专题3.2 三角函数化简以及恒等变换(解析版)
三角函数恒等变换含问题详解及高考题
三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x 2.求)330cos()150sin()690tan()480sin()210cos()120tan(οοοοοο----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=οοοοοο 3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=xy 在区间[0,2]上的值域.解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2;(2)y =2sin x cos x -(sin x +cos x ).解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3, 令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
三角函数的恒等式与简化
三角函数的恒等式与简化三角函数是数学中重要而且广泛应用的一个概念。
它们不仅在几何学、物理学和工程学中起着重要的作用,也在数学分析中扮演着重要的角色。
本文将探讨三角函数的恒等式以及如何简化这些恒等式的过程。
一、三角函数的恒等式恒等式是指对于所有满足特定条件的角,恒等式都成立的等式。
在三角函数中,我们可以通过恒等式来推导其他的三角函数式子,以及简化复杂的三角函数表达式。
1. 三角函数的基本恒等式三角函数的基本恒等式是指对于所有满足特定条件的角θ,下列等式成立:- 正弦函数的平方加余弦函数的平方等于1:sin²θ + cos²θ = 1- 正切函数等于正弦函数除以余弦函数:tanθ = sinθ / cosθ- 割函数等于余切函数的倒数:secθ = 1 / cosθ- 余割函数等于正切函数的倒数:cscθ = 1 / sinθ这些基本恒等式为我们简化三角函数的表达式和推导其他恒等式提供了基础。
2. 基本角的恒等式基本角指的是0度、30度、45度、60度和90度这几个特殊的角度。
基本角的三角函数值是固定的,因此可以通过基本角的恒等式来推导其他角度的三角函数值。
例如,对于基本角30度,我们可以通过基本角的恒等式推导出以下恒等式:- sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3,sec30° = 2/√3,csc30°= 2类似地,我们可以通过基本角的恒等式得出60度和45度的三角函数值。
3. 和差角的恒等式和差角的恒等式指的是两个角的和或差的三角函数关系。
其中最常用的和差角恒等式有以下几个:- 正弦函数的和差角恒等式:sin(α ± β) = sinα*cosβ ± cosα*sinβ- 余弦函数的和差角恒等式:cos(α ± β) = cosα*cosβ ∓ sinα*sinβ- 正切函数的和差角恒等式:tan(α ± β) = (tanα ± tanβ) / (1 ∓tanα*tanβ)利用这些和差角的恒等式,我们可以将复杂的三角函数表达式化简为简单的形式。
第三章 3.2 简单的三角恒等变换
§3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考 半角公式对任意角都适用吗? 答案 不是,要使得式子有意义的角才适用. 知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=ba1.若α≠k π,k ∈Z ,则tan α2=sin α1+cos α=1-cos αsin α恒成立.( √ )2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ所在的象限由a ,b 的符号决定,φ与点(a ,b )同象限.( √ )3.sin x +3cos x =2sin ⎝⎛⎭⎫x +π6.( × ) 提示 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3.题型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思感悟 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算. (4)下结论:结合(2)求值. 跟踪训练1 已知cos α=33,α为第四象限角,则tan α2的值为________. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案2-62解析 方法一 ⎝⎛⎭⎪⎫用tan α2=±1-cos α1+cos α来处理因为α为第四象限角,所以α2是第二或第四象限角.所以tan α2<0.所以tan α2=-1-cos α1+cos α=-1-331+33 =-2-3=-128-4 3 =-12(6-2)2=2-62.方法二 ⎝⎛⎭⎫用tan α2=1-cos αsin α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=1-cos αsin α=1-33-63=2-62.方法三 ⎝⎛⎭⎫用tan α2=sin α1+cos α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=sin α1+cos α=-631+33=-63+3=2-62.题型二 三角函数式的化简 例2 化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=cos 2α2cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α·sin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 反思感悟 三角函数式化简的要求、思路和方法(1)化简的要求:①能求出值的应求出值.②尽量使三角函数种数最少.③尽量使项数最少.④尽量使分母不含三角函数.⑤尽量使被开方数不含三角函数.(2)化简的思路:对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用.另外,还可以用切化弦、变量代换、角度归一等方法.跟踪训练2 化简:(1-sin α-cos α)⎝⎛⎭⎫sin α2+cos α22-2cos α(-π<α<0).考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 原式=⎝⎛⎭⎫2sin 2α2-2sin α2cos α2⎝⎛⎭⎫sin α2+cos α22×2sin2α2=2sin α2⎝⎛⎭⎫sin α2-cos α2⎝⎛⎭⎫sin α2+cos α22⎪⎪⎪⎪sin α2=sin α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪sin α2=-sin α2cos α⎪⎪⎪⎪sin α2.