第三章 离子交换树脂及吸附树脂(1)

合集下载

吸附树脂及其应用

吸附树脂及其应用

4.2 吸附树脂在食品防腐剂分析中的应用
己二烯酸(山梨酸)是目前广泛使用的食 2,4 - 己二烯酸 (山梨酸 )是目前广泛使用的 食 品防腐剂之一 利用气相色谱法、 之一。 品防腐剂 之一 。 利用气相色谱法 、 高效液相色谱 法和分光光度法, 法和分光光度法 ,来测定食品中痕量山梨酸方法已 有许多报道。光度法的测定原理是基于氧化剂 将山梨酸氧化成丙二醛, K2Cr2O7 将山梨酸氧化成丙二醛 , 再与硫代巴比妥 酸反应,形成一种红色物质。 酸反应,形成一种红色物质。 用 K2Cr2O7 - 硫代巴比妥酸光度法定食品中痕 量 , 2,4-己二烯酸时,可用吸附树脂 GDX-502微型 己二烯酸时, 可用吸附树脂 GDX-502微型 消除醇、 柱消除醇、醛、酮、酯和糖对测定的干扰 。
5、极性相近原则
和通常的吸附规律一样, 和通常的吸附规律一样 , 极性树脂较易吸附 极性物质,非极性树脂较易吸附非极性物质。 极性物质,非极性树脂较易吸附非极性物质。
6、形成氢键或电子转移络合物
如果树脂上的基团与吸附质分子之间可形成 氢键或电子转移络合物, 则有强的吸附作用 强的吸附作用, 氢键或电子转移络合物 , 则有 强的吸附作用 , 此 时的吸附力主要为化学力 化学力( 时的吸附力主要为 化学力 ( 氢键及电荷转移为弱 化学力) 化学力)。
吸附树脂的特点和作用
树脂本身由于依靠它和被吸附的分子( 树脂本身由于依靠它和被吸附的分子 ( 吸附 之间的范德华力 氢键作用, 具有吸附性 范德华力和 吸附性, 质 ) 之间的 范德华力 和 氢键作用 , 具有 吸附性 , 很高的 又因具有网状结构和很高 比表面积, 而有筛选 又因具有网状结构和 很高 的 比表面积 , 而有 筛选 性能, 能从溶液中有选择地吸附有机物质, 性能 , 能从溶液中有选择地吸附有机物质 , 使有 机化合物根据吸附力及其分子量大小可以经一定 溶剂洗脱而分开, 达到分离 纯化、 除杂、 分离、 溶剂洗脱而分开 , 达到 分离 、 纯化 、 除杂 、 浓缩 等不同目的。 等不同目的。 吸附树脂的特点 容易再生, 可反复使用。 特点是 吸附树脂的 特点 是 容易再生 , 可反复使用 。 其他不同之处在于, 其他不同之处在于 , 吸附树脂的化学结构和物理 结构可以较容易地人为控制, 结构可以较容易地人为控制 , 根据不同需要可合 成出结构和性能不同的树脂, 因此, 成出结构和性能不同的树脂 , 因此 , 吸附树脂品 种多,应用范围广。 种多,应用范围广。

第三章离子交换树脂

第三章离子交换树脂

3.密度 干真密度:干燥状态下,树脂材料本身具有的密度。 湿真密度:在水中充分溶胀后湿树脂本身的密度。 湿视密度:树脂在水中充分溶胀后的堆积密度(视密 度) 。 单位均为mg/L. 4.交联度 交联度为树脂合成时交联剂的用量,一般为7%~10%。 交联度越高,孔隙度越低,密度越大,对半径较大的 离子和水合离子扩散速度越低,交换量越小。 在水中浸泡,形变小,较稳定。
二. 离子交换树脂的分类
3.1.3 强碱性阴树脂
有两种强碱性树脂:功能基团为 三甲胺基称为强碱Ⅰ型 二甲基-β-羟基-乙基胺为强碱II型 水溶液中 R ≡ N+OH-(Cl-)
-
I型的碱性比II型强,但再生较困难,II型树脂的稳定性较差。 和强酸性树脂一样,强碱性树脂使用的pH范围没有限制
1/2H2SO4 1/2SO4 HNO3 NO3 1/2H2CO3 +ROH→ R 1/2CO3 + 2H2O HCl CI 1/2H2SiO3 HSiO3
发展史
1805年英国科学家发现了土壤中Ca2+和NH4+的交换 现象;
1876年Lemberg 揭示了离子交换的可逆性和化学 计量关系; 1935年人工合成了离子交换树脂;
1940年应用于工业生产;
1951年我国开始合成树脂。
2、离子交换树脂的定义
2.1离子交换树脂的定义
离子交换树脂是一类带有可离子化基团的三维 网状高分子材料,其外形一般为颗粒状。 不溶于水和一般的酸、碱,也不溶于普通的有机 溶剂,如乙醇、丙酮和烃类溶剂。 常见的离子交换树脂的粒径为0.3~1.2mm。
骨架:接有功能基团,本身是惰性 固定离子:连接在骨架上,可与相 反离子结合 活性离子:与功能基团所带电荷相 反的可移动的离子 待交换离子:在吸附阶段可与活 性离子交换,与骨架上的功能基 团结合

树脂吸附原理.pdf

树脂吸附原理.pdf

树脂吸附原理一、(1)大孔吸附树脂的吸附原理5p"A4X4Z3L大孔吸附树脂是吸附性和分子筛性原理相结合的分子材料。

吸附性是由于范德华引力或产生氢键的结果,分子筛性是由于其本身多孔性结构所决定的。

w w w p a nt exaco m&1M s3h&1{4m(2)影响吸附的因素大孔吸附树脂本身的性质、溶剂的性质和化合物的性质是影响吸附的3个重要因素。

w w w p a nt exaco m%W9_9kh d%(3)大孔吸附树脂的应用植提之家植提空间中国植提论坛植提论坛植提网4C4O?a@C2x]#vN8s L苷与糖类的分离,生物碱的精制,多糖、黄酮、三萜类化合物的分离。

w w w pl a n ex a c o m*P%d*q/~6V(4)洗脱液的选择中国植物提取物论坛5)d}%"p1u&~&@中国植物提取物论坛8C~&v8@4T洗脱液可使用甲醇、乙醇、丙酮、乙酸乙酯等。

二、什么是吸附?(Adsorption)~X V$V.&L8K1GO6/a1、吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程。

