高二数学期中考试题
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。
高二数学期中考试试卷
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
高二期中考试试卷数学
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(-1) \)的值为:A. 6B. 4C. 2D. -22. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值:A. 37B. 38C. 39D. 403. 圆的方程为\( (x-3)^2 + (y-4)^2 = 25 \),求圆心坐标:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \tan \alpha \)的值:A. 1B. -1C. 0D. 无法确定5. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 26. 函数\( y = \ln(x) \)的图像在点(1,0)处的切线斜率是:A. 0B. 1C. 2D. -17. 已知\( \cos \theta = \frac{1}{3} \),求\( \sin \theta \)的值(假设\( \theta \)在第一象限):A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{2}}{9} \)C. \( -\frac{2\sqrt{2}}{3} \)D. \( -\frac{2\sqrt{2}}{9} \)8. 抛物线\( y^2 = 4x \)的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 根据题目所给的二元一次方程组\( \begin{cases} x + y = 3 \\ 2x - y = 1 \end{cases} \),求\( x \)的值:A. 1B. 2C. 3D. 无法确定10. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值:A. 3B. 6C. 8D. 10二、填空题(每题3分,共15分)11. 若\( a \),\( b \),\( c \)成等差数列,且\( a + b + c = 6 \),则\( b \)的值为______。
2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析
2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。
2024高二数学期中考试题及答案
2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
高二期中考试(数学)试卷含答案
高二期中考试(数学)(考试总分:100 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.已知集合{}34,5A =,,{}4,5,6B =,则AB =A .{}3B .{}4,5C .{}34,5,D .{}34,5,6,2.(4分)2.圆22240x y x y +-+=的圆心坐标是A .(1,2)B .(1-,2)C .(1,2-)D .(1-,2-)3.(4分)3.已知向量(,1)a x =-,(4,2)b =,且a b ,则x 的值是A .2B .12 C .12- D . 2- 4.(4分)4.若运行右图的程序,则输出的结果是A .15B .4C .11D .75.(4分)5.函数()(1)x f x a =-在R 上是减函数,则a 的取值范围是A .a >1B .0<a <1C .1<a <2D .·a >26.(4分)6.某学校高一、高二、高三年级的学生人数分别为300,200.400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是A .6.4.8B .6,6,6C .5,6,7 D·4,6,87.(4分)7.如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( ) A 、54 B 、53 C 、21 D 、528.(4分)8.不等式(1)(2)x x --≥0的解集是A .{}12x x ≤≤B .{}12x x <<C .{}12x x x ≤≥或D .{}12x x x <>或9.(4分)9.如果一个几何体的正视图是矩形,则这个几何体不可能是A .正方体B .正三棱柱C .圆柱D .圆锥10.(4分)10.已知实数x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最大值为A .0B .4C .3D .5二、 填空题 (本题共计5小题,总分20分) 11.(4分)11.已知cos (0,)2παα=∈,则sin(2)______πα+=· 12.(4分)12.直线l 过点(0,2)且与直线1x =垂直,则l 的方程为____________。
高二期中考试(数学)试卷含答案
高二期中考试(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分) 1.(5分)1.化简 ()i 23i +=( )A .32i -B .32i +C .32i --D .32i -+2.(5分)2.曲线324y x x =-+在点(1,3)处的切线的斜率为 ( )A .1B .1-C .2-D .23.(5分)3.有5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同的选择的种数为 ( ) A .35 B .53 C .35CD .35A4.(5分)4.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .55.(5分)5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种6.(5分)6.已知曲线3()=2f x x x +-在点P 处的切线平行与直线41y x =-,则点P的坐标为( ). A .(1,0)B .(1,4)--C .(1,4)-D .(1,0)或(1,4)--7.(5分)7.已知函数()21ln 2f x x x =-,则()f x 的单调减区间是( ) A .[)1,+∞B .(],1-∞-C .(]0,1D .[]1,1-8.(5分)8.设函数)('x f 是偶函数)(x f 的导函数,满足0)2(=f ,且0>x 时,满足0)()('<-x f x xf ,则使得0)(<xx f 时,x 的取值范围是( ) A.)2,2-( B .),()(∞+-20,2 C .)1,1-( D .),()(200,2 - 二、 多选题 (本题共计4小题,总分20分)9.(5分)9.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .2z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限10.(5分)10.将4个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子,则不同的放法种数是( ) A .11114323C C C CB .2343C AC .3143A CD .21342322C C A A ⋅ 11.(5分)11.已知函数()y f x =,其导函数()y f x '=的图象如下图所示,则()y f x =( )A .在1-=x 处取极小值B .在3=x 处取极小值C .在)2,1-(上为增函数 D .在)2,1(上为减函数 12.(5分)12.下列关于函数ln ()xf x x=的说法,正确的有( )A .x e =为函数()f x 的极大值点B .x e =为函数()f x 的极小值点C .函数()f x 在(0,)e 上单调递增D .函数()f x 在(,)e +∞上单调递增三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i 是虚数单位,计算12i2i-+ 的结果为_____________. 14.(5分)14.曲线321y x x =+-在点(1,(1))f 处的切线方程为______________. 15.(5分)15.为了更好地进行新冠肺炎的疫情防控,某社区安排6名工作人员到A ,B ,C 三个小区讲解疫情防控的注意事项,若每个小区安排两名工作人员,则不同的安排方式的种数为_________(.数字作答).16.(5分)16.已知函数x a e x f x ln )(-=在[]41,上单调递增,则a 的取值范围为_________.四、 解答题 (本题共计6小题,总分70分)17.(10分)17、(10分)若复数()()2262z m m m m i =+-+--,当实数m 为何值时?(1)z 是实数;(2)z 是纯虚数.18.(12分)18、(12分)在广外佛山外校某次颁奖典礼上,需要合影留念,现有3名女生和4名男生排成一排,问:(1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?19.(12分)19、(12分)已知函数13)(3+-=x x x f .(1)求()f x 的单调区间;(2)求函数的极值;(要列表).20.(12分)20、(12分)为了参加广外佛山外校第一届“辩论赛”,现在要从报名的5名男生和4名女生中再选出4人去参加比赛,问: (1)如果4人中男生和女生各选2人,有多少种选法? (2)如果4人中既要有男生,也有女生,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?21.(12分)21、(12分)已知函数()ln ),(f x x x ax b a b R =++∈在点()()1,1f 处的切线为320x y --=. (1)求函数()f x 的解析式:(2)若对于∀x 1,14⎡⎤∈⎢⎥⎣⎦,都有xx f m m )(12>--恒成立,求m 的取值范围. 22.(12分)22、(12分)某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售收入(单位:万元)的函数为)50(2152≤≤-=x x x R ,其中x 是产品生产并售出的数量(单位:百台). (1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大?(不需求出利润最大值)答案一、 单选题 (本题共计8小题,总分40分) 1.(5分) D 2.(5分) A 3.(5分)B 4.(5分)D 5.(5分)C 6.(5分)D 7.(5分)A 8.(5分)B二、 多选题 (本题共计4小题,总分20分) 9.(5分)BCD 10.(5分) CD 11.(5分) AC 12.(5分) AC三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i -14.(5分) 14. 035=--y x 15.(5分) 15.9016.(5分) 16.],e ∞-(四、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)当z 是实数时,220m m --=,解得2m =或1m =-,所以,所求的m 值为2或1-........5分.(2)当z 是纯虚数时,222060m m m m ⎧--≠⎨+-=⎩,解得3m =-,所以,所求的m 值为3-............................10分18.(12分)18.解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有5个元素,排成一排有55A 种排法,而其中每一种排法中,三个女生间又有33A 种排法,因此共有55A ·33A =720(种)不同排法.............................................................................4分(2)(插空法)先排4个男生,有44A 种排法,这4个男生之间和两端有6个位置,从中选取3个位置排女生,有35A 种排法,因此共有44A ·35A =1440(种)不同排法....................................8分(3)因为两端不排女生,只能从4个男生中选2人排列,有24A 种排法,剩余的位置没有特殊要求,有55A 种排法,因此共有24A ·55A =1440(种)不同排法...........................................12分19.(12分)19.解:(1)3()31=-+f x x x ,/2()333(1)(1)∴=-=-+f x x x x ...............................................2分由'()0f x =可得1x =或1x =-..................................................................................................................4分①当/()0f x >时,1x >或1x <-;②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-....................................................6分(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:...........................................10分当1x =-时,()f x 有极大值,并且极大值为(1)3f -= 当1x =时,()f x 有极小值,并且极小值为(1)1f =-..............................................................................12分20.(12分)20.解:(1)根据题意,从5名男生中选出2人,有2510C =种选法,从4名女生中选出2人,有246C =种选法,则4人中男生和女生各选2人的选法有10660⨯=种;............................................................4分(2)先在9人中任选4人,共有49126C =种选法,4人都是男生的有545=C 种选法,4人都是女生的有144=C 种选法,则4人中既要有男生,也有女生,有12015126=--种选法..................................8分(3)先在9人中任选4人,有49126C =种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有4735C =种,则甲与女生中的乙至少要有1人在内的选法有1263591-=种;...........................12分21.(12分)21.(1)由题意知:()f x 的定义域为(0,)+∞...........................................................................................1分∵()ln 1'=++f x x a ∴(1)13(1)1f a f a b =+=⎧⎨=+='⎩,解得21a b =⎧⎨=-⎩......................................................................5分 故()ln 21f x x x x =+-............................................................................................................................6分 (2)令()1()ln 2f x h x x x x==-+,则22'111)(xxx x x h +=+=...........................................................8分 0)(1,41'>∴⎥⎦⎤⎢⎣⎡∈x h x , ,即函数)(x h 在⎥⎦⎤⎢⎣⎡∈1,41x 上单调递增.所以要使得⎥⎦⎤⎢⎣⎡∈∀>--1,41)(12x x x f m m ,恒成立...............................................................................10分 只要1)1()(1max 2==>--f xx f m m )(即可,解得:2,1>-<m m 或...........................................12分22.(12分)22.(1)设利润为y 万元,得⎪⎩⎪⎨⎧>--⨯-⨯≤≤---=)5(25.05.05215550(25.05.021522x x x x x x y )即⎪⎩⎪⎨⎧>-≤≤-+-=)5(25.01250(5.04.75212x x x x x y )...........................6分(2)显然当05x ≤≤时,企业会获得最大利润,此时,21( 4.75)10.781252y x =--+, 4.75x ∴=,即年产量为475台时,企业所得利润最.....12分.。
南京市南师附中2024-2025学年高二上学期期中考试数学试卷及答案
南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.过两点()2,4-和()4,1-的直线在x 轴上的截距为( )A .145B .145-C .73D .73-2.过圆225x y +=上一点()2,1M --作圆的切线l ,则直线l 的方程为( ) A .230x y -+=B .250x y ++=C .250x y --=D .250x y +-=3.若k ∈R ,则“22k -<<”是“方程221362x y k k+=+-表示椭圆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若抛物线24y x =上的一点M 到坐标原点O M 到该抛物线焦点的距离为( ) A .5B .3C .2D .15.设直线l 的方程为()sin 10x y θθ+-=∈R ,则直线l 的倾斜角α的范围是( ) A .()0,πB .πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C .π3π,44⎡⎤⎢⎥⎣⎦D .ππ,42⎡⎫⎪⎢⎣⎭6.若直线上存在到曲线T 上一点的距离为d 的点,则称该直线为曲线T 的d 距离可相邻直线.已知直线:430l x y m +-=为圆()()22:2716C x y -++=的3距离可相邻直线,则m 的取值范围是( )A .[]48,22-B .[]18,8--C .(][),4822,-∞-+∞D .(][),188,-∞--+∞7.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,M 为双曲线右支上的一点.若M 在以12F F 为直径的圆上,且12π5π,312MF F ⎛⎫∠∈ ⎪⎝⎭,则该双曲线离心率的取值范围为( )A .(B .)+∞C .()1D .)18.已知A ,B 分别是椭圆2214x y +=的左、右顶点,P 是椭圆在第一象限内一点.若2PBA PAB ∠=∠,则PA PB的值是( )A .5BC .5D .5二.多选题9.已知椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上一点.则下列说法错误的是( )A .椭圆CB .12PF F △的周长为5C .1290F PF ∠<︒D .113PF ≤≤10.已知()0,2M ,()0,3N ,在下列方程表示的曲线上,存在点P 满足2MP NP =的有( ) A .370x -=B .4320x y +-=C .221x y +=D .2222140x y x y +-+-=11.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.已知定点()1,0F c -,()2,0F c ,动点P 满足212PF PF a ⋅=(a ,0c >且均为常数).设动点P 的轨迹为曲线E .则下列说法正确的是( ) A .曲线C 既是轴对称图形,又是中心对称图形B .12PF PF +的最小值为2aC .曲线E 与x 轴可能有三个交点D .2ca ≥时,曲线E 上存在Q 点,使得12QF QF ⊥ 三.填空题12.与双曲线2212x y -=有公共渐近线,且过点的双曲线的方程为______.13.若直线l 过抛物线24y x =的焦点.与抛物线交于A ,B 两点.且线段AB 中点的横坐标为2.则弦AB 的长为______.14.已知点()5,4P ,点F 为抛物线2:8C y x =的焦点.若以点P ,F 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为______.四.解答题15.已知直线1:220l ax y +-=与直线2:220l x ay +-=.(1)当12l l ⊥时,求a 的值;(2)当12l l ∥时,求1l 与2l 之间的距离.16.