不等式章节复习

合集下载

[高一数学]不等式知识点归纳与总结

[高一数学]不等式知识点归纳与总结

授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。

(完整版)高中数学知识汇总——不等式

(完整版)高中数学知识汇总——不等式

必修 5 第 3 章不等式知识汇总一、常用的不等式的基天性质:( 1 )a b b a (反对称性)( 2 )a b,b c a c (传达性)( 3 )a b a c b c (可加性,也叫移项法例)( 4 )a b,c0ac bc (不等式两边乘同一个正数,不等号方向不变!)a b, c0ac bc (不等式两边乘同一个负数,不等号方向改变!)a ba cb d (同向不等式相加,不等号方向不变!)( 5 )cda b0ac bd0 (正数同向不等式相乘,不等号方向不变!)( 6 )cd0( 7 )a b0, n N , n1a n b n0 (正数乘方法例)( 8 )a b0, n N , n1n a n b0 (正数开方法例)二、一元二次不等式及其解法1 、三个“二次”间的关系(以下a> 0)△= b 2 - 4ac△> 0△=0△< 0二次函数y y yy=ax 2+bx+cx0x的图象x1x20x 一元二次方程有两个不等实根x1, x2有两个相等实根b无实根ax2+bx+c= 0的根x1< x2x1= x 2=2a一元二次不等式b{x|x < x1或x> x2 }R{x|x≠}2aax2+bx+c >0的解集一元二次不等式{x|x1< x < x2 }ΦΦax2+bx+c <0的解集2 、一元二次不等式的一般解法:一看二次项的系数,二算△,三绘图并据图写解集;3、含参数不等式的解法:分类议论;4 、不等式恒建立问题的解决:即不等式解集为R;5 、高次不等式的解法:数轴标根法(也叫穿针引线法)用曲线自右往左、自上往下挨次穿过,遇偶次重根穿而可是,遇奇次重根一次穿过。

三、基本不等式1 、关于随意两个正数a bab 。

a, b ,它们的算术均匀数是,几何均匀数是22 、基本不等式:关于随意 a 0, b 0 ,都有a b2 ab )此中等号建立的条件是 a b 。

《一元一次不等式》全章复习与巩固(提高)知识讲解

《一元一次不等式》全章复习与巩固(提高)知识讲解

《不等式与一次不等式》全章复习与巩固(提高)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:a<b,b<c则a<c.这个性质也叫做不等式的传递性.不等式的基本性质2:不等式两边都加上(或减去)同一个数,所得到的不等式仍成立.如果a>b,那么a±c>b±c如果a<b,那么a±c<b±c不等式的基本性质3:不等式两边都乘(或都除以)同一个正数,所得到的不等式仍成立;不等式两边都乘(或都除以)同一个负数,必须改变不等号的方向,所得到的不等式成立.如果a>b,c>0,那么ac>bc,a bc c >;如果a>b,c<0,那么ac<bc,a bc c .要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的语言翻译下列小题:(1)x与9的差是正数或0;(2)b与-5的和既不是正数也不是负数;(3)y的5倍既大于x又小于3x+2;(4)a的2倍与-4的差小于5或大于7;(5)102y x -≥; (6)12302x -<-<;(7)(8) 【答案与解析】解:(1)x -9≥0; (2)b+(-5)=0; (3)x<5y<3x+2;(4)2a-(-4)<5或2a-(-4)>7; (5)y 的一半与x 的差非负;(6)x 的一半与3的差既大于-2又小于0; (7)x>-3或写作:大于-3的数;(8)2<x ≤3或写作:既大于2又小于等于3的数. 【总结升华】对“既……又……”,“既是……也是……”,“是……或是……”等连接词也要逐步领会积累.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。

不等式的性质基本不等式课件高三数学一轮复习

不等式的性质基本不等式课件高三数学一轮复习
常用变形 ab≤(a+4b)2≤a2+2 b2
举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式(学生版)

