混凝土结构设计原理-裂缝及变形的验算讲解

合集下载

混凝土结构设计原理

混凝土结构设计原理

混凝土结构设计原理
9.变形和裂缝宽度的计算
4、保证使用者的感觉在可接受的程度之内。过大振动、变形 会引起使用者的不适或不安全感。
《规范》3.3.2 受弯构件的挠度限值
构 件 类 型 挠度限值(以计算跨度 l0 计算) l0/500 吊车梁:手动吊车 l0/600 电动吊车 屋盖、楼盖及楼梯构件: l0/200( l0/250) 当 l0≤7m 时 l0/250( l0/300) 当 7m≤l0≤9m 时 l0/300( l0/400) 当 l0 > 9m 时 注:1、表中括号内数值适用于使用上对挠度有较高要求的构件; 2、悬臂构件的挠度限值按表中相应数值乘以系数 2.0 取用。
以简支梁 为例:
f
M 2 f S l Sf l 2 EI
M M EI M EI f f f EI
截面抗弯刚度EI 体现了截面抵抗弯曲变形的能力,同时也反映了 截面弯矩与曲率之间的物理关系。 ⑴对于弹性均质材料截面,EI为常数,M-f 关系为直线。
混凝土结构设计原理
9.变形和裂缝宽度的计算
⑵钢筋混凝土构件曲率与弯矩关系的推导 ①几何关系: f e sm e cm 符合平截面假定 h0
②物理关系: 请看动画
εcm
φ h0
es
s
Es

c ec Ec
h0
c c
εsm
③平衡关系:根据裂缝截面的应力分布
C
M k T hh0 s As hh0
Mk c hbh02
混凝土结构设计原理
9.变形和裂缝宽度的计算
9.2 受弯构件的变形验算
9.2.1变形限值
f ≤ f lim
(S C )

钢筋混凝土构件变形、裂缝和耐久性

钢筋混凝土构件变形、裂缝和耐久性

,此处 为换算截面对其重心轴的惯性矩, 为混
凝土的弹性模量。
图9.2 适筋梁
图9.3 抗弯刚度沿构件 跨度的变化
关系曲线图 9.2 变 形 验 算
9.2 变 形 验 算
裂缝出现以后(第Ⅱ阶段):
裂缝出现以后,
曲线发生了明显的转折,出现了第一个转折点
()
。配筋率
越低的构件,其转折越明显。试验表明,尺寸和材料
202X
钢筋混凝土构件变形、 裂缝和耐久性
单击此处添加正文具体内容
教学提示:本章介绍钢筋混凝土构件正常使用极限状态验算的主要内容。构件 的最大挠度根据截面抗弯刚度,用结构力学的方法计算;钢筋混凝土受弯构件 截面的抗弯刚度不为常数,考虑到荷载作用时间的影响,有短期刚度Bs和长期 刚度B的区别,且二者随弯矩的增加、配筋率的降低而减小。最大裂缝宽度的 计算公式是在平均裂缝间距和平均裂缝宽度理论计算值的基础上,根据试验资 料统计求得并乘以“扩大系数”后加以确定;该式为半经验性理论公式。混凝 土结构的耐久性应根据环境类别和设计使用年限进行设计。
Mk
Mkh0式中
sm cm
1
○ 9.2 变 形 验 算
根据材料力学中刚 度的计算公式和式 (9-3),有 ○ ——荷按载效应标 准组合计算的弯矩 值。
2
裂缝截面处的应变 和 在荷载效应的标准组合下,裂 缝截面处纵向受拉钢筋重心处 拉应变 和受压区边缘混凝土的压应变 按下式计算:
9.2 变 形 验 算
04.
03.
——受压翼缘的加强 系数,。
——裂缝截面处受压 区高度系数;
——裂缝截面处内力 臂长度系数;
——压应力图形丰满 程度系数;
9.2 变 形 验 算
3) 平均应变 s m 和c m

裂缝宽度验算及减小裂缝宽度的主要措施

裂缝宽度验算及减小裂缝宽度的主要措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。

《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定:(8-20)式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式;w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。

表8-1 混凝土结构的使用环境类别表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值:一般环境0.20mm有气态、液态或固态侵蚀物质环境0.10mm这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。

从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。

因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。

粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。

但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。

8.2.6 小结两本规范的裂缝宽度计算公式相差较大(见表8-3)。

从理论基础上看,《混凝土结构设计规范》(GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)公式则纯粹是建立在试验统计分析基础上的。

混凝土结构设计原理_实验指导书

混凝土结构设计原理_实验指导书

混凝土结构设计原理实验指导书实验一、梁正截面受弯破坏实验一、实验目的1.了解钢筋混凝土梁正截面受弯破坏过程及破坏形态,观察裂缝的开展情况;2.通过测定混凝土梁侧面应变大小,验证平截面假定,同时测定梁在各级荷载作用下跨中挠度变形值;3.测定钢筋混凝土梁的开裂荷载、极限承载力,验证受弯构件正截面的承载力计算公式。

