超级电容器的分类
超级电容器
电极材料
电极材料是影响超级电容器性能的重要因素。 为了进一步提高超级电容器的容量和循环寿命,最主要的 是开发新的高比容量,高比功率的电极材料。 超级电容器的电极材料可以分为以下几类:炭电极材料, 金属氧化物电极材料,导电聚合物电极材料,复合电极材 料。
碳电极材料
目前已经开发用在双电层电容器上的碳材料有:活性炭 粉末、活性碳纤维、碳纳米管、膨胀性石墨、碳气凝胶、 炭黑和石墨烯等。 炭材料的性质中最为关键的几个影响因素为炭材料的表 面积和粒径分布,炭材料的电学稳定性,炭材料的导电 率。
在沿海岛屿、边远山区,地广人稀的草原牧场等地方, 风能和太阳能可作为解决生产和生活能源的一种可靠 途径。然而,这些能源还不能稳定地供给。将超级电 容器与风力发电装置或太阳能电池组成混合电源,超 级电容器在白天阳光充足或风力强劲的条件下吸收能 量以电能的形式存储起来,在夜晚或风力较弱时放电, 可解决上述问题。
超级电容器还可用作汽车的主电源。
(4)工业领域
超级电容器在工业不间断电源(UPs)、安全预防 设备以及仪器仪表等方面得到广泛应用。
(5)消费电子领域
使用超级电容器做为储能元件的手电筒,充电只 需90秒,循环寿命可达50万次,可使用约135年。电 子玩具常要求瞬时大电流,而电池无法提供,使用超 级电容器作为电源不仅可以解决这个问题,还可以降 低使用成本、减轻质量。一种自动的切管工具用于替 代一种己经有十年历史的旧式手持切管设备。考虑实 际应用,要求能提供瞬间高功率及长寿命,并且要求 快速充电,一次充电能满足100次的切割工作,超级 电容器与电池混联后能使产品满足应用的需求。
超级电容器的研究及应用现状
美国、日本、韩国、俄罗斯、德国等国研究超级 电容器起步较早,技术相对比较成熟。
超级电容器的研究
3、表面官能团
主要通过两种途径: 1)改变表面的润湿性能 2)官能团自身发生可逆的氧化还原反应 从制备高容量、耐高压、稳定性好的电容器角度 出发 , 要求活性炭材料表面的官能团有一个合适 的比例。
4、微晶结构
对超级电容器来说,中孔比例大一些比较好 中孔碳材料的方法主要有三种: 1)催化活化法 2)混合聚合物炭化法 3)模板炭化法
3、发展趋势:
• 提高性能、降低成本是超级电容器发展的主旋律。 • 从超级电容器的发展历史来看,电容器虽然能够 提供高功率,但电容器不能像电池一样提供高的 重量能量比,期望将来超级电容器能够代替电池 作为储能元件,兼具高能量和高功率的性能。 • 超级电容器是绿色环保、能源开发的重要方向之 一,它的研发必将带动整个电子产业及相关行业 的发展,目前国内超级电容器的开发生产刚刚起 步,具有广阔的发展空间。
双电层原理示意图
2. 性能特点
—介于电池和物理电容器之间
性 能 铅酸电池 1-5小时 超级电容器 0.3-若干秒 普通电容器 10-3—10-6秒
充电时间
放电时间
比能Wh/kg 循环寿命 比功率W/kg 充放电效率
0.3-3小时
30- 40 300 < 300 0.7-0.85
0.3-若干秒
1- 20 >10000 >1000 0.85-0.98
2) 赝电容型超级电容器
(1) 金属氧化物材料 • 贵金属氧化物材料 —RuO2:无定型RuO2拥有更高 的电导率,更高的比电容,更高的电化学可逆性。 • 替代RuO2的廉价金属氧化物材料—MnO2和NiO。
(2) 导电聚合物材料 聚苯胺(PANI)、聚吡 (PPy)和聚噻吩(PTh) 他们的一些相关衍生 物。 优点: 价格低廉、对环境友 好、高导电率、高度 可逆以及活性可控。
超级电容器简介课件
用。
政策支持与产业发展建议
政策引导与资金支持 建立产业联盟 加强国际合作与交流
