共30分)1. 下列二次根式中,最简二次根式是()A. √(4)B. √(8)C. √(frac{1){2}}D. √(5)2. 若√(x - 1)在实数范围内有意义,则x的取值范围是()A. x > 1B. x ≥ 1C. x < 1D. x ≤ 13. 下列计算正确的是()A. √(2)+√(3)=√(5)B. √(2)×√(3)=√(6)C. √(8)=4√(2)D. √(4)-√(2)=√(2)4. 已知直角三角形的两条直角边分别为3和4,则斜边为()A. 5B. 6C. 7D. 8.5. 平行四边形ABCD中,若∠ A = 50^∘,则∠ C的度数为()A. 40^∘B. 50^∘C. 130^∘D. 150^∘6. 下列各组数中,能作为直角三角形三边长度的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6.7. 对于一次函数y = 3x - 1,下列结论正确的是()A. 图象经过第一、二、三象限。

B. y随x的增大而减小。

C. 当x = 1时,y = 2D. 图象与y轴的交点坐标为(0,1)8. 一次函数y = kx + b(k≠0)的图象经过点(0, - 2)和(3,0),则这个一次函数的表达式为()A. y=(2)/(3)x - 2B. y=(3)/(2)x - 2C. y = 2x - 3D. y = 2x - 29. 若菱形的两条对角线长分别为6和8,则菱形的面积为()A. 12B. 24C. 36D. 48.10. 已知正方形的边长为4,则它的对角线长为()A. 4√(2)B. 8C. 2√(2)D. 4√(3)二、填空题(每题3分,共15分)11. 计算:√(12)-√(3)=______。

12. 若一次函数y = kx + 3的图象经过点(1,4),则k =______。

13. 在平行四边形ABCD中,若AB = 5,BC = 3,则平行四边形ABCD的周长为______。

八年级数学试卷全册

八年级数学试卷全册

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.22. 下列各式中,正确的是()A. 3a = 3a^2B. 3a^2 = 9aC. 3a = 9a^2D. 3a^2 = 3a3. 如果x + y = 7,x - y = 3,那么x的值是()A. 5B. 4C. 3D. 24. 下列各数中,有理数是()A. √9B. √16C. √25D. √365. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0)的解为x1和x2,那么x1 + x2的值是()A. -b/aB. b/aC. bD. a6. 在直角坐标系中,点A(-3,4)关于原点的对称点是()A.(3,-4)B.(-3,-4)C.(4,-3)D.(-4,3)7. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = √x8. 下列各数中,无理数是()A. √2B. √4C. √9D. √169. 下列各式中,正确的是()A. 3a^2 = 9aB. 3a = 9a^2C. 3a^2 = 3aD. 3a = 3a^210. 如果x + y = 5,xy = 6,那么x^2 + y^2的值是()A. 25B. 26C. 27D. 28二、填空题(每题3分,共30分)11. -3的平方根是________,-3的立方根是________。

12. 若a = 2,则a^2 + a + 1的值是________。

13. 已知一元二次方程2x^2 - 3x + 1 = 0的解为x1和x2,那么x1 x2的值是________。

14. 在直角坐标系中,点B(3,-2)关于x轴的对称点是________。

15. 下列函数中,y = 2x - 1的图象是一条________。

16. 若a > b,那么a - b的值是________。

八年级数学全册全套试卷练习(Word版 含答案)

八年级数学全册全套试卷练习(Word版 含答案)
八年级数学全册全套试卷练习(Word 版 含答案)
一、八年级数学三角形填空题(难)
1.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那 么∠ 3 的度数等于______________.
【答案】12° 【解析】等边三角形的内角的度数是 60°,正方形的内角度数是 90°,正五边形的内角的度 数是 108°,则∠ 3=360°-60°-90°-108°-∠ 1-∠ 2=12°. 点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是 解答此题的关键.
【答案】100° 【解析】 【分析】
根据线段垂直平分线的性质,得 BE BA,根据等腰三角形的性质,得 E A 50,再
根据三角形外角的性质即可求解. 【详解】 ∵BD 垂直平分 AE,
∴ BE BA,
∴ E A 50, ∴ EBC E A 100,
故答案为 100°. 【点睛】 考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的 关键.
∵BE=2CE,
∴S△CEF= 1 S△BEF= 1 (6-x),S△ABE= 2 S△ABC,
2
2
3
∵S△BDC= S△ADC= 1 △ABC, 2
∴S△ABC=2S△BDC
=2[x+ 3 (6-x)] 2
=18-x,
∵S△ABE= 2 S△ABC, 3
∴S△ABC= 3 S△ABE 2
= 3 [2x+ (6-x)] 2
=1.5x+9,
∴18-x =1.5x+9,
解得:x=3.6,
∴S△ABC=18-x, =18-3.6
=14.4,
故选:B.
【点睛】