高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。

一元二次函数、方程和不等式章节复习与小结课件-2024-2025学年高一上学期数学人教A版必修第一册

一元二次函数、方程和不等式章节复习与小结课件-2024-2025学年高一上学期数学人教A版必修第一册

c 0
ac>bc
a b


c 0
a b
性质5同向可加性:
⇒ a+c>b+d .
c d
a b 0
性质6同向同正可乘性:
ac>bd

c d 0
an>bn
性质7可乘方性:a>b>0⇒
性质8可开方性:a>b>0⇒
n
anb
ac<bc .
.
(n∈N,n≥1).
2
+1}上的最大值小于 0,又抛物线 y=x2+mx-1 开口向上,
m2+m2-1<0,
所以只需
m+12+mm+1-1<0,
2m2-1<0,
2
即 2
解得- <m<0.]
2m +3m<0,
2
(2)[ 解]
由 y=x2+(m-4)x+4-2m
=(x-2)m+x2-4x+4,
g=(x-2)m+x2-4x+4 可看作以 m 为自变量的一次函数.
3.若关于 x 的不等式 ax2+2x+2>0 在 R 上恒成立,
求实数 a 的取
值范围.
解:当 a=0 时,原不等式可化为 2x+2>0,其解集不为 R,故 a=0 不满足
a>0,
题意,舍去;当 a≠0 时,要使原不等式的解集为 R,只需
Δ=22-4×a<0,
1
,+∞
1
解得 a> .综上,所求实数 a 的取值范围为 2
能.解答此类问题关键是创设应用不等式的条件,合理拆分项或配
凑因式是常用的解题技巧,而拆与凑的目的在于使等号能够成立.
1 9
16
2.已知 x>0,y>0,且 + =1,则 x+y 的最小值为________.

七年级数学第九章《不等式(组)-复习训练》知识梳理、考点精讲精练、课堂小测、课后作业第23讲(有答案)

七年级数学第九章《不等式(组)-复习训练》知识梳理、考点精讲精练、课堂小测、课后作业第23讲(有答案)

第23讲 不等式(组)-复习训练⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3211、用“<”或“>”号表示大小关系的式子叫做不等式。

2、不等式的符号统称不等号,有“>” “<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。

3、使不等式成立的未知数的值叫做不等式的解。

4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。

5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。

6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。

①方向线向左表示小于,方向线向右表示大于;②空心圆圈表示不包括; ③实心圆圈表示包括。

7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。

8、求不等式的解集的过程叫做解不等式。

9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

1、不等式的性质1 不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。

如果a >b ,那么a±c >b±c 。

不等式的性质2 不等式两边同乘(或除以)同一个正数,不等号的方向不变。

如果a >b,c >0,那么ac >bc (或c a >cb )。

不等式的性质3 不等式两边同乘(或除以)同一个负数,不等号的方向改。

如果a>b,c <0,那么ac <bc (或c a <cb )。

2、解未知数为x 的不等式,就是要使不等式逐步化为x >a 或x <a 的形式。

3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。

4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。

自学初中数学资料 不等式综合复习(资料附答案)

自学初中数学资料 不等式综合复习(资料附答案)