因为-π<α<0,所以-π2<α2<0,所以sin α2<0,所以原式=-sin α2cos α-sinα2=cos α.题型三 三角函数式的证明例3 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.考点 三角恒等式的证明 题点 三角恒等式的证明 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ.∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ,∴左边=右边, ∴原式得证.反思感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练3 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .考点 三角恒等式的证明 题点 三角恒等式的证明 证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos xsin x=右边.所以原等式成立. 题型四 辅助角公式的应用例4 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1,有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z . 反思感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)的正弦、余弦、正切公式、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,以便于讨论函数性质. 跟踪训练4 已知函数f (x )=cos ⎝⎛⎭⎫π3+x ·cos ⎝⎛⎭⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)f (x )=⎝⎛⎭⎫12cos x -32sin x ·⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π8,k ∈Z .利用半角公式化简求值典例 已知等腰三角形的顶角的余弦值为725,则它的底角的余弦值为( )A.34B.35C.12D.45考点 简单的三角恒等变换的综合应用题点 三角恒等变换与三角形的综合应用 答案 B解析 设等腰三角形的顶角为α,底角为β,则cos α=725.又β=π2-α2,所以cos β=cos ⎝⎛⎭⎫π2-α2=sin α2=1-7252=35,故选B. [素养评析] 从实际问题提炼出等腰三角形底角、顶角间的关系,利用半角公式进行恒等变换化简,进而求值,这正是数学核心素养数学抽象的具体体现.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 由题意知α2∈⎝⎛⎭⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63. 2.已知sin θ=-35,3π<θ<72π,则tan θ2的值为( )A .3B .-3 C.13 D .-13考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 ∵3π<θ<7π2,sin θ=-35,∴cos θ=-45,tan θ2=sin θ1+cos θ=-3.3.已知2sin α=1+cos α,则tan α2等于( )A.12B.12或不存在 C .2D .2或不存在考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值答案 B解析 2sin α=1+cos α,即4sin α2cos α2=2cos 2α2,当cos α2=0时,tan α2不存在,当cos α2≠0时,tan α2=12.4.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( )A .tan αB .tan 2αC .1D .2 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.5.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值 题点 利用辅助角公式化简求值 答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.6.已知在△ABC 中,sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,求证:sin A +sin C =2sin B .考点 三角恒等式的证明 题点 三角恒等式的证明证明 由sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,得sin A ·1+cos C 2+sin C ·1+cos A 2=32sin B ,即sin A +sin C +sin A ·cos C +sin C ·cos A =3sin B , ∴sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C +sin(π-B )=3sin B , 即sin A +sin C +sin B =3sin B , ∴sin A +sin C =2sin B .1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式. 2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限; ②tan φ=b a ⎝ ⎛⎭⎪⎫或sin φ=b a 2+b 2,cos φ=a a 2+b 2.3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握, 例如sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.一、选择题1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 2.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2等于( )A .-55 B.55 C.35 D .-35考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 因为α是第二象限角,且sin α2<cos α2,所以α2为第三象限角,所以cos α2<0.因为tan α=-43,所以cos α=-35,所以cos α2=-1+cos α2=-55. 3.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用 答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°, ∵当0°≤x ≤90°时,y =sin x 是单调递增的, ∴a <c <b .4.