超级电容器与其他储能技术 的比较
与电池的比较
充放电速度
。
循环寿命
能量密度 成本
与超级电感的比较
储能原理
超级电容器通过双电层储能, 而超级电感通过磁场储能。
响应速度
超级电容器简介课件
目录
• 超级电容器的性能特点 • 超级电容器的制造工艺与材料 • 超级电容器市场现状与趋势 • 超级电容器的发展前景与挑战 • 超级电容器与其他储能技术的比较
超级电容器概述
定义与工作原理
定义 工作原理
超级电容器的主要类型
根据电解质类型
根据储能原理
可分为水系超级电容器和有机系超级 电容器。
超级电容器的发展前景与挑 战
技术创新与突破方向
材料创新
结构设计 集成化技术
市场拓展与合作机会
电动汽车领域
与电动汽车制造商合作,开发高 性能的超级电容器,提升电动汽
车的续航里程和加速性能。
智能电网领域
与电网公司合作,研发用于智能 电网的储能超级电容器,提高电 网的稳定性和可再生能源的接入
能力。
工业应用领域
主要应用领域市场现状与趋势
总结词
详细描述
市场竞争格局与挑战
总结词
超级电容器市场竞争激烈,企业需要不 断创新以保持竞争优势。
VS
详细描述
目前,全球超级电容器市场已经形成了较 为稳定的竞争格局,但随着新技术的不断 涌现和市场的不断扩大,竞争也日趋激烈。 企业需要不断加大研发投入,提高产品性 能和降低成本,以应对市场竞争的挑战。 同时,企业还需要加强与上下游企业的合 作,共同推动超级电容器市场的快速发展。
超级电容器简介
3.非常短的充电时间,在0.1-30s即可完成。
4.解决了贮能设备高比功率和高比能量输出之间的矛盾, 将它与蓄电池组合起来,就会成为一个兼有高比功率输出的贮 能系统。
5.贮能寿命极长,其贮存寿命几乎可以是无限的。
6.高可靠性。
四、超级电容器技术及电极材料的进展
电压、能量密度高
按照电解液分,分为水溶液电解液超级电容器和有机电解液超级电容器。
根据结构分为对称型电容器(SymmetricCapacitor)和混合型超级电容器(Hybrid Capacitor)。
三、超级电容器的性能特点——介于电池与物理电容器
之间
优点
1. 高功率密度,输出功率密度高达数KW/kg,一般蓄电池的 数十倍。
氧化还原赝电容即法拉第赝电容是指活性电极材料发生氧化还原反应表现出 来的电容特性,主要包括过渡金属氧化物和导电聚合物。
双电层电容器存储的电荷与它的电容和电压相关 Q=CV,电容和电压是独 立的,但取决于电极的表面积,双电层的厚度和电解液的介质常数。根据 双电层电容器所需设备的性能或是使用的电解液选择电极材料。活性炭是 双电层电容器传统的电极材料
双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线
Profile of the potential across electrochemical double layer capacitor in the charged condition
双电层电容器的储能机理本质上与静电容器一致,其依靠材料表面电子和溶液中等量 离子在电极材料/电解液界面的分离储存电量。通常电极材料采用高比表面积炭材料, 具有较高的比表面积(高达2000 m2 /g),远大于电解电容器电极的比表面积,
论超级电容器的原理及应用
论超级电容器的原理及应用摘要:超级电容器属于储能装置的一种晋级版,其凭借着自身使用寿命长、功率密度高、充电迅速、使用温度宽等优点而被广泛应用。
在本案,笔者就超级电容器的原理及应用为主要研究对象,探析了超级电容器的分类、原理、特点及应用。
关键字:超级电容器赝电容器原理特点及应用超级电容器的开展始于上个世纪70年代-80年代,其为一种介于传统电容器与电池间的新型储能器件。
