上海向明初级中学数学代数式单元综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.

(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.

(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.

一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;

①直接判断123是不是“友好数”?

②直接写出共有个“和平数”;

③通过列方程的方法求出既是“和平数”又是“友好数”的数.

【答案】(1)解:这个两位数用多项式表示为10a+b,

(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),

∵11(a+b)÷11=a+b(整数),

∴这个两位数的和一定能被数11整除;

(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),

∵9(a﹣b)÷9=a﹣b(整数),

∴这两个两位数的差一定能被数9整除,

故答案为:11,9

(2)解:①123不是“友好数”.理由如下:

∵12+21+13+31+23+32=132≠123,

∴123不是“友好数”;

②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;

十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;

十位数字是6的“和平数”有165,264,462,561,一个4个;

十位数字是5的“和平数”有154,253,352,451,一个4个;

十位数字是4的“和平数”有143,341,一个2个;

十位数字是3的“和平数”有132,231,一个2个;

所以,“和平数”一共有8+(6+4+2)×2=32个.

故答案为32;

③设三位数既是“和平数”又是“友好数”,

∵三位数是“和平数”,

∴y=x+z.

∵是“友好数”,

∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,

∴22x+22y+22z=100x+10y+z,

∴12y=78x﹣21z.

把y=x+z代入,得12x+12z=78x﹣21z,

∴33z=66x,

∴z=2x,

由②可知,既是“和平数”又是“友好数”的数是396,264,132.

【解析】【分析】(1)分别求出两数的和与两数的差即可求解;

(2)①根据“友好数”的定义即可判断求解;

②根据“和平数”的定义列举出所有的“和平数”即可求解;

③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.

2.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初

出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.

(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?

【答案】(1)由题意可得:

该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);

该商月末出售时的利润为:30%x-700=(0.3x-700)(元);

(2)当x=40000时,

该商月初出售时的利润为:0.265×40000=10600(元),

该商月末出售时的利润为:0.3×40000-700=11300(元),

∵11300>10600,

∴选择月末出售这种方式,

即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.

【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;

(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。

3.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,

BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.

(1)若AB=6千米,老王开车从A到D共需多少时间?

(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)

【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:

=2.4(小时)

(2)解:从A到D所需时间不变,(答案正确不回答不扣分)

设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,

t=

=

=2.4(小时)

【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;

(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;

4.先阅读下面文字,然后按要求解题.

例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.

因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.

解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.

(1)补全例题解题过程;

(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).

【答案】(1)解:101×50

(2)解:原式=50×(2a+99b)=100a+4950b.

【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.

(2)仿照(1)利用加法的交换律和结合律进行计算即可.

相关文档
最新文档