已知点()1,2A ,()1,2B --,点P 满足4PA PB ⋅=. (1)求点P 的轨迹Γ的方程;(2)过点()2,0Q -分别作直线MN ,RS ,交曲线Γ于M ,N ,R ,S 四点,且MN RS ⊥,求四边形MRNS 面积的最大值与最小值.17.已知椭圆()2222:10x y E a b a b +=>>的一个焦点坐标为()2,0,离心率为23.(1)求椭圆E 的标准方程;(2)设动圆22211:C x y t +=与椭圆E 交于A ,B ,C ,D 四点.动圆()222222212:C x y t t t +=≠与椭圆E 交于A ',B ',C ',D '四点.若矩形ABCD 与矩形A B C D ''''的面积相等,证明:2212t t +为定值.18.已知椭圆()2222:10x y C a b a b+=>>和抛物线()2:20E y px p =>.从两条曲线上各取两个点,将其坐标混合记录如下:(1P -,(22,P,)31P -,()49,3P .(1)求椭圆C 和抛物线E 的方程;(2)设m 为实数,已知点()3,0T -,直线3x my =+与抛物线E 交于A ,B 两点.记直线TA ,TB 的斜率分别为1k ,2k ,判断2121m k k +是否为定值,并说明理由. 19.设a 为实数,点()2,3在双曲线2222:12x y C a a -=+上. (1)求双曲线C 的方程; (2)过点1,12P ⎛⎫⎪⎝⎭作斜率为k 的动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=. (ⅰ)求斜率k 的取值范围;(ⅱ)证明:点H 恒在一条定直线上.南京师大附中2024—2025学年度第1学期高二年级期中考试数学试卷命题人:高二数学备课组 审阅人:高二数学备课组一.选择题1.【答案】A【解析】直线的斜率()415246k --==---,∴直线的方程为()5426y x -=-+,即5763y x =-+, ∴直线在x 轴上的截距为145,故选A . 2.【答案】B【解析】00525xx yy x y +=⇒--=,故选B . 3.【答案】B【解析】方程221362x y k k +=+-表示椭圆3602021362k k k k k+>⎧⎪⇒->⇒-<<-⎨⎪+≠-⎩或12k -<<,故选B . 4.【答案】C【解析】设点2,4y M y ⎛⎫⎪⎝⎭,由MO =()2220054y y ⎛⎫-+-= ⎪⎝⎭, ∴24y =或220y =-(舍去),即214y x ==, ∴M 到抛物线24y x =的准线1x =-的距离()112d =--=,根据抛物线定义得选项C .5.【答案】C【解析】当sin 0θ=时,则直线的斜率不存在,即直线的倾斜角为π2, 当sin 0θ≠时,则直线的斜率(][)1,11,sin k θ=-∈-∞-+∞,即直线倾斜角为πππ3π,,4224⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦, 综上所述,直线的倾斜角的范围为π3π,44⎡⎤⎢⎥⎣⎦.故选C . 6.【答案】A【解析】圆C 的半径为4,直线l 上存在到圆C 上一点的距离为3的点, 故圆心()2,7C -到直线l 的距离7d ≤,即()423775m⨯+⨯--≤,解得[]48,22m ∈-,故选A .7.【答案】D【解析】设21MF F θ∠=,则12sin MF c θ=,22cos MF c θ=, 根据双曲线定义122sin 2cos 2MF MF c c a θθ-=-=,1π4c aθ=⎛⎫- ⎪⎝⎭,π5π,312θ⎛⎫∈ ⎪⎝⎭,故πππ,4126θ⎛⎫-∈ ⎪⎝⎭1c e a =<,故选D . 8.【答案】C【法一】由题意知()2,0A -,()2,0B ,设()00,P x y , 直线P A ,PB 的斜率分别为1k ,2k ,则1214k k =-, 由正弦定理得sin 2cos sin PA PBAPAB PB PAB∠==∠∠, 又22tan tan tan 21tan PABPBA PAB PAB∠∠=∠=-∠,则122121k k k -=-, 联立解得2119k =,即22211cos tan 9cos PAB PAB PAB -∠=∠=∠,所以cos PAB ∠=,即5PA PB =, 【法二】设()00,P x y ,则00tan 2y PAB x ∠=+,00tan 2y PBA x ∠=--, 0000200022102tan tan 221312y y x PBA PAB PBA PAB x x y x +∠=∠⇒-=∠=∠=⇒=-⎛⎫- ⎪+⎝⎭,20144169y =5PAPB==二.多选题9.【答案】AB对于选项A :由题意可知2a =,1c ===,∴离心率12c e a ==,故选项A 错误, 对于选项B :由椭圆的定义1224PF PF a +==,1222F F c ==, ∴12PF F △的周长为426+=,故选项B 错误,对于选项C :当点P 为椭圆短轴端点时,12tan23F PF c b ∠==, 又∵120902F PF ∠︒<<︒,∴12302F PF∠=︒,即1260F PF ∠=︒, ∴1290F PF ∠<︒,故选项C 正确, 对于选项D :由椭圆的几何性质可知1a c PF a c -≤≤+,∴113PF ≤≤,故选项D 正确.10.【答案】BC【解析】()2254,39P x y x y ⎛⎫⇒=+-= ⎪⎝⎭对于A ,7233d R -=>=,所以直线与圆相离,不存在点P ; 对于B ,5232553d R -==<=,所以直线与圆相交,存在点P ; 对于C ,121252133C C R R ==+=+,所以两圆外切,存在点P ;对于D ,()()22121221116433x y C C R R -++=⇒=<-=-,所以两圆内含,不存在点P . 11.【答案】ACD【解析】212a PF PF =⋅==对于A ,用x -代x 得222x y c ++=y 轴对称,用y -代y 得222x y c ++=x 轴对称,用x -代x ,y -代y 得222x y c ++=所以曲线C 既是中心对称图形,又是轴对称图形,所以A 正确;对于B ,当0a >时,122PF PF a +≥=,当0a =时,显然P 与1F 或2F 重合,此时122PF PF c +=,所以B 错误; 对于C ,根据对称性可得,曲线E 与x 轴可能有三个交点,所以C 正确; 对于D ,若存在点P ,使得12PF PF ⊥,则12PF PF ⊥,因为()1,PF c x y =---,()2,PF c x y =--,所以222x y c +=,由222x y c ++=22c =222c a ≥,所以D 正确.三.填空题12.【答案】2212x y -= 【解析】设所求双曲线方程为()2202x y λλ-=≠,将点代入双曲线方程得121λ=-=-,故方程为2212x y -=.13.【答案】6【解析】设A 、B 两点横坐标分别为1x ,2x , 线段AB 中点的横坐标为2,则1222x x +=,故12426AB x x p =++=+=. 14.【答案】57【解析】由抛物线方程得()2,0F ,准线方程为2x =-, 又点()5,4P ,则25c PF ==,在抛物线上取点H ,过H 作HG 垂直直线2x =-,交直线2x =-于点G , 过P 作PM 垂直直线1x =-,交直线1x =-于点M ,由椭圆和抛物线定义得()2527a HF HP HG HP PM =+=+≥=--=,故椭圆离心率2527c e a =≤.四.解答题15.【解析】(1)由12l l ⊥,则20a a +=,解得0a =.(2)由12l l ∥得22244a a ⎧=⎨-≠-⎩,解得1a =-,直线2l 的方程为220x y -+-=,即220x y -+=, 直线1l 的方程为220x y --=, 因此,1l 与2l 之间的距离为d ==. 16.【解析】(1)设(),P x y ,则()()41,21,2PA PB x y x y =⋅=--⋅----,故轨迹方程为229x y +=. (2)假设点O 到MN 的距离为m ,到RS 的距离为n,则12S MN RS == 因为MN RS ⊥,所以224m n +=,所以)204S m ==≤≤,所以S ⎡⎤∈⎣⎦,所以四边形MRNS 面积的最大值14,最小值17.【解析】(1) 222249253a b a b e ⎧-=⎧=⎪⎪⇒⇒⎨⎨=⎪==⎩⎪⎩椭圆22:195x y E += (2)设()33,A x y ',矩形ABCD 与矩形A B C D ''''的面积相等 ∴331144x y x y =,即22221133x y x y=∵A ,A '均在椭圆上,∴22223113515199x x x x ⎛⎫⎛⎫⨯-=⨯- ⎪ ⎪⎝⎭⎝⎭,即22139x x +=,222231135151599x x y y ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭ 故()()()()()22222222222212113313131314t t x y x y x x x x y y +=+++=+=+++=为定值. 18.【解析】(1)将四个点带入抛物线方程解得12p =-,12,2,12,故抛物线E 方程为2y x =故(1P -,)31P -为椭圆上的点22222242186141a a b b a b ⎧+=⎪⎧=⎪⎪⇒⇒⇒⎨⎨=⎪⎩⎪+=⎪⎩椭圆C 方程22184x y += (2)设()12,A x x ,()22,B x y ,则1222123303x my y y m y my y y y x =++=⎧⎧⇒--=⇒⎨⎨=-=⎩⎩()()()121222212121212666136212my my m y y m m m k k y y y y y y ++++=+=++=-为定值. 19.【解析】(1)因为点()2,3在双曲线C 上,所以22222312a a -=+,整理得42780a a +-=, 即()()22180a a -+=,解得21a =,则双曲线C 的方程为2213y x -=; (2)(ⅰ)易知直线l 的方程为112y k x ⎛⎫=-+ ⎪⎝⎭,即112y kx k =+-, 联立2211213y kx k y x ⎧=+-⎪⎪⎨⎪-=⎪⎩,消去y 并整理得()()222132404k x k k x k k ⎛⎫-+---+= ⎪⎝⎭, 设()11,M x y ,()22,N x y ,因为直线l 与双曲线的右支有两个不同的交点M ,N , 所以关于x 的方程()()222132404kxk k x k k ⎛⎫-+---+= ⎪⎝⎭有两个不同的正数根1x ,2x ,()()()()()()()()()22222222212434033416043202301303404k k k k k k k k k k k k k k k k k ⎧⎛⎫-+--+> ⎪⎪⎧-+->⎝⎭⎪⎪⎪⎪--<⇒-->⎨⎨⎪⎪-<⎛⎫⎪⎪⎩---+> ⎪⎪⎝⎭⎩,解得k ∈⎝则斜率k的取值范围为⎝; (ⅱ)设()00,H x y ,由(ⅰ)得()()12222233k k k k x x k k --+=-=--,()222122221144416443343k k k k k k x x k k k ⎛⎫--+-+ ⎪-+⎝⎭===---, 因为1112x a ≥=>,2112x a ≥=>,()()01020x x x x --<, 又P ,M ,N ,H 在同一直线l 上,所以111222112122112122x x PM x PN x x x ---===---,0120MH x x HN x x -=-, 由PM MH PN HN=得0112202121x x x x x x --=--,即()()()()1202012121x x x x x x --=--, 化简得()()()1201212214x x x x x x x +-=-+,所以()()202222241621333k k k k k k x k k k --⎛⎫-+-=- ⎪---⎝⎭, 整理得()()()2202234162k k k x k k k k --+=-+--,解得0832kx k -=-,即003821x k x -=- 又点()00,H x y 在直线112y k x ⎛⎫=-+ ⎪⎝⎭上,所以()001136911223264k k y k x k k +⎛⎫=-+=+= ⎪--⎝⎭ 即00000386921386421x x y x x -+⋅-=--⋅-,故点H 恒在定直线3260x y --=上.。
2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷(含答案)
2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线x+y−12=0的倾斜角是( )A. π4B. π2C. 3π4D. π32.已知点B是点A(3,4,5)在坐标平面Oxy内的射影,则|OB|等于A. 5B. 34C. 41D. 523.长轴长是短轴长的3倍,且经过点P(3,0)的椭圆的标准方程为A. x29+y2=1 B. x281+y29=1C. x29+y2=1或y281+x29=1 D. y29+x2=1或x281+y29=14.已知方程x22+m −y2m+1=1表示双曲线,则m的取值范围为A. (−2,−1)B. (−∞,−2)∪(−1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)5.在正四棱锥P−ABCD中,PA=4,AB=2,E是棱PD的中点,则异面直线AE与PC所成角的余弦值是( )A. 612B. 68C. 38D. 56246.已知椭圆C:x29+y25=1的右焦点为F,P是椭圆上任意一点,点A(0,23),则▵APF的周长的最大值为A. 9+21B. 14C. 7+23+5D. 15+37.已知A(−3,0),B(0,3),从点P(0,2)射出的光线经x轴反射到直线AB上,又经过直线AB反射到P点,则光线所经过的路程为A. 210B. 6C. 26D. 268.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是2,则点M的轨迹方程为A. y=−x2+1(x≠±1)B. y=x2+1(x≠±1)C. x=−y2+1(y≠±1)D. x=y2+1(y≠±1)二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知A(−3,−4),B(6,3)两点到直线l:ax+y+1=0的距离相等,则a的值可取A. −13B. 13C. −79D. 7910.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1的直线与C的左支相交于P,Q两点,若PQ⊥PF2,且4|PQ|=3|PF2|,则( )A. |PQ|=4aB. 3PF1=PQC. 双曲线C的渐近线方程为y=±223x D. 直线PQ的斜率为411.已知椭圆C1:x29+y25=1,将C1绕原点O沿逆时针方向旋转π2得到椭圆C2,将C1上所有点的横坐标、纵坐标分别伸长到原来的2倍得到椭圆C3,动点P,Q在C1上,且直线PQ的斜率为−12,则A. 顺次连接C1,C2的四个焦点构成一个正方形B. C3的面积为C1的4倍C. C3的方程为4x29+4y25=1D. 线段PQ的中点R始终在直线y=109x上三、填空题:本题共3小题,每小题5分,共15分。
山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)
山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题
四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。
高二期中考试(数学)试卷含答案解析
高二期中考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.2i12i-=+()A.1 B.−1 C.i D.−i2.(5分)2.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+13.(5分)3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(5分)4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56%C.46% D.42%5.(5分)5.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.106.(5分)6.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C .20D .367.(5分)7.在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .108.(5分)8.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种9.(5分)9.北京2022年冬奥会和冬残奥会色彩系统的主色包括霞光红、迎春黄、天霁蓝、长城灰、瑞雪白;间色包括天青、梅红、竹绿、冰蓝、吉柿;辅助色包括墨、金、银.若各赛事纪念品的色彩设计要求:主色至少一种、至多两种,间色两种、辅助色一种,则某个纪念品的色彩搭配中包含有瑞雪白、冰蓝、银色这三种颜色的概率为( ) A .8225B .245C .115D .21510.(5分)10.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( ) A .5B .8C .10D .1511.(5分)11.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名B .18名C .24名D .32名12.(5分)12.已知定义在(0,+∞)上的连续函数()y f x =满足:()()x xf x f x xe '-=且(1)3f =-,(2)0f =.则函数()y f x =( )A .有极小值,无极大值B .有极大值,无极小值C .既有极小值又有极大值D .既无极小值又无极大值二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.14.(5分)14.262()x x+的展开式中常数项是__________(用数字作答).15.(5分)15.设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -=__________.16.(5分)16.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.18.(12分)18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.19.(12分)19.(12分)已知函数3()6ln f x x x =+,()'f x 为()f x 的导函数.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅰ)求函数9()()()g x f x f x x'=-+的单调区间和极值; 20.(12分)20.(12分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1、q 1和p 2、q 2;(2)求X 2的分布列和数学期望E (X 2) .21.(12分)21.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,22.(12分)22.(12分)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(Ⅰ0x ≤≤; (Ⅰ)00(e )(e 1)(1)x x f a a ≥--.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1D 2.(5分) 2B 3.(5分) 3 C 4.(5分) 4C 5.(5分) 5C 6.(5分)6B 7.(5分) 7C 8.(5分) 8 C 9.(5分) 9 B 10.(5分) 10C 11.(5分) 11 B 12.(5分) 12 A二、 填空题 (本题共计4小题,总分20分) 13.(5分)13.1 14.(5分) 14. 24015.(5分) 15. 16.(5分) 16.45三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)【解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.……(5分)(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.……(10分)18.(12分)18.(12分)【答案】(1)12000;(2)0.94;(3)详见解析【解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=……(4分) (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑……(4分)(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. ……(4分)19.(12分)19.(12分) 【答案】(Ⅰ)98y x =-;(Ⅰ)()g x 的极小值为(1)1g =,无极大值;【解】(Ⅰ) ∵()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, ∴曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.…4分 (Ⅰ) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-,整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:,+∞); g (x )的极小值为g (1)=1,无极大值. ……(12分)20.(12分)20.(12分)【答案】(1)112212716,,332727p q p q ====;;(2);详见解析【解】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.……(8分) (2)227(2)27P X p ===;2216(1)27P X q ===;22124(0)33327P X ==⨯⨯=;∴2X 的分布列为故210()9E X =.;……(12分) 21.(12分)21.(12分)【答案】(1)0.64;(2)答案见解析;(3)有.【解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=;……(4分) (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. ……(12分)22.(12分)22.(12分)【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;……(4分) (II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xex x e x x ∴--≤≤--≤≤(8分)(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--, 即只需证明224(2)(1)(1)ae e a -≥--, 令22()4(2)(1)(1),(12)as a e e a a =----<≤, 则22()8(2)(1)8(2)(1)0aas a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e (e 1)(1)x f a a≥--.……(12分)。