自学资料一、不等式综合复习【错题精练】例1.已知关于x的不等式ax<b的解为x>﹣2,则下列关于x的不等式中,解为x<2的是()A. ax+2<﹣b+2B. ﹣ax﹣1<b﹣1C. ax>bD.【解答】由已知不等式的解集确定出a为负数,确定出所求不等式即可.解:∵关于x的不等式ax<b的解为x>﹣2,∴a<0,则解为x<2的是﹣ax﹣1<b﹣1,故选:B.【答案】B例2.若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是()第1页共25页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 1<a≤7B. a≤7C. a<1或a≥7D. a=7【解答】求出不等式2x<4的解,求出不等式(a﹣1)x<a+5的解集,得出关于a的不等式,求出a即可.本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于a的不等式是解此题的关键.解:解不等式2x<4得:x<2,∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,∴a﹣1>0,x,∴≥2,﹣2≥0,≥0,≥0,∵a﹣1>0,∴解得:1<a≤7,故选:A.【答案】A例3.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是__________ .第2页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】1<z<11例4.若不等式x<a只有5个正整数解,则a的取值范围.【答案】5<a≤6.例5.定义新运算:对于任意实数a,b都有:a⊕b=a(a−b)+1.如:2⊕5=2×(2﹣5)+1=﹣5,那么不等式3⊕x<13的解集为.【答案】x>−1.【举一反三】1.若关于x的不等式3m−2x<5的解集是x>3,则实数m的值为..【答案】1132.我们把称作二阶行列式,规定他的运算法则为,如:,如果有,则x__________ .第3页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】解:列不等式得:2x﹣(3﹣x)>0,整理得:2x﹣3+x>0,解得:x>1.故答案为:x>1.【答案】x>13.不等式组无解,则a的取值范围是__________.【解答】二、三角形的初步知识综合复习【错题精练】例1.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF的度数为()A. 45°∠AB. 90∠AC. 90°﹣∠AD. 180﹣∠A【解答】由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,第4页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=90°﹣∠A.故选:B.【答案】B例2.如图∠BAC的平分线AD与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=22,AC=10,则BE=.【答案】6.例3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,求∠EFC的度数.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45∘,又∵AB=AC,∴∠ABC=12(180∘−∠BAC)=12(180∘−45∘)=67.5∘,∴∠CBE=∠ABC−∠ABE=67.5∘−45∘=22.5∘,∵AB=AC,AF⊥BC,∴BF=CF,第5页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴BF=EF,∴∠BEF=∠CBE=22.5∘,∴∠EFC=∠BEF+∠CBE=22.5∘+22.5∘=45∘.【答案】45°.例4.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55∘,∠BCD=155∘,则∠BPD的度数为.【答案】130°.【举一反三】1.(1)如图1所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O,试说明∠BOC=90∘+∠A.(2)如图2所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线,试说明∠D=90∘−∠A.(3)如图3,B、C、D在一条直线上,∠PBC=∠ABC,∠PCD=∠ACD,求证∠BPC=∠BAC.【解答】(1)证明:∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x∘∴∠OBC+∠OCB=12(180∘−∠A)=12×(180∘−x∘)=90∘−12∠A故∠BOC=180∘−(∠OBC+∠OCB)=180∘−(90∘−12∠A)=90∘+12∠A(2)证明:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∠A为x∘∴∠BCD=12(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180∘−∠BCD−∠DBC第6页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训[∠A+(∠A+∠ABC+∠ACB)]=180∘−12(∠A+180∘)=180∘−12=90∘−1∠A2(3)证明:∵BD为△ABC的角平分线,交AC与点ECD为△ABC外角∠ACE的平分线,两角平分线交于点D(∠A+2∠1),∠3=∠4,∴∠1=∠2,∠5=12在△ABE中,∠A=180∘−∠1−∠3∴∠1+∠3=180∘−∠A−−−−①在△CDE中,∠D=180∘−∠4−∠5=180∘−∠3−(∠A+2∠1),即2∠D=360∘−2∠3−∠A−2∠1=360∘−2(∠1+∠3)−∠A−−−−②,把①代入②得:2∠D=∠A.【答案】略.2.如图,△ABC中,∠ACB=90∘,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22∘,则∠BDC等于()A. 44°;B. 60°;C. 67°;D. 77°.【答案】C3.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60∘到△CBP′,已知∠AP′B=150∘,P′A:P′C=2:3,求PB:P′A.图一图二第7页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第8页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第9页 共25页 自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞 非学科培训【解答】、(1)证明:在△ABC 和△BAD 中,{AC =BD∠CAB =∠DBA AB =BA,∴△ABC ≌△BAD (SAS ),∴∠C =∠D ,在△ACE 和△BDE 中,{∠AEC =∠BED∠C =∠D AC =BD,∴△ACE ≌△BDE (AAS ),∴AE =BE ;(2)解:①四边形ACBF 为平行四边形,理由如下:由(1)得AE =BE ,∴∠EAB =∠EBA ,∵△ABF 与△ABD 关于直线AB 对称,∴∠EAB =∠BAF 且AD =AF ,∴∠EBA =∠BAF ,又∵△ABC ≌△BAD ,∴BC =AD ,∴BC =AF ,∴四边形ACBF 为平行四边形;②由题意得∠DAB =∠FAB =30∘,∴∠DAF =60∘,过E 作EG ⊥AF 于G ,∵AE =5,DE =3,∴AD =8,∴AF =8,AG =52,GE =5√32,∴GF =112, ∴EF =√EG 2+BF 2=7.