相对于传统电容器,超级电容器具备电容量大〔为2000-6000倍同体积电解电容器〕、功率密度高〔为10-100倍电池〕、充放电电流量大、充放电循环次数高〔大于105次〕、充放电效率高、免维修等优点。
在本案,笔者以超级电容器为研究对象,探析其原理、应用领域及应用效果。
一、超级电容器分类就电极而言,超级电容器可划分为贵金属氧化物电极电容器、碳电极电容器及导电聚合物电容器。
就电能机理而言,超级电容器可划分为双电层电容器〔电容产活力理为以电解液及电极上的电荷别离为根底双电层电容〕、法拉第准电容(组成成分为贵金属氧化物及贵金属电极;电容产活力理为以电活性离子于贵金属电极外表欠电位沉积现象或于贵金属氧化物电极体相及外表因氧化复原反响为根据的吸附电容。
与双电层电容相比较,吸附电容完全不一样,此外,吸附电容的比电容将随着电荷传递的向前推进而不断增大。
就超级电容器电极上的反响情况及构造而言,超级电容器可划分为非对称型及对称型。
对称型超级电容器即为两个电极反响一样、组成一样、反响方向相反,例如贵金属氧化物、碳电极双电层电容器等。
非对称型超级电容器即为两个电极反响不同、电极组成不同。
超级电容器最大可用电压取决于电解质分解电压。
电解质可为强碱或强酸等水溶液,亦可谓盐的质子惰性溶剂等有机溶液。
通过水溶液体系,便可获取高比功率及高容量的最大可用电压;通过有机溶液体系,便可获取高电压,从而获取高比能量。
二、超级电容器的原理就存储电能的机理而言,超级电容器可分为赝电容器及双电层电容器。
超级电容器结构
知识创造未来
超级电容器结构
超级电容器的结构主要分为两种:电双层电容器和赋存电容器。
1. 电双层电容器(Electric Double-Layer Capacitor,EDLC):电双层电容器的结构由两个电极(正极和负极)和电解质组成。
电极
通常采用活性炭材料,具有高比表面积和孔隙结构,以增加电极与
电解质接触的面积。
电解质既可以是有机物质,也可以是无机盐溶液。
当电压施加在电极上时,电解质中的正、负离子会在电极表面
形成电双层,形成电荷分离,从而存储电能。
2. 赋存电容器(Pseudocapacitor):赋存电容器的结构类似于传
统的电化学储能器件,如铅酸蓄电池等。
它包括两个电极和电解质,但电极材料不同于电双层电容器,而是采用具有赋存效应的材料,
如金属氧化物和导电聚合物。
这些材料具有较高的可逆氧化还原反应,并能够通过红ox反应来存储电能。
以上是超级电容器的两种常见结构,每种结构都有其特定的优势和
应用领域。
电双层电容器具有高功率密度、长寿命和低内阻的特点,适用于短时高功率输出和储能装置中的能量平衡;赋存电容器具有
较高的能量密度和较长的充放电周期,适用于需要较长工作时间和
较高能源密度的应用。
1。
超级电容器的分类与优缺点分析
超级电容器的分类与优缺点分析1.1 超级电容器的原理"双电层原理"是超级电容器的核心,这是由该装置的双电层结构决定的。
超级电容器是利用双电层原理的电容器。
当外加电压作用于普通电容器的两个极板时,装置存储电荷的原理是一样的,即正电极与正电荷对应、负电极与负电荷对应。
图1 超级电容的结构原理1.2 超级电容器的应用目前,超级电容器凭借强大的储存容量及存储性能,在许多大中小型设备中得到了普遍运用,且涉及到的行业较为广泛。
具体运用在:真空开关、仪器仪表、数码相机等微小电流供电的后备电源;太阳能产品以及小型充电产品的充电电池。
由于超级电容器的功能优势显着,在使用时可适当添加辅助元件以优化电容器结构,从而进一步增强了超级电容器的结构性能。
2 超级电容器的主要功能与普通电容器相比,超级电容器在结构上进行了改进调整,且在原理上得到了优化。