高二期中考试试卷数学
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 5D. -52. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a5的值为:A. 11B. 14C. 17D. 203. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)4. 一个圆的半径为5,圆心在原点,该圆的面积为:A. 25πB. 50πC. 75πD. 100π5. 计算定积分∫(0到1) x^2 dx的值为:B. 1/2C. 2/3D. 16. 已知向量a = (3, -4),向量b = (-2, 6),则向量a与向量b的数量积为:A. -10B. 0C. 10D. -207. 以下哪个不等式是正确的?A. |x| > xB. |x| ≥ xC. |x| < xD. |x| ≤ x8. 函数y = 2^x的反函数为:A. y = log2(x)B. y = 2^xC. y = log(x)D. y = x^(1/2)9. 已知抛物线y = x^2 - 4x + 4,其顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)10. 计算极限lim(x→0) (sin(x)/x)的值为:B. 1C. π/2D. -1二、填空题(每题4分,共20分)11. 计算sin(π/6)的值为______。
12. 已知函数f(x) = x^2 - 6x + 8,求f(1)的值为______。
13. 计算定积分∫(-1到1) x dx的值为______。
14. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角的余弦值为______。
15. 计算极限lim(x→∞) (1/x)的值为______。
三、解答题(每题10分,共40分)16. 已知函数f(x) = x^3 - 3x^2 + 2x,求导数f'(x),并求出f'(1)的值。
2024学年景德镇市高二数学上学期期中考试卷及答案解析
2024学年景德镇市高二数学上学期期中考试卷满分:150分考试时间:120(分钟)2024.11第一部分选择题(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 过点()1,2A ,()3,4B ,则直线l 的倾斜角为()A.π6-B.π3-C.π4 D.π32.直线210x y -+=的方向向量是()A.()2,1B.()2,1- C.()1,2 D.()1,2-3.“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.定义:通过24小时内降水在平地上的积水厚度(mm )来判断降雨程度;其中小雨(0mm 10mm -),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -);小明用一个圆锥形容器(如图)接了24小时的雨水,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨5.直线3y x =关于=1对称直线l ,直线l 的方程是()A.20y +-= B.20y ++= C.20x +-= D.20x ++=6.若P 是ABC V 所在平面外一点,且PA BC ⊥,PB AC ⊥,则点P 在ABC V 所在平面内的射影O 是ABC V 的()A.内心B.外心C.重心D.垂心7.四边形ABCD 是矩形,3AB AD =,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线,ED BF 所成角α在旋转过程中()A.逐步变大B.逐步变小C .先变小后变大D.先变大后变小8.半球内放三个半径为的小球,三小球两两相切,并且与球面及半球底面的大圆面也相切,则该半球的半径是()A.1+B.C.D.+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的有()A.若向量a 、b 与空间任意向量都不能构成一组基,则//a b r rB.若非零向量a ,b ,c满足a b ⊥ ,b c ⊥ ,则有//a cr r C.“倾斜角相等”是“斜率相等”的充要条件D.若{},,a b b c c a +++ 是空间的一组基,则{},,a b c也是空间的一组基10.用一个平面去截正方体,所得截面不.可能是()A.直角三角形B.直角梯形C.正五边形D.正六边形11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A.直线1BD ⊥平面11A C DB.三棱锥11P AC D -的体积为定值C.异面直线AP 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D.直线1C P 与平面11A C D 所成角的正弦值的最大值为3第二部分非选择题(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设直线1l ,2l 的方向向量分别为()2,2,1a =-,()3,2,b m =- ,若12l l ⊥,则m =__________.13.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.14.如图,已知正三棱锥P ABC -的侧棱长为l ,过其底面中心O 作动平面α,交线段PC 于点S ,交PA ,PB 的延长线于M ,N 两点.则111PS PM PN++=______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线():20R l x ky k k -++=∈.(1)若直线l 不经过...第一象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB V 的面积为S (O 为坐标原点),求S 的最小值和此时直线l 的方程.16.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,22AE BC CF ===.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;17.如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ∠=∠=︒,112AB AD CD ===,PD =(1)若M 为PA 中点,求证://AC 平面MDE ;(2)求直线PB 与直线CD 所成角的大小;(3)设平面PAD ⋂平面EBC l =,试判断l 与平面ABCD 能否垂直?并证明你的结论.18.如图,平行六面体1111ABCD A B C D -的所有棱长均为,底面ABCD 为正方形,11π3A AB A AD ∠=∠=,点E 为1BB 的中点,点F 为1CC 的中点,动点P 在平面ABCD内.(1)若O 为AC 中点,求证:1A O AO ⊥;(2)若//FP 平面1D AE ,求线段CP 长度的最小值.19.在空间直角坐标系中,若平面α过点()000,,P x y z ,且平面α的一个法向量为(),,n a b c =,则平面α的方程为()()()0000a x x b y y z z z -+-+-=,该方程称为平面α的点法式方程,整理后为0ax by cz t +++=(其中000t ax by cz =---),该方程称为平面α的一般式方程.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,BC ,BD ,1BC 两两垂直,1AD =,BD =,直线1CC 与平面ABCD 所成的角为π4,以B 为坐标原点,BC ,BD ,1BC 的方向分别是x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.(1)求平面11DC D 的一般式方程.(2)求1A 到直线11C D 的距离.(3)在棱1BB 是否存在点M ,使得平面1A DM ⊥平面11C D M ?若存在,求出1MBBB 的值;若不存在,请说明理由.乐平三中2024-2025学年度上学期期中考试高二数学试卷满分:150分考试时间:120(分钟)第一部分选择题(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 过点()1,2A ,()3,4B ,则直线l 的倾斜角为()A.π6-B.π3-C.π4 D.π3【答案】C 【解析】【分析】求出直线的斜率,由斜率与倾斜角关系即可求解.【详解】由题可得:42131l k -==-,所以直线l 的倾斜角为:45︒;故选:C2.直线210x y -+=的方向向量是()A.()2,1 B.()2,1- C.()1,2 D.()1,2-【答案】A 【解析】【分析】根据直线的斜率及方向向量定义判断即可.【详解】直线210x y -+=的斜率为12,所以方向向量是()2,1.故选:A.3.“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用直线平行的条件计算可得结论.【详解】当13m =-时,两条直线330x y --=,310x y -+=,两直线平行,所以“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的充分条件;因为直线()3210m x y -+-=的斜率存在且为23m -,由两直线平行,所以10x my +-=的斜率存在且为1m-,所以123m m -=-,解得1m =或13m =-,当1m =时,直线方程均为10x y +-=,此时直线重合,故1m =不符合题意,舍去;所以“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的充要条件.故选:C .4.定义:通过24小时内降水在平地上的积水厚度(mm )来判断降雨程度;其中小雨(0mm 10mm -),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -);小明用一个圆锥形容器(如图)接了24小时的雨水,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨【答案】B 【解析】【分析】计算圆锥的体积,进而可得降雨高度,即可判断.【详解】做出容器的轴截面,如图所示,则200AB =,300OC =,150CF =,则F 为OC 中点,则11002DE AB ==,50DF =,由已知在直径为200mm 的圆柱内的降雨总体积231π125000πmm 3V DF CF =⋅⋅⋅=,则降雨高度为2125000π12.5mm π10000πV OA ==⋅,所以降雨级别为中雨,故选:B.5.直线3y x =关于=1对称直线l ,直线l 的方程是()A.20y +-= B.20y ++= C.20x +-= D.20x +=【答案】C 【解析】【分析】根据题意可知直线33y x =与直线1x =交于点(1,)3A ,求出原点关于直线1x =对称的对称点B ,利用两点坐标求直线斜率公式和直线的点斜式方程即可得出结果.【详解】如图,直线33y x =与直线1x =交于点3(1,)3A ,直线33y x =过原点(0,0),因为直线3y x =与直线l 关于直线1x =对称,所以原点关于直线1x =的对称点为(2,0)B ,且直线l 过点A 、B ,则直线l 的斜率为303123l k -==--,所以直线l 的方程为0(2)3y x -=-,即20x -=.故选:C6.若P 是ABC V 所在平面外一点,且PA BC ⊥,PB AC ⊥,则点P 在ABC V 所在平面内的射影O是ABC V 的()A.内心B.外心C.重心D.垂心【答案】D 【解析】【分析】根据且PA BC ⊥,PB AC ⊥,利用线面垂直的判定定理得到BC OA ⊥,OB AC ⊥即可.【详解】解:如图所示:因为,⊥⊥PA BC PO BC ,且PA PO P =I ,所以⊥BC 平面PAO ,则BC OA ⊥,同理得OB AC ⊥,所以O 是ABC V 的垂心.故选:D7.四边形ABCD 是矩形,3AB AD =,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线,ED BF 所成角α在旋转过程中()A.逐步变大B.逐步变小C.先变小后变大D.先变大后变小【答案】D 【解析】【分析】根据初始时刻ED 与BF 所成角可判断BC ,由题可知D 在平面BCFE 内的投影P 一直落在直线CF 上,进而某一时刻EP BF ⊥,可得DE 与BF 所成角为π2,可判断AD.【详解】由题可知初始时刻ED 与BF 所成角为0,故B C ,错误,在四边形AEFD 绕EF 旋转过程中,,EF DF EF FC ⊥⊥,,,DF FC F DF FC =⊂ 平面DFC ,所以⊥EF 平面DFC ,EF ⊂平面EFCB ,所以平面DFC⊥平面EFCB ,故D 在平面BCFE 内的投影P 一直落在直线CF 上,所以一定存在某一时刻EP BF ⊥,而DP ⊥平面EFCB ,DP BF ⊥,又,,DP PE P DP PE =⊂ 平面DPE ,所以BF ⊥平面DPE ,此时DE 与BF 所成角为π2,然后α开始变小,故直线,ED BF 所成角α在旋转过程中先变大后变小,故选项A 错误,选项D 正确.故选:D.8.半球内放三个半径为的小球,三小球两两相切,并且与球面及半球底面的大圆面也相切,则该半球的半径是()A.1+B.C.D.+【答案】D 【解析】【分析】根据条件求出以三个小球的球心1O 、2O 、3O 构成的三角形的外接圆半径,再通过勾股定理求解即可.【详解】三个小球的球心1O 、2O 、3O 构成边长为的正三角形,则其外接圆半径为2.设半球的球心为O ,小球1O 与半球底面切于点A .如图,经过点O 、1O 、A 作半球的截面,半圆O 的半径OC OA ⊥,1O B OC ⊥于点B .则12OA O B ==.在1Rt OAO 中,由(()2222R R =+⇒=.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的有()A.若向量a 、b 与空间任意向量都不能构成一组基,则//a br rB.若非零向量a ,b ,c 满足a b ⊥ ,b c ⊥,则有//a c r rC.“倾斜角相等”是“斜率相等”的充要条件D.若{},,a b b c c a +++ 是空间的一组基,则{},,a b c也是空间的一组基【答案】AD 【解析】【分析】根据空间向量共线、垂直、基底、共面、倾斜角和斜率的关系、充要条件等知识对选项进行分析,从而确定正确答案.【详解】A 选项,∵a ,b与任何向量都不构成空间向量的基底,∴a ,b 只能为共线向量,∴//a b r r,A 对;B 选项,取()1,0,1a = ,()1,1,1b =- ,()1,2,1c =-,显然满足a b ⊥ ,a c ⊥ ,但b 与c不平行,B 不对;C 选项,倾斜角相等时,可能倾斜角都是90︒,此时直线没有斜率,所以C 选项错误.D 选项,∵a b + ,b c + ,c a +为一组基底,∴对于空间任意向量d,存在实数m ,n ,t ,使()()()()()()d m a b n b c t c a m t a m n b n t c =+++++=+++++ ,∴a ,b ,c也是一组基底,D 对;故选:AD10.用一个平面去截正方体,所得截面不.可能是()A.直角三角形B.直角梯形C.正五边形D.正六边形【答案】ABC【解析】【分析】根据正方体的几何特征,我们可分别画出用一个平面去截正方体得到的几何体的图形,然后逐一与四个答案中的图形进行比照,即可判断选项.【详解】当截面为三角形时,可能出现正三角形,但不可能出现直角三角形;截面为四边形时,可能出现矩形,平行四边形,等腰梯形,但不可能出现直角梯形;当截面为五边形时,不可能出现正五边形;截面为六边形时,可能出现正六边形,故选:ABC .11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A.直线1BD ⊥平面11A C DB.三棱锥11P AC D -的体积为定值C.异面直线AP 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D.直线1C P 与平面11A C D 所成角的正弦值的最大值为3【答案】ABD【解析】【分析】在选项A 中,利用线面垂直的判定定理,结合正方体的性质进行判断即可;在选项B 中,根据线面平行的判定定理、平行线的性质,结合三棱锥的体积公式进行求解判断即可;在选项C 中,根据异面直线所成角的定义进行求解判断即可;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法进行求解即可.【详解】在选项A 中,∵1111AC B D ⊥,111A C BB ⊥,1111B D BB B ⋂=,且111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D ,∴111A C BD ⊥,同理,11DC BD ⊥,∵1111A C DC C ⋂=,且111,A C DC ⊂平面11A C D ,∴直线1BD ⊥平面11A C D ,故A 正确;在选项B 中,∵11//A D B C ,1A D ⊂平面11A C D ,1B C ⊄平面11A C D ,∴1//B C 平面11A C D ,∵点P 在线段1B C 上运动,∴P 到平面11A C D 的距离为定值,又11A C D 的面积是定值,∴三棱锥11P AC D -的体积为定值,故B 正确;在选项C 中,∵11//A D B C ,∴异面直线AP 与1A D 所成角为直线AP 与直线1B C 的夹角.易知1AB C △为等边三角形,当P 为1B C 的中点时,1AP B C ⊥;当P 与点1B 或C 重合时,直线AP 与直线1B C 的夹角为π3.故异面直线AP 与1A D 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦,故C 错误;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z轴,建立空间直角坐标系,如图,设正方体1111ABCD A B C D -的棱长为1,则(),1,P a a ,()10,1,1C ,()1,1,0B ,()10,0,1D ,所以()1,0,1C P a a =- ,()11,1,1D B =-.由A 选项正确:可知()11,1,1D B =- 是平面11A C D 的一个法向量,∴直线1C P 与平面11A C D所成角的正弦值为:1111C P D B C P D B ⋅=⋅∴当12a =时,直线1C P 与平面11A C D 所成角的正弦值的最大值为63,故D 正确.故选:ABD第二部分非选择题(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设直线1l ,2l 的方向向量分别为()2,2,1a =- ,()3,2,b m =- ,若12l l ⊥,则m =__________.【答案】10【解析】【分析】根据向量垂直的坐标表示可得方程,解方程即可.