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。

八年级数学试卷真题带答案

八年级数学试卷真题带答案

一、选择题(每题3分,共30分)1. 若a、b、c是等差数列,且a+b+c=0,则a、b、c的公差为()A. 0B. 1C. -1D. 无法确定答案:C2. 下列数列中,不是等比数列的是()A. 1,2,4,8,16…B. 2,4,8,16,32…C. 1,-1,1,-1,1…D. 1,1/2,1/4,1/8,1/16…答案:C3. 已知数列{an}的通项公式为an=2n-1,则数列{an}的前n项和S_n=()A. n^2B. n^2-1C. n^2+1D. 2n^2-1答案:B4. 已知等差数列{an}的公差为d,若a_1=3,a_3=7,则d=()A. 2B. 3C. 4D. 5答案:A5. 已知等比数列{an}的公比为q,若a_1=2,a_3=8,则q=()A. 2B. 3C. 4D. 5答案:A6. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 0或1D. 0或-1答案:C7. 已知x^2-5x+6=0,则x的值为()A. 2B. 3C. 2或3D. 2或-3答案:C8. 若a^2+b^2=1,则a+b的取值范围是()A. [-√2,√2]B. [-1,1]C. [-√2,√2]D. [-1,1]答案:A9. 已知a、b、c是等差数列,且a+b+c=0,则下列选项中,不是等差数列的是()A. a^2、b^2、c^2B. 2a、2b、2cC. a^2+b^2、b^2+c^2、c^2+a^2D.2a+1、2b+1、2c+1答案:A10. 已知等比数列{an}的公比为q,若a_1=3,a_4=24,则q=()A. 2B. 3C. 4D. 5答案:A二、填空题(每题3分,共30分)11. 若a、b、c是等差数列,且a+b+c=0,则a、b、c的公差为______。

答案:012. 下列数列中,不是等比数列的是______。

答案:1,2,4,8,16…13. 已知数列{an}的通项公式为an=2n-1,则数列{an}的前n项和S_n=______。

2023-2024学年四川省自贡市八年级(上)期末数学试卷+答案解析

2023-2024学年四川省自贡市八年级(上)期末数学试卷+答案解析

2023-2024学年四川省自贡市八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知某新型流感病毒的直径约为米,将用科学记数法表示为( )A. B. C. D.2.下列几何图形中,是轴对称图形的是( )A. B. C. D.3.能与长为20cm,30cm的两根木条首尾顺次相接钉成一个三角形的木条长度是( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列计算正确的是( )A. B. C. D.5.如图,在中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,连接若,,则为( )A.B.C.D.6.下列等式从左到右的变形,是因式分解的是( )A. B.C. D.7.如图,的和的外角角平分线交于点D,若,,则的度数是( )A.B.C.D.8.如图,在和中,,,,,连接AC,BD交于点H,连接OH,下列结论:①;②;③OH平分;④HO平分;⑤直线BD平分线段其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本题共6小题,每小题3分,共18分。

9.若分式有意义,则x的取值范围是______.10.约分:______.11.如图,在中,AD是高,角平分线AE,BF相交于点O,,,则的度数是______.12.已知,则______.13.一个多边形的内角和是它的外角和的3倍,则从这个多边形的一个顶点出发共有______条对角线.14.如图,已知锐角的面积为42,,,点C是AB边上一动点,点E,F是OA,OB边上异于端点的两个动点,当的周长最小时,点O到线段EF的距离是______.三、解答题:本题共10小题,共58分。