二、实验装置图1为本课程进行梁受弯性能实验采用的加载装置,加载设备为手动千斤顶。

采用两点集中力加载,在跨中形成纯弯段,由千斤顶及反力梁施加压力,分配梁分配荷载,压力传感器测定荷载值。

梁受弯性能实验,取L=1400mm,a=50mm,b=450mm,c=400 mm。

1—试验梁;2—滚动铰支座;3—固定铰支座;4—支墩;5—分配梁滚动铰支座;6—分配梁滚动铰支座;7—集中力下的垫板;8—分配梁;9—反力梁及龙门架;10—千斤顶;图1 梁受弯实验装置图(a)加载简图(kN)(b)弯矩图(kNm)(c)剪力图(kN)图2 梁受弯试验加载和内力简图三、试件设计(1)试件设计的依据根据梁正截面受压区相对高度ξ和界限受压区相对高度b ξ的比较可以判断出受弯构件的类型:当b ξξ≤时,为适筋梁;当b ξξ>时,为超筋梁。

界限受压区相对高度b ξ可按下式计算:b y s0.810.0033f E ξ=+(1-1)其中在进行受弯试件梁设计时,y f 、s E 分别取《混凝土结构设计规范》规定的钢筋受拉强度标准值和弹性模量;进行受弯试件梁加载设计时,y f 、s E 分别取钢筋试件试验得到钢筋受拉屈服强度标准值和弹性模量。

对于少筋梁,设计试件配筋时,需要控制梁受拉钢筋配筋率ρ不大于适筋构件的最小配筋率min ρ,其中min ρ可按下式计算。

tmin y0.45f f ρ= (1-2) (2)试件的主要参数①试件尺寸(矩形截面):b ×h ×l =120×200×1400mm ; ②混凝土强度等级:C20;③纵向受拉钢筋的种类:HRB335(适筋梁和超筋梁),HPB300(少筋梁); ④箍筋的种类:HPB300(纯弯段无箍筋); ⑤纵向钢筋混凝土保护层厚度:15mm ; ⑥试件的配筋情况见图3和表1。

混凝土结构原理第9章 正常使用极限状态验算

混凝土结构原理第9章 正常使用极限状态验算

混凝土的徐变、收缩造成梁截面弯曲刚度降低,挠度随时 间增长。计算挠度时必须采用按荷载效应的标准组合并考虑荷 载效应的长期作用影响的刚度B。
1.荷载长期作用下刚度降低的原因
(1)混凝土的徐变 裂缝间受拉混凝土的应力松弛以及 混凝土和钢筋的徐变滑移,使受拉钢筋的平均应变和平均应力 随时间而增大;裂缝的发展,受拉混凝土退出工作;受压混凝 土的塑性发展,内力臂减小。
刚度是反映力与变形之间的关系:
s Ee 应力-应变: M EI ×f 弯矩-曲率: EI P 48 × 3 × f 荷载-挠度: (集中荷载) l EI V 12 3 d(两端刚接) 水平力-侧移: h
9.3.1
截面弯曲刚度的概念及定义
对于弹性均质材料截面,EI为常数,M-f 关系为直线。 钢筋混凝土是不均质的非弹性材料,因此受弯过程中EI不 是常数。
9.3.2
钢筋混凝土受弯构件的短期刚度Bs
2.物理关系
e sq
s sq
Es

s cq e ck Ec
x h0
sc wsc
C
3.平衡关系
M q C h h0 ws cq x h0 b hh0 M q T hh0 s sq As hh0
ssAs
hh0
9.3.2
“扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力 混凝土的应力松弛、滑移徐变导致裂缝间受拉混凝土不断退 出工作,采用扩大系数tl。
9.2.4
最大裂缝宽度及其验算
最大裂缝宽度的计算
wmax t l ws ,max
s sk t t l wm 0.77 t t l y lm Es

混凝土裂缝的判定及处理依据规范

混凝土裂缝的判定及处理依据规范

混凝土裂缝的判定及处理依据规范1、GB50204-2015混凝土结构工程施工质量验收规范2、混凝土结构设计规范GB50010-20103、GB50367-2013混凝土结构加固设计规范4、混凝土结构工程施工规范 GB50666-2011混凝土裂缝及其修复混凝土裂缝是混凝土结构的主要病害之一 , 是一个相当普遍的技术问题, 工程的破坏与倒塌, 地下结构的渗漏, 都与混凝土结构裂缝发展有关。

混凝土结构裂缝会对混凝土结构产生以下主要影响: 钢筋锈蚀, 降低结构的耐久性; 降低结构的抗渗性, 甚至造成渗漏;降低结构的刚度, 增大变形; 加快混凝土结构碳化剥落, 降低结构抗疲劳能力; 混凝土结构冻融破坏; 裂缝的显现发展, 使人在心理上产生不安全感。

混凝土裂缝类型及形成原因一、结构性裂缝二、非结构性裂缝:塑性收缩裂缝干缩裂缝温度裂缝沉降裂缝化学反应引起裂缝结构性裂缝在正常荷载条件下, 由于结构承载力不够, 混凝土结构出现裂缝, 这种裂缝方向一般都与结构的最大拉应力方向垂直。

( 1) 混凝土强度不够引起的开裂由于设计、施工等原因, 或者结构荷载增加, 混凝土结构强度不能满足使用要求, 造成混凝土结构出现裂缝。

( 2) 结构刚度不够引起的裂缝混凝土结构刚度低, 变形量大, 结构的过大变形, 必然产生相对应的裂缝。

影响混凝土结构刚度的因素很多, 其中混凝土结构的截面尺寸对结构刚度影响最大。

( 3) 配筋率低引起的裂缝一般的受拉钢筋混凝土结构, 在拉应力作用下, 混凝土首先开裂退出工作, 钢筋承担全部拉力, 当混凝土结构配筋率低时, 因抗拉力不够, 结构变形增大, 加剧混凝土结构开裂。