【答案】(1)略;(2)平行四边形;7.例2.如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A. ①②③;B. ①②④;C. ①③④;D. ③④⑤.【答案】C例3.在△ABC中,AB=AC,∠BAC=90∘,点D为AC上一动点.(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90∘.求证:△ABE≌△ACF;(2)在(1)的条件下,求证:CF⊥BD;(3)由(1)我们知道∠AFB=45∘,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘∴∠BAE=∠CAF在△ABE和△ACF中第10页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训{AB =AC∠BAE =∠CAF AE =AF∴△ABE ≌△ACF (SAS )(2)证明: ∵∠BAC =90∘∴∠ABE +∠BDA =90∘,由(1)得△ABE ≌△ACF∴∠ABE =∠ACF∴∠BDA +∠ACF =90∘又∵∠BDA =∠CDF∴∠CDF +∠ACF =90∘∴∠BFC =90∘∴CF ⊥BD(3)解:∠AFB =45∘不变化,理由如下:点A 作AF 的垂线交BM 于点E ,∵CF ⊥BD∴∠BAC =90∘∴∠ABD +∠BDA =90∘同理∠ACF +∠CDF =90∘∵∠CDF =∠ADB∴∠ABD =∠ACF同(1)理得∠BAE =∠CAF在△ABE 和△ACF 中{∠BAE =∠CAFAB =AC ∠ABD =ACF∴△ABE ≌△ACF (ASA )∴AE =AF∴△AEF 是等腰直角三角形∴∠AFB =45∘.【答案】(1)略;(2)略;(3)∠AFB =45∘不变化,理由:略.【举一反三】1.在△ABC 中,AB =AC ,∠BAC =90∘,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE =AF ,∠EAF =90∘.求证:△ABE ≌△ACF ;(2)在(1)的条件下,求证:CF ⊥BD ;(3)由(1)我们知道∠AFB =45∘,如图2,当点D 的位置发生变化时,过点C 作CF ⊥BD 于F ,连接AF .那么∠AFB 的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘,∴∠BAE=∠CAF,在△ABE和△ACF中{AB=AC∠BAE=∠CAFAE=AF∴△ABE≌△ACF(SAS);(2)证明:∵∠BAC=90∘,∴∠ABE+∠BDA=90∘,由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDA+∠ACF=90∘,又∵∠BDA=∠CDF,∴∠CDF+∠ACF=90∘,∴∠BFC=90∘,∴CF⊥BD;(3)解:∠AFB=45∘不变化,理由如下:过点A作AF的垂线交BM于点E,∵CF⊥BD,∴∠BAC=90∘,∴∠ABD+∠BDA=90∘,同理:∠ACF+∠CDF=90∘,∵∠CDF=∠ADB,∴∠ABD=∠ACF,同(1)理得:∠BAE=∠CAF,在△ABE和△ACF中{∠BAE=∠CAF AB=AC∠ABD=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰直角三角形,∴∠AFB=45∘.【答案】略.2.如图,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【解答】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90∘,∠ADB=90∘,又∵E为AB的中点,∴CE=12AB,DE=12AB,∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,E为AB的中点,∴DE⊥AB,已知EF=3,DE=4,∴DF=5,过点E作EH⊥CD,∵∠FED=90∘,EH⊥DF,∴EH=EF⋅EDDF =125,∴DH=√DE2−EH2=165,∵△ECD是等腰三角形,∴CD=2DH=225.【答案】(1)略;(2)225.3.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AE=AF;(2)若AB+AC=16,S△ABC=24,∠EDF=120∘,求AD的长.【解答】(1)证明:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90∘,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF;(2)解:∵△ADE≌△ADF,∴DE=DF,∴S△ABC=12⋅AB⋅DE+12⋅AC⋅DF=12⋅DE(AB+AC)=24,∵AB+AC=16,∴DE=3,∵∠ADE=∠ADF=60∘,∴∠DAE=30∘,∴AD=2DE=6.【答案】(1)略;(2)6.4.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90∘,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS);(2)解:BD=CE,BD⊥CE,理由如下:由(1)知:△BAD≌△CAE,∴BD=CE,∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45∘,∴∠ACE+∠DBC=45∘,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90∘,则BD⊥CE.【答案】(1)略;(2)BD=CE,BD⊥CE.5.如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图1中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角.(2)将图1中的△OAB绕点O顺时针旋转90∘角,这时(1)中的两个结论是否成立?请做出判断并说明理由.(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.【解答】(1)解:在图1中,线段AC,BD的数量关系是相等,直线AC,BD相交成90度角;(2)解:(1)中结论仍成立;证明如下:如图延长CA交BD于点E,∵等腰直角三角形OAB和OCD,∴OA=OB,OC=OD.∵AC2=AO2+CO2,BD2=OD2+OB2,∴AC=BD.∴△DOB≌△COA(SSS).∴∠CAO=∠DBO,∠ACO=∠BDO.∵∠ACO+∠CAO=90∘,∴∠ACO+∠DBO=90∘,则∠AEB=90∘,即直线AC,BD相交成90∘角.