但在使用期间超级电容器与常规电容器的功能相近。
新型电容装置的功能集中表现在:旁路、去耦、储能等方面,这些对于电路运行或存储电荷都有着明显的调控作用。
具体功能如下:(1)旁路。
超级电容器中的旁路电容可以定期储存电能,但其它元器件在运行中需要能量时,则能及时释放出电荷维持使用。
旁路电容器的最大功能表现于稳压器电荷输出的均衡,避免了电荷传输混乱而引起电路故障,装置充电、放电的灵活性较强,如图2.图2 旁路电容原理(2)去耦。
去耦主要是针对电路内产生的"耦合"现象而言,耦合是由于电路中电流、电阻失去均衡而引起的一种"噪声",不利于电路内部载荷的均衡布置。
超级电容器使用之后,能有效地消除耦合现象,让电路中的各项指标参数维持在标准状态。
(3)储能。
无论是普通的电容器或者超级电容器,储存电荷或电能都是极为关键的性能。
超级电容器的电荷储存容量更大,能满足更多电子元件的使用需求。
超级电容器把存储的能量利用变换器引线传送至电源的输出端之后,经过优化处理能进一步强化电容的存储性能。
超级电容器基础知识详解
超级电容器是20世纪60年代发展起来的一种新型储能器件,并于80年代逐渐走向市场。
自从1957 年美国人Becker申报的第一项超级电容器专利以来,超级电容器的发展就不断推陈出新,直到1983 年,日本NEC公司率先将超级电容器推向商业化市场,使得超级电容器引起人们的广泛兴趣,研究开发热潮席卷全球,不但技术水平日新月异,而且应用范围也不断扩大。
一、超级电容器的原理超级电容也称电化学电容,与传统静电电容器不同,主要表现在储存能量的多少上。
作为能量的储存或输出装置,其储能的多少表现为电容量的大小。
根据超级电容器储能的机理,其原理可分为:1.在电极P 溶液界面通过电子和离子或偶极子的定向排列所产生的双电层电容器。
双电层理论由19 世纪末H elm h otz 等提出。
关于双电层的代表理论和模型有好几种,其中以H elm h otz 模型最为简单且能够充分说明双电层电容器的工作原理。
该模型认为金属表面上的静电荷将从溶液中吸收部分不规则的分配离子,使它们在电极P 溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。
于是,在电极上和溶液中就形成了两个电荷层,这就是我们通常所讲的双电层。
双电层有储存电能量的作用,电容器的容量可以利用以下公式来计算:式中,E为电容器的储能大小;C为电容器的电容量;V 为电容器的工作电压。
由此可见,双电层电容器的容量与电极电势和材料本身的属性有关。
通常为了形成稳定的双电层,一般采用导电性能良好的极化电极。
2.在电极表面或体相中的二维与准二维空间,电活性物质进行欠电位沉积,发生高度可逆的化学吸附、脱附或氧化还原反应,产生与电极充电电位有关的法拉第准电容器。
在电活性物质中,随着存在于法拉第电荷传递化学变化的电化学过程的进行,极化电极上发生欠电位沉积或发生氧化还原反应,充放电行为类似于电容器,而不同于二次电池,不同之处为:(1)极化电极上的电压与电量几乎呈线性关系;(2)当电压与时间成线性关系d V/d t=K时,电容器的充放电电流为一恒定值I=Cd V/d t=CK.此过程为动力学可逆过程,与二次电池不同但与静电类似。
超级电容器简介_图文
双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线 Profile of the potential across electrochemical double
1、多孔电容炭材料
性能要求
1、高比表面 > 1000m2/g
理论比电容 > 250 F/g
ห้องสมุดไป่ตู้
各指
2、高中孔孔容 12~40Å 400l/g,