( 4) 钢筋锚固长度不够引起开裂受拉筋必须有足够的锚固长度, 否则粘接力不够,产生钢筋滑移裂缝。

( 5) 预应力张拉引起的裂缝在混凝土结构施工完后, 进行后张拉施工, 由于施工顺序不对, 在混凝土结构内部产生附加弯矩, 造成结构出现裂缝。

钢筋混凝土受弯构件的裂缝和变形计算

钢筋混凝土受弯构件的裂缝和变形计算
根据受力特征判断结构性裂缝(普通钢筋混
凝土梁)
钢筋混凝土墩柱受压构件由于纵向压力过大引起 的纵向裂缝,预应力锚固区由于局部应力过大引 起劈裂裂缝都属于结构性裂缝。 在超静定结构中基础不均匀沉降,会引起上部结 构的受力裂缝,对结构安全性影响很大。应在加 固地基使其基础不均匀沉降停止后,才能进行上 部结构的裂缝处理。
1 Soc bx 2 2 Sot Es As h0 x
34
持久状况-正常使用极限状态计算
换算截面

开裂截面换算截面的几何特性
o 对于受弯构件,开裂截面的中和轴通过其换算截面的 形心轴,故受压区高度x为:
A 1 Soc Sot bx 2 Es As h0 x x Es s 2 b
裂缝分析的重要性

混凝土结构的任何损伤与破坏,都是首先从混凝 土中出现裂缝开始的。
持久状况-正常使用极限状态计算
引起裂缝的原因及其分类
ห้องสมุดไป่ตู้
外荷载引起的裂缝-结构性裂缝,受力裂缝。预 示着结构承载力可能不足,或存在其它严重问题。 变形引起的裂缝-非结构性裂缝,如温度变化、 混凝土收缩等因素引起的结构变形受到限制时, 会产生自应力。当自应力达到混凝土抗拉强度极 限值时,就会引起混凝土开裂。 裂缝一旦出现,变形得到释放,自应力就消失了。 但该裂缝会影响结构的耐久性。
概述
对于钢筋混凝土受弯构件, 《公路桥规》规定必须进 行使用阶段的变形和最大 裂缝宽度验算。 即持久状况正常使用极限 状态的计算。

状况的分类

持久状况与短暂状况
7
持久状况-正常使用极限状态计算
极限状态的分类
承载能力极限状态 正常使用极限状态

第七讲--钢筋混凝土受弯构件的变形与裂缝

第七讲--钢筋混凝土受弯构件的变形与裂缝
13
5.3 裂缝宽度验算
(3)三级:允许出现裂缝的构件,按荷载效应 准永久组合,并考虑长期作用影响计算时构件的 最大裂缝宽度ωmax,不应超过下页表中规定的最 大裂缝宽度限值ωlim。 即: ω max≤ω lim
注:上述一级、二级裂缝控制属于构件的抗裂能力控制, 对于一般的钢筋混凝土构件来说,在使用阶段都是带裂 缝工作的,故按三级标准来控制裂缝宽度。
11
5.3 裂缝宽度验算
3.2 影响裂缝宽度的主要因素 ①纵向钢筋的应力:裂缝宽度与钢筋应力近似呈线 性关系。 ②纵筋的直径:当构件内受拉纵向钢筋截面总面积 相同时,采用细而密的钢筋,则会增大钢筋表面积, 因而使粘结力增大,裂缝宽度变小。 ③纵筋表面形状:带肋钢筋的粘结强度较光圆钢筋 大得多,可减小缝度宽度。 ④纵筋配筋率:构件受拉区的纵筋配筋率越大,裂 缝宽度越小。
对于因基础不均匀沉降、构件混凝土收缩或温度变化等外加 变形或约束引起的裂缝,主要是通过采用合理结构方案、构 造措施来控制。
(2)荷载(直接作用)引起的裂缝,如受弯、受 拉等构件的垂直裂缝,受弯构件的斜裂缝。
试验结果表明,只要能满足斜截面承载力计算要求,并相应 配置了符合计算及构造要求的腹筋,则构件的斜裂缝宽度不 会太大,能满足正常使用要求。
15
5.3 裂缝宽度验算 4 减小裂缝宽度的措施
1、增大钢筋截面面积; 2、在钢筋截面面积不变的情况下,采用较小直径的钢 筋; 3、提高混凝土强度等级; 4、增大构件截面尺寸; 5、减小混凝土保护层厚度。
注:采用较小直径的变形钢筋是减小裂缝宽度最有效的措施。 需要注意的是,混凝土保护层厚度应同时考虑耐久性和减小裂 缝宽度的要求。除结构对耐久性没有要求,而对表面裂缝造成 的观瞻有严格要求外,不得为满足裂缝控制要求而减小混凝土 保护层厚度。