【详解】由已知12l l ⊥,即a b ⊥ ,则()()232210a b m ⋅=-⨯+⨯-+⨯= ,解得10m =,故答案为:10.13.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.【答案】5π【解析】【分析】考虑圆柱的侧面展开图,将其延展一倍后矩形的对角线的长度即为铁丝的最短长度.【详解】如图,把圆柱的侧面展开图再延展一倍,所以铁丝的最短长度即为AB 的长,又5AB π==,填5π.【点睛】几何体表面路径最短问题,往往需要考虑几何体的侧面展开图,把空间问题转为平面问题来处理.14.如图,已知正三棱锥P ABC -的侧棱长为l ,过其底面中心O 作动平面α,交线段PC 于点S ,交PA ,PB 的延长线于M ,N 两点.则111PS PM PN ++=______.【答案】3l【解析】【分析】利用空间向量的线性运算得到333PA PB PC PO PM PN PS x y z=⋅+⋅+⋅ ,再利用空间四点共面的性质即可得解.【详解】依题意,设,,PM x PN y PS z ===,则PA PA PM x =⋅ ,PB PB PN y =⋅ ,PC PC PS z=⋅,由O 为底面ABC V 中心,连接PO ,OA ,()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PC PA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333zPA PB PC PM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333PA PB PC PM PN PS x y z =⋅+⋅+ ,又因为,,,S M N O 四点共面,所以+1333PA PB PCx y z += 且PA PB PC l === ,所以+1333l l l x y z +=,即1113+x y z l+=,即1113PS PM PN l++=.故答案为:3l 【点睛】关键点睛:空间向量的有效运用:空间向量是解决空间几何问题的有力工具.通过设定向量的关系,可以有效地将几何问题转化为代数问题,简化求解过程.共面条件的判断:四点共面的条件在空间几何中非常重要.利用这一条件,可以将空间中的复杂关系转化为简单的线性关系,方便求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线():20R l x ky k k -++=∈.(1)若直线l 不经过...第一象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB V 的面积为S (O 为坐标原点),求S 的最小值和此时直线l 的方程.【答案】(1)[]2,0-(2)S 的最小值为4,此时直线l 的方程为240x y -+=【解析】【分析】(1)验证0k =时,直线l 是否符合要求,当0k ≠时,将直线方程化为斜截式,结合条件列不等式求k 的取值范围;(2)先求直线在x 轴和y 轴上的截距,表示AOB V 的面积,利用基本不等式求其最小值.【小问1详解】当0k =时,方程20x ky k -++=可化为2x =-,不经过第一象限;当0k ≠时,方程20x ky k -++=可化为121y x k k=++,要使直线不经过第一象限,则10210k k⎧≤⎪⎪⎨⎪+≤⎪⎩解得20k -≤<.综上,k 的取值范围为[]2,0-.【小问2详解】由题意可得0k >,由20x ky k -++=取0y =得2x k =--,取0x =得2k y k+=,所以()11214124442222k S OA OB k k k k ⎛⎫+⎛⎫==⋅⋅+=++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当4k k=时,即2k =时取等号,综上,此时min 4S =,直线l 的方程为240x y -+=.16.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,22AE BC CF ===.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;【答案】(1)证明见解析(2)49【解析】【分析】(1)根据题意可利用面面平行的判定定理证明平面//BCF 平面ADE ,再由面面平行的性质可得结论;(2)由几何体特征建立以A 为原点的空间直角坐标系A xyz -,利用空间向量求出直线CE 的方向向量与平面BDE 的法向量,即可求出直线CE 与平面BDE 所成角的正弦值.【小问1详解】由//CF AE ,CF ⊂/平面ADE ,AE ⊂平面ADE ,则//CF 平面ADE ,由//AD BC ,BC ⊂/平面ADE ,AD ⊂平面ADE ,则//BC 平面ADE ,而CF BC C = ,,CF BC ⊂平面BCF ,故平面//BCF 平面ADE ,又BF ⊂平面BCF ,则//BF 平面ADE ;【小问2详解】AE ⊥平面ABCD ,,AB AD ⊂平面ABCD ,则AE AB ⊥,AE AD ⊥,又AD AB ⊥,以A 为原点,分别以,,AB AC AE 为,,x y z 轴构建空间直角坐标系A xyz -,如下图所示:又1AB AD ==,22AE BC CF ===,所以()1,0,0B ,()1,2,0C ,()0,1,0D ,()0,0,2E ,则(1,2,2)CE =-- ,(1,0,2)BE =- ,(0,1,2)DE =- ,令平面BDE 的一个法向量(),,m x y z = ,则2020m BE x z m DE y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1z =,则2,2x y ==,即(2,2,1)m = ,所以44cos ,339m CE m CE m CE⋅〈〉===⨯ ,即直线CE 与平面BDE 所成角的正弦值为49.17.如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ∠=∠=︒,112AB AD CD ===,PD =(1)若M 为PA 中点,求证://AC 平面MDE ;(2)求直线PB 与直线CD 所成角的大小;(3)设平面PAD ⋂平面EBC l =,试判断l 与平面ABCD 能否垂直?并证明你的结论.【答案】(1)证明见解析(2)π3(3)能垂直,证明见解析【解析】【分析】(1)先证明MN AC ∥,再利用线面垂直的判定定理即可证明;(2)利用线线平行可得PBA ∠是直线PB 与直线CD 所成角,利用面面垂直可得PD AB ⊥,结合已知条件可得PA =,利用线面垂直可得AB PA ⊥,可得出tan PBA ∠的值,即可求解.(3)根据题意可得EC l ∥,利用平行的传递性,可证明l ⊥平面ABCD .【小问1详解】连结PC ,交DE 于N ,连接MN ,∵PDCE 为矩形,∴N 为PC 的中点,在PAC 中,M ,N 分别为PA ,PC 的中点,∴MN AC ∥,因为MN ⊂面MDE ,AC ⊄面MDE ,所以AC ∥平面MDE .【小问2详解】∵90BAD ADC ∠=∠=︒,∴AB CD ∥,∴PBA ∠是直线PB 与直线CD 所成角.∵PDCE 为矩形,∴PD CD ⊥,∵平面PDCE ⊥平面ABCD ,又PD ⊂平面PDCE ,平面PDCE ⋂平面ABCD CD =,∴PD ⊥平面ABC ,∵,AD AB ⊂平面ABCD ,∴PD AD ⊥,PD AB ⊥,在Rt PDA 中,∵1AD =,PD =PA =,∵90BAD ∠=︒,∴AB AD ⊥,又∵PD AB ⊥,=PD AD D ⋂,PD ⊂平面PAD ,AD ⊂平面PAD ,∴AB ⊥平面PAD ,∵PA ⊂平面PAD ,∴AB PA ⊥,在Rt PAB △中,∵1AB =,∴tan PAPBA AB ∠==∴π3PBA ∠=,从而直线PB 与直线CD 所成的角为π3;【小问3详解】l 与平面ABCD 垂直.证明如下:∵PDCE 为矩形,∴EC PD ∥,∵PD ⊂平面PAD ,EC ⊄平面PAD ,∴EC ∥平面PAD ,EC ⊂平面EBC ,∵平面PAD ⋂平面EBC l =,∴EC l ∥,则∥l PD ,由(2)可知PD ⊥平面ABCD ,∴l ⊥平面ABCD .18.如图,平行六面体1111ABCD A B C D -的所有棱长均为2,底面ABCD 为正方形,11π3A AB A AD ∠=∠=,点E 为1BB 的中点,点F 为1CC 的中点,动点P 在平面ABCD 内.(1)若O 为AC 中点,求证:1A O AO ⊥;(2)若//FP 平面1D AE ,求线段CP 长度的最小值.【答案】(1)证明见解析(2)105【解析】【分析】(1)由条件先求1AD AA ⋅ ,1AB AA ⋅ ,AD AB ⋅ ,再证明10AO AO ⋅= ,由此完成证明;(2)建立空间直角坐标系,设(),,0P m n ,求平面1D AE 的法向量和直线FP 的方向向量,由条件列方程确定,m n 的关系,再求CP 的最小值即可.【小问1详解】由已知12AB A A AD ===1π3A AD ∠=,1π3A AB ∠=,π2BAD ∠=,所以11π122cos 232AD AA ⋅== ,11π122cos 232AB AA ⋅=⨯= ,0AD AB ⋅= ,因为O 为AC 中点,所以111222AO AC AB AD ==+ ,又()11111112222A O AO AO AA AO AB AD AA AB AD ⎛⎫⎛⎫⋅=-⋅=+-⋅+ ⎪ ⎪⎝⎭⎝⎭ ,所以111110002244A O AO ⋅=+++--= ,所以1AO AO⊥所以1A O AO⊥【小问2详解】连接1A D ,1A B ,∵12A A AD ==,1π3A AD ∠=∴12A D =,∵12A A AB ==,1π3A AB ∠=∴12A B =,连接BD ,由正方形的性质可得,,B O D 三点共线,O 为BD 的中点,所以1AO BD ⊥,由第一问1A O AO ⊥,,AO BD ⊂平面ABCD ,AO BD O = ,所以1A O ⊥平面ABCD ,以O 为坐标原点,1,,OA OB OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系()1,0,0A 、()0,1,0D -、()10,0,1A 、()0,1,0B 、()1,0,0C -()112,1,1AD AD AA =+=-- 1131,1,222AE AB BE AB AA ⎛⎫=+=+=- ⎪⎝⎭,设平面1D AE 法向量为n ,(),,n x y z =r,则100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩ ,所以203022x y z z x y --+=⎧⎪⎨-++=⎪⎩,∴73022x z -+=,令3x =,则7z =,1y =.∴()3,1,7n =为平面1D AE 的一个法向量,因为点P 在平面ABCD 内,故设点P 的坐标为(),,0m n ,因为()112FP OP OF OP OC CF OP OC AA =-=-+=-- ,所以31,,22FP m n ⎛⎫=+- ⎪⎝⎭ ,0FP n ⋅= ,则310m n ++=,所以CP == ,所以当25m =-时,CP有最小值,最小值为5.19.在空间直角坐标系中,若平面α过点()000,,P x y z ,且平面α的一个法向量为(),,n a b c =,则平面α的方程为()()()0000a x x b y y z z z -+-+-=,该方程称为平面α的点法式方程,整理后为0ax by cz t +++=(其中000t ax by cz =---),该方程称为平面α的一般式方程.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,BC ,BD ,1BC 两两垂直,1AD =,BD =,直线1CC 与平面ABCD 所成的角为π4,以B 为坐标原点,BC ,BD ,1BC 的方向分别是x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.(1)求平面11DC D 的一般式方程.(2)求1A 到直线11C D 的距离.(3)在棱1BB 是否存在点M ,使得平面1A DM ⊥平面11C D M ?若存在,求出1MB BB 的值;若不存在,请说明理由.【答案】(1y ++-=(2)2(3)存在,且14MB BB =-【解析】【分析】(1)根据直线1CC 与平面ABCD 所成的角求得1BC ,根据平面的点法式方程求得正确答案.(2)利用等面积法来求得1A 到直线11C D 的距离.(3)设出M 点的坐标,利用面面垂直列方程,化简求得正确答案.【小问1详解】由于11,,,,BC BC BC BD BC BD B BC BD ⊥⊥⋂=⊂平面ABCD ,所以1⊥BC 平面ABCD ,所以1C BC ∠是直线1CC 与平面ABCD 所成的角,所以14πC BC ∠=,所以11BC BC ==.所以()()()()111,0,0,1,1,0,0,1,D C C CD C D =-=,所以()()()111110,0,11,1,BD BC C D BC CD =+=+=+-=-,()11,0,1DD =- ,设平面11DC D 的法向量为(),,n x y z = ,则11100n C D x n DD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,故可设n = ,D ∈平面11DC D ,则平面11DC D()(()0100x y z -+⋅-+-=,0y ++-=.【小问2详解】在Rt BCD △中,π2CBD ∠=,1,2BC BD CD ===,设B 到CD 的距离为h,则1121,222h h ⨯==,由于平行四边形ABCD 和平行四边形1111D C B A 全等,所以1A 到直线11C D 的距离等于设B 到CD 的距离,即1A 到直线11C D的距离为2.【小问3详解】()11,0,1B -,()11,0,1BB =-,()A -,()()()1111,0,12,BA BA AA BA BB =+=+=-+-=-,即()1A -,而()()1,1,D D -,所以()12,0,1DA =-,设1,01MB BB λλ=≤≤,则()1,0,BM BB λλλ==- ,即(),0,M λλ-,所以()12,1A M λλ=--,(),DM λλ=-,()11,1D M λλ=--,()11C D =- ,设平面1A DM 的法向量为()111,,u x y z = ,则11111120u DA x z u DM x z λλ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩,故可设,u λ= .设平面11C D M 的法向量为()222,,v x y z = ,则()()112212220110v C D x v D M x z λλ⎧⋅=-+=⎪⎨⋅=-+-=⎪⎩,故可设)1,v λ=-- ,若平面1A DM ⊥平面11C D M ,则0u v ⋅= ,即()()23116830λλλλλλ-+-+=+-=,解得4λ=,负根舍去,所以存在符合题意的点M,且14MB BB =.。
重庆市学校2024-2025学年高二上学期期中考试数学试题含答案
2024-2025学年度上期期中考试高二数学试题(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.答题前,考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2.答选择题时,必须使用2B 铅笔填涂;答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷自行保管,以备评讲).一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z 对应的点的坐标是(,则z 的共轭复数z =()A.1+B.1-C.1-D.1-【答案】B 【解析】【分析】根据复数的几何意义得到1z =+,再利用共轭复数的定义,即可求解.【详解】因为复数z 对应的点的坐标是(,得到1z =+,所以1z =,故选:B.2.已知直线1:10l ax y ++=与()2:130l a x ay ++-=,则“2a =-”是“12l l ⊥”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】A 【解析】【分析】利用两直线垂直的充要条件得到220a a +=,从而得到2a =-或0a =,再利用充分条件与必要条件的判断方法,即可求解.【详解】当直线1:10l ax y ++=与()2:130l a x ay ++-=垂直时,(1)0a a a ++=,即220a a +=,解得2a =-或0a =,所以2a =-可以推出12l l ⊥,但12l l ⊥推不出2a =-,即“2a =-”是“12l l ⊥”的充分不必要条件,故选:A.3.下列函数中,在区间(0,)+∞上单调递增的是()A.()ln f x x =- B.1()2xf x =C.1()f x x=- D.|1|()3x f x -=【答案】C 【解析】【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可.【详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减,所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12x f x =在()0,∞+上单调递减,故B 错误;对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减,所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.4.国家射击运动员甲在某次训练中的5次射击成绩(单位:环)为9,6,,4,8m ,其中m 为整数,若这5次射击成绩的第40百分位数为6,则m =()A.4B.6C.8D.9【答案】B 【解析】【分析】根据条件,利用百分位数的求法,即可求解.【详解】将5次射击成绩除m 外,从小排到大为4,6,8,9,因为50.42i np ==⨯=,所以第40百分位数是:从小排到大后的第二个数与第三个数的平均数,又这5次射击成绩的第40百分位数为6,所以6m =,故答案为:B.5.已知直线1y kx =+与圆224x y +=交于点M ,N ,当k 变化时,则MN 的最小值为()A.1B.2C.D.【答案】D 【解析】【分析】根据条件得直线过定点,且定点在圆内,先求得圆心到直线距离d ,即可表示出弦长,从而知d 最大时,弦长最短,再利用几何关系,即可求解.【详解】易知直线1y kx =+过定点(0,1)P ,又1014+=<,所以点(0,1)在224x y +=内,又易知圆心为(0,0)O ,半径为2r =,设圆心(0,0)O 到直线的距离为d ,则MN ==,当d 最大时,M 最小,此时直线1y kx =+与直线OP 垂直,即1d OP ==,所以M 的最小值为MN ==故选:D.6.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.【答案】D 【解析】【分析】取点作辅助线,根据题意分析可知平面PEF ⊥平面ABCD ,可知⊥PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====,分别取,AB CD 的中点,E F ,连接,,PE PF EF ,则,PE AB EF AB ⊥⊥,且PE EF E ⋂=,,PE EF ⊂平面PEF ,可知AB ⊥平面PEF ,且AB ⊂平面ABCD ,所以平面PEF ⊥平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ⊥,由平面PEF 平面ABCD EF =,PO ⊂平面PEF ,所以⊥PO 平面ABCD ,由题意可得:2,4PE PF EF ===,则222PE PF EF +=,即PE PF ⊥,则1122PE PF PO EF ⋅=⋅,可得PE PF PO EF⋅==,当相对的棱长相等时,不妨设4PA PC ==,PB PD ==,因为BD PB PD ==+,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.7.直线()()21250x y λλλ+--=∈R 的倾斜角范围为()A.3,44ππ⎡⎤⎢⎣⎦ B.,42ππ⎡⎤⎢⎥⎣⎦C. D.30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【答案】A 【解析】【分析】先对λ进行讨论,当0λ=时得到直线倾斜角为2π,当0λ≠时,由直线方程得到斜率,再由斜率可得倾斜角的范围.【详解】当0λ=时,直线为:5x =,故直线的倾斜角为:2π;当0λ≠时,直线为:21522y x λλλ+=-,设直线的倾斜角为θ,即211tan 222λλθλλ+==+,当0λ>时,1tan 122λθλ=+≥=,当且仅当“122λλ=”,即1λ=时取等号;即,42ππθ⎡⎫∈⎪⎢⎣⎭,当0λ<时,11tan 12222λλθλλ⎡⎤⎛⎫⎛⎫=+=--+-≤=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当“122λλ-=-”,即1λ=-时取等号;即3,24ππθ⎛⎤∈ ⎥⎝⎦,综上所述:3,44ππθ⎡⎤∈⎢⎥⎣⎦.故选:A8.