~0F3^2a2、吸附过程通常包括:待分离料液与吸附剂混合、吸附质被吸附到吸附剂表面、料液流出、吸附质解吸回收等四个过程。

三、常见的吸附类型及其主要特点w w w pl a nexaco m#P9vT T*u%N{1W Z1、物理吸附:吸附作用力为分子间引力、无选择性、无需高活化能、吸附层可以是单层,也可以是多层、吸附和解吸附速度通常较快。

中国植提论坛植提网%k8n23`+bN2、化学吸附:吸附作用力为化学键合力,需要高活化能、只能以单分子层吸附,选择性强、吸附和解吸附速度较慢。

2H/x4@H4oo1Y%U*^o中国植物提取物论坛^%q u%四、常用吸附剂种类中国植物提取物论坛%|#V H%D吸附剂通常应具备以下特征:对被分离的物质具有较强的吸附能力、有较高的吸附选择性、机械强度高、再生容易、性能稳定、价格低廉。

第三章(一)大孔树脂吸附分离技术

第三章(一)大孔树脂吸附分离技术


六、大孔树脂的结构、组成、原理、类型与规格



1. 结构 大孔吸附树脂是近20余年发展起来的,它是一种新型非 离子型高分子聚合物吸附剂,一般为白色球形颗粒,粒 度为20~60目。 大孔树脂的宏观小球系由许多彼此间存在孔穴的微观小 球组成。如果把一个宏观小球比做远看的一簇葡萄,那 么每一个微观小球就相当于近看的一颗小葡萄,小葡萄 间存在孔穴的总体积与一簇葡萄体积之比,称为孔度, 小葡萄之间的距离称孔径。所有小葡萄的面积之和就是 一簇葡萄的表面积,亦即树脂的表面积。如果以单位质 量计算,将此表面积除以一簇葡萄的质量,即得比表面 积(m2/g)。



(2)使用说明书
说明书内容包括:①所用树脂性能简介、主要添加 剂种类与名称;②未聚合单体、交联剂、主要添加 剂种类与名称;③树脂安全性动物实验资料,包括 树脂及其粉碎物(XX目)、预处理前后洗脱溶剂浓缩 液等样品的规范化急性、长期毒性试验结果,或其 他能证明其安全性的资料;④使用注意事项,根据 树脂的物理化学性能及其影响吸附的因素,明确指 出新树脂的预处理、上柱吸附、洗脱、再生、贮存 等正确操作方法,及可能出现异常情况的处理方法, 以保障树脂的正常使用;⑤树脂有效使用期的参考 值;⑥生产厂家及生产许可证合法证件。


(2)固定床吸附装置
该装置实际上是一种常规的离子交换柱,常用的为 几百升至几百立方米的不锈钢或搪瓷柱,下部或上、 下部装有80目的滤网(实验室则常用玻璃柱)。 这种吸附树脂是固定的,溶液是流动的,因而被称 为动态吸附。固定床因装填的不均匀性、气泡、壁 效应或沟流的存在,吸附饱和层面的下移常是不整 齐的,即存在所谓“偏流”现象。并且当吸附过程 临近结束,部分吸附质从柱子随溶剂漏出时,柱子 底部的树脂层尚未达到吸附平衡,因而柱式吸附时 树脂的负载量可能会有些变化。

离子交换树脂及原理课件ppt

离子交换树脂及原理课件ppt
RCOOHNa + H2O → RCOONa+NaOH RNH2Cl + H2O → RNH2OH+HCl
化学性能
对各种离子的交换能力是不同的。 易被交换的离子,解析就困难。 交换顺序:优先高化合价的,其次原子序数大的。
强酸性阳离子交换树脂: Fe2+>Al3+>Ca2+>Mg2+>K+>Na+>H+
树脂的命名 (GB1631-1979)
代号 0 1 2
3 4 5 6
分类名称 强酸性 弱酸性 强碱性
弱碱性 螯合性 两性 氧化还原性
代号 0 1 2
骨架名称 苯乙烯系 丙烯酸系 酚醛系
3
环氧系
4 乙烯吡啶系
5
脲醛系
6 氯乙烯系
二、离子交换树脂的性能
物理性能 外观(颜色、形状)、粒度、密度、 含水率、转型膨胀率、耐磨性
第二节 离子交换基本原理
1. 离子交换反应 可逆性 强型树脂的交换反应 弱型树脂的交换反应 2. 离子交换平衡和选择性系数 3. 离子交换速度 控制步骤 表达式 影响因素
物理性能
密度:单位体积树脂的质量。 1. 湿真密度:单位真体积(不包括树脂颗粒间空隙的体积)内湿态
离子交换树脂的质量,g/mL。 湿真密度=湿态树脂质量/湿态树脂的真体积 一般在1.04-1.30。阳离子大于阴离子的。 离子交换树脂的反洗强度、分层特性与其有关。 2. 湿视密度:单位体积内紧密无规律排列的湿态离子交换树脂的质
用寿命。 耐磨性 由于相互摩擦和胀缩作用,产生破裂现象。 一般年损耗应小于3-7%。
化学性能
酸碱性 不溶性的高分子电解质,可电离,使得水溶液具有酸碱性。 强型树脂不受溶液pH影响。 弱型树脂电离能力小。弱酸性树脂在碱性溶液中电离能力大,弱

第三章 离子交换树脂及吸附树脂(1)ppt课件

第三章 离子交换树脂及吸附树脂(1)ppt课件
烯酸系阳离子交换树脂。这些离子交换树脂除应
用于水的脱盐精制外,还用于药物提取纯化、稀
土元素的分离纯化、蔗糖及葡萄糖溶液的脱盐脱 色等。
离子交换树脂发展史上的另一个重大成果是大 孔型树脂的开发。20世纪50年代末,国内外包括 我国的南开大学化学系在内的诸多单位几乎同时 合成出大孔型离子交换树脂。与凝胶型离子交换 树脂相比,大孔型离子交换树脂具有机械强度高、 交换速度快和抗有机污染的优点,因此很快得到 广泛的应用。
图3—1 聚苯乙烯型阳离子交换树脂的示意图
从图中可见,树脂由三部分组成:三维空间结 构的网络骨架;骨架上连接的可离子化的功能基 团;功能基团上吸附的可交换的离子。
强酸型阳离子交换树脂的功能基团是
—SO3-H+,它可解离出H+,而H+可与周围的外 来离子互相交换。功能基团是固定在网络骨架上 的,不能自由移动。由它解离出的离子却能自由 移动,并与周围的其他离子互相交换。这种能自 由移动的离子称为可交换离子。
要的功能高分子材料。如离子交换纤维、吸附树 脂、螯合树脂、聚合物固载催化剂、高分子试剂、 固定化酶等。这一最传统的功能高分子材料正以 崭新的姿态在21世纪发挥重要的作用。
离子交换纤维是在离子交换树脂基础上发展起
来的一类新型材料。其基本特点与离子交换树脂 相同,但外观为纤维状,并还可以不同的织物形 式出现,如中空纤维、纱线、布、无纺布、毡、 纸等。
吸附树脂也是在离子交换树脂基础上发展起来的 一类新型树脂,是指一类多孔性的、高度交联的高分 子共聚物,又称为高分子吸附剂。这类高分子材料具 有较大的比表面积和适当的孔径,可从气相或溶液中 吸附某些物质。
在吸附树脂出现之前,用于吸附目的的吸附剂已 广泛使用,例如活性氧化铝、硅藻土、白土和硅胶、 分子筛、活性炭等。而吸附树脂是吸附剂中的一大分 支,是吸附剂中品种最多、应用最晚的一个类别。