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A .-12 B.12C .2D .-2考点 利用简单的三角恒等变换化简求值 题点 利用弦化切对齐次分式化简求值 答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12.故选A.5.sin x cos x +sin 2x 可化为( ) A.22sin ⎝⎛⎭⎫2x -π4+12 B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 6.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为( ) A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ) C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z ) 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 7.已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于( ) A .-13B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 tan x 2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x 1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x 1+cos x=sin x 1+cos x=tan x 2. 10.已知cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 65解析 因为cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,所以sin ⎝⎛⎭⎫α-π4=-35,sin ⎝⎛⎭⎫π4-α=35. 所以cos 2αsin ⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫2α+π2sin ⎝⎛⎭⎫α+π4=2cos ⎝⎛⎭⎫α+π4 =2sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=2sin ⎝⎛⎭⎫π4-α=65. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 考点 三角恒等式的证明题点 三角恒等式的证明证明 ∵左边=tan 3x 2-tan x 2=sin3x 2cos 3x 2-sin x 2cos x 2 =sin3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝⎛⎭⎫3x 2-x 2cos 3x 2cos x 2=sin x cos 3x 2cos x 2=2sin x cos ⎝⎛⎭⎫3x 2+x 2+cos ⎝⎛⎭⎫3x 2-x 2 =2sin x cos x +cos 2x =右边. ∴原等式得证.13.(2018·浙江宁波高三期末)已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值.考点 简单的三角恒等变换的应用题点 辅助角公式与三角函数的综合应用解 (1)因为f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以f (x )的最小正周期为π.(2)因为-π3≤x ≤π4,所以-5π12≤2x +π4≤3π4. 当2x +π4=π2,即x =π8时,f (x )取得最大值2; 当2x +π4=-5π12,即x =-π3时, f (x )min =f ⎝⎛⎭⎫-π3=sin ⎝⎛⎭⎫-2π3+cos ⎝⎛⎭⎫-2π3=-3+12, 即f (x )的最小值为-3+12.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4; ③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1.其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 ①式化简后为f (x )=sin 2x +1,③式化简后为f (x )=2sin ⎝⎛⎭⎫x +π3,①④中振幅不同,平移后不能重合.②③振幅、周期相同,平移后可以重合.15.证明:sin 10°·sin 30°·sin 50°·sin 70°=116. 考点 三角恒等式的证明题点 三角恒等式的证明证明 原式=sin 10°·sin 30°·sin 50°·sin 70°=12cos 20°·cos 40°·cos 80°=2sin 20°·cos 20°·cos 40°·cos 80°4sin 20°=sin 40°·cos 40°·cos 80°4sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116=右边,所以原等式得证.。
专题复习02 三角函数 三角恒等变换(难点)(解析版)
专题02三角函数 三角恒等变换(难点)一、单选题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2πϕ≤),满足06f π⎛⎫-= ⎪⎝⎭且对于任意的x ∈R 都有2()3f x f x π⎛⎫=- ⎪⎝⎭,若()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( ) A .5 B .7C .9D .11【答案】C 2.设函数()cos (0)4f x x πωω⎛⎫=-> ⎪⎝⎭,已知()f x 在[[0,2]π有且仅有4个零点,下述四个结论:①()1f x =在[0,2]π有且仅有2个零点;②()1f x =-在[0,2]π有且仅有2个零点;③ω的取值范围是1519,88⎡⎫⎪⎢⎣⎭;④()f x 在0,10π⎛⎫⎪⎝⎭单调递增,其中正确个数是( )A .0个B .1个C .2个D .3个【答案】D 【解析】 由[0,2]xπ时,得到,2444x πππωπω⎡⎤-∈--⎢⎥⎣⎦,根据()f x 在[[0,2]π有且仅有4个零点,则24ππω-在第4个零点和第5个零点之间,然后利用余弦函数的性质求解.当[0,2]xπ时,,2444x πππωπω⎡⎤-∈--⎢⎥⎣⎦,因为()f x 在[[0,2]π有且仅有4个零点, 所以24ππω-在第4个零点和第5个零点之间,所以792242ππππω≤-<, 解得151988ω<≤,故③正确; 当()1f x =时,2,4x k k Z πωπ-=∈,又924244x πππππωω-≤-≤-<,0,1,2k ∴=,结合cos y x =知()1f x =最多有3个零点,故①错误;当()1f x =-时,2,4x k k Z πωππ-=+∈,又924244xπππππωω-≤-≤-<, 0,1k ∴=,结合cos y x =()1f x =-有且仅有2个零点,故②正确;当0,10x π⎛⎫∈ ⎪⎝⎭时,,44104x πππωπω⎛⎫-∈-- ⎪⎝⎭,因为151988ω<≤,所以,1041680πωπππ⎡⎤-∈--⎢⎥⎣⎦,则0104πωπ-<,所以()f x 在0,10π⎛⎫⎪⎝⎭单调递增,故④正确; 故选:D 【点睛】关键点点睛:本题关键是利用整体思想,根据()f x 在[[0,2]π有且仅有4个零点,确定792242ππππω≤-<,求得ω的范围,其他问题迎刃而解. 