(3)解:结论仍成立;如图延长CA交OD于E,交BD于F,∵∠COD=∠AOB=90∘,∴∠COA+∠AOD=∠AOD+∠DOB,即:∠COA=∠DOB.∵CO=OD,OA=OB,∴△COA≌△DOB(SAS).∴AC=BD,∠ACO=∠ODB.∵∠CEO=∠DEF,∴∠COE=∠EFD=90∘.∴AC⊥BD,即直线AC,BD相交成90∘角.【答案】见解答.四、全等三角形综合复习【错题精练】例1.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由:在△ABE和△DBC中,{AB=DB∠ABD=∠DBCEB=CB,∴△ABE≌△DBC(SAS).∴∠BAE=∠BDC.∴AE=CD.∵M,N分别是AE,CD的中点,∴AM=DN.在△ABM和△DBN中,{AB=DB∠BAM=∠BDNAM=BN,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∵∠ABD=∠DBC,∠ABD+∠DBC=180∘,∴∠ABD=∠ABM+∠MBE=90∘.∴∠MBE+∠DBN=90∘.即BM⊥BN.∴BM=BN,BM⊥BN.【答案】BM=BN,BM⊥BN.例2.如图,在Rt△ABC中,∠B=90∘,AC=10,∠C=30∘,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)DF=;(用含t的代数式表示)(2)求证:△AED≌△FDE;(3)当t为何值时,△DEF是等边三角形?说明理由;(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值)【解答】(1)解:∵DF⊥BC,∴∠CFD=90∘,在Rt△CDF中,∠CFD=90∘,∠C=30∘,CD=2t,∴DF=12CD=t.(2)证明:∵∠CFD=90∘,∠B=90∘,∴DF∥AB.∴∠AED=∠FDE.在△AED和△FDE中,{AE=FD=t∠AED=∠FDEED=DE,∴△AED≌△FDE(SAS).(3)解:∵△AED≌△FDE,∴当△DEF是等边三角形时,△EDA是等边三角形.∵∠A=90∘−∠C=60∘,∴AD=AE.∵AE=t,AD=AC−CD=10−2t,∴t =10−2t .∴t =103. ∴当t 为103时,△DEF 是等边三角形.(4)解:∵△AED ≌△FDE ,∴当△DEF 为直角三角形时,△EDA 是直角三角形.当∠AED =90∘时,AD =2AE ,即10−2t =2t .解得:t =52;当∠ADE =90∘时,AE =2AD ,即t =2(10−2t ).解得:t =4.综上所述:当t 为52或4时,△DEF 为直角三角形.【答案】(1)t ;(2)略;(3)103;(4)52或4.【举一反三】1.如图,△ABC 中,∠ABC =45∘,AD ⊥BC 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与AD 相交于点G ,DF ⊥AB 于F ,交BE 于H .下列结论:①AD =BD ;②CE =BH ;③AE =12BG ;④CD +AG =BD .其中正确的序号是_________.【答案】①③④2.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90∘,且EF 交正方形外角∠DCG 的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证△AME ≌△ECF ,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∵BM=BE.∴∠BME=45∘,∴∠AME=135∘.∵CF是外角平分线,∴∠DCF=45∘,∴∠ECF=135∘.∴∠AME=∠ECF.∵∠AEB+∠BAE=90∘,∠AEB+∠CEF=90∘,∴∠BAE=∠CEF∴△AME≌△BCF(ASA).∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE.∴∠N=∠PCE=45∘.四边形ABCD是正方形,∴AD∥BE.∴∠DAE=∠BEA.∴∠NAE=∠CEF.∴△ANE≌△ECF(ASA).∴AE=EF.3.如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.【解答】(1)解:如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB=60∘,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,且△PBF是等边三角形CF,BF=PB∴DF=CD=12∵P是AB的中点,即PB=1AB=3,2∴BF=3∴;(2)解:分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,由(1)证得△PFD≌△QCD,且△PBF是等边三角形∴FD=12FC,EF=12BF∴ED=FD+EF=12FC+12BF=12BC=3∴ED为定值同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB=60∘,∴∠B=∠PMC=60∘,∴PM=PB,且PE⊥BC∴BE=EM=12BM,△PBM是等边三角形∴PM=PB=CQ∵PM∥AC∴∠PMB=∠QCM,∠MPD=∠CQD且PM=CQ ∴△PMD≌△QCD(ASA),∴CD=DM=12CM,∴DE=EM−DM=12BM−12CM=12(BM−CM)=12BC=3综上所述,线段ED的长度保持不变.【答案】(1);(2)线段ED的长度保持不变.1.已知(a-)<0,若b=2-a,则b的取值范围是__________.【解答】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2-a的范围即可得解.2.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是__________.【解答】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.3.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值是__________ .【解答】【答案】14.如图,在△ABC中,∠ACB=90∘,分别以点A,B为圆心,大于12AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A. AD=CD;B. BE>CD;C. ∠BEC=∠BDC;D. BE平分∠CBD.【答案】D.5.如图,Rt△ABC中,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为();A. 35;B. 45;C. 23.D. √32【答案】B.6.如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动运动至点C,△B′C′D 面积的大小变化情况是()A. 一直减小;B. 一直不变;C. 先减小后增大;D. 先增大后减小.【答案】D7.如图,△ABC中,点D在AC的延长线上,E、F分别在边AC和AB上,∠BFE和∠BCD的平分线相交于点P,若∠B=80∘,∠FEC=70∘,则∠1−∠2=°;∠P=°.【答案】15,95.。