原理9钢筋混凝土构件的变形与裂缝验算

原理9钢筋混凝土构件的变形与裂缝验算
西南科技大学网络教育课程
back
*
四、长期刚度 1、荷载长期作用下刚度降低的原因 在荷载长期作用下,受压混凝土将发生徐变,即荷载不增加而变形 却随时间增长。在配筋率不高的梁中,由于裂缝间受拉混疑土的应 力松弛以及钢筋的滑移等因素,使受拉混凝土不断退出工作,因而 受拉钢筋平均应变和平均应力亦将随时间而增大。同时,由于裂缝 不断向上发展,使其上部原来受拉的混凝土退出工作,以及由于受 压混凝土的塑性发展,使内力臂减小,也将引起钢筋应变和应力的 某些增大。 2、长期刚度B -按荷载标准组合计算的弯矩; -按荷载准永久组合计算的弯矩; -荷载准永久组合对挠度增大的影响系数。
back
*
三、最大裂缝宽度与裂缝宽度验算 只配一种同直径、同种类钢筋的构件 -构件受力特征系数,轴心受拉构件取2.7,受弯、偏心受压 取2.1,偏心受拉取2.4; -钢筋直径; -钢筋相对粘结特性参数,对带肋钢筋,取1.0;对光面钢筋,取0.7。 -最外层纵向受拉钢筋外边缘至受拉区底边的距离(mm),当 c<20mm时,取c=20mm;当c>65mm时,取c=65mm;
结构构件应根据承载能力极限状态及正常使用极限状态分别进行计 算和验算。 一、对某些构件,应根据其使用条件,通过验算,使变形和裂缝宽 度不超过规定限值,同时还应满足保证正常使用及耐久性的其他要 求与规定限值,例如混凝土保护层的最小厚度等。 二、结构构件承载力计算应采用荷载设计值,对于正常使用极限状 态,结构构件应分别按荷载的标准组合、准永久组合进行验算或按 照标准组合并考虑长期作用影响进行验算,并应保证变形、裂缝、 应力等计算值不超过相应的规定限值。
back
*
-按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率,在 最大裂缝宽度计算中,当 时,取 -纵向受拉钢筋的截面面积 -有效受拉混凝土截面面积,按下列规定取用:对轴心 受拉构件取构件截面面积;对受弯、偏心受压和偏心 受拉构件,取腹板截面面积与受拉翼缘截面面积之和 的1/2。 -第i种纵向受拉钢筋的根数 -第i种纵向受拉钢筋的直径(mm) -纵向受拉钢筋的等效直径(mm) -钢筋的弹性模量ຫໍສະໝຸດ back*back

裂缝宽度验算——注意事项

裂缝宽度验算——注意事项
混凝土结构设计原理第ຫໍສະໝຸດ 章裂缝宽度验算的注意事项 :
1 对于直接承受吊车荷载但不需作疲劳验算的吊车梁, 由于满载的概率很小,吊车最大荷载作用时间很短暂, 所以计算出的最大裂缝宽度可乘以系数0.85。
2 对e0 h0 0.55 的偏心受压构件,可不验算裂缝宽度。
(3)当 te 0.01 时,应取 te 0.01。 4 按上述有关公式计算的最大裂缝宽度均指受拉钢筋截
面重心水平处的构件侧表面裂缝宽度。要把它换算为构 件底面的裂缝宽度,须乘系数b 1 1.5as / h0 。 5 前述的裂缝宽度计算公式只适用于外荷载产生的正截 面裂缝。 6 不能为了满足裂缝控制的要求而任意减小保护层厚度。

筋混凝土构件的变形及裂缝验算

筋混凝土构件的变形及裂缝验算

9钢筋混凝土构件的变形与裂缝验算、目的要求1 .掌握构件在裂缝出现前后沿构件长度各截面的应力状态2•了解裂缝宽度计算公式的推导过程(平均裂缝间距、平均裂缝宽度)3.掌握受弯构件裂缝宽度验算和变形验算的方法二、重点难点1.裂缝的出现与分布规律2.平均裂缝间距、平均裂缝宽度3.短期刚度、长期刚度计算公式的建立三、主要内容9.1概述结构构件应根据承载能力极限状态及正常使用极限状态分别进行计算和验算。

通常,对各类混凝土构件都要求进行承载力计算;对某些构件,还应根据其使用条件,通过验算,使变形和裂缝宽度不超过规定限值,常使用及耐久性的其同时还应满足保证正他要求与规定限值,例如混凝土保护层的最小厚度等。

与不满足承载能力极限状态相比,结构构件不满足正常使用极限状态对生命财产的危害性要小,正常使用极限状态的目标可靠指标P可以小些。

《规范》规定:结构构件承载力计算应采用荷载设计值;对于正常使用极限状态,结构构件应分别技荷载的标准组合、准永久组合进行验算或按照标准组合并考虑长期作用影响进行验算。

并应保证变形、裂缝、应力等计算值不超过相应的规定限值。

由于混凝土构件的变形及裂缝宽度都随时间增大,因此,验算变形及裂缝宽度时, 应按荷载的标准组合并考虑荷载长期效应的影响。

荷载效应的标准组合也称为荷载短期效应,是指按永久荷载及可变荷载的标准值计算的荷载效应;荷载效应的准永久组合也称为荷载长期效应,是按永久荷载的标准值及可变荷载的准永久值计算的荷载效应。

按正常使用极限状态验算结构构件的变形及裂缝宽度时,其荷载效应值大致相当于破坏时荷载效应值的50%—70%。

9.2裂缝验算921裂缝控制的目的与要求确定最大裂缝宽度限值,主要考虑两个方面的原因:一是外观要求,二是耐久性要求,并以后者为主。

从外观要求考虑,裂缝过宽将给人以不安全感,同时也影响对结构质量的评 价。

满足外观要求的裂缝宽度限值,与人们的心理反应、裂缝开展长度、裂缝所 处位置,乃至光线条件等因素有关,难以取得完全统一的意见。

混凝土结构设计原理-第八章钢筋混凝土构件裂缝及变形的验算习题+答案

混凝土结构设计原理-第八章钢筋混凝土构件裂缝及变形的验算习题+答案

第八章钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于正常使用极限状态的设计要求,验算时材料强度采用标准值。