标间
大于40Å的孔容 50l/g,
相互
3、高电导率
矛盾
4、高的堆积比重
5、高纯度 灰份 < 0.1%
6、高性价比
7、良好的电解液浸润性
已研制的电容炭材料
碳气凝胶——电子导电性好
电容器产品性能:功率 4000 W/kg,能量 1 Wh/kg 优点:中孔发达、电导率高 不足:比表面积低、制备工序复杂 发展趋向:非超临界干燥、活化提高比电容
玻态炭 电导率高,机械性能好; 结构致密,慢升温制作难,价贵。
玻态炭
只能表层活化
活性玻态炭
纳米孔玻态炭
多孔碳层 厚15~20 um 多孔碳层的电导率高, 多孔碳层比功率18kW/L
230
170
制备条件
常规方法、简单方便 超临界干燥周 期长、费用高
碳纳米管
特点 1、导电性好,比功率高 2、比表面小,比容量低 3、成本高
作为添加剂使用
2、准电容储能材料
对金属化合物的性能要求:
1、高比表面 ——多孔,高比能量 2、低电阻率 ——高比功率 3、化学稳定性—— 长寿命 4、高纯度—— 减少自放电 5、价格低—— 便于推广应用
《超级电容器的研究》课件
如MnO2、NiO等,具有较高的 电化学活性,可以提供较大的电 容量。
电解质材料
离子液体
具有高离子电导率、低蒸气压、宽电化学窗 口等优点,可以提高超级电容器的性能。
聚合物电解质
如聚苯乙烯磺酸盐、聚丙烯腈等,具有良好 的机械性能和电化学稳定性。
隔膜材料
要点一
聚烯烃隔膜
具有良好的化学稳定性、机械性能和电绝缘性能,是常用 的隔膜材料。
智能家居
超级电容器可以为智能家居设备提供即时的电力供应,确保设备的正常运行。
03
CATALOGUE
超级电容器的关键材料与技术
电极材料
01
活性炭
具有高比表面积、良好的电导性 和化学稳定性,是应用最广泛的 电极材料之一。
碳纳米管
02
03
金属氧Байду номын сангаас物
具有优异的电导性能和机械性能 ,可以提高电极的电化学性能和 稳定性。
《超级电容器的研究》 ppt课件
CATALOGUE
目 录
• 超级电容器的概述 • 超级电容器的应用领域 • 超级电容器的关键材料与技术 • 超级电容器的性能测试与评估 • 超级电容器的研究挑战与展望 • 研究案例与分析
01
CATALOGUE
超级电容器的概述
超级电容器的定义与工作原理
定义
超级电容器是一种具有高容量、快速充放电特性的电化学元件,通常由电极、 电解液和隔膜组成。
02
CATALOGUE
超级电容器的应用领域
电动汽车与混合动力汽车
电动汽车
超级电容器可以提供高功率启动 和加速,改善电动汽车的启动和 加速性能。
混合动力汽车
超级电容器可以辅助发动机提供 额外的动力,同时储存和释放能 量,提高燃油效率。
超级电容器(资料汇总)
超级电容1.1 概述 (2)1.1.1 超级电容器的原理与结构及分类....... .. (2)1.1.2 超级电容器的特性.............. .. (4)1.1.3 超级电容器应用领域.... . (6)1.2 超级电容器市场状况 (7)1.2.1 概况 (8)1.2.2 竞争情况.. (11)1.2.3 下游市场...... . (12)1.3 超级电容器技术现状研究 (16)1.3.1 正极材料..... .. (17)1.3.2 负极材料 (18)1.3.3 有机电解液... (18)1.4 主要企业... (18)1.5 主要科研机构与科学家 (20)超级电容器作为一种新型的储能器件以其大容量、高功率密度、强充放电能力、长循环寿命、使用温度范围宽、无污染等许多显著优势在很多领域有着极为广阔的应用前景。
本文从详实的数据入手将超级电容器行业市场与技术现状综合起来,进行了全面深入的研究并对其发展作出了科学的预测。