高中数学必修五第三章不等式复习知识点与例题

高中数学必修五第三章不等式复习知识点与例题

一对一个性化辅导教案例1:解下列不等式题型2:简单的无理不等式的解法例1 :解下列不等式(2) x 2x 2 1题型3 :指数、对数不等式2例1 :若log a 1,则a 的取值范围是()3A. a 1B . 0 a —C - — a 133练习:1 2x 1 .x 1 ;(1) x 3 4x 0 ;2 2(2) (x 1) (x 5x 6) 0 ;(3)2x 2 x 1 2x 1练习: 解不等式(1)3x 5 x 2 2x 3(2) (2x 1)2(x 7)3(3 2x)(x 4)6D. 0 a -或 a 131、不等式2x 3 4x的解集是__________________ 。

2、不等式log1(x 2) 0的解集是_____________ 。

22e x 1x 23、设f(x)=‘1则不等式f(x) 2的解集为( )log3(x2 1),x 2,A. (1,2) (3, ) B . (710, ) C. (1,2) ) D . (1,2)题型4 :不等式恒成立问题1 2例1:若关于x的不等式一X 2x mx的解集是{x |0 x 2},则m的值是2练习:2 1 1一元二次不等式ax bx 2 0的解集是(一,—),贝U a b的值是( )2 3A. 10 B . 10 C. 14 D . 14例2:已知不等式x2 (a 1)x a 0,(1)若不等式的解集为(1,3),则实数a的值是_________________ 。

(2) __________________________________________________________ 若不等式在(1,3)上有解,则实数a 的取值范围是 _______________________________________________________ 。

(3) ____________________________________________________________ 若不等式在(1,3)上恒成立,则实数a的取值范围是 _____________________________________________________ 。

不等式复习题及答案

不等式复习题及答案

不等式复习题及答案1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),求 \( a \)、\( b \) 和 \( c \) 的值。

答案:根据解集 \( (-1, 2) \) 可知,\( -1 \) 和 \( 2 \) 是方程\( ax^2 + bx + c = 0 \) 的两个实根,且 \( a < 0 \)。

根据根与系数的关系,我们有 \( -1 + 2 = -\frac{b}{a} \) 和 \( -1\times 2 = \frac{c}{a} \)。

解得 \( b = -a \) 和 \( c = -2a \)。

由于 \( a < 0 \),我们可以取 \( a = -1 \),则 \( b = 1 \),\( c = 2 \)。

2. 已知 \( x \) 和 \( y \) 满足 \( x + y \geq 3 \) 且 \( x -y \leq 1 \),求 \( x^2 + y^2 \) 的最小值。