根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数4x <;②平均数4x <且极差小于或等于3;③平均数4x <且标准差4s ≤;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A.1组B.2组C.3组D.4组【答案】B 【解析】【分析】举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.【详解】①举反例:0,0,0,4,11,其平均数34x =<.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为1037-=,此时数据的平均数必然大于7,与4x <矛盾,故假设错误.则此组数据全部小于10.符合入冬指标;③举反例:1,1,1,1,11,平均数34x =<,且标准差4s =.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B .二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.连续抛掷一枚质地均匀的骰子两次.记事件A 为两次数字之和为7,事件B 为第一次数字小于等于3,事件C 为两次数字之积为奇数,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】先求出总的样本空间数,再用列举法求出事件,,A B C ,选项A ,利用古典概率公式,即可求解;选项B 和D ,利用相互独立的判断方法,即可求解;选项C ,利用互斥事件和对立事件的定义,即可求解.【详解】用(,)x y 中的,x y 分别表示第一次、第二次掷一枚质地均匀的骰子的点数,易知,总的样本空间数为6636⨯=,事件A 包含的基本事件为:(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),共6个,事件B 包含的基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),共18个,事件C 包含的基本事件为:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个对于选项A ,由古典概率公式得()91364P C ==,故选项A 正确,对于选项B ,由古典概率公式得61()366P A ==,181()362P B ==,31()3612P AB ==,因为()()()P AB P A P B =,所以A 与B 相互独立,故选项B 正确,对于选项C ,易知A 与C 互斥但不对立,所以选项C 错误,对于选项D ,由古典概率公式得61()366P BC ==,又111()()428P B P C =⨯=,所以()()()P BC P B P C ≠,即B 与C 不相互独立,故选项D 错误,故选:AB.10.已知点(),P x y 是圆:M ()()22424x y -+-=上任意一点,直线l :2y x =-+分别与x 轴、y 轴相交于点,A B ,则()A.直线l 与圆M 相离B.PBA △面积的最小值为4+C.y x 的最大值为43D.PBA ∠的最小值为15︒【答案】ACD 【解析】【分析】对于A ,由圆心到直线距离与半径大小即可判断,对于B ,确定圆心到直线的距离,即可求解,对于C ,设yk x=,通过直线与圆恒有交点即可,对于D ,由BP 与圆相切即可求解.【详解】对于A ,由()()22424x y -+-=,得圆心()4,2,2r =,圆心到2y x =-+2=>,直线与圆相离,A 正确;对于B ,易知()()2,0,0,2A B,AB =,由A知,圆心到直线距离为,故圆上点到直线距离的最小值为2-,所以PBA △面积最小值为)242-=-B 错误;对于C ,令yk x=,得y kx =,因为(),x y 为圆上的点,所以y kx =与圆()()22424x y -+-=有交点,2≤,解得403k ≤≤,C 正确;对于D ,结合图象可知当BP 与圆这种相切时,PBA ∠最小,设BP 斜率为()0k k <,直线方程为:2y kx =+2421k k=+,解得33k =-,即BP 的倾斜角为150︒,所以60PBO ︒∠=,易知45ABO ︒∠=,所以15PBA ︒∠=,D 正确.故选:ACD11.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱11,BB CC 的中点,G 是棱11B C 上的一个动点,则下列说法正确的是()A.平面AEF 截正方体1111ABCD A B C D -所得截面为六边形B.点G 到平面AEF 的距离为定值C.若11111=++AG xA A y A E z A D uuu r uuu r uuu r uuuu r ,且1x y z ++=,则G 为棱11B C 的中点D.直线AG 与平面AEF 所成角的正弦值的取值范围为1510,1510⎣⎦【答案】BCD 【解析】【分析】利用平行线的传递性与平行线共面判断A ,利用线面平行的判定定理判断B ,利用空间向量推得1,,,A E D G 四点共面,结合面面平行的性质定理判断C ,建立空间直角坐标系,利用空间向量法求得线面角的取值范围判断D ,从而得解.【详解】对于A ,连接DF ,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,BB CC 的中点,所以//,EF BC EF BC =,//,AD BC AD BC =,所以//,EF AD EF AD =,则平面AEF 与平面AEFD 为同一平面,所以平面AEF 截正方体1111ABCD A B C D -所得截面为平面AEFD ,为四边形,故A 错误;对于B ,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,BB CC 的中点,所以11//B C EF ,又EF ⊂平面AEF ,11B C ⊄平面AEF ,所以11//B C 平面AEF ,又点G 是棱11B C 上的一个动点,所以点G 到平面AEF 的距离为定值,故B 正确;对于C ,连接111,,,AD D G GE BC ,因为11111=++AG xA A y A E z A D uuu r uuu r uuu r uuuu r ,且1x y z ++=,所以1,,,A E D G 四点共面,因为在正方体1111ABCD A B C D -中,平面11//ADD A 平面11BCC B ,又平面11ADD A ⋂平面11AEGD AD =,平面11BCC B 平面1AEGD GE =,所以1//AD GE ,在正方体1111ABCD A B C D -中,1111//,AB C D AB C D =,所以四边形11ABC D 是平行四边形,则11//AD BC ,则1//GE BC ,因为E 为棱1BB 的中点,所以G 为棱11B C 的中点,故C 正确;对于D ,以D 为原点,建立空间直角坐标系,如图,设()102C G x x =≤≤,则()()()()2,0,0,2,2,1,0,2,1,,2,2A E F G x ,所以()()()0,2,1,2,0,0,2,2,2AE EF AG x ==-=-,设平面AEF 的法向量为 =s s ,则2020AE n b c EF n a ⎧⋅=+=⎪⎨⋅=-=⎪⎩,令1b =,则0,2a c ==-,故()0,1,2n =-,设直线AG 与平面AEF 所成角为π02θθ⎛⎫≤≤⎪⎝⎭,则sin cos ,AG n AG n AG nθ⋅=〈〉==,因为02x ≤≤,所以()2024x ≤-≤,则≤≤所以1510=≤≤=,所以直线AG与平面AEF 所成角的正弦值的取值范围为,1510⎣⎦,故D 正确.故选:BCD.三、填空题:本大题共3小题,每小题5分,共15分.12.已知圆221:1C x y +=与圆()()()222:1160C x a y a -+-=>有3条公切线,则实数a 的取值是_____.【答案】【解析】【分析】根据条件得到圆1C 与圆2C 外切,再利用圆与圆的位置关系,即可求解.【详解】因为圆221:1C x y +=与圆()()()222:1160C x a y a -+-=>有3条公切线,所以圆1C 与圆2C 外切,又圆221:1C x y +=的圆心为1(0,0)C ,半径为11r =,()()()222:1160C x a y a -+-=>的圆心为2(,1)C a ,半径为24r =,145=+=,得到224a =,又0a >,所以a =,故答案为:13.已知点()(),0110,N i i A x i i ≤≤∈与点()(),10110,N i i B y i i ≤≤∈关于点()2,5对称.若1x ,2x ,⋯,10x 的平均数为5,方差为3.则1y ,2y ,⋯,10y 这组数的平均数为_____,方差为_____.【答案】①.1-②.3【解析】【分析】根据条件得到()1,N 410i i y i i x ≤=-≤∈,再结合平均数、方差计算公式,即可求解.【详解】因为点()(),0110,N i i A x i i ≤≤∈与点()(),10110,N i i B y i i ≤≤∈关于点()2,5对称,则()N 4110,i i x i y i ≤+=≤∈,得到()1,N 410i i y i i x ≤=-≤∈,因为1x ,2x ,⋯,10x 的平均数为5,方差为3,则1y ,2y ,⋯,10y 这组数的平均数为451-=-,方差为2(1)33-⨯=,故答案为:1-;3.14.已知圆221x y +=上任意一点(),P x y ,23239x y a x y -++--的取值与P 的位置无关,则a 的取值范围是_____.【答案】a ≥【解析】【分析】由题意可知直线1:2390l x y --=,直线2:230l x y a -+=位于圆的两侧,且与圆均不相交,从而可列出不等式得出a 的范围.【详解】设直线1:2390l x y --=,直线2:230l x y a -+=,则s 到直线1l 的距离为1d =,s 到直线2l 的距离为2d =因为23239x y a x y -++--的取值与P 的位置无关,所以12d d +为常数,所以圆221x y +=在平行线12,l l 之间,又直线1l 在圆下方,所以直线2l 在圆上方,1≥,得到a ≥a ≤,故答案为:13a ≥四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某高校承办了成都世乒赛志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[45,55),第二组[55,65),第三组[65,75),第四组[75,85),第五组[85,95],绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求,a b 的值;(2)估计这100名候选者面试成绩的众数、平均数和60%分位数(分位数精确到0.1);(3)在第四、第五两组志愿者中,采用分层抽样的方法从中抽取5人,然后再从这5人中选出2人,以确定组长人选,求选出的两人来自不同组的概率.【答案】(1)0.005a =,0.025b =(2)众数为70,平均数为69.5,60%分位数为71.7(3)25【解析】【分析】(1)由第三、四、五组的频率之和为0.7,所有组频率之和为1,列方程求,a b 的值;(2)由频率分布直方图中众数、平均数和百分位数的定义公式计算;(3)根据分层抽样确定的人数,解决古典概型概率问题.【小问1详解】因为第三、四、五组的频率之和为0.7,所以()0.0450.020100.7a ++⨯=,解得0.005a =,所以前两组的频率之和为10.70.3-=,即()100.3a b +⨯=,所以0.025b =.【小问2详解】众数为70,平均数为500.05600.25700.45800.2900.0569.5⨯+⨯+⨯+⨯+⨯=,前两个分组频率之和为0.3,前三个分组频率之和为0.75,所以60%分位数在第三组,且为0.60.3651071.70.45-+⨯≈.【小问3详解】第四、第五两组志愿者分别有20人,5人,采用分层抽样的方法从中抽取5人,则第四组抽4人,记为a b c d ,,,,第五组抽1人,记为A ,则从这5人中选出2人,有()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a c a d a A b c b d b A c d c A d A 共10种结果,两人来自不同组有()()()(),,,,,,,a A b A c A d A 共4种结果,所以两人来自不同组的概率为42105P ==.16.已知ABC V 的三个顶点分别是()5,1A ,()7,3B -,()9,5C -.(1)求AB 边上的高所在的直线方程;(2)求AB 边上的中线所在的直线方程;(3)求ABC ∠角平分线所在的直线方程.【答案】(1)2190x y -+=(2)2570x y +-=(3)40x y +-=【解析】【分析】(1)利用斜率坐标公式及垂直关系求出高所在直线的斜率,再利用直线的点斜式方程求解即得;(2)求出中点坐标及中线所在直线的斜率,再利用直线的点斜式方程求解即得;(3)先求出直线,BA BC 的单位向量,结合角平分线求出ABC ∠角平分线所在的直线的方向向量,结合方向向量和直线斜率的关系即可求出斜率,再根据点斜式即可求解.【小问1详解】直线AB 的斜率1(3)257AB k --==--,则AB 边上的高所在的直线斜率为12,直线又过()9,5C -,所以A 边上的高所在的直线方程为[]15(9)2y x -=⨯--,即2190x y -+=.【小问2详解】依题意,AB 边的中点(6,1)-,因此AB 边上的中线所在直线的斜率()512965k --==---,直线又过(6,1)-,所以AB 边上的中线所在直线的方程为()21(6)5y x --=-⨯-,即2570x y +-=.【小问3详解】由题意知:()()2,4,16,8BA BC =-=-,故与BA 同方向的单位向量为:()2,455a ⎛⎫=-=- ⎪ ⎪⎝⎭ ,与BC同方向的单位向量为:()25516,855b ⎛⎫=-=- ⎪ ⎪⎝⎭,故ABC ∠角平分线所在的直线的方向向量为:(),1,1555a b ⎛⎫+=-=-- ⎪ ⎪⎝⎭ ,设ABC ∠角平分线所在的直线的斜率为k ,又 直线的方向向量可以表示为()1,k ,1k ∴=-,直线又过()7,3B -,故ABC ∠角平分线所在的直线方程为:()()37y x --=--,即40x y +-=.17.在ABC V 中,a ,b ,c 为A ∠,B ∠,C ∠sin cos 2C c B c +=.(1)求B ∠;(2)若BD 为ABC V 的角平分线,交AC 于点D ,7BD =,AC =,求ABC V 的面积.【答案】(1)π3B =(2)【解析】【分析】(1cos 2B B +=,再利用辅助角公式和特殊角的三角函数值,即可求角;(2)根据条件,利用等面积法,得到12()7ac a c =+,再利用余弦定理得213()3a c ac =+-,联立求出ac ,即可求解.【小问1详解】sin cos 2C c B c +=sin sin cos 2sin B C C B C +=,又sin 0C ≠cos 2B B +=,即π2sin()26B +=,得到πsin(16B +=,又ππ7π666B <+<,所以ππ62B +=,解得π3B =.【小问2详解】因为ABC ABD CBD S S S =+ ,π3B =,所以1π1π1πsin sin sin 232626ac a BD c BD =+,又1237BD =,得到12()7ac a c =+,在ABC V 中,由余弦定理得到22222cos ()3b a c ac B a c ac =+-=+-,又AC =236()()137a c a c +-+=,解得7a c +=(舍负),所以12ac =,故ABC V 的面积为11sin 12222S ac B ==⨯=.18.如图,三棱柱111ABC A B C -的底面是等腰直角三角形,90ACB ∠= ,侧面11ACC A 是菱形,160A AC ∠= ,4AC =,平面ABC ⊥平面11ACC A .(1)证明:11A C AB ⊥;(2)求点1C 到平面11ABB A 的距离;(3)线段11A B 是否存在一点D ,使得平面1AC D ⊥平面11ABB A ,如果存在找出D 点的位置,不存在请说明理由.【答案】(1)证明见解析(2)217(3)存在,答案见解析【解析】【分析】(1)利用线面垂直的判定可得1A C ⊥平面11AB C ,然后利用线面垂直性质定理结合平行即可得证.(2)根据给定条件,结合余弦定理,利用等体积法求出点1C 到平面11ABB A 的距离.(3)由面面垂直的性质得到点1C 到平面11ABB A 的距离为4217即是1C D 的长度,再由勾股定理确定D 点的位置即可.【小问1详解】连接1AC ,由四边形11A ACC 为菱形,得11AC A C ⊥,由90ACB ︒∠=,得BC AC ⊥,又平面ABC ⊥平面11ACC A ,平面ABC 平面11ACC A AC =,⊂BC 面ABC ,则⊥BC 平面11ACC A ,又1A C ⊂平面11ACC A ,于是1BC A C ⊥,而11//BC B C ,则111B C A C ⊥,又111AC BC C ⋂=,111,AC B C ⊂平面11AB C ,因此1A C ⊥平面11AB C ,又1AB ⊂平面11AB C ,所以11A C AB ⊥【小问2详解】点1C 到平面11ABB A 的距离,即三棱锥111C AA B -的底面11AA B 上的高,由(1)知11B C ⊥平面11ACC A ,则三棱锥111B AA C -的底面11AA C 上的高为11B C ,设点1C 到平面11ABB A 的距离为d ,由111111B AA C C AA B V V --=,得1111111133AA C AA B S B C S d ⋅⋅= ,而14BC AA AC ===,160A AC ︒∠=,则11AA C 的面积113AA C S = ,由1114AA A C ==,11120AAC ︒∠=,得143AC =,又114B C =,111B C AC ⊥,则18AB =,又14AA =,1142A B =,由余弦定理得(222114823cos 2484A AB +-∠==⨯⨯,则117sin 4A AB ∠=,11AA B的面积1117484724AA B S =创� 则347d =,即4217d =,所以点1C 到平面11ABB A 的距离为4217.【小问3详解】设存在,如图,由平面1AC D ⊥平面11ABB A 可得1C D ⊥平面11ABB A ,由(2)可得点1C 到平面11ABB A 的距离为217即是1C D 的长度,在11Rt A DC 中,11121,47A C C D ==,所以221111121071677A D AC C D =-=-=.19.已知二次曲线220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件为0A C =≠,0B =且224D E AF +>.关于二次曲线,有以下结论:若11:0l f =,22:0l f =,33:0l f =,为平面内三条直线,且12l l A ⋂=,23l l B ⋂=,31l l C ⋂=,则过A ,B ,C 三点的二次曲线系方程为1223310f f f f f f λμ++=(λ,μ为参数).若11:0l f =,22:0l f =,33:0l f =,44:0l f =为平面内四条直线,且12l l A ⋂=,23l l B ⋂=,34l l C = ,41l l D = ,则过,,,A B C D 四点的二次曲线系方程为13240f f f f λ+=(λ为参数).(1)若三角形三边所在直线方程分别为:320x y -+=,220x y ++=,340x y +-=.求该三角形的外接圆方程.(2)记(1)中所求的外接圆为ω,直线()110y k x k =>与ω交于A ,B 两点(A 在第一象限),直线()220y k x k =<与ω交于C ,D 两点(C 在第二象限),直线BC 交x 轴于点M ,直线AD 交x 轴于点N ,直线BC 与直线AD 交于点P .(i )求证:=OM ON ;(ii )求OP 的最小值.【答案】(1)22240x y y ++-=(2)(i )证明见解析;(ii )4【解析】【分析】(1)由题意,根据三条直线方程设出二次曲线系方程,通过方程表示圆的充要条件待定系数可得;(2)由四条直线方程设出二次曲线系方程,再由已知圆的一般方程,对比两方程寻找系数的等量关系,由关系120t t +=可证得OM ON =,由关系式212tm m =-(t 即1t )可得交点P 在定直线上4y =上,进而求解最值.【小问1详解】则由题意,可设所求三角形的外接圆方程为:(32)(22)(22)(34)x y x y x y x y λ-+++++++-(34)(32)0x y x y μ++--+=(λ,μ为参数),即()()()()22133178623422x xy y xλμλμλμλμ+++-+-+-+-+++()26144880y λμλμ+--++--=,(*)若方程表示圆,则133********λμλμλμ++=-+-≠⎧⎨-+-=⎩,解得11λμ=-⎧⎨=-⎩.将11λμ=-⎧⎨=-⎩代入(*)式化简得22240x y y ++-=,验证:由22024(4)200+-⨯-=>,可知该方程表示圆.故该三角形的外接圆方程为22240x y y ++-=.【小问2详解】如图,在平面直角坐标系中,设直线BC 与x 轴的交点1(,0)M t ,直线AD 与x 轴的交点2(,0)N t ,由题意知直线,BC AD 均不与y 轴垂直,则直线BC 方程可设为11x m y t =+,直线AD 方程可设为22x m y t =+,由题意可知12m m ≠,且120,0t t ≠≠.不妨记直线,,,BA AD DC CB 分别为1234,,,l l l l ,且12233441,,,l l A l l D l l C l l B ==== ,其中11:0l k x y -=,222:0l x m y t --=,32:0l k x y -=,411:0l x m y t --=.故由题意,过,,,A D C B 四点的二次曲线系方程可设为()()()()1222110k x y k x y x m y t x m y t λ--+----=(λ为参数),即()()()22121212121k k x k k m m xy m m yλλλ⎡⎤+-+++++⎣⎦()12122112()0t t x m t m t y t t λλλ-++++=①,若0λ=时,方程()()120k x y k x y --=表示两条直线13,l l ,不表示圆,故0λ≠.由,,,A D C B 四点不共线,且都在圆22240x y y ++-=②上,所以方程①②表示同一圆,则有()120t t λ-+=③,且122112211212()2142m t m t m t m t t t t t λλ++===--④.(i )由③式及0λ≠,可得120t t +=,即OM ON =;故(i )得证;(ii )由③式可得12t t =-,令1t t =,则2t t =-,代入④式可得212tm m =-,联立,BC AD 直线方程12x m y tx m y t=+⎧⎨=-⎩,解得2124t y m m ==-,即交点P 在定直线4y =上,故4OP ≥.如图2,由对称性可知,当12k k =-时,交点P 在y 轴上,即(0,4)P ,此时min 4OP .故OP 的最小值为4.【点睛】关键点点睛:解决本题的关键有两点,一是理解二次曲线系方程的设法,能够根据题目提供的条件由直线方程设出二次曲线方程;二是二次曲线系方程的应用,本题主要是三角形外接圆与四边形外接圆的应用,第(1)问通过方程表示圆的充要条件待定系数,第(2)问通过同一圆的两种不同方程表达形式寻求等量关系从而解决问题.。