离子交换与吸附

离子交换与吸附

中南大学 稀有金属冶金研究所
第(1)与(7)步骤为对流扩散,其速率在10-2m/S数量级, 而( 4 )为化学反应,其速率通常大于 10- 2m/S, 因此都不可 能成为速度的控制步骤。( 2 )与( 6 )步骤称为膜扩散, (3)与(5)步骤为粒扩散,其速率都在10-5m/S数量级, 因此往往成为速度的控制步骤。
离子交换原理
中南大学 稀有金属冶金研究所
– 离子交换过程是被分离组分在水溶液与固体离子交 换剂之间发生的一种化学计量分配过程。
mRn B nAm nRm A mBn
– 吸附主要是通过离子交换剂上的固定基团与反离子 间的静电引力,同时也可能存在其它化学键合。
– 与萃取类比:
• 酸性络合萃取(阳离子交换) • 离子缔合萃取(阴离子交换)
中南大学 稀有金属冶金研究所
电解质溶液浓度与非交换吸入量关系
电解质溶液浓度 (元电荷物质浓度, mol/L)
0.01 0.1 0.32 1.0 3.2
非交换吸入量(Y/Q)%
0.01 ~1 ~8 ~50 ~250
离子交换动力学
• 从动力学角度上说,离子交换过程的实质是 – 水相与树脂相之间的传质过程
对离子交换设备的基本要求是:
(1)树脂与溶液应接触良好; (2)树脂在柱内停留时间要长,溶液在柱内停留时间在保证吸附率前提 下应尽量短; (3)树脂相与溶液相容易分离; (4)尽量减少或避免树脂的磨损与破碎。
中南大学 稀有金属冶金研究所
• 固定床
– 固定床是工程上使用最为普遍的一类离子交换设备 – 优点
道南势EDon:
当RA型阳树脂与强电解质AY的稀溶液接触时,树脂相中阳离子A +的浓度远远大于稀溶液中A+的浓度,故少量A+从树脂相进入溶 液相,而溶液中的极少量Y-进入树脂相,致使树脂相带负电荷, 溶液相带正电荷,从而在两相间形式一个电势差,称之为道南势 EDon。 显然道南势一建立,静电作用将阻止A+继续进一步离开树脂相, 排斥Y-进入树脂相,直到浓度差所产生的作用与道南势的作用相 抵消即达到平衡为止。离子交换树脂对电解质的这种排斥作用, 通常称为道南排斥。所以一般情况下,稀溶液中可忽略中性分子 进入树脂相。

离子交换剂平衡

离子交换剂平衡

C/C0
曲线上任意一点的切线的斜率即为此浓度下的分配比。分配比并非为恒 定值,随操作条件的不同而改变。曲线的起始阶段斜率较大,分配比较 大。但是随着树脂相中离子浓度的提高,交换趋势下降,曲线斜率即分 配比逐渐降低,最终树脂上离子达到饱和。
离子交换反应为一种可逆反应:
如:nR—H + Men+
Rn—Me + nH+
◇交换平衡常数越大,交换反应越能在较高的H+浓度下进行: 磺酸型树脂在2Mol/L的盐酸中仍有交换能力;膦酸和亚膦酸要在pH高于3之 后才具有较强的交换能力;酚羟基要在pH10以上才能发生交换。
◇在应用中,酸性树脂常以钠型或其他离子形式进行交换,这样可以不受溶液 pH值的影响。
2、影响阳离子交换能力的因素 ◆ 水合半径—就是包括内外层配位水分子的离子半径 ◇水合离子与功能基之间的作用力是静电吸引,因此同价离子对树脂的 亲和力,随水合半径的增加而下降。
I
i
Vi
S
◆在实际应用中,为保证较高的树脂利用率,树脂床必须足够高,以保证 远大于交换区高度。
◆ 在做实验时,交换柱的直径也不能过小,一般至少应为树脂粒径的25 倍,以减少壁效应。
三、离子交换平衡
1、选择系数 离子交换树脂对离子选择型的大小,或者各种离子对树脂亲和力的大小, 常用离子交换选择系数来表示。
由漏穿点VB至饱和点VS之间交换区内树 脂由溶液中吸附的离子量(摩尔数)为:
qz
V S (Co C)dV VB
等于图中阴影面积VBSB
而交换区内树脂的理论吸附量Qz(摩尔数)
为:Qz=Co(VS-VB),等于图中矩形面 积VBVSSB。
Vo 交换区内已经交换的树脂分数 f 为:

离子交换树脂和吸附树脂

离子交换树脂和吸附树脂
外观不透明,表面粗糙,非均相凝胶 结构。毛细孔直径几 nm到几千 nm。 即使在干燥状态,也存在不同尺寸的 毛细孔,可在非水体系中起离子交换 和吸附作用。 有很大的比表面积,20nm孔径的比 表面积达几千m2/g吸附功能显著。
第二节 离子交换树脂和吸附树脂的分类
c. 载体型离子交换树脂
一般是将离子交换树脂包覆在硅胶或玻 璃珠等表面上制成。 主要用作液相色谱的固定相,可经受液 相色谱中流动介质的高压,又具有离子 交换功能。
阴离子 交换树脂
强碱型R3-NCl 弱碱型R-NH2、RNR’H、R-NR2’
第二节 离子交换树脂和吸附树脂的分类
螯合树脂:带有螯合基的树脂。 氧化还原树脂:带有氧化还原基的树脂。 两性树脂:带有阳阴两性基的树脂。 热再生树脂:弱酸弱碱的两性树脂可用热水再生。
离 子 交 换 树 脂 的 种 类
第二节 离子交换树脂和吸附树脂的分类
此后,Dow化学公司 Bauman 等人开发了苯乙烯系磺酸型强酸性 离子交换树脂并实现工业化;Rohm & Hass公司进一步研制强碱 性苯乙烯系阴离子交换树脂和弱酸性丙烯酸系阳离子交换树脂。
第一节 离子交换和吸附树脂概述
20世纪50年代末合成出大孔型离子交换树脂。与凝胶型离子交换 树脂相比,大孔型离子交换树脂具有机械强度高、交换速度快和 抗有机污染的优点,因此很快得到广泛的应用。
(2) 按树脂的物理结构分类
a. 凝胶型离子交换树脂
外观透明、表面光滑,具有均相高分子凝 胶结构的离子交换树脂。球粒内部没有大 的毛细孔。 在水中会溶胀形成凝胶状。在无水状态下, 凝胶型离子交换树脂的分子链紧缩。 干燥条件下或油类中将丧失离子交换功能。
第二节 离子交换树脂和吸附树脂的分类

吸附树脂

吸附树脂

吸附树脂的孔径也分为三类:

微孔型: 大网状型:

大孔型:
非极性吸附树脂的制备(二乙烯基苯的自由基悬浮聚合)
1:1.5:0.5(质量
比)
二乙烯苯、甲 苯、汽油混合搅 拌形成油相
过氧化苯甲 酰
在三口瓶中预先 加入五倍的去离 子水和10%明胶
明胶 溶解 将油相投入溶解 明胶的水相中使 其分散成液珠
用于提取酶,吸附树脂不涉及溶剂,不需冷却加热,提纯 条件温和,容易保持酶的活性。


大孔树脂用于分离生物碱、提纯和分离激素都有很好的效 果。
药物中毒的病人急救时,可吸附血液中的安眠药,有机磷 农药,可起到血液净化的作用。

@功能材料
吸附树脂
张国麒 应用化学
吸附树脂
1
2
目录
吸附树脂的概述
吸附树脂的类型
3 4
吸附树脂的制备
吸附树脂的应用
吸附树脂的概述
吸附树脂≠离子交换树脂

吸附树脂( adsorption resin ) 又称螯合型离子交换树脂,是 在离子交换树脂的基础上发展 起来的。吸附树脂是一种不含 离子交换基团的高交联度体型 高分子珠粒,其内部拥有许多 分子水平的孔道,提供扩散通 道和吸附场所。
吸附树脂的概述
吸附树脂的物理结构和化学结构对吸附性能的影响表现在 以下几个方面: 比表面积 脱附功能
吸附速度
影响因素
孔径
极性相近原则
吸附选择性
吸附树脂的概述
吸附树脂的类型
吸附树脂的极性大体分为三类:

非极性:吸附树脂侧基是烃基和中性基团; 中极性:吸附树脂侧基含有酯基等; 髙极性:吸附树脂侧基一般含有氰基,酚基以及酰胺基等;

简述吸附树脂和离子交换树脂的选择原则

简述吸附树脂和离子交换树脂的选择原则

简述吸附树脂和离子交换树脂的选择原则《吸附树脂和离子交换树脂的选择原则》吸附树脂和离子交换树脂是广泛应用于化学、制药和环境等领域的重要分离和纯化材料。

它们的选择与应用涉及到多个因素,下面将简要介绍吸附树脂和离子交换树脂的选择原则。

1. 吸附树脂的选择原则吸附树脂是利用与目标分子之间的化学吸附作用来进行分离和纯化的材料。

一般来说,吸附树脂的选择与目标分子的性质和分离条件有关。

以下是几个常见的选择原则:(1)目标分子的性质:吸附树脂的选择要考虑目标分子的分子量、极性、酸碱性等性质。

比如,对于一些带电的目标分子,选择具有附加正负电荷的吸附树脂可以获得较好的吸附效果。

(2)分离条件:吸附树脂的选择还要考虑分离过程中的温度、pH值和溶剂等因素。

这些条件会影响吸附树脂的亲和性和交换能力,因此需要根据实际情况来选择最合适的吸附树脂。

(3)吸附树脂的特性:吸附树脂的孔隙结构、粒径和表面化学性质也会影响其吸附性能。

根据需要选择具有合适特性的吸附树脂,可以提高分离效果和产量。

2. 离子交换树脂的选择原则离子交换树脂是利用目标离子与树脂之间的电荷作用进行分离和纯化的材料。

离子交换树脂的选择原则与吸附树脂类似,但也有一些特殊考虑因素:(1)目标离子的价态:离子交换树脂的选择要根据目标离子的价态,确定对应的交换位点。

比如,选择合适的阴离子交换树脂可以有效地吸附和分离阴离子。

(2)交换容量:离子交换树脂的交换容量是指单位体积树脂能够交换或吸附的目标离子量。

选择离子交换树脂时,应根据目标离子的浓度和需求量来选择具有足够交换容量的树脂。

(3)再生性能:考虑离子交换树脂的再生性能也是选择原则之一。

一些可再生的树脂可以通过调整pH值或溶液浓度来实现离子的解吸,从而延长树脂的使用寿命。

总之,吸附树脂和离子交换树脂的选择应综合考虑目标分子或离子的性质、分离条件和树脂的特性。

仔细根据实际需求进行选择,可以提高分离和纯化的效果,达到预期的目标。

离子交换树脂

离子交换树脂

离子交换树脂求助编辑百科名片离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。

通常是球形颗粒物。

离子交换树脂形态离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。

孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。

分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。

如:大孔强酸性苯乙烯系阳离子交换树脂。

编辑本段基本分类离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。

树脂中化学活性基团的种类决定了树脂的主要性质和类别。

首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。

阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。

离子交换树脂基本形态编辑本段命名方式离子交换树脂的命名方式:离子交换产品的型号以三位阿拉伯数字组成,第一位数字代表产品的分类,第二位数字代表骨架的差异,第三位数字为顺序号用以区别基因、交联剂等的差异。

第一、第二位湿离子交换树脂数字的意义,见表8-1。

表8-1 树脂型号中的一、二位数字的意义代号0 1 2 3 4 5 6分类名称强酸性弱酸性强碱性弱碱性螫合性两性氧化还原性骨架名称苯乙烯系丙烯酸系醋酸系环氧系乙烯吡啶系脲醛系氯乙烯系大孔树脂在型号前加“D”,凝胶型树脂的交联度值可在型号后用“×”号连接阿拉伯数字表示。