2.增加截面高度是提高钢筋混凝土受弯构件刚度的最有效措施。

3. 裂缝宽度计算公式中的,σsk是指裂缝截面处纵向手拉刚筋的应力,其值是按荷载效应的标准组合计算的。

4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而曾大。

用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距小(大、小)些。

5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在同号弯矩范围内,假定其刚度为常数,并按最大弯矩截面处的刚度进行计算。

6.结构构件正常使用极限状态的要求主要是指在各种作用下裂缝宽度和变形值不超过规定的限值。

7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指裂缝间钢筋平均应变与裂缝截面钢筋应变之比,反映了裂缝间受拉区混凝土参与工作的程度。

8.平均裂缝宽度是指受拉钢筋合力重心位置处构件的裂缝宽度。

9. 钢筋混凝土构件裂缝宽度计算中,钢筋应变不均匀系数ψ愈小,说明裂缝之间的混凝土协助钢筋抗拉的作用抗拉作用越强。

10.钢筋混凝土受弯构件挠度计算与材料力学方法(2Mlf aEI=)相比,主要不同点是前者沿长向有变化的抗弯刚度。

11. 混凝土结构的耐久性与结构工作的环境有密切关系,纵向受力钢筋的混凝土保护层厚度由所处环境类别决定。

12.混凝土的耐久性应根据结构的使用环境和设计使用年限进行设计。

二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用(B )A、平均值;B、标准值;C、设计值。

2. 当验算受弯构件挠度时,出现f>[f]时,采取(C )措施最有效。

A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。

3. 验算受弯构件裂缝宽度和挠度的目的是(B )。

A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。

第九章:钢筋混凝土构件的裂缝和变形

第九章:钢筋混凝土构件的裂缝和变形

MK 2 f =S l ––– 钢筋混凝土梁的挠度计算 B
的要求。 (3)满足公式: f<[f] 的要求。 满足公式:
混凝土结构设计原理
第9章
八.对受弯构件挠度验算的讨论
1.由计算公式可知:截面有效高度的影响最大; 1.由计算公式可知:截面有效高度的影响最大; 由计算公式可知 2.配筋率对承载力和挠度的影响:在适筋范围内, 2.配筋率对承载力和挠度的影响:在适筋范围内,提高配筋 配筋率对承载力和挠度的影响 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大, 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大,挠度 跨高比 越小;可选择适当的跨高比,可控制挠度; 越小;可选择适当的跨高比,可控制挠度; 减小挠度措施: 减小挠度措施: 提高刚度的有效措施 h0↑ 或As↑ 增加ρ'
gk+qk A Bmin Bmin(a) (b) Mlmax gk+qk B M Bmin (a) BBmin B1min
+
(b)
混凝土结构设计原理
第9章
七. 挠度计算步骤
(1)根据最小刚度原则确定所求刚度; 根据最小刚度原则确定所求刚度;
Mk B = M q ( θ − 1) + M
Bs
k
(2)代入材料力学公式计算挠度; 代入材料力学公式计算挠度;
混凝土结构设计原理
第9章
裂缝宽度和变形的验算表达式如下: 裂缝宽度和变形的验算表达式如下: 的验算表达式如下
主 页
SK≤RK 式中: 式中:
…9-1 目 录
SK —— 结构构件按荷载效应的标准组合、准永久 结构构件按荷载效应的标准组合、 组合或标准组合并考虑长期作用影响得到的裂缝宽 组合或标准组合并考虑长期作用影响得到的裂缝宽 上一章 度或变形值; 度或变形值;

2钢筋混凝土构件裂缝和变形计算

2钢筋混凝土构件裂缝和变形计算
设计方面:
• 采用小直径筋、变形筋,分散布置;(提高粘结力) • 在普通钢筋混凝土梁中,不使用高强钢筋; • 构造措施:
避免外形突变;(减少应力集中) 配纵向水平钢筋;(控制腹板收缩裂缝) 纵向主筋在支座处加强锚固。

混凝土结构设计原理 九章源自施工方面:• 控制水灰比,振捣密实,提高混凝土密实度; • 加强养护; • 严格控制混凝土配合比,不加有害早强剂; •正确控制混凝土保护层厚度。

混凝土结构设计原理 九

➢平均裂缝宽度的计算公式:
如果把混凝土 的性质加以理想化, Ncr+DN 1 理论上裂缝分布应
2
1
(a)
Ncr+DN
为等间距分布,而 且也几乎是同时发
Ns 1
<ftk 2
(b)
3
Ns
生的。此后荷载的 增加只是裂缝宽度 sss 加大而不再产生新 的裂缝。
(c)
ssm
(d) (e)
使用方面:
• 定期对梁体裂缝检查; • 注意梁体所处环境的变化,注意防锈。

混凝土结构设计原理 九

§9. 3 受弯构件的刚度和挠度计算
一般混凝土构件对变形有一定的要求,主要基于以下4个方 面的考虑:
1、保证结构的使用功能要求。结构构件产生过大的变形将影 响甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度过 大,将难以使仪器保持水平;屋面结构挠度过大会造成积水而产 生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆的正常运行 等。
cm ——与纵向受拉钢筋相同水平处侧表面混凝土
的平均拉应变;

混凝土结构设计原理 九

l cr ——平均裂缝间距;