3.已知函数()()sin f x x ωϕ=+(0>ω,ϕπ<)的部分图像如图所示,若存在120x x π≤<≤,满足()()1234f x f x ==,则()12cos x x -=( )A .7B 7C .34D .34-【答案】C 【解析】根据图象求出函数的解析式,结合对称性求出2123x x π=-,然后利用三角函数的诱导公式进行转化,即可求解.由图象可得函数的周期为13762()2121212T ππππ=⨯-=⨯=,即2wππ=,解得2w =, 又由当7135121226x πππ+==时,函数55()sin(2)166f ππϕ=⨯+=-,即532,32k k Z ππϕπ+=+∈,即2,6k k Z πϕπ=-∈, 当0k=时,6πϕ=-,即()sin(2)6f x x π=-,因为存在120x x π≤<≤,满足()()1234f x f x ==, 所以1112666x πππ-≤-≤,则11222,266x x ππθθ=-=-关于2π对称, 即12226622x x πππ-+-=,可得2123x x π=-,且13sin(2)64x π-=, 则()1212cos cos(2)3x x x π-=-, 设126x πα-=,则126x πα=+,即3sin 4α=,则()121223cos cos(2)cos()cos()sin 36324x x x ππππααα-=-=+-=-==. 故选:C. 【点睛】本题主要考查了三角函数值的计算,结合条件求出函数的解析式,利用三角函数的对称性以及三角函数的诱导公式进行转化是解答的关键,试题综合性强,属于中档试题.4.筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明代科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.将筒车抽象为一个几何图形(圆),筒车的半径为2m ,筒车的轴心O 到水面的距离为1m ,筒车每分钟按逆时针转动2圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,设盛水筒M 从0P 运动到点P 时所用时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ).若以筒车的轴心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy (如图2),则h 与t 的函数关系式为( )A .2sin 1156h t ππ⎛⎫=-+⎪⎝⎭,[)0,t ∈+∞B .2sin 1156h t ππ⎛⎫=++⎪⎝⎭,[)0,t ∈+∞ C .2sin 16h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞ D .2sin 16h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞ 【答案】A 【解析】首先先求以OP 为终边的角为156t ππ-,再根据三角函数的定义求点P 的纵坐标,以及根据图形表示()h t .06xOP π∠=,所以0OP 对应的角是6π-,由OP 在()t s 内转过的角为226015t t ππ⨯=, 可知以Ox 为始边,以OP 为终边的角为156t ππ-,则点P 的纵坐标为2sin 156t ππ⎛⎫-⎪⎝⎭,所以点P 距水面的高度()h m 表示为()t s 的函数是2sin 1156h t ππ⎛⎫=-+⎪⎝⎭.故选:A 【点睛】关键点点睛:本题的关键读懂题意,并能抽象出函数关系,关键是求以OP 在()t s 内转过的角为226015t t ππ⨯=,再求以OP 为终边的角为156t ππ-.5.已知函数()()x f x ωϕ=+(0>ω)的一个对称中心为,04π⎛⎫ ⎪⎝⎭,且将()y f x =的图象向右平移6π个单位所得到的函数为偶函数.若对任意ω,不等式22226m fm πω⎡⎤⎛⎫+⋅-> ⎪⎢⎥⎝⎭⎣⎦恒成立,则实数m 的取值范围是( ) A .94,55⎛⎫-⎪⎝⎭B .49,55⎛⎫-⎪⎝⎭ C .94,,55⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭D .49,,55⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由,04π⎛⎫⎪⎝⎭是对称中心,可得()4k k Z ωπϕπ+=∈,由平移后的函数为偶函数可得62()k Z k πωϕππ+-+=∈,可求得ω的关系式及min ω,由6f π⎛⎫-= ⎪⎭⎝22m m ω+>恒成立,转化为()22min m m ω-<恒成立,结合min ω可求得实数m 的取值范围.,04π⎛⎫⎪⎝⎭是函数()()x f x ωϕ=+(0>ω)的一个对称中心, ()4k k Z ωπϕπ∴+=∈①()y f x =的图像向右平移6π个单位得到的函数为6x y ωωϕπ⎛⎫=-+ ⎪⎝⎭, in 62s x y ωωϕ⎛⎫=-+ ⎪⎝π⎭为偶函数,62()k Z k ϕπωππ+∴-+=∈②由①②可知,1225()k k Z πω=ππ∈+-,解得:()1()25k k Z ω6-=∈又662f k ππϕπω⎛⎫⎛⎫+= π⎛⎫-=-=+ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭所以对任意ω,不等式22226m fm πω⎡⎤⎛⎫+⋅-> ⎪⎢⎥⎝⎭⎣⎦恒成立,即22m m ω+>恒成立 即()22minm m ω-<恒成立,又()1()25k k Z ω6-=∈且0>ω,min 5ω∴=6 225m m 6⎛⎫∴-< ⎪⎝⎭,解得:455m 9-<<所以实数m 的取值范围是49,55⎛⎫- ⎪⎝⎭ 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题, 不等式恒成立问题常见方法: ①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图像在()y g x = 上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.6.