如D011×7,表示大孔强酸性丙烯酸系阳离子交换树脂,其交联度为7。

国外一些产品用字母C代表阳离子树脂(C为cation的第一个字母),A代表阴离子树脂(A 为Anion的第一个字母),如Amberlite的IRC和IRA分别为阳树脂和阴树脂,亦分别代表阳树脂和阴树脂。

编辑本段制造厂家离子交换树脂在国内外都有很多制造厂家和很多品种。

国内制造厂有数十家,主要的有上海树脂有限公司、南开化工厂、安徽皖东化工有限人司,浙江争光实业股份有限公司、晨光化工研究院树脂厂、江苏色可赛思树脂有限公司等;国外较著名的如美国Rohm & Hass公司生产的Amberlite系列、Success公司生产Ionresin系列、Dow化学公司的Dowex系列、法国Duolite系列和Asmit系列、日本的Diaion系列,还有Ionac系列、Allassion系列等。

大孔吸附树脂与大孔离子交换树脂的异同点

大孔吸附树脂与大孔离子交换树脂的异同点

大孔吸附树脂和大孔离子交换树脂都是化工领域常见的工业用树脂材料。

它们在吸附、分离、过滤等方面有着广泛的应用。

虽然它们都是树脂材料,但在原理、结构和用途上存在着一些差异。

本文将从不同角度对大孔吸附树脂与大孔离子交换树脂进行比较,以便更好地了解它们各自的特点和适用范围。

一、原理1. 大孔吸附树脂大孔吸附树脂是一种多孔材料,其内部具有较大的孔径,能够吸附大分子物质。

它的吸附原理是通过孔道结构将待吸附物质拦截在孔道内,形成物理吸附。

树脂表面常常具有一定的化学官能团,具有一定的化学吸附能力。

2. 大孔离子交换树脂大孔离子交换树脂也是一种多孔材料,其孔径较大,在其内部可以充分交换离子。

其吸附原理是通过离子交换作用,使用树脂上的功能性基团与待处理溶液中离子交换,使得树脂中的离子被取代,达到分离、净化的目的。

二、结构1. 大孔吸附树脂大孔吸附树脂具有较大的孔径,通常孔径范围在10-300纳米之间。

其孔径可以用来吸附大分子有机物质,如有机染料、蛋白质等。

2. 大孔离子交换树脂大孔离子交换树脂同样具有较大的孔径,但其内部含有功能性离子交换官能团。

这些官能团通过捕获溶液中的离子,实现对溶液中离子种类和含量的调控。

三、用途1. 大孔吸附树脂大孔吸附树脂主要应用于工业上的分离和净化领域。

比如在食品工业中可用于染料的去除,制药工业中可以用来分离蛋白质等。

2. 大孔离子交换树脂大孔离子交换树脂主要应用于电镀废水处理、糖液脱色等环境和化工领域。

由于其能够有效地去除水溶液中的金属离子、色素离子等,因此在这些领域有着广泛的应用前景。

四、特点1. 大孔吸附树脂大孔吸附树脂主要特点是其对大分子物质有很好的吸附能力,能够高效地分离和净化有机物质。

2. 大孔离子交换树脂大孔离子交换树脂具有良好的离子交换性能,能够高效去除水溶液中的杂质离子,具有很好的净化效果。

通过以上对比可以看出,虽然大孔吸附树脂和大孔离子交换树脂在原理、结构和用途上有所不同,但它们都具有良好的分离、吸附和净化能力,对于工业生产和环境净化起着重要作用。

吸附树脂的种类

吸附树脂的种类

吸附树脂的种类吸附树脂是一种具有吸附功能的材料,广泛应用于工业和科研领域。

根据其化学性质和应用特点的不同,吸附树脂可以分为多种类型。

下面将介绍几种常见的吸附树脂及其应用。

1. 丙烯酸树脂(Acrylic Resin)丙烯酸树脂是一种具有高吸附性能的树脂,它可以吸附水中的有机物质和重金属离子。

在工业废水处理中,丙烯酸树脂被广泛应用于有机废水和重金属废水的处理过程中,能有效去除废水中的有害物质,净化水质。

2. 多孔性树脂(Porous Resin)多孔性树脂是一种具有高比表面积和孔隙结构的树脂材料,具有较强的吸附能力。

它可以吸附和分离气体、液体和固体中的杂质和有害物质。

在化工生产中,多孔性树脂常用于催化剂的载体、分离杂质和纯化产品。

3. 离子交换树脂(Ion Exchange Resin)离子交换树脂是一种能够吸附和释放离子的树脂材料。

它可以吸附水中的离子杂质,如钠离子、镁离子和钙离子,将其与溶液中的其他离子进行交换。

离子交换树脂广泛应用于水处理、药物制剂和电子工业中。

4. 活性炭(Activated Carbon)活性炭是一种炭质材料,具有极强的吸附能力。

它可以吸附气体和液体中的有机物质、异味和有害物质。

活性炭广泛应用于空气净化、水处理、食品加工和药物制剂等领域。

5. 分子筛(Molecular Sieve)分子筛是一种具有特殊孔道结构的吸附材料,可以选择性地吸附分子。

它具有高效吸附和分离的特点,在石油化工、气体分离和催化反应中得到广泛应用。

6. 聚酰胺树脂(Polyamide Resin)聚酰胺树脂是一种高分子化合物,具有良好的吸附性能。

它可以吸附水中的溶解性有机物和重金属离子,广泛应用于水处理和环境保护领域。

7. 聚苯乙烯树脂(Polystyrene Resin)聚苯乙烯树脂是一种常见的吸附树脂,具有较高的吸附能力和机械强度。

它广泛应用于废水处理、食品加工和医药制造等领域。

吸附树脂作为一种重要的功能材料,不仅具有吸附能力强、选择性好的特点,还具有使用方便、成本低廉等优势。

离子交换树脂知识详解

离子交换树脂知识详解

1、离子交换树脂的基本类型(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。

树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。

这两个反应使树脂中的H+与溶液中的阳离子互相交换。

强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。

树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。

如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。

树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。

这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。

这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。

(3)强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R 为碳氢基团),能在水中离解出OH-而呈强碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂的离解性很强,在不同pH下都能正常工作。