第八章 钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性

第八章 钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性

T
气温升高时
温度区段
2. 施工措施不当产生的裂缝
混凝土在浇筑、硬化过程中会产生下沉和泌水,当下沉受到阻挡时 会产生内部的泌水,干燥后就会成为裂缝。
3. 基础不均匀沉降产生的裂缝
基础不均匀下 沉时会迫使墙体一 起变形,在主拉应 力作用下混凝土墙 体也会开裂。
基 础 下 沉
4. 钢筋锈蚀产生的裂缝 锈蚀是一个电化学过程: 混凝土中的钢筋处在电介质中, 在水、氧气和电子作用下就会形成电池,电子从阳极不断流向 阴极,在阳极附近形成铁锈。只要不断有水和氧气供应,就会 越锈越严重。
具有足够的承载
安全性
结构 构件 的可 靠性 适用性
力和变形能力 在使用荷载下不产生 过大的裂缝和变形 在一定时期内维持其安 全性和适用性的能力 本章的1~3节内容
耐久性
作用取值: 荷载标准值、z荷载准永久值和材料强度标准值 S SGk SQ1k ci SQik
i 2 n
对于变形计算还需考虑长期荷载作用效应
2)Mk增大,φ 也增大;从式(9—16)知, Bs就相应地减小。
3)截面形状对Bs有所影响。当仅受拉区有翼缘时, te较小些,则φ 也小些,
相应Bs增大些;当仅有受压翼缘时,也Bs增大。
4)具体计算表明,增大,Bs也略有增大。但在常用配筋率(1~2)%的情况下,提
高混凝土强度等级对提高Bs的作用不大。
关于受弯构件刚度的讨论
1. 影响短期刚度Bs的因素:
1)混凝土是弹塑性体,在荷载作用下会发生塑性变形,荷载越大塑性变形也越 多, 所以受弯构件即使在荷载短期效应Ms作用下,刚度Bs 随荷载增加也会逐渐 减小;
Bs
6 E 1.15 0.2 1 3.5 f

《结构设计原理》_第三版第9章_钢筋混凝土受弯构件应力、裂缝和变形计算

《结构设计原理》_第三版第9章_钢筋混凝土受弯构件应力、裂缝和变形计算
2、正T梁:求x(判别T型截面类别)12bfx2EA ss(h0x)x
若 x h f,表 明 为 第 一 类 T 形 截 面 , 可 按 宽 度 为 b f的 矩 形 截 面 计 算 若 x h f,表 明 为 第 二 类 T 形 截 面 , 重 新 计 算 x
9.3 应力计算
求Icr (公式不一样) 求截面应力(方法同上) 应力计算结果:当施工阶段应力验算不满足时,应该 调整施工方法,或者补充、调整某些钢筋。
Ⅰ类和Ⅱ类环境:0.2mm Ⅲ类和Ⅳ类环境:0.15mm
9.4 裂缝宽度计算——裂缝控制目的
1、保证使用功能的要求 结构构件的变形较大时,会严重影响甚至丧失它的使用功 能。如桥梁上部结构过大的挠曲变形使桥面形成凹凸的波 浪形,影响车辆行驶,严重时将导致桥面结构的破坏。 2、满足观瞻和使用者的心理要求 构件的变形过大,还引起使用者明显的不安全感。 3、避免对其他结构构件的不利影响 构件的变形过大,会影响到与它连接的其他勾结也发生过 大变形,有时甚至会改变荷载的传递路线、大小和性质。
9 钢筋砼受弯构件的应力、裂缝和变形计算
裂缝与钢筋的腐蚀
结构构件 的可靠性
9.1 概述
安全性 适用性 耐久性
具有足够的承载力和变形 能力
在使用荷载下不产生过大 的裂缝和变形
在一定时期内维持其安全 性和适用性的能力
本章的主要内容
9.1 概述
一、两种极限状态的区别 l 承载能力极限状态计算: 讨论构件在各种不同受力状态下的承载力计算,
9.1 概述——正常使用阶段的特点
3、荷载效应及抗力的取值不同 正常使用极限状态: 汽车荷载应可不计冲击系数,作用(或荷载)效应应 取用短期效应和长期效应的一种或几种组合。 短期效应组合就是永久作用(结构自重)标准值与可 变作用频遇值效应的组合;长期效应组合则为永久作用标 准值与可变作用准永久值效应的组合

第四章钢筋混凝土受弯构件的应力、裂缝和变形验算

第四章钢筋混凝土受弯构件的应力、裂缝和变形验算

第四章钢筋混凝⼟受弯构件的应⼒、裂缝和变形验算第四章钢筋混凝⼟受弯构件的应⼒、裂缝和变形验算对钢筋混凝⼟构件,除应进⾏承载能⼒极限状态计算外,还要根据施⼯和使⽤条件进⾏持久状况正常使⽤极限状态和短暂状况的验算。

第⼀节抗裂计算桥梁构件按短暂状况设计时,应计算其在制作、运输及安装等施⼯阶段,由⾃重和施⼯荷载等引起的应⼒,并不应超过规范规定的限值。

施⼯荷载除有特别规定外均采⽤标准值,当进⾏构件运输和安装计算时,构件⾃重应乘以动⼒系数,当有组合时不考虑荷载组合系数。

在钢筋混凝⼟受弯构件抗裂验算和变形验算中,将⽤到“换算截⾯”的概念,因此,本章先引⼊换算截⾯的概念,然后依次介绍各项验算⽅法。

4.1.1 换算截⾯依据材料⼒学理论,对钢筋混凝⼟受弯构件带裂缝⼯作阶段的截⾯应⼒计算作如下假定:1、服从平截⾯假定由钢筋混凝⼟受弯构件的试验可知,从宏观尺度看平截⾯假定基本成⽴。