解答应写出文字说明,证明过程或演算步骤。

15.本小题5分计算:16.本小题5分解方程:17.本小题5分如图,在中,,D为BC的中点,,,垂足分别为E、F,求证:18.本小题5分计算:19.本小题5分如图,在中,,,要把图纸上的这块三角形土地均分给甲、乙、丙三家农户,并使这三家农户所得土地的大小、形状都相同,请在图上画出分割图要求;尺规作图,要写出作法,并保留作图痕迹20.本小题6分自贡彩灯文化历史悠久,盐、龙、灯被称为自贡的“大三绝”.师徒二人制作某种彩灯,师父每天比徒弟多做5个,师父做80个所用的时间与徒弟做60个所用的时间相等.求师父每天做彩灯多少个?春节前夕,有600个该种彩灯需要制作.若师父工价是每天300元,徒弟每天250元,总预算费用不超过9200元,则最多可安排徒弟做多少天?21.本小题6分如图,在中,点A,B,C的坐标分别为,,画出关于y轴对称的图形,并写出点D,E,F的坐标;求以A,C,F,D为顶点的四边形的面积.22.本小题6分如图,在中,,AD是BC边上的中线,交AB于点求证:23.本小题7分如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:,,,因此4,12,20都是“神秘数”.请说明36是否为“神秘数”;证明:“神秘数”一定是4的倍数;是“神秘数”吗?请说明理由.24.本小题8分如图1所示,在中,,点D是线段CA延长线上一点,且点F是线段AB 上一点,连接DF,以DF为斜边作等腰,连接EA,且若,垂足为G,求证:如图2,若点F是线段BA延长线上一点,其他条件不变,请写出线段AE,AF,BC之间的数量关系,并说明理由.答案和解析1.【答案】B【解析】解:故选:用科学记数法表示较小的数,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂.本题主要考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】D【解析】解:A,B,C选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:根据轴对称图形的定义进行逐一判断即可.本题主要考查了轴对称图形,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3.【答案】B【解析】解:设要选取的木条长度是x cm,,,要选取的木条长度是30cm,故选:三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,设要选取的木条长度是x cm,由此得到,即可得到答案.本题考查三角形三边关系,关键是掌握三角形三边关系定理.4.【答案】A【解析】解:,此选项计算正确,故此选项符合题意;B.,此选项计算错误,故此选项不符合题意;C.,此选项计算错误,故此选项不符合题意;D.,此选项计算错误,故此选项不符合题意;故选:A.根据幂的乘方法则进行计算,然后判断即可;B.根据同底数幂相乘法则进行计算,然后判断即可;C.根据负整数指数幂的性质进行计算,然后判断即可;D.根据同底数幂相除法则进行计算,然后判断即可.本题主要考查了整式的有关运算,解题关键是熟练掌握同底数幂的乘除法则、幂的乘方法则和负整数指数幂的性质.5.【答案】C【解析】解:,,,是AC的垂直平分线,,,故选:首先利用等腰三角形的性质求得的度数,然后利用三角形的外角的性质求得答案即可.本题考查了等腰三角形的性质及垂直平分线的性质,解题的关键是了解线段的垂直平分线上的点到线段两端点的距离相等.6.【答案】D【解析】解:是整式乘法运算,则A不符合题意;是单项式的变形,则B不符合题意;的右边不是积的形式,则C不符合题意;符合因式分解的定义,则D符合题意;故选:将一个多项式化为几个整式的积的形式即为因式分解,据此逐项判断即可.本题考查因式分解的识别,熟练掌握其定义是解题的关键.7.【答案】C【解析】解:如图,延长CA至E,使,连接BD,ED,ED交BA的延长线于点N,,,,平分,,,,在和中,,≌,,设,,,,的和的外角角平分线交于点D,平分,,,,,,,,,即,故选:延长CA至E,使,连接BD,ED,由“SAS”可证≌,可得,设,由等腰三角形的性质可得,根据角平分线定义求出,,根据平角定义求出,再根据三角形外角的性质可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.8.【答案】B【解析】解:,,,,,即,在和中,,≌,,,故①正确,符合题意;由三角形的外角性质得:,,故②正确,符合题意;作于G,于M,如图所示,则,在和中,,≌,,平分,故④正确,符合题意;假设OH平分,则,,平分,,在和中,,≌,,与矛盾,故③错误,不符合题意;根据题意,无法求证直线BD平分线段OC,故⑤错误,不符合题意;正确的个数有3个;故选:由SAS证明≌得出,,①正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;作于G,于M,如图所示:则,由AAS证明≌,得出,由角平分线的判定方法得出HO平分,④正确;假设OH平分,则,由HO平分,,利用ASA推出≌,得,而,故③错误;根据题意,无法求证直线BD平分线段OC,故⑤错误,即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.9.【答案】【解析】解:分式有意义,,故答案是:根据分式有意义的条件计算即可.本题主要考查了分式有意义的条件,准确计算是解题的关键.10.【答案】【解析】解:原式故答案为:先把分子因式分解,然后把分子分母都约去m即可.本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.11.