设cos50cos127cos 40cos37a =︒⋅︒+︒⋅︒,)sin 56cos562b =︒-︒,221tan 391tan 39c -︒=+︒,()21cos802cos 5012d =︒-︒+,则a ,b ,c ,d 的大小关系是( ) A .a b d c >>> B .c a b d >>> C .b a d c >>> D .a c b d >>>【答案】D 【解析】化简得到cos77a =︒,cos 79b =︒,cos 78c =︒,cos80d =︒,得到答案.cos50cos127cos 40cos37sin 40sin 37cos 40cos37cos77a =︒⋅︒+︒⋅︒=-︒︒+︒⋅︒=︒;)sin 45sin sin 5566cos c 56os 45cos56cos101cos79b =︒︒-︒︒=-︒==︒-︒︒; 22221tan 39cos 39sin 39cos781tan 39c -︒==︒-︒=︒+︒; ()222cos 1cos 40cos 50cos80802cos 5012d =︒=︒--︒=︒+︒. 根据余弦函数的单调性知:a c b d >>>. 故选:D . 【点睛】本题考查了三角恒等变换,三角函数的单调性,意在考查学生的综合应用能力. 7.将函数()3cos 3f x x π⎛⎫=-⎪⎝⎭的图象上的所有点的横坐标缩短为原来的12,纵坐标不变,再把所得的图象向左平移3π个单位长度,然后再把所得的图象向下平移1个单位长度,得到函数()gx 的图象,若()()1216g x g x =,且[]12,2,2x x ππ∈-,则122x x -的最大值为( )A .133π B .103π C .52π D .256π 【答案】A 【解析】根据三角函数平移变换,先求得()gx 的解析式.根据()()1216g x g x =,可知()()124g x g x ==-,即12cos 21,cos 2133x x ππ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭.根据[]12,2,2x x ππ∈-可分别求得12x 的最大值和2x 的最小值,即可求得122x x -的最大值.根据平移变换将函数()3cos 3f x x π⎛⎫=-⎪⎝⎭的图象上的所有点的横坐标缩短为原来的12,纵坐标不变,再把所得的图象向左平移3π个单位长度,然后再把所得的图象向下平移1个单位长度, 可得()3cos 213gx x π⎛⎫=+- ⎪⎝⎭由()()1216gx g x =,可知()()124g x g x ==- 即12cos 21,cos 2133x x ππ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭[]12,2,2x x ππ∈-所以12111311132,,2,333333x x ππππππ⎡⎤⎡⎤+∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦123x π+的最大值为3π,223x π+的最小值为3π-则12x 的最大值为83π,2x 的最小值为53π- 所以122x x -的最大值为8513333πππ⎛⎫--= ⎪⎝⎭故选:A 【点睛】本题考查了三角函数图象的平移变换,三角函数性质的综合应用,利用函数的最值求参数的取值情况,属于难题. 8.设函数()cos()cos()f x m x n x αβ=+++,其中m 、n 、α、β为已知实常数,x ∈R ,有下列四个命题:(1)若(0)02f f ⎛⎫==⎪⎝⎭π,则()0f x =对任意实数x 恒成立;(2)若(0)0f =,则函数()f x 为奇函数;(3)若02f ⎛⎫= ⎪⎝⎭π,则函数()f x 为偶函数;(4)当22(0)02f f ⎛⎫=≠ ⎪⎝⎭π时,若12()()0f x f x ==,则122x x k π-=(k Z ∈);则上述命题中,正确的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】利用两角和的余弦公式化简()f x 表达式. 对于命题(1),将(0)0,02f f π⎛⎫==⎪⎝⎭化简得到的表达式代入上述()f x 表达式,可判断出(1)选项的真假; 对于命题(2)选项,将(0)0f =化简得到的表达式代入上述()f x 表达式,可判断出()f x 为奇函数,由此判断出(2)选项的真假;对于命题(3)选项,将()02f π=化简得到的表达式代入上述()f x 表达式,可判断出()f x 为偶函数,由此判断出(3)选项的真假; 对于命题(4)选项,根据22(0)02f f π⎛⎫+≠ ⎪⎝⎭、()()120f x f x ==,求得()f x 的零点的表达式,进而判断出(4)选项的真假.()(cos cos sin sin )(cos cos sin sin )f x m x x n x x ααββ=-+-(cos cos )cos (sin sin )sin m n x m n x αβαβ=+-+不妨设()()11221122()cos cos cos sin sin sin f x k k x k k x αααα=+-+.1212,,,k k αα为已知实常数.若(0)0f =,则得1122cos cos 0k k αα+=;若()02f π=,则得1122sin sin 0k k αα+=.于是当(0)02f f ⎛⎫== ⎪⎝⎭π时,()0f x =对任意实数x 恒成立,即命题(1)是真命题; 当(0)0f =时,()1122()sin sin sin f x k k x αα=-+,它为奇函数,即命题(2)是真命题; 当()02f π=时,()1122()cos cos cos f x k k x αα=+,它为偶函数,即命题(3)是真命题;当22(0)02f f π⎛⎫+≠ ⎪⎝⎭时,令()0f x =,则()()11221122cos cos cos sin sin sin 0k k x k k x αααα+-+=,上述方程中,若cos 0x =,则sin 0x =,这与22cos sin 1x x +=矛盾,所以cos 0x ≠.将该方程的两边同除以cos x 得11221122cos cos tan sin sin k k x k k αααα+=+,令11221122cos cos sin sin k k t k k αααα+=+ (0t ≠),则 tan x t =,解得 arctan x k t π=+ (k Z ∈).不妨取11arctan x k t π=+,22arctan x k t π=+ (1k Z ∈且2k Z ∈),则()1212x x k k π-=-,即12x x k π-= (k Z ∈),所以命题(4)是假命题.故选:C 【点睛】本题考查两角和差公式,三角函数零点,三角函数性质,重点考查读题,理解题和推理变形的能力,属于中档题型.二、多选题9.已知函数()|cos 2|cos ||f x x x =+,有下列四个结论,其中正确的结论为( )A .()f x 在区间33,42ππ⎡⎤⎢⎥⎣⎦上单调递增 B .π是()f x 的一个周期C .()f x 的值域为2⎡⎤⎢⎥⎣⎦D .()f x 的图象关于y 轴对称【答案】CD 【解析】代入特殊值检验,可得A 错误;求得(+)f x π的表达式,即可判断B 的正误;分段讨论,根据x 的范围,求得cos x 的范围,利用二次函数的性质,即可求得()f x 的值域,即可判断C 的正误;根据奇偶性的定义,即可判断()f x 的奇偶性,即可判断D 的正误,即可得答案.