北京市通州区2024-2025学年高二上学期期中质量检测数学试卷(含答案)
通州区2024-2025学年第一学期高二年级期中质量检测数学试卷2024年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若直线与直线平行,则()A.2B.C. D.2.若向量,,满足条件,则()A. B. C.0D.23.在空间直角坐标系Oxyz 中,点关于坐标平面Oyz 的对称点坐标为()A. B.C. D.4.已知直线的方向向量与平面的法向量分别为,,则()A. B. C.或 D.相交但不垂直5.法向量为的平面内有一点,则平面外点到平面的距离为()A.1B.26.过点作圆的两条切线,则这两条切线的夹角为()A.B.C.D.7.圆和圆的位置关系是()A.相离B.相交C.外切D.内切8.如图,在平行六面体中,AC 与BD 的交点为M ,若,则()1y kx =+2y x =k =122-12-(1,2,)a x = (1,2,1)b =- (1,2,2)c =-()4c a b -⋅=- x =4-2-(1,2,4)A (1,2,4)---(1,2,4)-(1,2,4)-(1,2,4)--α(1,0,1)a =- (2,3,2)u =-//l αl α⊥//l αl α⊂,l α(1,0,1)n =α(1,1,0)A -(1,1,0)P α(4,-22:40C x y x ++=π4π2π32π3221:20C x y x +-=222:40C x y y +-=1111ABCD A B C D -1MC xAB y AD =++ 1z AAx y z ++=A. B.C.D.29.如果,那么“”是“直线不通过第三象限”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.如图,空间直角坐标系中,点,,定义.正方体的棱长为3,E 为棱BC 的中点,平面yDz 内两个动点P ,M ,分别满足,,则的取值范围是()A. B.C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知向量,分别是直线,的一个方向向量,若,则________.12.过点的直线平分圆,则这条直线的倾斜角为________.13.直线与圆相交于A 、B 两点,当弦AB 最短时,________.14.已知两点,和圆,则直线AB 与圆C的位置关系为________.若点M 在圆C 上,且,则满足条件的点M 共有________个.2-32-120A B C ⋅⋅≠0A C ⋅<0Ax By C ++=D xyz -()111,,N x y z ()222,,F x y z 12NF x x =-+1212y y z z -+-1111ABCD A B C D -12PD =AMD CME ∠=∠PM 2⎤-+⎥⎦2⎡⎤+⎣⎦2⎤-+⎥⎦2⎡⎤+⎣⎦(1,2,4)a =-(2,4,1)b x y =+ 1l 2l 12//l l x y +=(3,1)-22:(1)(3)5M x y -++=10()x my m +-=∈R 224x y +=m =(0,1)A (3,4)B -22:8C x y +=3ABM S =△15.直三棱柱中,,,,,使棱上存在点P ,满足,则下列正确结论的序号是________.①满足条件的点P 一定有两个;②三棱锥的体积是三棱柱体积的;③三棱锥的体积存在最小值;④当的面积取最小值时,异面直线与所成的角的余弦值为.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)在平面直角坐标系xOy 中,点,,.(I )求直线BC 的方程;(II )求过点A 与直线BC 垂直的直线l 的方程;(III )求直线BC 与直线l 交点的坐标.17.(本小题13分)在平面直角坐标系xOy 中,点,,且圆M 是以AB 为直径的圆.(I )求圆M 的方程;(II )若直线与圆M 相交,求实数k 的取值范围.18.(本小题15分)如图,在棱长是2的正方体中,E ,F 分别为AB ,的中点.(I )证明:平面;(II )求异面直线EF 与所成角的大小.19.(本小题15分)如图,在四棱锥中,平面ABCD ,,,111ABC A B C -CA CB ⊥3CA =4CB =1CC a =1BB 1PC PC ⊥1C ACP -111ABC A B C -131C APC -1APC △1AA 1PC 23(1,1)A (1,3)B -(2,0)C (2,0)A (0,2)B 1y kx =-1111ABCD A B C D -1A C EF ⊥1A CD 1CD P ABCD -PD ⊥AD DC ⊥//AB DC,,E ,M 分别为棱PB ,PC 的中点.(I )求线段BM 的长;(II )求平面PDM 和平面DME 夹角的余弦值;(III )在线段AP 上是否存在点G ,使得直线DG 在平面DME内,若存在,求的值;若不存在,请说明理由.20.(本小题15分)如图①,在直角梯形ABCD 中,,,,点E 是BC 边的中点,将沿BD 折起至,使平面平面BCD ,得到如图②所示的几何体,从条件①、条件②这两个条件中选择一个作为已知,完成以下问题.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.图①图②(I )求证:;(II )求直线与平面所成角的正弦值.21.(本小题14分)在平面直角坐标系xOy 中,已知圆C 过点且圆心C 在x 轴上,与直线交于不同的两点M ,N,且.(I )求圆C 的方程;(II )设圆C 与y 轴交于A ,B 两点,点P 为直线上的动点,直线PA ,PB 与圆的另一个交点分别为R ,S ,且R ,S 在直线AB 两侧,求证:直线RS 过定点,并求出的值.122AB AD CD ===2PD =PGPA2AD AB ==//AD BC AB BC ⊥ABD △1A 1A BD ⊥1A BCD -1BD A E ⊥11A B A E =1A B CD ⊥1A C 1A DE (1,Q :1l y x =+QN QM =4y =(0,)H t通州区2024-2025学年第一学期高二年级期中质量检测数学参考答案及评分标准2024年11月一、选择题(共10小题,每小题4分,共40分)题号12345678910答案ADBCDCBDBA二、填空题(共5小题,每小题5分,共25分)11.612.13.014.相交;415.②③④三、解答题(共6小题,共85分)16.(共13分)(I )直线的斜率,故直线的方程为,化简得.(II )因为直线与直线垂直,故,所以,直线的方程为,化简得.(III )直线和的交点即,17.(共13分)解:(I )由已知,,则圆心.半径.(II )由直线,即,又直线与圆相交,可得,,解得.18.(共15分)解:(I )以为原点,建立如图所示的空间直角坐标系,则,,,,,所以,所以.135︒BC 30112BC k -==---BC (2)y x =--20x y +-=BC 1l BCk k ⋅=-1l k =11y x -=-0x y -=20x y +-=0x y -=201,01,x y x x yy ⎧+-==⎧⇒⎨⎨-==⎩⎩(1,1)(2,0)A (0,2)B (1,1)M 12r AB ===22(1)(1)2x y -+-=1y kx =-10kx y --=d =2420k k +->(,2(2)k ∈-∞---++∞ D 1(2,0,2)A (0,2,0)C (2,1,0)E (1,1,1)F 1(2,2,2)A C =-- (1,0,1)EF =-1(2)(1)20(2)10A C EF ⋅=-⨯-+⨯+-⨯=1EF A C ⊥同理,,故平面.(II ),,,所以,所以.19.(共15分)(I )因为平面,,平面,则,,且,以为坐标原点,,,所在直线分别为,,轴,建立空间直角坐标系,如图所示,由已知,,,,,,可得,,故线段(II ),,设平面的法向量为,所以,令,则,.所以平面的一个法向量为,易知为平面的一个法向量,所以所以平面和平面(III )假设线段上存在点,使得直线在平面内,,EF DC ⊥1A C DC C = EF ⊥1A CD 1(0,0,2)D 1(0,2,2)CD =- EF = 1CD =1(1)00(2)122EF CD ⋅=-⨯+⨯-+⨯=1111cos ,2EF CD EF CD EF CD ⋅===PD ⊥ABCD AD DC ⊂ABCD PD AD ⊥PD DC ⊥AD DC ⊥D DA DC DP x y z D xyz -(0,0,0)D (2,0,0)A (2,2,0)B (0,4,0)C (0,0,2)P (0,2,1)M (1,1,1)E (2,0,1)BM =-BM = BM (0,2,1)DM = (1,1,1)DE =DME (,,)n x y z =200n DM y z n DE x y z ⎧⎪⎨⎪⋅=+=⋅=+=⎩+1y =1x =2z =-DME (1,1,2)n =-DAPDM cos ,n DA n DA n DA⋅〈〉===PDM DME AP G DG DME ([0,1])PGPAλλ=∈则,,因为在平面内,故,所以,.故线段上存在点,使得直线在平面内,此时.20.(共15分)解:(I )证明若选条件①,取中点,连,OE ,,故,,因为平面平面,平面平面,平面,所以平面.因为平面,所以.又因为,且,所以平面,所以.以为坐标原点,,,分别为,,轴非负半轴建立空间直角坐标系如图所示,,,,,,,,,,,,,所以,所以.(II )设平面的法向量为,则,取,,(2,0,2)PGPA λλλ==-(2,0,22)DGDP PG λλ=+=-+DG DME DGn ⊥2101(22)(2)0DG n λλ⋅=⨯+⨯+-+⨯-= 23λ=AP G DG DME 23PG PA =BD O1A O 2ADAB ==1A O BD ⊥12OE DC =1A BD ⊥BCD 1ABD BCD BD =1A O ⊂1ABD 1A O ⊥BCD OE ⊂BCD 1AO OE ⊥1BD A E ⊥111A O A E A =BD ⊥1A OEBD OE ⊥O OBOE 1OA x y z 2AD AB ==1A O OB OE ===45ABD DBE ︒∠=∠=CD =1AB (C (DE 1A B = (0,CD=-1A E = DE =1(A C =100((00A B CD ⋅=+⨯-+⨯=1A B CD ⊥1A DE (,,)n x y z =-==+(1,1,1)n =- 1cos ,A C n ==故与平面.若选条件②,取中点,连,,,故,,,因为平面平面BCD ,平面平面,平面,所以平面.因为平面,所以,,又因为,所以,所以,所以.以下同条件①.21.(共14分)解:(I )因为圆心在轴上,故设.因为交于不同的两点,,且,所以.则,解得,,故圆的方程为:.(II ),设,,,记,,则直线的方程为:,代入圆的方程消去得:,,,,同理,,设直线过定点,则直线斜率为:,所以,故直线过定点.1A C 1A DE BD O 1A O OE 2AD AB ==1A O BD ⊥12OE DC =45ABD OBE ︒∠=∠=1A BD ⊥1A BD BCD BD =1A O ⊂1A BD 1A O ⊥BCD OE ⊂BCD 1A O OE ⊥1A O OB ⊥11A B A E =11A OB A OE ≅△△BO OE ==BD OE ⊥C x (,0)C a 1y x =+M N QN QM =QC l ⊥QC k ==0a =2r CQ ==C 224x y +=(0,2)A -(0,2)B ()0,4P x ()11,R x y ()22,S x y 063PA k m x ==02PB k m x ==PA 32y mx =-y ()2219120m x mx +-=0∆>121219m x m ∴=+21218219m y m -=+2241mx m -=+222221m y m -+=+RS (0,)H t RS 1212y t y tx x --=()2124(1)0m t +-=1t =RS (0,1)H。
辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案
2023-2024学年度下学期期中考试高二数学(A )(答案在最后)时间:120分钟满分:150分命题范围:选择性必修二,选择性必修三结束.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设随机变量X 服从正态分布()3,4N ,若()()263P X a P X a >-=<-,则a =()A.2-B.1- C.12D.1【答案】B 【解析】【分析】根据正态分布曲线的对称性即可求得答案.【详解】由题意随机变量X 服从正态分布()3,4N ,即正态分布曲线关于3x =对称,因为()()263P X a P X a >-=<-,故2(63)3,12a a a -+-=∴=-,故选:B2.设等比数列{}n a 的前n 项和为n S ,且213S a =,则公比q=A.12B.13C.2D.3【答案】C 【解析】【分析】将已知转化为1,a q 的形式,解方程求得q 的值.【详解】依题意1113a a q a +=,解得2q =,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量1,a q ,属于基础题.基本元的思想是在等比数列中有5个基本量1,,,,n n a q a S n ,利用等比数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1,a q ,进而求得数列其它的一些量的值.3.已知某公路上经过的货车与客车的数量之比为2:1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为()A.1100B.160 C.150D.130【答案】B 【解析】【分析】利用全概率公式可求解得出.【详解】设B 表示汽车中途停车修理,1A 表示公路上经过的汽车是货车,2A 表示公路上经过的汽车是客车,则()123P A =,()213P A =,()10.02P B A =,()20.01P B A =,则由全概率公式,可知一辆汽车中途停车修理的概率为()()()()()11222110.020.013360P B P A P B A P A P B A =+⋅=⨯+⨯=.故选:B.4.函数()sin cos f x x x x =+的导数()f x '的部分图象大致为()A. B.C. D.【答案】D 【解析】【分析】根据已知,利用函数的求导公式以及函数的奇偶性、函数值进行排除.【详解】因为()sin cos f x x x x =+,所以()sin cos sin cos f x x x x x x x '=+-=,令()()cos g x f x x x '==,R x ∈,则()()cos g x x x g x -=-=-,所以函数()cos g x x x =是奇函数,故A ,C 错误;又()ππcos π=-π<0g =,故B 错误.故选:D.5.若(2nx 二项展开式的第二项的二项式系数等于第五项的二项式系数,则该展开式中的含4x 项的系数为()A.80B.14- C.14D.80-【答案】A 【解析】【分析】根据二项式定理,以及组合数的性质,建立方程,可得答案.【详解】由二项式(2nx ,则其展开式的通项()(()()121C 2C 210,N rn n rrrr n rr nnT x xr n r ---+==-≤≤∈,展开式的第二项和第五项的二项式系数分别为1C n ,4C n ,则14C C n n =,解得5n =,则通项为()()155215C 2105,N rr rr T xr r --+=-≤≤∈,令1542r -=,解得2r =,则展开式中含4x 项的系数为()22523554C 2128021-⨯⋅⋅-=⨯=⨯.故选:A.6.有一批灯泡寿命超过500小时的概率为0.9,寿命超过800小时的概率为0.8,在寿命超过,500小时的灯泡中寿命能超过800小时的概率为()A.89B.19 C.79D.59【答案】A 【解析】【分析】由条件概率公式求解即可.【详解】记灯泡寿命超过500小时为事件A ,灯泡寿命超过800小时为事件B ,则()()0.9,0.8P A P AB ==,所以()()()0.88|0.99P AB P B A P A ===.故选:A7.数学活动小组由12名同学组成,现将12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案的种数为A.333412963C C C B.33341296433C C C A A C.33331296444C C C A D.333312964C C C 【答案】A 【解析】【详解】将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题只需每个课题依次选三个人即可,共有3331296C C C 中选法,最后选一名组长各有3种,故不同的分配方案为:333412963C C C ,故选A.8.已知函数32()1f x x ax x =-+--在R 上是单调函数,则实数a 的取值范围是()A.(,)-∞⋃+∞B.[C.(,)-∞⋃+∞D.(【答案】B 【解析】【分析】由题得()0f x '≤在R 上恒成立,解不等式24120a ∆=-≤即得解.【详解】由题意知,2()321f x x ax '=-+-,因为()y f x =在R 上是单调函数,且()y f x '=的图象开口向下,所以()0f x '≤在R 上恒成立,故24120a ∆=-≤,即a ≤≤故选:B【点睛】结论点睛:一般地,函数()f x 在某个区间可导,()f x 在这个区间是增函数⇒'()f x ≥0.一般地,函数()f x 在某个区间可导,()f x 在这个区间是减函数⇒'()f x ≤0.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.对两个变量x 与y 进行线性相关性和回归效果分析,得到一组样本数据:()()()1122,,,,,,n n x y x y x y ⋅⋅⋅,则下列说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.由样本数据利用最小二乘法得到的回归方程表示的直线必过样本点的中心()x yC.用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好D.若变量x 与y 之间的相关系数0.80r =,则变量x 与y 之间具有很强的线性相关性【答案】ABD 【解析】【分析】根据残差的平方和的性质判断A ,根据回归方程的性质判断B ,根据相关指数的性质判断C ,根据相关系数的定义判断D.【详解】对于A ,由残差的意义可得,残差平方和越小的模型,拟合的效果越好,A 正确;对于B ,若回归方程为ˆˆˆy bx a =+,则ˆˆy bx a =+,即回归方程表示的直线必过样本点的中心(,x y ,B 正确;对于C ,相关指数2R 越大,说明残差的平方和越小,即模型的拟合效果越好,C 正确;对于D ,变量x 与y 之间的相关系数0.80r =,故相关系数较为接近1,所以变量x 与y 之间具有很强的线性相关性.D 正确;故选:ABD.10.设等差数列{}的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则()A.