【答案】【解析】解:角平分线AE,BF相交于点O,,,,是高,,,,,,故答案为:由角平分线的定义可得,,由高线可得,从而可求得,再由三角形的内角和可得,即可求的度数,从而可求的度数.本题主要考查三角形的内角和定理,解答的关键是结合图形分析清楚各角的关系.12.【答案】【解析】解:,,,,,,,,,,故答案为:先利用多项式乘多项式法则计算已知条件中等式的左边,然后根据右边得到,,再灵活利用完全平方公式求出即可.本题主要考查了多项式乘多项式,解题关键是熟练掌握完全平方公式和灵活运用完全平方公式解决问题.13.【答案】5【解析】解:设这个多边形有n条边,由题意得:,解得,从这个多边形的一个顶点出发的对角线的条数是,故答案为:首先设这个多边形有n条边,由题意得方程,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出条对角线可得答案.此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.14.【答案】【解析】解:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,垂直平分CG,OB垂直平分CH,,,,,,,,,作于点I,则,,,,,连接GE、HF,则,,,,,作于点D,的面积为42,,,解得,,当点C与点D重合时,,此时OC的值最小,当时,的值最小,的周长最小,,,点O到线段EF的距离是,故答案为:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,则,所以,,则,求得,作于点I,则,,求得,所以,连接GE、HF,则,,所以,则,作于点D,由的面积为42,,求得,则当点C与点D重合时,,此时OC的值最小,当时,的周长最小,由,求得,于是得到问题的答案.此题重点考查轴对称的性质、等腰三角形的性质、直角三角形中角所对的直角边等于斜边的一半、两点之间线段最短、垂线段最短、根据面积等式求线段的长度等知识与方法,正确地作出辅助线是解题的关键.15.【答案】解:【解析】根据完全平方公式、单项式乘多项式的法则计算即可.本题考查了完全平方公式、单项式乘多项式,熟练掌握公式和运算法则是解题的关键.16.【答案】解:原方程去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:,检验:将代入得,故原分式方程的解为【解析】利用解分式方程的步骤解方程即可.本题考查解分式方程,熟练掌握解方程的方法是解题的关键.17.【答案】证明:,,又,,,点D为BC中点,,在和中,≌,【解析】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出根据等腰三角形的性质得出,根据全等三角形的判定和性质得出即可;18.【答案】解:【解析】先算乘方,再算乘除,即可得出结果.本题考查了分式的乘方、乘除法,熟练掌握分式的混合运算法则是解题的关键.19.【答案】解:作法:作AB边的垂直平分线,分别交BC、AB于点E、F,连接、、即为分出的三块地.【解析】作AB边的垂直平分线EF,连接本题考查了应用与设计作图,三角形内角和定理.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.【答案】解:设师父每天做彩灯x个,则徒弟每天做彩灯个,由题意得:,解得,经检验,是原方程的解,且符合题意,答:师父每天做彩灯20个;设可安排徒弟做b天,则安排师父做天,即天,由题意得:,解得:,答:最多可安排徒弟做8天.【解析】设师父每天做彩灯x个,则徒弟每天做彩灯个,关键师父做80个所用的时间与徒弟做60个所用的时间相等.列出分式方程,解方程即可;设可安排徒弟做b天,则安排师父做天,即天,根据总预算费用不超过9200元,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;找出数量关系,正确列出一元一次不等式.21.【答案】解:如图所示,即为所求,由图知,、、;由图知,,以A,C,F,D为顶点的四边形的面积为【解析】分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得出答案;根据梯形的面积公式求解即可.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.22.【答案】证明:,,,在中,,,是BC上的中线,是的角平分线,,,,,,,即【解析】首先利用和,推导出,,进而得到,进一步推导出,,进而得证.本题主要考查了平行线的性质,解答本题的关键是熟练掌握平行线的性质以及等腰三角形“三线合一”的性质,23.【答案】解:假设36是神秘数,则能表示为两个连续偶数的平方差,设较小的偶数为x,则较大的偶数为解得:是“神秘数”.设较小的偶数为2k,则较大的偶数为为正整数,为正整数.“神秘数”一定是4的倍数.不是“神秘数”.理由:假设2000是“神秘数”,由得解得:不是整数,假设不成立.不是“神秘数”.【解析】假设36是神秘数,看36是否能表示为两个连续偶数的平方差即可判断是否为“神秘数”;可设较小的偶数为2k,则较大的偶数为,看较大偶数与较小偶数的平方差是否是4的倍数即可;把2000代入得到的式子中,看是否符合实际意义.本题考查新定义的应用.理解新定义的意义是解决本题的关键.注意应用已得到的结论.24.【答案】证明:如图1,,,,,,,在和中,,≌,,是以DF为斜边的等腰直角三角形,,,,在和AFE中,,≌,,,,解:,理由:如图2,作交AE的延长线于点H,则,,在和中,,≌,,,,在和AFE中,,≌,,,【解析】由,,得,而,,则,,即可根据“AAS”证明≌,得,再证明≌,得,则;作交AE的延长线于点H,可证明≌,得,再证明≌,得,则此题重点考查等腰直角三角形的性质、同角的余角相等、全等三角形的判定与性质等知识,正确地作出辅助线是解题的关键.。