它用强碱(如NaOH)进行再生。

(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。

它只能在中性或酸性条件(如pH 1~9)下工作。

它可用Na2CO3、NH4OH进行再生。

2、离子交换树脂基体的组成离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。

离子交换与吸附树脂

离子交换与吸附树脂

一、树脂母体的合成

1、悬浮聚合 在大部分情况下,树脂母体都是用悬浮 聚合的方法制备,产物为具有一定粒度分 布的珠体。


悬浮聚合是在机械搅拌下,使单体分散于与之不 相溶的介质中进行聚合的一种方法。分散介质可 以是水,也可以是非水溶剂,由单体性质所决定。 绝大多数情况下,制备离子交换树脂的单体是油 溶性的,因此悬浮聚合一般都在水分散介质中进 行。 搅拌条件,包括搅拌速度、搅拌器形状等是决 定珠状产物颗粒大小及粒径分布的重要因素。但 单纯机械搅拌的分散过程是可逆的。随着聚合反 应进行,单体液珠粘度增加,会发生液珠的粘结 和聚集。因此,悬浮聚合必须在分散剂的存在下 进行。

与离子交换树脂相比较,吸附树脂的组成 中不存在功能基及功能基的反离子,它类 似于不含功能基及功能基反离子的大孔树 脂,在制造时往往投入更多的交联剂和更 严格地选用致孔剂,以合成具有更大比表 而积的不同孔径、不同孔容和不同比表面 积的吸附树脂。
离子交换与吸附树脂的分类

依据树脂骨架结构不同,离子交换树脂可 分为凝胶型和大孔型两大类。凝胶型离子 交换树脂又可依据交联度不同分为低交联 度(交联度<8)、标推交联度(交联度=8)和高 交联度(交联度>8)树脂;大孔型树脂又可分 为一般大孔树脂和高大孔树脂,一般大孔 树脂的交联度通常为8,而高大孔树脂的交 联度则要远远大于8。

2、凝胶型树脂母体的制备 (1)聚苯乙烯型树脂母体 聚苯乙烯树脂母体—般那是采用二乙烯 苯作交联剂,通过悬浮共聚反应得到的

(2)聚丙烯酸型树脂母体 制备聚丙烯酸型树脂母体常用的单体是丙烯酸 甲酯。也可用甲基丙烯酸甲酯或直接用丙烯酸、 甲基丙烯酸作单体,但前者得到的交联共聚物 水解比较困难,后者因单体的水溶性大,制备 有—定难度。作为交联剂.用得较多的还是二 乙烯苯。同样,使用二乙烯苯交联剂时,因单 体活性不同,也存在共聚产物交联结构不均匀 的问题,对树脂的性能造成影响。除二乙烯苯 外,可用作聚丙烯酸型树脂母体交联剂的还有 衣康酸烯丙酯,二甲型丙烯酸乙二醇酯,甲基 丙烯酸烯丙酯及三聚异氰酸三烯丙酯等。

离子交换法3.ppt

离子交换法3.ppt
阴离子交换剂是选可吸附的最高pH,便于解吸附。
39
第五节 树脂和操作条件的选择 3 离子交换吸附 3.2 离子强度 离子交换吸附应在很低的离子强度下进行。 缓冲液中的离子强度一般在10-50 mmol/L 由于离子强度越↓,吸附越↑,越难解吸,因
2) 弱酸性阳离子交换树脂 交换性能和溶液的pH有很大关系,羧酸阳离子树
脂须在pH﹥4.5 、酚羟基树脂须在pH﹥9的溶液 中进行反应。 -COOH, -OH (酚羟基) 典型的交换反应:
8
一、离子交换剂分类—离子交换树脂分类
3)强碱性阴离子交换树脂 有两种:一种含三甲胺基(Ⅰ型) 和一种含二甲基-
β-羟基-乙基胺基团 (Ⅱ型) 其交换能力与外界溶液的pH无关
9
一、离子交换剂分类—离子交换树脂分类
4)弱碱性阴离子交换树脂 其交换能力与外界溶液的pH降低而增大,一般宜
在pH﹤ 7的溶液中使用。 功能基团如下: 伯胺基团-NH2; 仲胺基团- NHR; 叔胺基团- N(R)2;
10
一、离子交换剂分类—离子交换树脂分类
水性两大类: 1)、树脂类(疏水性)离子交换剂: 其基质是人工合成的、与水结合力交换剂分类、合成、理化性能和测定方法 --离子交换剂分类
2)、多糖类(亲水性)离子交换剂: 其基质是天然的或人工合成的、与水结合力较大
的物质 常用的有纤维素、交联纤维素、交联葡聚糖、交
(3)交换速度 (慢)
(4)选择性(高)
17
第二节 离子交换剂分类、结构、合成、理化性 能和测定方法
五、离子交换树脂的理化性能与测定方法 1、物理性能 (1).粒度 ①有效粒径是指筛分树脂时,10%体积的树脂颗粒通过,
而90%体积的树脂颗粒保留的筛孔直径。 ②均一系数是指能通过60%体积树脂的筛孔直径(d60%)

离子交换及吸附树脂

离子交换及吸附树脂

离子交换及吸附树脂学习材料一、离子交换和吸附树脂发展简介1、发展史2、常用树脂分类3、树脂的功能二、离子交换树脂结构与性能1、树脂的结构2、树脂的结构与物理性能3、树脂的结构与化学性能4、大孔吸附树脂的结构与性能三、树脂的合成及性能测定1、树脂合成2、树脂功能基团的引入3、树脂的性能测定四、树脂应用技术一)、树脂应用的技术理论和特点二)、树脂应用筛选基本原理生化食品生产三)、树脂在抗生素上的应用四)、树脂的使用方法介绍五)、树脂的污染及处理一、离子交换和吸附树脂发展简介一)、发展史离子交换现象本身广泛地存在于自然界中,离子交换树脂最早诞生在20世纪三、四十年代,当时美国和英国的一些公司广泛的进行离子交换树脂的研究,陆续成功合成出聚苯乙烯、丙稀酸系的离子交换树脂,并逐渐成为一类新兴高分子材料产业,它可以简单地达到物质的分离、纯化、浓缩的目的,而不仅靠结晶、蒸发工艺。

五六十年代离子交换树脂有了较大地发展,大孔结构的树脂问世,先由美国罗姆-哈斯和西德拜耳公司投入生产,其具有交换和吸附的双重功能,为离子交换树脂的广泛应用开辟了新的前景。