据此有同⼀⽔平纤维处钢筋与混凝⼟的纵向应变相等,即:s c εε= (4.1-1)2、钢筋和混凝⼟为线弹性材料钢筋混凝⼟受弯构件在正常施⼯或使⽤阶段,钢筋远未屈服,可视为线弹性材料;混凝⼟虽为弹塑性体,但在压应⼒⽔平不⾼的条件下,其应⼒与应变近似服从虎克定律。

故有c c c E εσ=,s s s E εσ= (4.1-2)3、忽略受拉区混凝⼟的拉应⼒钢筋混凝⼟构件在受弯开裂后,其受拉区混凝⼟的作⽤在计算上可近似忽略。

将式(4.1-1)代⼊式(4.1-2)可得:c s c c c E E εεσ==''因为 s ss E σε=所以 s ES c s sc E E σασσ1'== (4.1-3)其中:ES α-钢筋与混凝⼟弹性模量之⽐,即c s ES E E =α。

为便于利⽤匀质梁的计算公式,通常将钢筋截⾯⾯积s A 换算成等效的混凝⼟截⾯⾯积sc A ,依据⼒的等效代换原则:1、⼒的⼤⼩不变:换算截⾯⾯积sc A 承受拉⼒与原钢筋承受的拉⼒相等。

混凝土结构设计原理:第9章 正常使用极限状态验算及耐久性设计

混凝土结构设计原理:第9章 正常使用极限状态验算及耐久性设计

为可变荷载组合系数。
ci
i=2
由于可变荷载达到其标准值Qk的作用时间较短,故Sk也称为短期效应, 其值约为作用效应设计值的50%~70%。
在荷载长期作用下,构件的变形和裂缝宽度随时间增长,需要考虑长期
荷载的影响,荷载效应的准永久组合为:
n
∑ Sq = SGk +
ψ qi SQik ,
ψ
为可变荷载准永久系数。
2
9.1 概述
第9章 正常使用极限状态验算及耐久性设计
结构设计的 功能要求
安全性
承载能力极限状态
适用性 耐久性
正常使用极限状态
n 正常使用极限状态的设计特点
p 可靠指标可适当降低 p 这种设计为验算而非计算 p 材料和荷载采用标准值或准永久值 p 考虑荷载的长期作用效应
变形 抗裂 裂缝宽度
3
9.1 概述
Mk
12
σ sm = ω 1σ s2
lm
εs
ψ
=
ω
1
σ σ
s2 sq
εctm εsm
εct
p 由2-2截面的平衡条件可得
Mq = Asσ s2η2h0 + Mct
σs2
=
Mq − Mct Asη2h0
ψ