答案:要使 \( x^2 + y^2 \) 最小,\( x \) 和 \( y \) 应尽可能接近。

由 \( x + y \geq 3 \) 和 \( x - y \leq 1 \) 可得 \( 2x\leq 4 \),即 \( x \leq 2 \)。

当 \( x = 2 \) 时,\( y = 1 \)。

因此,\( x^2 + y^2 \) 的最小值为 \( 2^2 + 1^2 = 5 \)。

3. 若 \( a \)、\( b \) 和 \( c \) 是正实数,且满足 \( a + b +c = 1 \),求 \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) 的最小值。

答案:根据柯西-施瓦茨不等式,我们有 \( (a + b +c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq(1 + 1 + 1)^2 = 9 \)。

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题一、不等式知识点总结。

(一)不等式的基本性质。

1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。

2. 传递性:如果a > b,b > c,那么a > c。

3. 加法单调性:如果a > b,那么a + c>b + c。

- 推论1:移项法则,如果a + b>c,那么a>c - b。

- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。

4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。

- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。

- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。

(二)一元二次不等式及其解法。

1. 一元二次不等式的一般形式。

- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。

2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。

- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。

- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。

第三章__不等式小结复习

第三章__不等式小结复习

当判别式△=b2-4ac>0时
不等式ax2+bx+c>0(a>0)的解集为 {x | x x1或x x 2 } 不等式ax2+bx+c<0(a>0)的解集为 {x | x1 x x 2}
大于符号取两边
小于符号取中间
y
O
y
x1 x2 x
Ox 1
x2
x
例1. 解下列一元二次不等式
1)x2-3x+2>0 2)x2-x-1<0 3)-2x2+3x+20 4)x(1-x)>x(2x-3)+1
O
y
4
2x+y-4=0
2
x
二元一次不等式组表示的平面区域
二元一次不等式组表示的平面区域是各个不等 式表示的平面区域的交集,即各个不等式表示的平 面区域的公共部分. y 例2 画出不等式组 x-y+5=0 x+y=0 5
x y 5 0 x y 0 x 3
O
3
x
表示的平面区域. x=3
x 2 y 8, 4 x 16, 在线性约束条件 4 y 12, 下, x 0, y 0.
求(1)目标函数 z x 2 y 的最大值; (2)目标函数 z x y 的最大值和最小值.
y
4
x y 0
B
x 2y 0
2
O
x
ax+by+c>0 ax+by+c≥0
二元一次不等式ax+by+c≥0在 平面直角坐标系中表示的平面区域 包括边界,把边界画成实线.

高考数学(不等式)第一轮复习

高考数学(不等式)第一轮复习

高考数学(不等式)第一轮复习资料知识小结不等式的性质1.两个实数比较大小的依据:0a b -> ⇔ a b > 0a b -= ⇔ a b = 0a b -< ⇔ a b <2.反对称性:如果a b >,那么b a <;如果a b <,则b a >. 3.传递性:如果a b >,且b c >,那么a c >. 4.加法性质:如果a b >,那么a c b c +>+. 推论1:如果a b c +>,那么a c b >-. 推论2:如果a b >,c d >,那么a c b d +>+. 推论3:如果a b >,c d >,那么a d b c ->-. 5.乘法性质:如果a b >,0c >,那么ac bc >; 如果a b >,0c <,那么ac bc <. 推论1:如果0a b >>,0c d >>,那么ac bd >. 推论2:如果0a b >>,那么n n a b >(n N ∈,且1)n >.推论3:如果a b >,0ab >,那么11a b<. *推论4:如果0a b >>,0c d >>,那么a bd c>.6.开方性质:如果0a b >>>(n N ∈,且1)n >.7.222a b ab +≥(,)a b R ∈;a b +≥(,0)a b >. 注:⑴ 当且仅当a b =时取到等号;⑵ 222a b ab +≤;2()2a b ab +≤.8.绝对值不等式的性质:||||||||||-≤±≤+.a b a b a b不等式的解法:1.一元一次不等式:2、一元二次不等式:3.高次不等式:穿线法:例如:23()(3)(1)(1)(2)(5)0f x x x x x x =++--->第1步:将()f x 的最高次项的系数化为正数,并分解为若干一次因式的乘积,即: 0)5()2)(1()1)(3(32<---++x x x x x第2步:将方程()0f x =的根标在数轴上,并从右上方依次穿过各点画曲线,且奇穿过,偶回头。

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。

不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。

2.解分式不等式f(x)。

a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。

3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。

4.解含参不等式时,常常需要分类等价转化。

按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。

二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。

三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。

2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。

四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。

2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档