对于A :因为33,42x ππ⎡⎤∈⎢⎥⎣⎦,所以32,32x ππ⎡⎤∈⎢⎥⎣⎦,555()cos cos ()cos 2cos 04242f f ππππππ=+=-=+=, 所以5()()4f f ππ<,所以()f x 在区间33,42ππ⎡⎤⎢⎥⎣⎦上不是单调递增函数,故A 错误; 对于B :|cos2(|cos ||cos2cos ||cos2cos ||())x x x f x x x x ππππ=++=++≠+++, 所以π不是()f x 的一个周期,故B 错误;对于C :|cos2(|cos |2|cos2cos ||=((2)2))x x x f f x x x πππ=++=+++,所以()f x 的周期为2π,当[0,]4x π∈时,cos x ∈,2()|cos2|cos ||cos2cos 2cos 1cos f x x x x x x x =+=+=-+∈;当3[,]44x ππ∈时,cos [22x ∈-,2()|cos2|cos ||cos2cos 12cos cos f x x x x x x x =+=-+=-+9[]8∈;当35[,]44x ππ∈时,cos [1,x ∈-,2()|cos2|cos ||cos2cos 2cos 1cos f x x x x x x x =+=+=-+[2∈-;当57[,]44x ππ∈时,cos [22x ∈,2()|cos2|cos ||cos2cos 12cos cos f x x x x x x x =+=-+=-+9[]28∈-;当7[,2]4x ππ∈时,cos x ∈,2()|cos2|cos ||cos2cos 2cos 1cos f x x x x x x x =+=+=-+∈;综上:()f x 的值域为2⎡⎤⎢⎥⎣⎦,故C 正确; 对于D :()|cos(2)|cos |()||cos 2|cos ||()f x x x x x f x -=-+-=+=,所以()f x 为偶函数,即()f x 的图象关于y 轴对称,故D 正确, 故选:CD 【点睛】解题的关键是根据的()f x 解析式,结合函数的奇偶性、周期性求解,考查分类讨论,化简计算的能力,综合性较强,属中档题. 10.设函数()|cos ||cos2|f x x a x b =+++,,a b ∈R ,则( )A .()f x 的最小正周期可能为2π B .()f x 为偶函数C .当0ab时,()f x 的最小值为2D .存a ,b 使()f x 在0,2π⎛⎫⎪⎝⎭上单调递增【答案】BCD【解析】 A .分析()2f x f x π⎛⎫=+ ⎪⎝⎭是否恒成立;B .分析函数定义域,根据()(),f x f x -的关系判断是否为偶函数;C .采用换元法,将()f x 写成分段函数的形式,然后分析每一段函数的取值范围,由此确定出最小值;D .分析1a b ==-时的情况,根据复合函数的单调性判断方法进行分析判断.A .因为cos cos 2sin cos 2222f x x a x b x a x b πππ⎛⎫⎛⎫⎛⎫+=+++++=-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()011,12f a b f a b π⎛⎫=+++=-+⎪⎝⎭,所以()02f f π⎛⎫= ⎪⎝⎭不一定成立, 所以()2f x f x π⎛⎫=+ ⎪⎝⎭不恒成立,所以()f x 的最小正周期不可能为2π,故错误;B .因为()f x 的定义域为R ,关于原点对称;又因为()()()()cos cos 2cos cos 2f x x a x b x a x b f x -=-++-+=+++=, 所以()f x 为偶函数,故正确;C .因为0ab,所以()cos cos2f x x x =+,所以()2cos 2cos 1f x x x =+-令[]cos 1,1x t =∈-,记[]221,1,1y t t t =+-∈-,所以222221,1,221,21,0,221,,12t t t t t t y t t t t t t ⎧⎡--∈--⎪⎢⎪⎣⎭⎪⎡⎫⎪--+∈⎪⎢⎪⎪⎪⎣⎭=⎨⎡⎪-++∈⎢⎪⎣⎭⎪⎪⎤⎪+-∈⎥⎪⎣⎦⎩,当1,t ⎡∈-⎢⎣⎭时,22219192122482482y t t t ⎛⎫⎛⎫=--=-->---= ⎪ ⎪ ⎪⎝⎭⎝⎭,当t ⎡⎫∈⎪⎢⎪⎣⎭时,222191921224848y t t t ⎛⎫⎛⎫=--+=-++≥-++= ⎪ ⎪ ⎪⎝⎭⎝⎭当2t ⎡∈⎢⎣⎭时,222191921224848y t t t ⎫⎛⎫=-++=--+>--+=⎪ ⎪⎪⎝⎭⎝⎭,当2t ⎤∈⎥⎣⎦时,22219192122482482y t t t ⎛⎫⎛⎫=+-=+-≥+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,综上可知:()2cos 2cos 1f x x x =+-cos t x ==D .取1a b ==-,所以()|cos 1||cos21|f x x x =-+-,所以()1cos 1cos2f x x x =-+-,所以()22cos cos 3f x x x =--+,所以()21252cos 48f x x ⎛⎫=-++ ⎪⎝⎭,又因为cos y x =在0,2π⎛⎫ ⎪⎝⎭上单调递减,且0,2x π⎛⎫∈ ⎪⎝⎭时,()cos 0,1x ∈,且2125248y t ⎛⎫=-++ ⎪⎝⎭在()0,1t ∈时单调递减,根据复合函数的单调性判断方法可知:()21252cos 48f x x ⎛⎫=-++ ⎪⎝⎭在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以存在1a b ==-使()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,故正确,故选:BCD. 【点睛】思路点睛:复合函数()()f g x 的单调性的判断方法:(1)先分析函数定义域,然后判断外层函数的单调性,再判断内层函数的单调性; (2)当内外层函数单调性相同时,则函数为递增函数; (3)当内外层函数单调性相反时,则函数为递减函数.11.如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,2πϕ≤)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,3OCB π∠=,||2OA =,3AD =.则下列说法正确的有( ).A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增【答案】ACD 【解析】3sin |2A πϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据221||AD =,可得方程22228(1)243A sin πϕω-+=,进而解出ω,ϕ,A .判断出结论.解:由题意可得:||3|OB OC =,∴3sin |2A πϕω=+,sin(2)0ωϕ+=,(2,0)A ,(2B πω+,0),(0,sin )C A ϕ.