数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B.2445d -<<-C.50a > D.0n S >时,n 的最大值为5【答案】ABC 【解析】【分析】利用数列的单调性结合不等式的基本性质可判断A 选项的正误;根据已知条件列出关于d 的不等式组,求出d 的取值范围,可判断B 选项的正误;利用等差数列求和公式及等差数列下标和性质可判断C ,D 选项的正误.【详解】对于C 选项,由()()110105610=502a a S a a +=+>且60a <,可知50a >,故C 正确;对于B 选项,由53635632122031230252450a a d d a a d d a a a d d =+=+>⎧⎪=+=+<⎨⎪+=+=+>⎩,可得2445d -<<-,故B 正确;对于D 选项,因为100S >,()111116111102a a S a +==<,所以,满足0n S >的n 的最大值为10,故D 错误;对于A 选项,由上述分析可知,当15n ≤≤且*N n ∈时,0n a >;当6n ≥且*N n ∈时,0n a <,所以,当15n ≤≤且*N n ∈时,0nnS a >,当610n ≤≤且*N n ∈时,0nnS a <,当11n ≥且*N n ∈时,0nnS a >.由题意可知{}单调递减,所以当610n ≤≤且*N n ∈时,6789100a a a a a >>>>>,由题意可知{}n S 单调递减,即有6789100S S S S S >>>>>,所以678910111110a a a a a ->->->->->,由不等式的性质可得6789106789100S S S S Sa a a a a ->->->->->,从而可得6789106789100S S S S S a a a a a <<<<<,因此,数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项,故A 正确.故选:ABC.11.如果函数()f x 对定义域内的任意实数,都有()()0f x xf x '+>,则称函数()y f x =为“F 函数”.下列函数不是“F 函数”的是()A.()e xf x = B.()ln f x x =C.()2f x x= D.()sin f x x=【答案】ABD 【解析】【分析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”,逐项验证可得答案.【详解】令()()g x xf x =,则()()()0g x f x xf x ''=+>,即函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.对于A ,()e xf x =,()()()e=∈=xg xf x x x x R ,()()e e 1e x x x g x x x '=+=+,当1x >-时,()0g x '>,()g x 单调递增,当1x <-时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()e xf x =不是“F 函数”.故A 正确;对于B ,()ln f x x =,()()()ln 0>==g xf x x x x x ,()ln 1g x x '=+,当10e x <<时,()0g x '<,()g x 单调递减,当1ex >时,()0g x '>,()g x 单调递增,不符合在定义域内是单调递增函数,则函数()ln f x x =不是“F 函数”.故B 正确;对于C ,()2f x x =,()()()3=∈=g xf x xx x R ,()203'=≥x x g ,所以()g x 单调递增函数,则函数()2f x x =是“F 函数”.故C 错误;对于D ,()sin f x x =,()()()sin ∈==g x xf x x x x R ,()sin cos g x x x x '=+,当3ππ2<<x 时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()sin f x x =不是“F 函数”.故D 正确.故选:ABD.【点睛】关键点点睛:本题解题的关键点是构造函数()()g x xf x =,根据()0g x '>可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.演讲比赛结束后,4名选手与1名指导教师站成一排合影留念.要求指导教师不能站在两端,那么有______种不同的站法.(用数字作答)【答案】72【解析】【分析】根据题意,分2步进行分析:①,指导教师不能站在两端,易得指导教师有3种站法,②,其4名选手全排列,安排在其他4个位置,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①,指导教师不能站在两端,则指导教师有3个位置可选,有3种站法;②,其4名选手全排列,安排在其他4个位置,有4424A =种情况,则有32472⨯=种不同的站法;故答案为72.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.13.已知随机变量X ,Y 满足21Y X =+,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差()D Y 等于______;【答案】209##229【解析】【分析】根据分布列中概率和为1可得a ,再由期望、方差公式计算出()D X ,最后利用()()2D aX b a D X +=计算可得答案.【详解】因为11163a ++=,所以12a =,()11140126323=⨯+⨯+⨯=E X ,()22214141450126333239⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D X ,所以()()()520214499=+==⨯=D Y D X D X .故答案为:209.14.若函数()3231f x ax ax =-+有3个不同的零点,则实数a 的取值范围为______.【答案】1,4⎛⎫+∞ ⎪⎝⎭【解析】【分析】由已知()()'23632fx ax ax ax x =-=-,分为0a =、0a <和0a >进行讨论,利用函数的单调区间和()01f =即可得到答案.【详解】由已知()()'23632fx ax ax ax x =-=-,当0a =时,函数()0f x =无解,不符合题意;当0a <时,()'0fx >得02x <<,()'0f x <得0x <或2x >,即函数()f x 的增区间为()0,2,减区间为()(),0,2,-∞+∞,又()01f =,所以函数()f x 有且仅有1个零点,与题意不符;当0a >时,()'0fx >得0x <或2x >,()'0f x <得02x <<,即函数()f x 的增区间为()(),0,2,-∞+∞,减区间为()0,2,又()01f =,要使函数()3231f x ax ax =-+有3个不同的零点,则需()20f <,即81210a a -+<,解得14a >.故答案为:1,4⎛⎫+∞⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说阴、证明过程或演算步骤.15.已知数列{}n a 的前n 项和为n S ,123n = ,,,,从条件①、条件②和条件③中选择两个能够确定一个数列的条件,并完成解答.(条件①:55a =;条件②:12n n a a +-=;条件③:24S =-.)选择条件和.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足n n b a =,并求数列{}n b 的前n 项的和n T 【答案】(1)25n a n =-(2)当12n ≤≤时2=4n T n n -+,当3n ≥时248n T n n =-+【解析】【分析】(1)根据12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,然后求出首项,即可得通项.(2)由52,12;25,3n n n b n n -≤≤⎧=⎨-≥⎩,分情况讨论即可得nT 【小问1详解】选①②,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,又55a =得13a =-,故()32125n a n n =-+-=-选②③,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,由24S =-可知124,a a +=-13a ∴=-,()32125n a n n =-+-=-选①③,无法确定数列.【小问2详解】52,12;252525,3n n n n n a n b a n n n -≤≤⎧=-∴==-=⎨-≥⎩ ,其中n N ∈,当12n ≤≤,n N ∈时,2=4n T n n-+当3n ≥,n N ∈时,数列{}n b 是从第三项开始,以公差2=d 的等差数列()()21252=4+482n n n T n n +--=-+.16.已知函数()ln 22f x x x =-+-.(1)求曲线()y f x =的斜率等于1的切线方程;(2)求函数()f x 的极值.【答案】(1)1y x =-;(2)极小值ln 21-,无极大值.【解析】【分析】(1)首先求函数的导数,根据()01f x '=,求切点坐标,再求切线方程;(2)根据极值的定义,利用导数求极值.【详解】(1)设切点为()00,x y ,因为()12f x x=-+',所以0121x -+=,01x =,0ln1220y =-+-=,所以切线方程l 为()011y x -=⨯-,即1y x =-.(2)()f x 的定义域为0,+∞.令()0f x '=即120x -+=,12x =,令()0f x '>,得12x >,令()0f x '<,得102x <<,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增,所以()f x 存在极小值1ln 212ln 212f ⎛⎫=+-=-⎪⎝⎭,无极大值.17.随着人们生活水平的提高,国家倡导绿色安全消费,菜篮子工程从数量保障型转向质量效益型.为了测试甲、乙两种不同有机肥料的使用效果,某科研单位用西红柿做了对比实验,分别在两片实验区各摘取100个,对其质量的某项指标值进行检测,质量指数值达到35及以上的为“质量优等”,由测量结果绘成如下频率分布直方图.其中质量指数值分组区间是:[)20,25,[)25,30,[)30,35,[)35,40,[]40,45.(1)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“质量优等”与使用不同的肥料有关;甲有机肥料乙有机肥料合计质量优等质量非优等合计(2)在摘取的用乙种有机肥料的西红柿中,从“质量优等”中随机选取2个,记区间[]40,45中含有的个数为X ,求X 的分布列及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++.()20P x χ≥0.1000.0500.0100.0050.001x 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析,有99.9%的把握认为,“质量优等”与使用不同的肥料有关(2)分布列见解析,2()3E X =【解析】【分析】(1)根据已知条件,结合独立性检验公式,即可计算并判断结果.(2)随机变量X 的可能取值有0,1,2,服从超几何分布,利用超几何分布的公式可计算概率值,从而列出分布列并计算期望.【小问1详解】解:由题意可得22⨯列联表为:甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200则()()()()()22n ad bc a b c d a c b d χ-=++++2200(42001200)20018.18210.8281001001109011⨯-=≈>⨯⨯=⨯.所以有99.9%的把握认为“质量优等”与使用不同的肥料有关.【小问2详解】由频率分布直方图可得“质量优等”有30个,区间[]40,45中含有10个,随机变量X 的可能取值有0,1,2,021020230C C 19038(0)C 43587P X ====,111020230C C 20040(1)C 43587P X ====,210230C 459(2)C 43587P X ====,随机变量X 的分布列如下:X012P38874087987384092()0128787873E X =⨯+⨯+⨯=.18.已知数列{}n a 满足11a =,11n n S a n +=--.(1)证明:数列{}1n a +是等比数列;(2)设1n n nb a =+,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)222n nn S +=-.【解析】【分析】(1)利用给定的递推公式,结合12,n n n n a S S -≥=-推理判断作答.(2)由(1)求出n b ,再利用错位相减法求和作答.【小问1详解】当1n =时,122S a =-,解得23a =,当2n ≥时,11n n S a n +=--,1n n S a n -=-,两式相减得11n n n a a a +=--,即121n n a a +=+,即有()1121n n a a ++=+,而21142(1)a a +==+,则N n *∀∈,()1121n n a a ++=+,所以数列{}1n a +是以2为首项,2为公比的等比数列.【小问2详解】由(1)知12nn a +=,于是12n n n n nb a ==+,则231232222n n n S =++++ ,于是231112122222n n n n n S +-=++++ ,两式相减得2311111(1)11222112221212222121n n n n n n n n n S +++-+=++++-=-=--,所以222n n n S +=-.19.设函数()e xf x ax =-,0x ≥且R a ∈.(1)求函数()f x 的单调性;(2)若()21f x x ≥+恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)e 2a ≤-【解析】【分析】(1)求导后分1a ≤与1a >两种情况讨论即可;(2)方法一:讨论当0x =时成立,当0x >时参变分离可得2e 1x x a x --≤,再构造函数()2e 1x x g x x --=,0x >,求导分析最小值即可;方法二:将题意转化为2max11e x x ax ⎛⎫++≤ ⎪⎝⎭,再构造函数()21e xx ax h x ++=,求导分类讨论单调性与最大值即可.【小问1详解】()e x f x a '=-,0x ≥,当1a ≤时,()0f x '≥恒成立,则()f x 在[)0,+∞上单调递增;当1a >时,[)0,ln x a ∈时,()0f x '≤,则()f x 在[)0,ln a 上单调递减;()ln ,x a ∈+∞时,()0f x '≥,则()f x 在[)0,ln a 上单调递增.【小问2详解】方法一:2e 1x ax x -≥+在0x ≥恒成立,则当0x =时,11≥,显然成立,符合题意;当0x >时,得2e 1x x a x --≤恒成立,即2min e 1x x a x ⎛⎫--≤ ⎪⎝⎭记()2e 1x x g x x --=,0x >,()()()2e 11x x x g x x'---=,构造函数e1xy x =--,0x >,则e 10x y '=->,故e 1xy x =--为增函数,则0e 1e 010x x -->--=.故e 10x x -->对任意0x >恒成立,则()g x 在()0,1递减,在()1,+∞递增,所以()()min 1e 2g x g ==-∴e 2a ≤-.方法二:211e xx ax ++≤在[)0,+∞上恒成立,即2max11e x x ax ⎛⎫++≤ ⎪⎝⎭.记()21e x x ax h x ++=,0x ≥,()()()11e xx x a h x '-+-=-,当1a ≥时,()h x 在()0,1单增,在()1,+∞单减,则()()max 211ea h x h +==≤,得e 2a ≤-,舍:当01a <<时,()h x 在()0,1a -单减,在()1,1a -单增,在()1,+∞单减,()01h =,()21ea h +=,得0e 2a <<-;当0a =时,()h x 在()0,∞+单减,成立;当a<0时,()h x 在()0,1单减,在()1,1a -单增,在()1,a -+∞单减,()01h =,()121eaah a ---=,而1e 11a a -≥-+,显然成立.综上所述,e 2a ≤-.。
北京市延庆区2024-2025学年高二上学期期中考试数学试题(含答案)
延庆区2024-2025学年第一学期期中试卷高二数学2024.11本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知向量且,那么( )A. B.6C.9D.183.在空间直角坐标系中,点关于坐标平面的对称点为()A. B. C. D.4.设分别是空间中直线的方向向量,则直线所成角的大小为( )A. B. C. D.5.过和两点的直线的倾斜角是()A. B.1 C. D.6.“”是“直线与平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在平行六面体中,,点在上,且,则( )1i +()()1,2,1,3,,a b x y =-= a ∥b b = ()1,2,3P xOy ()1,2,3-()1,2,3-()1,2,3--()1,2,3-()()120,1,1,1,0,1v v ==- 12,l l 12,l l π65π6π32π3()2,0-()0,21-3π4π41a =1:20l ax y +-=()2:2120l x a y +++=1111ABCD A B C D -1,,AA a AB b AD c === P 1AC 1:1:2A P PC =AP =A. B.C. D.8.已知正方体的棱长为为的中点,则到平面的距离为( )9.在正方体中,点是线段上任意一点,则与平面所成角的正弦值不可能是( )A. B.10.已知点,直线,若直线上至少存在三个,使得为直角三角形,直线倾斜角的取值范围是( )211333a b c ++ 122333a b c ++ 112333a b c -++ 122333a b c -- 1111ABCD A B C D -2,E 1BB 1B 11A D E 1111ABCD A B C D -E 11A C AE ABCD 1323()()0,1,0,1A B -:2l y kx =-l M MAB V lA. B.C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数,则__________.12.已知点,点在线段上,且,则点坐标为__________.13.若平面,平面的法向量为,平面的法向量为,写出平面的一个法向量__________.14.已知点,直线与线段无交点,则直线在轴上的截距为__________;的取值范围是__________.15.如图:在直三棱柱中,,.记,给出下列四个结论:①存在,使得任意,都有;②对于任意点,都不存在点,使得平面平面;③的最小值为3;④当取最小时,过点作三棱柱的截面,则截面周长为.其中,所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.(本小题13分)已知的顶点坐标为.π5π0,,π66⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦πππ2π,,3223⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ3π,,4224⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ5π,,6226⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦5i 12iz =-z =()()1,1,4,1,4,2A B -C AB 2AC CB =C αβ⊥α()11,2,3n = β()2,,0n x y = β()()1,3,1,4A B -:2l y ax =-AB l y a 111ABC A B C -13,90AB BB BC ABC ∠==== 1,(01,01)CH xCB CP yCB x y ==<≤≤≤ (),f x y AH HP =+H P AH HP ⊥H P AHP ⊥11A B C (),f x y (),f x y ,,A H P 5ABC V ()()()1,52,14,3A B C ---、、(1)求过点且与直线平行的直线的方程;(2)求边上的中线所在直线的方程;(3)求边上的高所在直线的方程.17.(本小题14分)如图,在三棱柱中,底面是的中点,且.(1)求证:平面;(2)若,求直线与平面所成角的正弦值;(3)若,求平面与平面所成角的余弦值.18.(本小题14分)设的内角对应的边分别为,且.(1)求角的大小;(2)从下列三个条件中选择一组作为已知,使存在且唯一,并求的面积.条件①:;条件②:;条件③:.注:如果选择的条件使不存在或不唯一,第(2)问得0分.19.(本小题14分)已知函数,且的图像过点.