1 (1 −
M ct Mq
)
ψ = 1.1(1− Mct ) Mq
22
9.3 裂缝宽度的计算
第9章 正常使用极限状态验算及耐久性设计
9.3.3 平均裂缝宽度
wm
= ε smlm
− ε cmlm
=
ε sm (1 −
ε ε
cm sm
)lm
令: αc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、对结构构件产生不良影响。如支承在砖墙上的梁端产生过大转角,将 使支承面积减小、反力偏心,引起墙体开裂;
3、对非结构构件产生不良影响。结构变形过大,会使门窗等不能正常开 关,甚至导致隔墙、天花板和饰面的开裂或损坏;
4、视觉不能接受。变形过大,给人以不安全感。
第八章 裂缝及变形的验算
变形控制: 保证结构正常使用的挠度限值
裂缝;
3. 裂缝出现后,裂缝截面的混凝土立即退出受拉工作,拉应力st =0;裂缝两侧
混凝土迅速回缩,使得裂缝一出现就有一定的宽度;
4. 开裂后裂缝截面由于受拉混凝土退出工作,钢筋拉应力ss 突增,但钢筋与混
凝土之间存在粘结,在裂缝两侧一定范围内就会产生粘结应力τ,随着离裂
缝距离的增加,混凝土中又重新建立起拉应力st ,而裂缝截面突增的钢筋拉 应力ss 也逐渐恢复正常; 5. 当混凝土中拉应力st 增大到 ft 时,下一个最薄弱截面将可能出现新的裂缝;
裂缝综合理论
它综合了上述两种理论中影响裂缝宽度的
主要因素,并在统计回归的基础上建立了实用 的计算公式。
① 根据粘结—滑移理论:
第八章 裂缝及变形的验算
由图(b)可见,图中 l 为粘结应力传递长度,在裂缝两侧 l 范 围内混凝土的拉应力总是小于 ft ,所以不可能再产生新的裂缝。
第八章 裂缝及变形的验算
三级:允许出现裂缝的构件。按荷载效应标准组合并考虑荷载长 期作用影响验算时,构件的最大裂缝宽度Wmax不应超过最 大裂缝宽度限值Wlim,即:Wmax≤Wlim
第八章 裂缝及变形的验算
2 变形
为什么要进行变形验算?(变形的危害)
1、影响正常使用。结构构件产生过大的变形,将影响甚至丧失其使用功 能,如支承精密仪器设备的楼盖产生过大的挠度或震动将降低仪器的精 度;屋面结构挠度过大会造成积水,产生渗漏;吊车梁和桥梁的过大变 形会妨碍吊车和车辆的正常运行;
混凝土收缩: 内部约束:超配筋构件,混凝土收缩时产生拉应力过大而开裂; 外部约束: 与刚度很大的构件相连时,混凝土收缩时产生拉应力过 大而开裂。
温度应力: 大体积混凝土水化过程中发热量很大,内部温度较高,混凝土体积
膨胀,内外温差很大,内部混凝土膨胀受到外部已硬化混凝土的约束,使构 件表面混凝土受拉产生裂缝。
由于混凝土材料的不均匀性,裂缝的出现、分布和开展 具有很大的离散性,裂缝间距和宽度也是不均匀的。但大量 的试验统计分析表明,裂缝间距和宽度的平均值具有一定规 律性。
第八章 裂缝及变形的验算
裂缝产生和开展过程中钢筋及混凝土的应力变化
1. 裂缝出现前,混凝土和钢筋的应变沿构件的长度基本上是均匀分布的; 2. 当构件最薄弱截面混凝土的拉应变εt 达到极限拉应变εtu 时,会出现 第一条
第八章 裂缝及变形的验算
2. 施工措施不当产生的裂缝
混凝土在浇筑、化过程中会产生下沉和泌水,当下沉受到 阻挡时会产生内部的泌水,干燥后就会成为裂缝。
第八章 裂缝及变形的验算
3. 基础不均匀沉降产生的裂缝
基础不均匀下 沉时会迫使墙体一 起变形,在主拉应 力作用下混凝土墙 体也会开裂。
基 础 下 沉
如果两条裂缝的间距大于 2 l ,则在其间还会存在σct≥ ft 的混凝土 区段,就会产生新的裂缝;
如果两条裂缝的间距小于 2 l ,则由于粘结应力传递长 度不够,裂缝间混凝土σct < ft ,因此将不会再出现新的裂 缝。故裂缝间距最终将稳定在 l ~ 2 l 之间,可近似取裂缝 的平均间距 l cr =1. 5 l。
混凝土构件在正常使用时,往往带裂缝工作。
产生裂缝的原因:
1.混凝土收缩或温度变形受到约束; 2. 施工措施不当; 3. 基础不均匀沉降; 4. 钢筋锈蚀; 5.荷载作用;
第八章 裂缝及变形的验算
1. 混凝土收缩或温度变形受到约束产生的裂缝
混凝土收缩或温度变化时,体积会发生变化,若能自由变形则不会产生 裂缝;但若变形受到约束,则会在混凝土中产生拉应力,从而引起裂缝。
第八章 裂缝及变形的验算
第八章 裂缝及变形的验算
一概述
裂缝和变形验算属正常使用极限状态,通常在承载力计算后进行。其可靠 度也相对较低一些,应采用荷载及强度的标准值进行验算。
1裂缝
在混凝土结构中裂缝通常是由拉应力引起的。某处混凝土的拉伸应变et 达到混凝土的极限拉应变etu 时就会出现裂缝;因混凝土的抗拉强度很低,故
第八章 裂缝及变形的验算
裂缝的控制:
我国《规范》将裂缝控制等级分为三级
一级:严格要求不出现裂缝的构件。按荷载效应标准组合进行验 算时,构件受拉边缘混凝土不应产生拉应力;
二级:一般要求不出现裂缝的构件。按荷载效应标准组合验算时 ,构件受拉边缘混凝土拉应力不应大于轴心抗拉强度标准 值 ft k ;而按荷载效应准永久值组合验算时,构件受拉边 缘混凝土不宜产生拉应力;
4. 钢筋锈蚀产生的裂缝
第八章 裂缝及变形的验算
(b) 水、O2 、 CO2侵入
(d)保护层劈裂
钢筋锈蚀后
体积会膨胀3~4
倍!钢使筋混锈凝蚀土是保一
个护电层化劈学裂过。程
第八章 裂缝及变形的验算
钢筋锈蚀引起的劈裂裂缝从钢筋截面上看是径向劈裂, 但从混凝土表面看是沿钢筋的纵向裂缝,这种纵向裂缝会大 大削弱混凝土和钢筋间的粘着力。当钢筋间距较小时,钢筋 间的径向劈裂裂缝会惯通,从而使保护层成片剥落,这将大 大削弱钢筋和混凝土间的粘结力,后果将十分严重。
第八章 裂缝及变形的验算
二 裂缝宽度的验算 关于裂缝的三种基本理论
1 计算理论分类 粘结—滑移理论
认为钢筋与混凝土之间有粘结,但可以滑 移;裂缝宽度是裂缝间距范围内钢筋与混凝土 的变形差。可见,裂缝间距越大,裂缝宽度也 越大。
无滑移理论
认为开裂后钢筋与混凝土之间仍保持可靠 粘结,无相对滑动;沿裂缝深度存在应变梯度 ,表面裂缝宽度与混凝土表面离钢筋的距离成 正比。可见,保护层越厚表面裂缝越宽。
表面纵向裂缝
劈裂裂缝惯通 剥 落
5.荷载产生的裂缝
第八章 裂缝及变形的验算
由M、V、N、T等直接作用,引起截面的主拉应力超 过
混凝土的极限抗拉强度而产生裂缝。
裂缝的危害:
当裂缝过宽时, ①加速了混凝土的碳化作用,使钢筋锈蚀而降低了耐久性; ②影响正常使用。如水池、储气罐等出现渗漏现象等; ③影响观瞻。
相关文档
最新文档