随着世界各国对离子交换树脂研究的不断深入,相继又研制出大孔吸附树脂、热再生树脂、两性树脂、獒合树脂、惰性树脂、氧化还原树脂、均孔树脂等,目前离子交换和吸附树脂已成为世界范围内的一大产业,成为功能高分子领域的一重要分支。

我国最早从五十年代初由南开大学和上海医工院开始研制离子交换树脂,虽起步稍晚,但发展很快,到20世纪70年代,全国已建成投产树脂厂60多家,目前全国不同规模的离子交换树脂厂近百家,生产能力达10万吨以上,年产量在5万吨左右。

产品技术方面,通用树脂基本达到国际先进水平,专用树脂稍有差距,主要体现在树脂的专一实用性不强,特别是新兴行业专用树脂品种不全,研究的深度不够。

另外国家的产业政策不明确,无专业归口管理部门,阻滞了该产业的发展。

离子交换树脂和它的应用技术一直是相互促进、相互依存、共同发展的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸附树脂出现于上一世纪60年代,我国于1980年 以后才开始有工业规模的生产和应用。目前吸附树脂 的应用已遍及许多领域,形成一种独特的吸附分离技 术。由于结构上的多样性,吸附树脂可以根据实际用 途进行选择或设计,因此发展了许多有针对性用途的 特殊品种。这是其他吸附剂所无法比拟的。也正是由 于这种原因,吸附树脂的发展速度很快,新品种,新 用途不断出现。吸附树脂及其吸附分离技术在各个领 域中的重要性越来越突出。
离子交换树脂可以使水不经过蒸馏而脱盐,既 简便又节约能源。因此根据Adams和Holmes的发 明,带有磺酸基和氨基的酚醛树脂很快就实现了 工业化生产并在水的脱盐中得到了应用。 1944年 D’Alelio 合成了具有优良物理和化学性 能的磺化苯乙烯-二乙烯苯共聚物离子交换树脂及 交联聚丙烯酸树脂,奠定了现代离子交换树脂的 基础。
3)载体型离子交换树脂 载体型离子交换树脂是一种特殊用途树脂,主 要用作液相色谱的固定相。一般是将离子交换树 脂包覆在硅胶或玻璃珠等表面上制成。它可经受 液相色谱中流动介质的高压,又具有离子交换功 能。 此外,为了特殊的需要,已研制成多种具有特 殊功能的离子交换树脂。如螯合树脂、氧化还原 树脂、两性树脂等。
Байду номын сангаас
此后,Dow化学公司的 Bauman 等人开发了苯 乙烯系磺酸型强酸性离子交换树脂并实现了工业 化;Rohm & Hass公司的Kunin等人则进一步研 制了强碱性苯乙烯系阴离子交换树脂和弱酸性丙 烯酸系阳离子交换树脂。这些离子交换树脂除应 用于水的脱盐精制外,还用于药物提取纯化、稀 土元素的分离纯化、蔗糖及葡萄糖溶液的脱盐脱 色等。
(1)强酸型阳离子交换树脂的制备 强酸型阳离子交换树脂绝大多数为聚苯乙烯系 骨架,通常采用悬浮聚合法合成树脂,然后磺化 接上交换基团。 由上述反应获得的球状共聚物称为“白球”。 将白球洗净干燥后,即可进行连接交换基团的磺 化反应。
图3—1 聚苯乙烯型阳离子交换树脂的示意图
从图中可见,树脂由三部分组成:三维空间结 构的网络骨架;骨架上连接的可离子化的功能基 团;功能基团上吸附的可交换的离子。 强酸型阳离子交换树脂的功能基团是 —SO3-H+,它可解离出H+,而H+可与周围的外 来离子互相交换。功能基团是固定在网络骨架上 的,不能自由移动。由它解离出的离子却能自由 移动,并与周围的其他离子互相交换。这种能自 由移动的离子称为可交换离子。
3.2.2 吸附树脂的分类 吸附树脂有许多品种,吸附能力和所吸附物质 的种类也有区别。但其共同之处是具有多孔性, 并具有较大的表面积。吸附树脂目前尚无统一的 分类方法,通常按其化学结构分为以下几类。 (1)非极性吸附树脂 指树脂中电荷分布均匀,在分子水平上不存在 正负电荷相对集中的极性基团的树脂。代表性产 品为由苯乙烯和二乙烯苯聚合而成的吸附树脂。
2)大孔型离子交换树脂 针对凝胶型离子交换树脂的缺点,研制了大孔 型离子交换树脂。大孔型离子交换树脂外观不透 明,表面粗糙,为非均相凝胶结构。即使在干燥 状态,内部也存在不同尺寸的毛细孔,因此可在 非水体系中起离子交换和吸附作用。大孔型离子 交换树脂的孔径一般为几纳米至几百纳米,比表 面积可达每克树脂几百平方米,因此其吸附功能 十分显著。
吸附树脂也是在离子交换树脂基础上发展起来的 一类新型树脂,是指一类多孔性的、高度交联的高分 子共聚物,又称为高分子吸附剂。这类高分子材料具 有较大的比表面积和适当的孔径,可从气相或溶液中 吸附某些物质。 在吸附树脂出现之前,用于吸附目的的吸附剂已 广泛使用,例如活性氧化铝、硅藻土、白土和硅胶、 分子筛、活性炭等。而吸附树脂是吸附剂中的一大分 支,是吸附剂中品种最多、应用最晚的一个类别。
离子交换树脂发展史上的另一个重大成果是大 孔型树脂的开发。20世纪50年代末,国内外包括 我国的南开大学化学系在内的诸多单位几乎同时 合成出大孔型离子交换树脂。与凝胶型离子交换 树脂相比,大孔型离子交换树脂具有机械强度高、 交换速度快和抗有机污染的优点,因此很快得到 广泛的应用。
60年代后期,离子交换树脂除了在品种和性能 等方面得到了进一步的发展,更为突出的是应用 得到迅速的发展。除了传统的水的脱盐、软化外, 在分离、纯化、脱色、催化等方面得到广泛的应 用。 例如离子交换树脂在水处理以外的应用 由80年代以前占离子交换树脂总用量的不足10% 增加到目前的30%左右。
第三章 离子交换树 脂吸附树脂
概述
吸附分离功能高分子的发展简史
吸附分离功能高分子主要包括离子交 换树脂和吸附树脂。从广义上讲,吸附分 离功能高分子还应该包括高分子分离膜材 料。但由于高分子分离膜在材料形式、分 离原理和应用领域有其特殊性,因此将在 第四章中详细介绍。