八年级数学试卷例题及解析

八年级数学试卷例题及解析

一、选择题1. 下列各数中,无理数是()A. √4B. √9C. √16D. √25【解析】无理数是不能表示为两个整数比的数,也就是不能开方得到整数的数。

在选项中,只有√16=4,是有理数,其他选项开方后得到的数都不是整数。

因此,正确答案是C。

2. 已知等腰三角形底边长为6cm,腰长为8cm,那么该三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 40cm²【解析】等腰三角形的面积可以通过底边和高来计算。

由于是等腰三角形,所以高也是底边的中线,将底边一分为二,每段为3cm。

利用勾股定理,可以求出高:h= √(8² - 3²) = √(64 - 9) = √55。

因此,三角形的面积为(底边×高)/2 = (6×√55)/2 = 3√55。

由于选项中没有3√55,所以需要计算近似值。

√55约等于7.42,所以三角形的面积约为3×7.42 = 22.26cm²,最接近的选项是A。

因此,正确答案是A。

3. 如果x² - 5x + 6 = 0,那么x的值是()A. 2B. 3C. 4D. 5【解析】这是一个一元二次方程,可以通过因式分解来解。

方程x² - 5x + 6 = 0可以分解为(x - 2)(x - 3) = 0。

根据零因子定理,如果两个数的乘积为零,那么至少有一个数为零。

因此,x - 2 = 0 或者 x - 3 = 0,解得x = 2或者x = 3。

因此,正确答案是A和B。

二、填空题4. 若a > b > 0,那么()一定成立。

A. a² > b²B. a³ > b³C. a⁴ > b⁴D. a⁵ > b⁵【解析】由于a和b都是正数,且a > b,那么a的任何正整数次幂都会大于b的相应次幂。

八年级数学试卷全部

八年级数学试卷全部

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -2B. √4C. πD. 0.52. 下列各数中,有最大值的是()A. 2B. -3C. 0D. -23. 若a、b、c是等差数列,且a+b+c=0,则下列选项正确的是()A. a=b=cB. a+b=0C. b=0D. c=04. 下列函数中,是反比例函数的是()A. y=2x+1B. y=x²C. y=2/xD. y=35. 已知等腰三角形ABC中,AB=AC,且∠B=40°,则∠C的度数是()A. 40°B. 50°C. 60°D. 70°6. 在直角坐标系中,点P(-3,2)关于y轴的对称点P'的坐标是()A. (-3, -2)B. (3, -2)C. (3, 2)D. (-3, 2)7. 若x²-5x+6=0,则x的值是()A. 2B. 3C. 2或3D. 无解8. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 梯形9. 已知三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°10. 下列各数中,是质数的是()A. 16B. 17C. 18D. 19二、填空题(每题3分,共30分)11. 计算:3.14 × 2.5 ÷ 1.25 = ______12. 等差数列1,4,7,……的第10项是 ______13. 已知x²-4x+4=0,则x的值是 ______14. 下列函数中,是正比例函数的是 y = ______15. 已知等腰三角形ABC中,AB=AC,且底边BC=6cm,则腰AB的长度是 ______cm16. 在直角坐标系中,点A(2,3)关于x轴的对称点A'的坐标是 ______17. 若a²+b²=c²,则a、b、c构成一个 ______18. 下列各数中,是勾股数的是 ______19. 已知∠A=30°,∠B=60°,则∠C的度数是 ______20. 下列各数中,是立方数的是 ______三、解答题(每题10分,共40分)21. 解方程:2x-3=722. 已知等差数列{an}中,a1=2,d=3,求第10项an23. 已知函数y=2x-3,求x=4时的函数值24. 在直角坐标系中,已知点A(-2,3)和B(4,-1),求线段AB的中点坐标25. 已知三角形ABC中,AB=AC,且∠B=45°,求∠C的度数。

2023-2024学年八年级第二学期期末考数学试卷附答案

2023-2024学年八年级第二学期期末考数学试卷附答案

第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。

八年级数学考试试卷(5套)

八年级数学考试试卷(5套)

八年级数学考试试卷(5套)八年级数学考试试卷(5套)1. 选择题题目:将√(2x-1) + 3 = 0的解集写出来。

解答:首先,我们将方程移项得到√(2x-1) = -3。

然后,两边平方消去根号,得到2x-1 = 9。

最后,将方程继续移项求解,可以得到x = 5。

因此,方程的解集为{x = 5}。

2. 非选择题题目:用配方法解方程2x^2 + 5x + 3 = 0。

解答:首先,我们根据方程系数,确定a=2,b=5,c=3。

然后,计算出判别式的值D = b^2 - 4ac = 5^2 - 4*2*3 = 25 - 24 = 1。

由于判别式D大于0,所以方程有两个不相等的实数根。

接下来,代入配方法公式x1 = (-b + √D) / 2a和x2 = (-b - √D) / 2a中,得到x1 = (-5 + √1) / (2*2) = (-5 + 1) / 4 = -1/2 和 x2 = (-5 - √1) / (2*2)= (-5 - 1) / 4 = -3。

因此,方程的解集为{x=-1/2, x=-3}。

3. 应用题题目:某批货物原价总金额为800元,商家决定打五折促销,且再优惠10元。

请计算打折后的总金额。

解答:首先,将原价800元进行五折打折,计算出打折后金额为800 * 0.5 = 400元。

然后,将打折后的金额再减去优惠金额10元,得到最终的总金额为400 - 10 = 390元。

所以,打折后的总金额为390元。

4. 解答题题目:把306、339、398、387、405这5个数由小到大排列。

解答:首先,观察这5个数中的个位数,可以得出306最小,为最左边的数。

然后,观察这5个数中的百位数,可以得出398最大,为最右边的数。

接下来,观察剩下的3个数中的十位数,可以得出339、387、405的十位数分别是3、8、0,所以405最小,为第二个数字;然后是339,为第三个数字,最后是387,为倒数第二个数字。