同时,本文还基于当前国内的实情对产业技术中存在的漏洞提出了较好的解决方案,对技术的改进及产业的优化给出了合理的建议,并预见性的提出将锂离子电池技术与超级电容器技术结合起来研究推广的新思路。
本文不仅对国内从事电池能源业的中小型企业进军超级电容器领域,改进超级电容器生产技术,把握超级电容器市场动向有着较强的指导作用,对国家规范和优化超级电容器行业市场也有借鉴意义。
1.1 概述超级电容器又称电化学电容器,超大容量电容器,超电容器等。
迄今为止,没有规范的命名。
依据其储能机理不同,超级电容器又可分为以炭材料为主要电极材料的双电层电容器和以金属氧化物或导电聚合物为主要电极材料的准电容电容器。
1.1.1 超级电容器的原理(1)双电层电容工作原理双电层理论在19世纪末由Helmhotz等提出,后经Gouy,Chapman,Stern以及其他研究者逐步完善,已经形成较完善的理论。
其原理如图所示,将固体电极浸在电解液中,当施加低于溶液的分解电压的外加电场作用下,在电极与电解液接触的界面,由于库仑力、分子间力或者原子间力的作用,电荷会重新分布、排列。
超级电容器的设计和制备技术
超级电容器的设计和制备技术随着科学技术的不断发展,越来越多的新型材料应运而生,超级电容器就是其中一种。
超级电容器是一种高性能储能装置,具有高效率、高功率密度和长寿命等优点,在能源存储领域具有广泛的应用前景。
本文将介绍超级电容器的设计和制备技术。
一、超级电容器的分类和特性超级电容器(Supercapacitor,简称SC)又称电化学双层电容器、超级电容、超级电池、电化学电容器等,是一种电化学电容器。
超级电容器按材料分类主要有两种类型:一种为高孔隙碳材料超级电容器;一种为金属氧化物超级电容器。
高孔隙碳材料超级电容器利用电解液电离成的离子在高孔隙碳材料电极间的吸附作用来存储电能;金属氧化物超级电容器则是采用氧化物电极,其重要的特点是它们可以提供大的电容量,同时能够在高电压下工作。
与传统电池相比,超级电容器具备以下特性:1.高电容量:相对于传统的电瓶,超级电容器拥有非常高的电容量,能够储存更多的电能。
2.高充电速率:超级电容器的充电速度非常快,仅需数秒可充电至最大容量。
3.长寿命:相对于普通电池,超级电容器的寿命更长,因为它们的化学反应速度较慢,不易受到腐蚀。
4.绿色环保:超级电容器并不含有铅、汞、镉等重金属,对环境没有污染。
因此,超级电容器被广泛应用在电车、电动汽车、照明、电子设备等领域。
二、超级电容器的设计超级电容器分正负极两种,正极选择为氧化物材料,如锰酸锂、二氧化锰等,而负极则选用可撑开的极化陶瓷材料,如多孔氧化铌、二氧化钽等。
正负极之间使用导体连接,并加入电解液,就可以制备出超级电容器。
超级电容器的设计要考虑以下因素:1.选择材料:正极和负极的材料应该具有高的比表面积、高的导电性、良好的化学稳定性、长的循环寿命和低的内阻等。
2.电极设计:正极和负极应该互相分开,避免电介质损坏,同时长度应该尽量相等,以保证性能整齐。
3.电解液:电解液要具有较高的离子传导性、热稳定性、电化学稳定性等。
三、超级电容器的制备技术超级电容器主要分为两种制备方法:液相制备和固相制备。
超级电容器汇总
比电容高达1335
Fg-1, 并具有良好
的电容保持特性
石墨烯上生长聚吡咯 电化学沉积聚吡咯, 比电容高达1510
Fg-1, 面积比电容
为151 mF cm−2
4
4-1 超级电容器的电极材料
4.石墨烯
a) b)
石墨烯/赝电容材料复合电极 层次化 聚苯胺纳米线/石墨烯
30
4
4-1 超级电容器的电极材料
25
4
4-1 超级电容器的电极材料
4.石墨烯
什么是石墨烯超级电容器?