离子交换树脂是指具有离子交换基团的高分子 化合物。它具有一般聚合物所没有的新功能—— 离子换功能,本质上属于反应性聚合物。吸附树 脂是指有特殊吸附功能的一类树脂。 离子交换树脂是最早出现的功能高分子材料, 历史可追溯到上一世纪30年代。1935年英国的 dams和Holmes发表了关于酚醛树脂和苯胺甲醛树 脂的离交换性能的工作报告,开创了离子交换树 脂领域,时也开创了功能高分子领域。
(2)中极性吸附树脂 这类树脂的分子结构中存在酯基等极性基团, 树脂具有一定的极性。 (3)极性吸附树脂 分子结构中含有酰胺基、亚砜基、腈基等极性 基团,这些基团的极性大于酯基。 (4)强极性吸附树脂 强极性吸附树脂含有极性很强的基团,如吡啶、 氨基等。
3.1.3 离子交换树脂的命名
我国前石油化学工业部于1977年7月l日正式颁 布了离子交换树脂的部颁标准HG2-884-886-76 《离子交换树脂产品分类、命名及型号》。 这套标准中规定,离子交换树脂的全名由分类 名称、骨架(或基团)名称和基本名称排列组成。
离子交换树脂的基本名称为离子交换树脂。凡 分类中属酸性的,在基本名称前加“阳”字;凡 分类中属碱性的,在基本名称前加“阴”字。此 外,为了区别离子交换树脂产品中同一类中的不 同品种,在全名前必须加型号。
离子交换树脂的型号由三位阿拉伯数字组成。 第一位数字代表产品分类;第二位数字代表骨架 结构;第三位数字为顺序号,用于区别离子交换 树脂树脂中基团、交联剂、致孔剂等的不同,由 各生产厂自行掌握和制定。对凝胶型离子交换树 脂,往往在型号后面用“×”和一个阿拉伯树脂相 连,以表示树脂的交联度(质量百分数),而对 大孔型树脂,则在型号前冠以字母“D”。
各类离子交换树脂的具体编号为: 001—099 强酸型阳离子交换树脂 100—199 弱酸型阳离子交换树脂 200—299 强碱型阴离子交换树脂 300—399 弱碱型阴离子交换树脂 400—499 螯合型离子交换树脂 500—599 两性型离子交换树脂 600—699 氧化还原型离子交换树脂
表3—3 离子交换树脂骨架分类编号
3.1.2 吸附树脂的结构 吸附树脂的外观一般为直径为0.3~1.0 mm的小 圆球,表面光滑,根据品种和性能的不同可为乳 白色、浅黄色或深褐色。吸附树脂的颗粒的大小 对性能影响很大。粒径越小、越均匀,树脂的吸 附性能越好。但是粒径太小,使用时对流体的阻 力太大,过滤困难,并且容易流失。粒径均一的 吸附树脂在生产中尚难以做到,故目前吸附树脂 一般具有较宽的粒径分布。
从离子交换树脂出发,还引申发展了一些很重 要的功能高分子材料。如离子交换纤维、吸附树 脂、螯合树脂、聚合物固载催化剂、高分子试剂、 固定化酶等。这一最传统的功能高分子材料正以 崭新的姿态在21世纪发挥重要的作用。 离子交换纤维是在离子交换树脂基础上发展起 来的一类新型材料。其基本特点与离子交换树脂 相同,但外观为纤维状,并还可以不同的织物形 式出现,如中空纤维、纱线、布、无纺布、毡、 纸等。
离子交换树脂的制备方法
3.2.1 凝胶型离子交换树脂 凝胶型离子交换树脂的制备过程主要包括两大部 分:合成一种三维网状结构的大分子和连接上离子交 换基团。 具体方法,可先合成网状结构大分子,然后使之 溶胀,通过化学反应将交换基团连接到大分子上。也 可先将交换基团连接到单体上,或直接采用带有交换 基团的单体聚合成网状结构大分子的方法。
离子交换树脂和吸附树脂的分类
离子交换树脂的分类方法有很多种,最常用 和最重要的分类方法有以下两种。
(1)按交换基团的性质分类 按交换基团性质的不同,可将离子交换树脂分 为阳离子交换树脂和阴离子交换树脂两大类。 (2)按树脂的物理结构分类 按其物理结构的不同,可将离子交换树脂分为 凝胶型、大孔型和载体型三类。
通过改变浓度差、利用亲和力差别等,使可交换 离子与其他同类型离子进行反复的交换,达到浓缩、 分离、提纯、净化等目的。 通常,将能解离出阳离子、并能与外来阳离子进 行交换的树脂称作阳离子交换树脂;而将能解离出阴 离子、并能与外来阴离子进行交换的树脂称作阴离子 交换树脂。从无机化学的角度看,可以认为阳离子交 换树脂相当于高分子多元酸,阴离子交换树脂相当于 高分子多元碱。应当指出,离子交换树脂除了离子交 换功能外,还具有吸附等其他功能,这与无机酸碱是 截然不同的。
(2)按树脂的物理结构分类 按其物理结构的不同,可将离子交换树脂分为 凝胶型、大孔型和载体型三类。图3—2是这些树 脂结构的示意图。
图3—2 不同物理结构离子交换树脂的模型
1)凝胶型离子交换树脂 凡外观透明、具有均相高分子凝胶结构的离子交 换树脂统称为凝胶型离子交换树脂。这类树脂表面光 滑,球粒内部没有大的毛细孔。在水中会溶胀成凝胶 状,并呈现大分子链的间隙孔。大分子链之间的间隙 约为2~4nm。一般无机小分子的半径在1nm以下,因 此可自由地通过离子交换树脂内大分子链的间隙。在 无水状态下,凝胶型离子交换树脂的分子链紧缩,体 积缩小,无机小分子无法通过。所以,这类离子交换 树脂在干燥条件下或油类中将丧失离子交换功能。
吸附树脂手感坚硬,有较高的强度。密度略大 于水,在有机溶剂中有一定溶胀性。但干燥后重 新收缩。而且往往溶胀越大时,干燥后收缩越厉 害。使用中为了避免吸附树脂过度溶胀,常采用 对吸附树脂溶胀性较小的乙醇、甲醇等进行置换, 再过渡到水。吸附树脂必须在含水的条件下保存, 以免树脂收缩而使孔径变小。因此吸附树脂一般 都是含水出售的。
相关文档
最新文档