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

2023-2024学年下学期期末八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义的条件是( )A. B. C. D.2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,63.下列图象中不能表示y 是x 的函数关系的是()A. B.C. D.4.下列计算正确的是( )B.5.将直线向上平移4个单位长度后所得的直线的解析式为( )A.B. C. D.6.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,方差如下表所示,则四名选手中成绩最稳定的是()选手甲乙丙丁方差1.340.16 2.560.21A.甲B.乙C.丙D.丁7.如图,函数的图象与函数的图象交于点,其中k ,b ,m ,n 为常数,.则关于x 的不等式的解集是( )A. B. C. D.7题图8题图8.《九章算术》记载:今有坦高九尺,瓜生其上,蔓日长七寸;瓠生其下﹐蔓日长一尺.问几何日相逢?意思是有一道墙,高9尺,在墙头种一株瓜,瓜蔓沿墙向下每天长7寸(1尺=10寸);同时地上种着瓠沿墙向上每天长1尺,问瓜蔓、瓠蔓要多少天才相遇?小李绘制如图的函数模型解决了此问题.图中h (单位:尺)表示瓜蔓与瓠蔓离地面的高度,x (单位:天)表示生长时间.根据小李的模型,点P 的横坐标为( )A.B.C.D.3x ≤3x ≥3x <3x >=2===22y x =-2y x=24y x =-22y x =+26y x =-y kx b =+y mx n =+()2,3P -0k m >>kx b mx n +≤+2x >-2x ≥-2x <-2x ≤-9890179171739.如图,将四根木条用钉子钉成一个矩形框架,,.然后向左扭动框架,得到新的四边形(点E 在的上方).若在扭动后四边形面积减少了8,点P 和Q 分别为四边形和四边形对角线的交点,则的长为()D.29题图 10题图10.1765年数学家欧拉在其著作《三角形几何学》中首次提出定理:三角形三边的垂直平分线的交点,三条中线的交点以及三条高线的交点在一条直线上,这条线也被称为欧拉线.如图,已知的三个顶点分别为,,,则的欧拉线的解析式为( )A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡的指定位置.11._______.12.一次函数的图象不经过第_______象限.13.小明在课间活动中进行了8次一分钟跳绳练习,所跳个数分别为160,163,160,157,160,161,162,165.则160,163,160,157,160,161,162,165这8个数的众数为_______.14.如图,点E 为正方形对角线上一点,,点F 在边上,,则_______15.已知一次函数(k 为常数),其图象为直线l.下列四个结论:①无论k 取何值,直线l 都过点;②一次函数的图象与直线l 没有公共点,则;③直线l 不经过第三象限,则;④点和在直线l 上,若,则;其中正确的是_______.(填序号)16.如图,点O 为等边边的中点.以为斜边作(点A 与点D 在同侧且点D 在外),点F 为线段上一点,延长到点E 使,,若,,则ABCD 5AB =8AD =BCEF BC ABCD BCEF PQ OAB △()0,0O ()2,4A ()6,0B OAB △22y x =-3xy =4y x =-+2023y x =-+=32y x =-ABCD AC 20ADE ∠=︒AB ED BF =FED ∠=4y kx k =++()1,4A -2y x =2k =40k -≤<()11,B x y ()22,C x y ()()12120x x y y --<1k >-ABC △CB BC Rt DBC △BC ABC △OD AF EF AF =ABD DBE ∠=∠2OF =5CE =_______。

八年级下期末数学试卷(解析版)

八年级下期末数学试卷(解析版)

八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。

数学八年级上册全册全套试卷测试卷附答案

数学八年级上册全册全套试卷测试卷附答案

数学八年级上册全册全套试卷测试卷附答案一、选择题(每小题2分,共40分)1. A2. C3. B4. D5. C6. A7. D8. B9. D 10. C11. B 12. A 13. C 14. B 15. B16. C 17. A 18. C 19. B 20. A21. D 22. B 23. D 24. C 25. A26. B 27. A 28. C 29. D 30. A31. C 32. D 33. C 34. B 35. A36. D 37. B 38. A 39. C 40. D二、填空题(每小题2分,共20分)41. x = 3 42. y = -7 43. z = 3 44. p = 545. q = 8 46. r = 11 47. s = 2 48. t = 449. u = 13 50. v = -10三、解答题(每小题10分,共40分)51. 解:三角形ABC和三角形DEF的对应边分别相等,可得:AB/DE = BC/EF = CA/FD根据题意可得:AB/DE = BC/EF = CA/FD = 5/4所以三角形ABC和三角形DEF是相似的。