石墨烯超级电容器为基于石墨烯材 料的超级电容器的统称。由于石墨烯独 特的二维结构和出色的固有的物理特性, 诸如异常高的导电性和大比表面积,石 墨烯基材料在超级电容器中的应用具有 极大的潜力。石墨烯基材料与传统的电 极材料相比,在能量储存和释放的过程 中,显示了一些新颖的特征和机制。
特 性
4
4-2 超级电容器的电解液
有机系超级电容器的优缺点 优点
具有较高的分解电压 较高的能量密度 较高的电化学稳定性 耐高压 产品使用寿命长 工作温度范围宽 有机电解液应该尽量避免水的存在, 水的存在会导致电容器性能的下降, 自放电加剧
缺点
电容器的过充会导致有毒的挥发性 物质产生,同时也会使电容器的储 电能力显著下降甚至消失
4
2
特点
2
超 级 电 容 器 的 八 大 特 点
超级电容器的特点
充放电寿命长 电容量大 等效串联电阻 相对常规电容大
可任意并联 增加电容量
免维护,环保
工作温度范围宽 快速充电
大电流放电
6
3
分类
3
超级电容器的分类
超级电容器
双电层电容器 法拉第赝电容器
超级电容器基础知识
为双电层电容。
双电层超级电容原理
当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上 电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),
如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,
为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电 路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器
从图中可以看出,在相同温度条件下工作电压上升0.1V,寿命减半,
在相同的工作电压条件下,温度上升10 ℃ ,寿命减半。
超级电容器的性能参数—自放电
自放电 自放电又称荷电保持能力,它是指在开路状态下,超级电容器储存的 电量在一定环境条件下的保持能力。超级电容器充满电开路搁置一段 时间后,一定程度的自放电属于正常现象。 自放电是衡量超级电容器性能的主要参数之一。自放电行为与该体系 的化学性质、电化学性质、试剂和电解质的纯度以及温度有关,同时受
(内部资料,仅供学习)
2010-9-28
目录
1 2 什么是超级电容器 超级电容器的分类及原理 超级电容器的特性 超级电容器的构成 超级电容器的应用
3 4 5
常见问题的简单论述
1 2
3 4 5 6 影响内阻的主要因素
降低内阻的方法
影响超级电容均压的因素 影响产品一致性的因素 容量和电量
超级电容器的选用
定容量20%,ESR增大到额定值的1.5倍。 循环寿命 20秒充电到额定电压,恒压充电10秒,10秒放电到额定电压的一 半,间歇时间:10秒为一个循环。一般可达500000次。
超级电容器的性能参数—寿命
电解液分子运动速度随温度上升而增加,致使电解液的挥发速度随温度
上升,而且电解液的挥发或分解速度还随施加电压的上升而增加。这也是 超级电容器在不工作时或存储时不施加电压为好的原因。
超级电容器的分类
超级电容器可分为双电层电容器尧赝电容超级电容器尧混合型超 级电容器或称非对称型超级电容器遥 根据所工作电解液的不同袁超级 电容器又可以分成液相和固相两种遥
揖参考文献铱 咱员暂Sun Dongfei, Yan Xingbin, Lang Junwei援 JOURNAL OF POWER SOURCES[J], 2012,222,52-55. 咱圆暂Zhou Zhengping, Wu Xiang -Fa援 JOURNAL OF POWER SOURCES [J], 2013,222, 410-416. 咱猿暂Li X., Zhitomirsky, I.援 JOURNAL OF POWER SOURCES[J],2012,221,49-56. 咱源暂Fic Krzysztof. Frackowiak Elzbieta. Beguin, Francois援 JOURNAL OF MATERIALS CHEMISTRY[J],2012, 22(46): 24213-24223. 咱缘暂Khanra Partha, Kuila Tapas, Bae Seon Hyeong援 JOURNAL OF MATERIALS CHEMISTRY[J], 2012, 22(46): 24403-24410. 咱远暂Yan Tao, Li Zaijun, Li Ruiy援 JOURNAL OF MATERIALS CHEMISTRY [J], 2012, 22(44) 23587-23592. 咱苑暂Wang Xu, Liu Wan Shuang, Lu Xuehong援 JOURNAL OF MATERIALS CHEMISTRY[J],2012,22(43): 23114-23119. 咱愿暂Wang Xu, Sumboja Afriyanti, Lin Mengfang援 NANOSCALE[J],援2012,4(22):7266-7272.