(1)求函数的最小正周期和单调递减区间;(2)若函数在上与直线有交点,求实数的取值范围;(3)设函数,记函数在上的最大值为,求的最小B AC BC AB 111ABC A B C -1CC ⊥,ABC D 11A C 12AC BC CC ===1BC ∥1AB D AC BC ⊥1CC 1AB D AC BC ⊥1AB D 11ACC A ABC V ,,A B C ,,a bc sin cos b A B =B ABC V ABC V 3,sin 2sin b C A ==5b a ==b C ==ABC V ()22sin cos 2cos f x a x x x =+()f x π,06⎛⎫- ⎪⎝⎭()f x ()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =m ()()()g x f x t t =-∈R ()g x π11π,612⎡⎤⎢⎥⎣⎦()M t ()M t值及此时的值.20.(本小题15分)如图,已知四棱锥中,底面是边长为4的正方形,平面是正三角形,分别为的中点.(1)求证:平面;(2)求点到平面的距离;(3)线段上是否存在点,使得三棱锥的值;若不存在,说明理由.21.(本小题15分)给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.(1)判断集合是否具有性质,集合是否具有性质;(直接写出答案,结论不需要证明)(2)判断是否存在具有性质的集合,并加以证明;(3)若集合具有性质,证明:.t P ABCD -ABCD CD ⊥,PAD PAD V ,,,E F G O ,,,PC PD BC AD PO ⊥ABCD A EFG PC M M EFG -PM PC 2n ≥(){}{}12,,,,0,1,1,2,,n k M t t t t k n αα==∈= ∣M ()12,,,n x x x β= ()12,,,n y y y γ= 1122n n x y x y x y βγ⋅=+++ A M ⊆(){}12,,,,1,2,,i i i i in A t t t i n αα=== ∣A ,i j αα,,1,,i j p i j i j αα=⎧⋅=⎨≠⎩A (),T n p ()()(){}1,1,0,1,0,1,0,1,1A =()3,2T ()()()(){}1,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1B =()4,2T ()4,T p A A (),T n p ()121,2,,j j nj t t t p j n +++==延庆区2024-2025学年第一学期期中考试高二数学参考答案及评分标准2024.11一、选择题(共10小题,每小题4分,共40分)1.D2.A3.B4.C5.D6.C7.A8.B9.A 10.B二、填空题(共5小题,每小题5分,共25分)12. 13.(不唯一,共线即可)14.,(注:第一问3分,第二问2分)15.①③④(注:对一个2分,两个3分,有选错0分)三、解答题(共6小题,共85分)16.(共13分)解:(1)直线的斜率过点且与直线平行的直线的斜率为过点且与直线平行的直线方程为(2)设边的中点为,因为,所以点的坐标为,即,所以边的中线所在直线方程为()1,3,0()2,1,0-2-()6,5-AC 532145AC k -==---B AC 25-B AC ()21225905y x x y +=-+⇒++=BC D ()()2,14,3B C --、D 2413,22-+-+⎛⎫ ⎪⎝⎭()1,1D 51211AD k -==---BC ()121230y x x y -=--⇒+-=(3)因为,所以边的高线所在直线的斜率为,因此边的高线所在直线方程为.17.(共14分)(1)证明:连接,设,连接,由为三棱柱,得.又是的中点,所以是的中位线,.平面平面,平面;(2)解:底面,以为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系,则,,设平面的法向量为由,得;15621AB k --==-+AB 16-AB ()13462206y x x y -=--⇒+-=1A B 11A B AB E ⋂=DE 111ABC A B C -1A E BE =D 11A C DE 11ΔA BC 1BC ∴∥DE 1BC ⊄ 1,AB D DE ⊂1AB D 1BC ∴∥1AB D 1CC ⊥ ,ABC AC BC ⊥C 1,,CA CB CC ,,x y z ()()()0,0,0,2,0,0,0,2,0C A B ()()()()1112,0,2,0,2,2,0,0,2,1,0,2A B C D ()()()110,0,2,2,2,2,1,0,2CC AB AD ==-=- 1AB D (),,n x y z =12220220n AB x y z n AD x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩ ()2,1,1n =设直线与平面所成角为.则.直线与平面.(3)设平面与平面所成角为为锐角,平面的法向量为,,平面与平面.18.(共14分)解:(1),由正弦定理得,在中,,,.(2)若选①,由余弦定理,得,解得若选③,1CC 1AB Dθ111sin cos ,n CC n CC n CC θ⋅=<>== ∴1CC 1AB D 1AB D 11ACC A ,αα11ACC A ()0,1,0m =cos cos ,n m n m n m α⋅=<>== 1AB D 11ACC A sin cos b A B =sin sin a b A B =sin sin cos B A A B =ABC V sin 0,tan A B ≠=()0,πB ∈ π3B ∴=sin 2sin ,2C A c a== 2222cos b a c ac B =+-222944cos a a a B =+-a c ==1sin 2S ac B ∴==b C == ()sin sin sin cos cos sin A B C B C B C =+=+=由正弦定理可得:选择②,面积公式2分;余弦定理2分.不超过4分.19.(共14分)解:(1)由题意,,解得,,,的最小正周期;的单调减区间为(2)函数在区间上与直线有交点所以,函数在区间上的最大值为3,又因为所以,解得.实数的取值范围是.(3)当时,取最大值4c =1sin 2S bc A ==2πππ3sin 2cos 206364f a ⎛⎫⎛⎫⎛⎫-=-+-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a =()22cos f x x x ∴=+cos21x x =++π2sin 216x ⎛⎫=++ ⎪⎝⎭()f x 2ππ2T ==()f x π2ππ,π,63k k k z ⎡⎤++∈⎢⎥⎣⎦()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =()f x π,12m ⎡⎤-⎢⎥⎣⎦ππ20,266x m ⎡⎤+∈+⎢⎥⎣⎦ππ262m +≥π6m ≥∴m π,6∞⎡⎫+⎪⎢⎣⎭()()ππ11πππ2sin 21,,,2,2π661262g x f x t x t x x ⎛⎫⎡⎤⎡⎤=-=++-∈+∈ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦ππ262x +=()f x t -3t -当时,取最小值所以,当时,当时,所以,当时,20.(共15分)(1)证明:因为是正三角形,是的中点,所以.又因为平面平面,平面,所以面;解:(2)因为两两互相垂直.以点为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系.则,设平面的法向量为,由,得,点到平面的距离π3π262x +=()f x t -1t --1t ≤()3M t t=-1t >()1M t t =+1t =min ()2M t =PAD V O AD PO AD ⊥CD ⊥,PAD PO ⊂,PADCD PO ⊥,,AD CD D CD AD ⋂=⊂ABCD PO ⊥ABCD ,,OA OG OP O ,,OA OG OP,,x y z ()()()()()(0,0,0,2,0,0,2,4,0,2,4,0,2,0,0,0,0,O A B C D P --((()1,,,0,4,0,E F G --()((0,2,0,1,2,,1,4,EF EG FG =-==EFG (),,n x y z =2020n EF y n EG x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ )n = (3,AE =- A EFG AE n d n ⋅==(3)设所以点到面的距离为定值解得:或.21.(共15分)(1)集合具有性质,集合B 不具有性质.(2)当时,集合A 中的元素个数为4.由题设.假设集合A 具有性质,则①当时,,矛盾.②当时,,不具有性质,矛盾.③当时,.因为和至多一个在A 中;和至多一个在A 中;和至多一个在A 中,故集合A 中的元素个数小于4,矛盾.④当时,,不具有性质,矛盾.⑤当时,,矛盾.综上,不存在具有性质的集合.11,0,,122PM PC λλ⎡⎫⎛⎤=∈⋃⎪ ⎢⎥⎣⎭⎝⎦()()2,4,,12,4M EM λλλλ-=-- M EFG 2PF n d nλ⋅== cos ,||||EF EG EF EG EF EG ⋅<>=== 1sin ,22EFG S EF EG EF EG =<>=V 11sin ,36M EFGEFG V S h EF EG EF EG h -==<>=V 14PM PC λ==34A ()3,2T ()4,2T 4n ={}0,1,2,3,4p ∈()4,T p 0p =(){}0,0,0,0A =1p =()()()(){}1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1A =()4,1T 2p =()()()()()(){}1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,1A ⊆()1,1,0,0()0,0,1,1()1,0,1,0()0,1,0,1()1,0,0,1()0,1,1,03p =()()()(){}1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1A =()4,3T 4p =(){}1,1,1,1A =()4,T p A(3)记,则.若,则,矛盾.若,则,矛盾.故.假设存在使得,不妨设,即.当时,有或成立.所以中分量为1的个数至多有.当时,不妨设.因为,所以的各分量有个1,不妨设.由时,可知,中至多有1个1,即的前个分量中,至多含有个1.又,则的前个分量中,含有个1,矛盾.所以.因为,所以.所以.()121,2,,j j j nj c t t t j n =+++= 12n c c c np +++= 0p =(){}0,0,,0A = 1p =(){}1,0,0,,0A = 2p ≥j 1j c p +…1j =11c p +…1c n =0j c =()12,3,,j c j n == 12,,,n ααα ()1212n n n n np +-=-<…11p c n +<…11211,111,0p n t t t t +===== n n p αα⋅=n αp 23,11n n n p t t t +==== i j ≠1i j αα⋅={}121,2,3,,1,,,,q q p q q p t t t +∀∈+ 121,,,p ααα+ 1p +121p p p ++=+()11,2,,1i n i p αα⋅==+ 121,,,p ααα+ 1p +()()1122p p p +++=+()1,2,,j c p j n = …12n c c c np +++= ()1,2,,j c p j n == ()121,2,,j j nj t t t p j n +++==。
高二数学期中考试试题
高二数学期中考试试题一、选择题:(每题5分共60分)1.已知a,b,c是△abc三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角c的大小为()a.60°b.90°c.120°d.150°2.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()a.12b.22c.2d.323.在△abc中,已知sinacosb=sinc,那么△abc一定是()a.直角三角形b.等腰三角形c.等腰直角三角形d.正三角形4.如果,那么下列不等式成立的是()a.b.c.d.5.目标函数,变量满足,则有()a.b.无最小值c.无最大值d.既无最大值,也无最小值6.下列有关命题的说法正确的是a.命题“若,则”的否命题为:“若,则”;b.命题“使得”的否定是:“均有”;c.在中,“”是“”的充要条件;d.“或”是“”的非充分非必要条件.7..设f(n)=2+24+27+210+…+23n+1(n∈n*),则f(n)等于()a.27(8n-1)b.27(8n+1-1)c.27(8n+3-1)d.27(8n+4-1)8.已知等差数列的前项和为,,,取得最小值时的值为()a.b.c.d.10.若点o和点f分别为椭圆x24+y23=1的中心和左焦点,点p 为椭圆上的任意一点,则op→fp→的最大值为()a.2b.3c.6d.8二.填空题(每题5分共20分)13.不等式的解集是,则a+b的值是14.已知数列满足,,则的最小值为____.15.已知椭圆的焦点是,P为椭圆上一点,且是和的等差中项.若点p在第三象限,且∠=120°,则.16.已知椭圆x2a2+y2b2=1(ab0)的左,右焦点分别为f1(-c,0),f2(c,0),若椭圆上存在点p使asin∠pf1f2=csin∠pf2f1成立,则该椭圆的离心率的取值范围为________.三、解答题(每题12分)17.命题p:关于x的不等式对于一切恒成立,命题q:若为真,为假,求实数a的取值范围。
高二数学期中考试试卷
高二数学期中试卷1、设b a ,是两条不同的直线,βα,是两个不同的平面,则下列命题错误的是( )A 、若βα⊥⊥a a ,,则αβ B 、若αα⊥⊥b a ,,则a bC 、若a α,α⊥b ,则b a ⊥D 、若a α,b α,则a b2、在数列{}n a 中,3a 与10a 是方程0532=--x x 的两根,若{}n a 是等差数列,则76a a +等于( )A 、-5B 、5C 、-3D 、33、记数列{}n a 的前n 项和为n S ,且)1(2-=n n a S ,则2a 等于( )A 、4B 、2C 、1D 、-24、在ABC ∆中,060,3,2===B b a ,则A 等于( )A 、0013545或B 、0015030或C 、090D 、0455、若ABC ∆的角A ,B ,C 的对边分别c b a ,,,且2,45,10===∆ABC S B a ,则b 等于( )A 、5B 、25C 、41D 、256、设n S 为等比数列{}n a 的前n 项和,0852=+a a ,则25S S 等于( ) A 、11 B 、5 C 、-8 D 、-117、已知某几何体的三视图如图所示,则该几何体的体积是( )A 、61B 、31C 、21D 、22 8、在A B C ∆中,若cc b A 22cos 2+=,则A B C ∆的形状为( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰或直角三角形9、在数列{}n a 中,nn n a a a a -+=-=+11,211,则2010a 等于( ) A 、2- B 、31- C 、21- D 、3 10、在ABC ∆中,角A ,B ,C 的对边分别c b a ,,,若c a B b c a ⋅=-+3tan 222)(则角B 的值为( )A 、6πB 、3πC 、656ππ或D 、323ππ或 11、数列{}n a 中,前n 项和)(3为常数b b S n n +=,若{}n a 是等比数列,那么 b =12、若{}n a ,{}n b 满足2312++==⋅n n a b a n n n 且,则{}n b 的前10项和为13、在A B C ∆中,c b a ,,成等差数列,C B A sin ,sin ,sin 成等比数列,则ABC ∆的形状为14、在ABC ∆中,若36020===∆ABC S C c 且,,则=b a log15、下列命题中正确的是 (把正确命题的序号填在横线上) ○1若平面α平面β ,则平面α内任意一条直线都与平面β平行 ○2若平面α有三点A ,B ,C 到平面β距离相等,则αβ○3垂直于同一个平面的的两条直线平行 ○4若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 16、(本题满分12分)在ABC ∆中,设bb c B A -=2tan tan ,求A 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜城三中2012——2013学年度上学期期中考试
高二年级数学学科试卷(理科)
命题人:齐国辉 总分:150分 考试时间:120分钟
★祝考试顺利★
一、选择题 (本大题共10小题,每小题5分,共50分.)
1.将两个数a=8,b=17交换,使a=17,b=8,下面语句中正确的一组是 ( )
A. B. C. D.
2.直线053=++y x 的倾斜角是( )
A .30°
B .120°
C . 60°
D .150° 3.用辗转相除法求459和357的最大公约数,需要做除法的次数是( )
A.1
B.2
C.3
D.4
4.某工厂生产A 、B 、C 三种不同型号的产品数量之比为3:4:7,现在用分层抽样的方法抽出容量为n 样本,样本中A 型号产品有15件,那么样本容量n 为( ) A.50 B.60 C.70 D.80
5.数据201,1 98,202,200,1 99的标准差是 ( ) A .2 B .0 C.1 D .2
6.如果从装有2个红球和2个黒球的口袋内任取2个球,那么下列各组中的两个事件是“互斥而不对立”是( )
A .“至少有一个黒球”与“都是黒球”
B .“至少有一个黒球”与“都是红球”
C .“至少有一个黒球”与“至少有1个红球”
D .“恰有1个黒球”与“恰有2个黒球”
7. 先后抛掷硬币三次,则至少一次正面朝上的概率是( )
A. 81
B. 83
C. 85
D. 8
7
8. 某小区有7个连在一起的车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为( )。
A .16种
B .18种
C .24种 D.32种
a=b b=a
c=b b=a a=c
b=a a=b
a=c
c=b b=a
9.右图所示的算法流程图中,输出的S 表达式为A .1+2+…+49 B .1+2+…+50
C .11249++⋅⋅⋅+ D. 11250++⋅⋅⋅+
10.在矩形ABCD 中,4AB =,6AD =,在该矩形内任取一点P ,则使2
π
≥∠APB 的概率为( )
A .
6π B .61π- C .12
1π
- D .
12
二、填空题:(本大题共5小题,每小题5分,共25分.)
11.在一次运动员的选拔中,测得7名选手身高 (单位:cm )分布的茎叶图如图。
已知记录的平 均身高为174cm ,但有一名运动员的身高记录不清楚, 其末位数记为x,则x 的值为
12.将十进制数56转化为二进制数
13. 若圆22:8120C x y y +-+=与直线:20l ax y a +-=相切,则a 的值为 14.在区间[]1,2-上随机取一个数x,则1x ≤的概率为 15. 下面程序运行后输出的结果为
X=5 Y= —20
IF x<0 THEN X=y —3 ELSE Y=Y+3 END IF
PRINT X —Y END
三、解答题:(本题6小题,满分75分.)
16.(本小题12分) 已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、 C (4,3),M 是BC 边上的中点。
(1)求AB 边上的高所在的直线方程;(2)求中线AM 的长
18 0 1 17 0 3 x 16 8 9
17.(本小题12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)【79.5,89.5】这一组的频率、频数分别是多少?
(2)估计这次环保知识竞赛的及格率、及格人数(60分及以上为及格)。
18.(本小题12分).将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:(1)共有多少种不同的结果?并试着列举出来。
(2)两粒骰子点数之和等于3的倍数的概率;
(3)两粒骰子点数之和为4或5的概率.
19.(本小题12分)设关于x的一元二次方程22
x ax b
++=.
20
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实数根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实数根的概率.
20、(本小题13分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
1)求回归直线方程∧
y = bx +a , 其中b=-20, a =_
y -b _
x
2)预计在今后的销售中,销量与单价仍然服从1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
21.(本小题14分)已知点P 在第二象限,以点P 为圆心的圆过点)0,1(-A 和
)4,3(B ,AB 的垂直平分线交圆P 于点D C 、,且104=CD .
(1)求直线CD 的方程; (2)求圆P 的方程;
(3)点Q 在圆P 上,试探究使QAB ∆的面积为8的点Q 有几个?证明你的结论.。