(完整版)静止无功发生器(SVG原理简介)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PHIMIKA
PHIMIKA 静止无功发生器
——(SVG )原理简介
深圳市兆晟科技有限公司飞明佳电气科技
PHIMIKA
PHIMIKA 静止无功发生器
——(SVG )原理简介静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。SVG 的思想早在20 世纪70 年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和1994 年日本和美国分别研制成功了80MVA和10OMVA的采用GTO 晶闸管的SVG 。目前国际上有关SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾, 国内有
关的研究也已见诸报道。
与传统的以TCR 为代表的SVC 相比,SVG 的调节速度更快, 运行范围宽, 而且在采取多重化或PWM 技术等措施后可大大减少补偿电流中谐波的含量。更重要的是,SVG 使用的电抗器和电容元件远比SVC 中使用的电抗器和电容要小, 这将大大缩小装置的体积和成本。由于SVG 具有如此优越的性能, 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点
SVG 的基本原理是将桥式变流电路通过电抗器并联(或直接并联)在电网上, 适当调节桥式变
流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流, 使该电路吸收或者发出满足要求的无功电流, 从而实现动态无功补偿的目的。
在单相电路中, 与基波无功功率有关的能量是在电源和负载之间来回往返的。但是在平衡的三相电路中, 不论负载的功率因数如何, 三相瞬时功率之和是一定的, 在任何时刻都等于三相总的有功功率。因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返, 无功能量是在三相之间来回往返的。所以, 如果能用某种方法将三相各部分总体上统一起来处理, 则因为总体来看三相电路电源和负载间没有无功能量的传递, 在总的负载侧就无需设置无功储能元件。三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。因此, 理论上讲,SVG 的三相桥式变流电路的直流侧可以不设储能元件。但实际上, 考虑到交流电路吸收的电流并不仅含基波, 其谐波的存在多少会造成总体来看有少许无功能量在电源和SVG 之间往返。所以, 为维持桥式交流电路的正常工作,
其直流侧仍需要一定大小的电感或电容作为储能元件, 但所需储能元件的容量远比SVG 所能提供的无功容量要小。而对传统的SVC, 其所需储能元件的容量至少要等于其所提供无功功率的容量。因此, SVG 中储能元件的体积和成本比同容量的SVC 中的大大减小。
根据直流侧储能元件的不同,SVG 分为采用电压型桥式电路和电流型桥式电路两种类型, 其电路基本结构如图1a 和1b 所示, 分别采用电容和电感两种不同的储能元件。对电压型桥式电路, 还需再串联上连接电抗器才能并入电网;对电流型桥式电路, 还需在交流侧并联上吸收换相过电压的电容器。实际上, 由于运行效率的原因, 迄今投入实用的SVG 大都采用电压型桥式电路, 因此目前SVG
往往专指采用自换相的电压型桥式电路作动态无功补偿的装置,飞明佳公司研发的
方式。在以下的内容中,只介绍采用自换相电压型桥式电路的SVG 。
由于
SVG 正常工作时就是通过电力电子开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压,就像一个电压型逆变器, 只不过其交流侧输出接的不是无源负载,而是电网。因此,当仅考虑基波时SVG 可以等效地被视为幅值和相位均可控的与电网同频率的交流电压源。它通过交流电抗器连接到电网上。这样,SVG 的工作原理可用图2a 所示的等效电路来说明。设电网电压和SVG 输出交流电压分别用相量?s 和?1 表示, 则连接电抗X 上的电压?L 即为?s 和?1 的相量差, 而连接电抗的电流是可以由其电压来控制的。这个电流就是SVG 从电网吸收的电流? 。因此, 改变SVG 交流侧输出电压?1 的幅值及其相对于?s 的相位, 就可以改变连接电抗上的电压, 从而控制SVG 从电网吸收电流的相位和幅值, 也就控制了SVG 吸收无功功率的性质和大小。
在图2a 的等效电路中, 将连接电抗器视为纯电感, 没有考虑其损耗以及变流器的损耗, 因此不必从
电网吸收有功能量。在这种情况下, 只需使?1 与?s 同相,仅改变?1 的幅值大小即可以控
制SVG 从电网吸收的电流? 是超前还是滞后90 ° , 并且能控制该电流的大小。
大于Us 时, 电流超前电压90 °,SVG 吸收容性的无功功率;当U1 小于Us
,SVG 吸收感性的无功功率。
图 2 SVG 等效电路及工作原理( 不考虑损耗) a) 单相等效电路b) 工作相量图
SVG也是采用的该种
如图2b 所示, 当U1
时, 电流滞后电压90
考虑到连接电抗器的损耗和变流器本身的损耗(如管压降、线路电阻等), 并将总的损耗集中作为连接电抗器的电阻考虑, 则SVG 的实际等效电路如图3a 所示, 其电流超前和滞后工作的相量图如图3b 所示。在这种情况下,变流器电压?1 与电流?仍是相差90°, 因为变流器无需有功能量。而电网电压?S与电流?的相差则不再是90°, 而是比90°小了δ角, 因此电网提供了有功功率来补充电路中的损耗, 也就是说,相对于电网电压来讲, 电流? 中有一定量的有功分量。这个δ角也就是变流器电压?1 与电网电压? s 的相位差。改变这个相位差, 并且改变?1 的幅值, 则产生的电流? 的相位和大小也就随之改变, SVG 从电网吸收的无功功率也就因此得到调节。
根据以上对工作原理的分析, 可得SVG 的电压- 电流特性如图 4 所示。同TCR 等传统SVC 一样, 改变控制系统的参数(电网电压的参考值Uref ), 可以使得到的电压-电流特性上下移动。但是可以看出, 与传统SVC 电压–电流特性不同的是, 当电网电压下降, 补偿器的电压-电流特性向下调整时,SVG 可以调整其变流器交流侧电压的幅值和相位, 以使其所能提供的最大无功电流ILmax 和Icmax 维持不变, 仅受其电力电子器件的电流容量限制。而对传统的SVC, 由于其所能提供的最大电流分别是受其并联电抗器和并联电容器的阻抗特性限制的, 因而随着电压的降低而减小。因此SVG 的运行范围比传统SVC 大, SVC 的运行范围是向下收缩的三角形区域, 而SVG 的运行范围是上下等宽的近似矩形的区域。这是SVG 优越于传统SVC 的又一特点。