(12D πω∴+,sin )2A ϕ, 221||AD =,∴22228(1)243A sin πϕω-+=, 把|sin |)3A πϕω=+代入上式可得:2()2240ππωω-⨯-=,0>ω. 解得6πω=,6πω∴=,可得周期212T ωπ==.sin()03πϕ∴+=,||2πϕ,解得3πϕ=-.可知:B 不对.∴3sin()|263A π-=+,0A >,解得163A =.∴函数16()sin()363f x x ππ=-, 可知C 正确.(14,17)x ∈时,()(263x πππ-∈,5)2π,可得:函数()f x 在(14,17)x ∈单调递增. 综上可得:ACD 正确. 故选:ACD . 【点睛】本题考查了三角函数方程的解法、三角函数求值、三角函数的图象与性质,考查了推理能力与计算能力,属于较难题. 12.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,则下列说法正确的是( ) A .存在ϕ,使得()f x 是偶函数 B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【解析】根据3()8f x f π⎛⎫≤ ⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案.08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误; 当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫=⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确; 故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力. 三、填空题13.在平面直角坐标系中,对任意角α,设α的终边上异于原点的任意一点P 的坐标为(,)x y ,它与原点的距离是r .我们规定:比值,,r r xx y y分别叫做角α的正割、余割、余切,分别记作sec α,csc α,cot α,把sec ,csc ,cot y x y x y x ===分别叫做正割函数、余割函数、余切函数,则下列叙述正确的有___________(填上所有正确的序号)①3cot14π=; ②sin csc 1αα⋅=;③sec y x =的定义域为{}|,Z x x k k π≠∈;④22sec csc 4αα+;⑤2cot 1cot22cot ααα-=.【答案】②④⑤ 【解析】由题设新定义知:1sec cos αα=,1csc sin αα=,1cot tan αα=,由31cot 34tan 4ππ=、1sin csc sin sin αααα⋅=⋅、1sec =cos y x x =、2224sec csc sin 2ααα+=以及正切二倍角公式,即可判断各项的正误.①31cot134tan4ππ==-,故错误; ②1sin csc sin =1sin αααα⋅=⋅,故正确; ③1sec =cos y x x =,即cos 0x ≠,有|,Z 2x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭,故错误; ④22222221114seccsc 4cos sin cos sin sin 2ααααααα+=+==≥,故正确;⑤212tan cot2,tan 2tan 21tan ααααα==-,所以221tan cot 1cos 22tan 2cot ααααα--==,故正确. 故答案为:②④⑤ 【点睛】关键点点睛:新定义有1sec cos αα=,1csc sin αα=,1cot tan αα=,结合三角恒等变换判断各项的正误.14.已知2()sin ||sin ||f x x x ππ=-,()|ln |g x x =,若对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,则实数m 的取值范围是_________.【答案】2⎡⎫-+∞⎪⎢⎪⎣⎭【解析】先分析题意即()()12min min f x g x ≥,再利用单调性求解()f x 的最小值和()g x 的最小值,解不等式即得结果.依题意,对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,只需()()12min min f x g x ≥. 21,36x ⎡⎤∀∈--⎢⎥⎣⎦时()sin sin sin y x x x πππ==-=-,2,36x πππ⎡⎤--⎢⎣∈⎥⎦,0y <,故当232,x πππ⎡⎤--⎢⎣∈⎥⎦,即212,3x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递增, 当2,6x πππ⎡-∈⎤-⎢⎥⎣⎦,即1261,x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递减. 而函数2()f x x x=-,显然在(),0x ∈-∞单调递减. 故根据复合函数单调性可知,2()sin ||sin ||f x x x ππ=-在212,3x ⎡⎤∈--⎢⎥⎣⎦单调递减,在1261,x ⎡⎤∈--⎢⎥⎣⎦上单调递增,故min 122()sin 11221sin 2f x f ππ⎛⎫=-=-=-= ⎪⎝⎭. 对于12,x e e -⎡⎤∈⎣⎦,()|ln |g x x =,当1,1x e -⎡⎤∈⎣⎦时ln 0x ≤,故()ln g x x =-是单调递减的,当(21,x e ⎤∈⎦时ln 0x >,故()ln g x x =是单调递增的,故min()(1)|ln1|g x g ===.故依题意知,1≥,即2m ≥-.所以实数m的取值范围是2⎡⎫-+∞⎪⎢⎪⎣⎭.故答案为:,2⎡⎫-+∞⎪⎢⎪⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f x g x >成立,故()()12a min m x f x g x >; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x >成立,故()()12min min f x g x >;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x >成立,故()()12max min f x g x >; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.15.关于函数()sin cos |sin cos |f x x x x x =++-,下列说法正确..的是___________(将正确的序号写在横线上)(1)()f x 是以2π为周期的函数; (2)当且仅当52,4x k k Z ππ=+∈时,函数取得最小值 (3)()f x 图像的对称轴为直线,4x k k Z ππ=+∈;(4)当且仅当322,2k x k k Z ππππ+<<+∈时,()0f x <. 