52. 解:已知矩形ABCD的周长为42 cm,设矩形的长为L,宽为W。

由题意可得2L + 2W = 42,化简得L + W = 21。

又已知矩形的面积为120平方厘米,即L * W = 120。

由上两式可得L = 21 - W,代入第二式得(21 - W) * W = 120。

展开化简后得W^2 - 21W + 120 = 0。

解这个二次方程得W = 5 或 W = 16。

当W = 5时,L = 21 - 5 = 16;当W = 16时,L = 21 - 16 = 5。

所以矩形的长和宽分别为16 cm和5 cm。

53. 解:已知正方形的周长为36 cm,设正方形的边长为x。

由题意可得4x = 36,化简得x = 9。

正方形的面积为x * x = 9 * 9 = 81 平方厘米。

八年级数学全册综合试卷

八年级数学全册综合试卷

一、选择题(每题5分,共25分)1. 下列各数中,有理数是()。

A. √-1B. πC. 2/3D. √42. 如果 |a| = 5,那么 a 的值为()。

A. ±5B. 5C. ±2D. 23. 下列函数中,一次函数是()。

A. y = x^2 + 2x + 1B. y = 2x - 3C. y = 3/xD. y = √x4. 在直角坐标系中,点 P(-2, 3) 关于 x 轴的对称点是()。

A. (-2, -3)B. (2, 3)C. (-2, 3)D. (2, -3)5. 一个长方体的长、宽、高分别是 4cm、3cm、2cm,那么它的体积是()。

A. 24cm³B. 12cm³C. 8cm³D. 6cm³二、填空题(每题5分,共25分)6. 3/4 的倒数是 _______。

7. √9 - √16 = _______。

8. 如果 m + n = 7,m - n = 3,那么 m 的值是 _______。

9. 函数 y = 2x + 1 的图象是一条 _______。

10. 等腰三角形的底边长为 8cm,腰长为 6cm,那么它的面积是_______ cm²。

三、解答题(每题15分,共45分)11. 解方程:3x - 5 = 2x + 4。

12. 已知二次函数 y = ax^2 + bx + c(a ≠ 0)的图象与 x 轴有两个交点,且这两个交点的坐标分别是 (1, 0) 和 (3, 0),求该二次函数的表达式。

13. 在等腰三角形 ABC 中,AB = AC,AD 是 BC 边上的高,且 AD = 6cm,BC = 8cm,求三角形 ABC 的面积。

四、应用题(每题20分,共40分)14. 学校组织一次数学竞赛,共有 100 名学生参加。

已知参赛学生的成绩分布如下:成绩区间 | 人数--- | ---60-70 | 2070-80 | 3080-90 | 4090-100 | 10(1)求参赛学生的平均成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学试卷一.选择题(共8小题,每小题3分,共24分)) 1. 下列计算准确的是 【 】A .632632x x x =⋅ B .330x x ÷= C .()33326xy x y = D .()m m mx x x =÷232.在实数3140.5180.67327233π••----,,,,,,中,无理数的个数是【 】A .1B .2C .3D .43.已知等腰三角形两边长是8cm 和4cm ,那么它的周长是【 】A.12cmB.16cmC.16cm 或20cmD.20cm4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB ,那么作法的合理顺序是【 】 ①作射线OC ; ②在射线OA 和OB 上分别截取OD 、OE ,使OD=OE ; ③分别以D 、E 为圆心,大于12DE 的长为半径在∠AOB 内作弧,两弧交于点C. A.①②③ B. ②①③ C. ②③① D. ③①②5.在平面直角坐标系中,□ABCD 的顶点A (0,0),B (5,0),D (2,3),则顶点C 的坐标是【 】A 、(3,7)B 、(5,3)C 、(7,3)D 、(8,2) 6.若y=(a+1)x a2-2是反比例函数,则a 的取值为( ) A .1 B .-l C .±l D .任意实数 7.如图,在平行四边形ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E , 且AE =3,则AB 的长为【 】A .4B .3C . 52D .2 8.如图,将一个长为,宽为的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为【 】 A . B . C .D .二.填空题(共7小题,每小题3分,共21分)9.计算:()011221---+⎪⎭⎫ ⎝⎛-π= _ _ ______.10. 长度单位1纳米910-=米,当前发现一种新型病毒直径为23150纳米,用科学记数法表示该病毒直径是 米(保留两个有效数字)。

11. ﹣的立方根是 _________ .…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 考 号_____(第4题)12.在平行四边形ABCD 中,∠B-∠A=20°,则∠D 的度数是 _________ .13.已知关于x 的方程422=+-x mx 的解是负数,则m 的取值范围为___ ______. 14.如图,在AOB ∆Rt 中,点A 是直线m x y +=与双曲线xmy =在第一象限的交点,且2=∆AOB S ,则m 的值_____.(第14题) (第15题)15. 如上图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图方式放置,点A 1、A 2、A 3…和点C 1、C 2、C 3…分别在直线()0>+=k b kx y 和x 轴上。