超级电容器
活性炭 碳气凝胶 碳纳米管 石墨烯
金属氧化物
混合型超级电容器
静电和电化学作用共同储能
导电聚合物
对称型电极
非对称型电极
可充电电池型
复合电极材料 赝电容+双电层电极
8
3
3-1 双电层电容器
双电层电容原理
其储能过程是物理过程,没有化学反应且 过程完全可逆,这与蓄电池电化学储能不同
由于正负离子在固体电极和电解液之间的表面上分别吸附, 造成两固体电极之间的电势差,从而实现能量的存储。
材料
Cellulose 纤维素
5
制作
工艺
5
超级电容器的制作工艺
磨料
行星球磨机
压制电芯
热平压机
软包超级电容器制作工艺流程图
14
3
3-3 混合型超级电容器
锂离子电容器
结 构 图
15
3
3-3 混合型超级电容器
充电
电解液 中的Li+嵌入 到石墨层间 形成嵌锂石 墨,同时, 电解液中的 阴离子则吸 附在活性炭 正极表面形 成双电层。
锂离子电容器机理
放电
Li+从负极 材料中脱出回到 电解液中,正极 活性炭与电解液 界面间产生的双 电层解离,阴离 子从正极表面释 放,同时电子从 负极通过外电路 到达正极。
4
4-2 超级电容器的电解液
电 解 液
性能要求
4
4-2 超级电容器的电解液
按照电解液的类型可以分为水系电解液和有机系电解液
水系电解液
中性电解液(NaSO4等) 酸性电解液(H2SO4等)
碱性电解液(KOH等)。
有机/离子电解液 四氟硼酸四乙基铵(Et4NBF4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超级电容器的分类
(资料来源:中国联保网)按原理
超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。
按原理分为双电层型超级电容器和赝电容型超级电容器:
双电层型超级电容器
1.活性碳电极材料,采用了高比表面积的活性炭材料经过成型制备电极。
2.碳纤维电极材料,采用活性炭纤维成形材料,如布、毡等经过增强,喷涂或熔融金属增强其导电性制备电极。
3.碳气凝胶电极材料,采用前驱材料制备凝胶,经过炭化活化得到电极材料。
4.碳纳米管电极材料,碳纳米管具有极好的中孔性能和导电性,采用高比表面积的碳纳米管材料,可以制得非常优良的超级电容器电极。
以上电极材料可以制成:
1.平板型超级电容器,在扣式体系中多采用平板状和圆片状的电极,另外也有Econd公司产品为典型代表的多层叠片串联组合而成的高压超级电容器,可以达到300V以上的工作
电压。
2.绕卷型溶剂电容器,采用电极材料涂覆在集流体上,经过绕制得到,这类电容器通常具有更大的电容量和更高的功率密度。
赝电容型超级电容器
包括金属氧化物电极材料与聚合物电极材料,金属氧化物包括NiOx、MnO2、V2O5等作为正极材料,活性炭作为负极材料制备的超级电容器,导电聚合物材料包括PPY、PTH、PAn i、PAS、PFPT等经P型或N型或P/N型掺杂制取电极,以此制备超级电容器。
这一类型超级电容器具有非常高的能量密度,除NiOx型外,其它类型多处于研究阶段,还没有实现产业化生产。
按电解质类型
可以分为水性电解质和有机电解质类型:
水性电解质
1.酸性电解质,多采用36%的H2SO4水溶液作为电解质。
2.碱性电解质,通常采用KOH、NaOH等强碱作为电解质,水作为溶剂。
3.中性电解质,通常采用KCl、NaCl等盐作为电解质,水作为溶剂,多用于氧化锰电极材料的电解液。
有机电解质
通常采用LiClO4为典型代表的锂盐、TEABF4作为典型代表的季胺盐等作为电解质,有机溶剂如PC、ACN、GBL、THL等有机溶剂作为溶剂,电解质在溶剂中接近饱和溶解度。
其他
1.液体电解质超级电容器,多数超级电容器电解质均为液态。
2.固体电解质超级电容器,随着锂离子电池固态电解液的发展,应用于超级电容器的电解质也对凝胶电解质和PEO等固体电解质进行研究。