已知点B 1(1,1)、B 2(3,2),那么点A 4的坐标为 _________ ,点A n 的坐标为 _________ .三.解答题(共8小题,65分) 16.(8分)先化简:,并从0,﹣1,2中选一个合适的数作为a 的值代入求值. 17.(9分)如图,在正方形网络中,△ABC 的三个顶点都在格点上,点A 、B 、C 的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC 关于原点O 对称的△A 1B 1C 1.(2)平移△ABC ,使点A 移动到点A 2(0,2),画出平移后的△A 2B 2C 2并写出点B 2、C 2的坐标.(3)在△ABC 、△A 1B 1C 1、△A 2B 2C 2中,△A 2B 2C 2与 成中心对称,其对称中心的坐标为 . 18.(9分)如图,点B 在AD 上,AC =CB ,CD =CE ,∠ACB =∠DCE =90°.试判断线段AD 和BE 的大小和位置关系,并给予证明.(第18题)ADC BE19.(9分)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.因为水果畅销,第二次购买时,每千克的进价比第一次提升了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?20.(9分)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.21.(9分)某学生用品商店,计划购进A、B两种背包共80件实行销售,购货资金很多于2090元,但不超过2096元,两种背包的成本和售价如下表:种类成本(元/件)售价(元/件)A 25 30B 28 35假设所购两种背包可全部售出,请回答下列问题:⑴该商店对这两种背包有哪几种进货方案?⑵该商店如何进货获得利润最大?⑶根据市场调查,每件B种背包的市价不会改变,每件A种背包的售价将会提升a元(0a ),该商店又将如何进货获得的利润最大?22.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段AB上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线AC段于E.(1)当∠BDA=115°时,∠BAD=°, ∠DEC=°点D从B向C运动时,∠BDA 逐渐变(填“大”或“小”);;(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状能够是等腰三角形吗?若能够,请直接写出∠BDA 的度数.若不能够,请说明理由.23.(11分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B 出发沿折线段BA﹣AD以每秒5个单位长的速度向点D匀速运动;点Q从点C出发沿线段CB 方向以每秒3个单位长的速度向点B匀速运动;点P、Q同时出发,当点P与点D重合时停止运动,点Q也随之停止,设点P的运动时间为t秒.(1)点P到达点A、D的时间分别为_________ 秒和_________ 秒;(2)当点P在BA边上运动时,过点P作PN∥BC交DC 于点N,作PM⊥BC,垂足为M,连接NQ,已知△PBM与△NCQ全等.①试判断:四边形PMQN是什么样的特殊四边形?答:_________ ;②若PN=3PM,求t的值;(3)当点P在AD边上运动时,是否存有PQ=DC?若存有,请求出t的值;若不存有,请说明理由.第26题图数学试卷参考答案一.选择题1. D.2.C 3.D 4.C 5.C 6.A 7.B 8.A 二.填空题9. 3 10. 2.3×10-5 11 .-2 12. 100° 13. m -8且m≠-4 14.4 15. (7,8)(2n-1-1,2n-1)三.解答题16.解:=×,=×=﹣,当a=0时,原式=1.17.解:(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1)。

(3)△A1B1C1;(1,-1)。

(第18题)A DCBE18.解:AD =BE ,A D ⊥BE . 可证:△ACD ≌△BCE (SAS ).得出AD =BE ,A D ⊥BE .19.解:(1)设第一次购买的单价为x 元,则第二次的单价为1.1x 元, 根据题意得:﹣=20,解得:x=6,经检验,x=6是原方程的解,(2)第一次购水果1200÷6=200(千克). 第二次购水果200+20=220(千克). 第一次赚钱为200×(8﹣6)=400(元).第二次赚钱为100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元). 所以两次共赚钱400﹣12=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.20.解:⑴ 购A 种背包x 件,则20902528(80)2096x x +-≤≤.解得4850x ≤≤.有3种方案:A 48、B 32;A 49、B 31;A 50、B 30.⑵ 利润57(80)2560w x x x =+-=-+.当A 48、B 32时,248560464w =-⨯+=最大(元); ⑶ (5)7(80)(2)560w a x x a x =++-=-+.当2a >时,采用A 50、B 30;当2a =时,均可采用;当02a <<时,采用A 48、B 32.21.解:(1)由题意知,OA=3,OB=4 在Rt △AOB 中,AB=∵四边形ABCD 为菱形 ∴AD=BC=AB=5, ∴C (﹣4,5).设经过点C 的反比例函数的解析式为,∴,k=20∴所求的反比例函数的解析式为.(2)设P (x ,y ) ∵AD=AB=5,407070EABC4010040EABC∴OA=3, ∴OD=2,S △=即,∴|x|=, ∴当x=时,y=,当x=﹣时,y=﹣∴P ()或().22.解(1) 25°; 115°; 小 (2)当DC=2时,△ABD ≌△DCE ,理由如下: ∵ DC=2,AB=2 ∴ DC=AB∵ AB=AC, ∠B=40° ∴ ∠B=∠C=40° ∵ ∠ADB=∠DAC+∠C ∠DEC=∠DAC+∠ADE 且∠C=40°,∠ADE=40° ∴ ∠ADB=∠DEC 。

在△ABD 与△DCE 中 ∵ ∠B=∠C∠ADB=∠DECDC=AB ∴△ABD ≌△DCE (AAS )(3)有如图两种情况Ⅰ ∠BDA=110°Ⅱ ∠BDA=80°第22题图23.解:(1)10和25;(2)①矩形②依题意可得:BP=5t,CQ=3t,BM=CQ=3t∴MQ=BC﹣2CQ=135﹣6t∵四边形PMQN是矩形∴PN=MQ=135﹣6t∵PM⊥BC∴∠PMB=90°根据勾股定理,得:,∵PN=3PM,135﹣6t=3×4t解得:t=7.5;(3)当点P在AD上(即10≤t≤25)时,存有PQ=DC.有下列两种情况:①如图1,当PQ∥DC时,∵PD∥QC∴四边形PQCD是平行四边形∴PQ=DC,PD=QC此时135﹣5t=3t解得:;②如图2,当PQ∥AB时,∵AP∥BQ∴四边形ABQP是平行四边形∴AP=BQ即:5t﹣50=135﹣3t解得:.综上所述,当点P在AD边上运动时,存有PQ=DC,或。

相关文档
最新文档