【答案】(1)(2)(4) 【解析】由函数解析式,转化为分段函数的形式,并画出其函数图象,结合各分段的函数性质,判断它的周期、最小值及对应的自变量值、对称轴、以及()0f x ≤<对应的区间,即可判断各项的正误.由题设,52sin ,2244()592cos ,2244x k x k f x x k x k ππππππππ⎧+≤≤+⎪⎪=⎨⎪+≤≤+⎪⎩,k Z ∈,∴(2)sin(2)cos(2)|sin(2)cos(2)|sin cos |sin cos |()f x x x x x x x x x f x πππππ+=+++++-+=++-=,所以()f x 周期为2π.由解析式可得()f x 的图象如下:由图知:当且仅当52,4x k k Z ππ=+∈时,函数取得最小值2-()f x 图像的对称轴为直线2,4x k k Z ππ=+∈;当且仅当322,2k x k k Z ππππ+<<+∈时,2()0f x -<. 故答案为:(1)(2)(4).【点睛】关键点点睛:分类讨论并求出()f x 的分段函数形式,进而画出函数图象,应用数形结合的方法判断各项的正误. 16.给出以下命题:①若α、β是第一象限角且αβ<,则tan tan αβ<;②函数sin ,22y x x x ππ⎛⎛⎫=-∈- ⎪ ⎝⎭⎝有三个零点;③函数2sin sin sin 1x xy x +=+是奇函数;④函数1sin 2y x =-的周期是2π;⑤函数2()4sin4cos 1f x x x a =-++-,当2,43x ππ⎡⎤∈-⎢⎥⎣⎦时()0f x =恒有解,则a 的范围是[4,5]-.其中正确命题的序号为____________. 【答案】④⑤ 【解析】根据正切周期性,对①举反例;根据sin x 与x 关系,可解()f x 零点;根据奇函数定义域,判断2sin sin sin 1x xy +=+是非奇非偶函数.对于①,令60,390αβ==,3tan 3,tan tan 303αβ===则①错;对于②,当0,2x π⎛⎫∈ ⎪⎝⎭有sin x x <恒成立,则0,2x π⎛⎫∈ ⎪⎝⎭无零点;又sin y x x =-为奇函数,,02x π⎛⎫∴∈- ⎪⎝⎭,sin y x x =-也无零点;则sin y x x =-只有0x =一个零点,则②错;对于③,求2sin sin sin 1x xy x +=+定义域,sin 1x ≠-则定义域为2,2x x k k Z ππ⎧⎫≠-+∈⎨⎬⎩⎭定义域不关于原点对称,则函数为非奇非偶函数,则③错误; 对于④,函数1sin 2y x =-是函数sin y x =向下平移12个单位,再沿x 轴将下方图像翻折到x 轴上方,故2T π=,则④正确对于⑤,222()4sin 4cos 14cos 4cos 3(2cos 1)4f x x x a x x a x a =-++-=+--=+--当2,43x ππ⎡⎤∈-⎢⎥⎣⎦,1cos ,12x ⎡⎤∴∈-⎢⎥⎣⎦,[]2cos 10,3x ∴+∈,[]2(2cos 1)0,9x ∴+∈使()0f x =恒有解,则2(2cos 1)4x a +=+恒有根[]40,9a ∴+∈,[]4,5a ∴∈-,则⑤正确故答案为:④⑤ 【点睛】本题考查,正切函数周期性、奇偶性定义、翻折变换、三角函数有界性,综合性较强,考查计算能力,有一定难度.四、解答题 17.已知函数()sin cos cos sin f x x x αα=+,()cos cos sin sin g x x x ββ=⋅-⋅,,αβ是参数,x ∈R ,(,)22ππα∈-,(,)22ππβ∈-.(1)若,44ππαβ==,判别()()()h x f x g x =+的奇偶性,若,44ππαβ=-=,判别22()()()h x f x g x =+的奇偶性; (2)若3πα=,()()()t x f x g x =是偶函数,求β;(3)请你仿照问题(1)(2)提一个问题(3),使得所提问题或是(1)的推广或是问题(2)的推广,问题(1)或(2)是问题(3)的特例.(不必证明命题)将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.【答案】(1)非奇非偶函数;(2)6π;(3)答案见解析. 【解析】化简()f x 和()g x ,(1)化简()h x 的解析式,根据奇偶函数的定义可判断出结果; (2)由()()33t t ππ=-求出6πβ=,再验证()t x 为偶函数; (3)根据(1)或(2)中α和β的值,猜αβ+与αβ-的值与和函数、积函数的奇偶性的关系可得解.()sin cos cos sin f x x x αα=⋅+⋅,()cos cos sin sin g x x x ββ=⋅-⋅ ,()sin()f x x α=+, ()cos()g x x β=+,(1)当,44ππαβ==,所以()sin()cos()sin cos cos sin cos cos sin sin 444444h x x x x x x x ππππππ=+++=++-x =,所以()h x 是偶函数;当,44ππαβ=-=时,221cos(2)1cos(2)22()sin ()cos ()4422x x h x x x ππππ--++=-++=+ 1sin 21sin 21sin 22x x x -+-==-,所以()1sin(2)1sin 2h x x x -=--=+, 因为()()2044h h ππ-+=≠,所以()h x 不是奇函数, 因为()()2sin20442h h πππ--=-=-≠,所以()h x 不是偶函数所以()h x 是非奇非偶函数;(2)因为()()()t x f x g x =⋅为偶函数,所以()()t x t x =-对一切x ∈R 恒成立,所以()()33t t ππ=-,所以()()()()3333f g f g ππππ=--,所以sin()cos()sin()cos()333333ππππππββ++=-+-+,所以cos()03πβ+=,因为(,)22ππβ∈-,所以6πβ=, 当6πβ=时,()sin()cos()36t x x x ππ=++,()sin()cos()36t x x x ππ-=-+-+cos[()]sin[()]2326x x ππππ=--+--+cos()sin()()63x x t x ππ=++=,所以()t x 为偶函数, 综上所述:6πβ=. (3)第一层次,写出任何一种的一个(加法或乘法)均可以, 1、,()()2f xg x παβ+=+是偶函数;2、,()()2f xg x παβ+=-+是奇函数;3、,()()2f xg x παβ-=+是非奇非偶函数;4、,()()2f xg x παβ-=-+是既奇又偶函数;第二层次,写出任何一种的一个(加法或乘法)均可以, 1、33,()()2f xg x παβ+=+是偶函数(数字不分奇偶);2、55,()()2f xg x παβ+=-+是奇函数;44,()()2f xg x παβ+=-+是偶函数(数字只能同奇数);3、55,()()2f xg x παβ-=+是非奇非偶函数(数字不分奇偶,但需相同);4、33,()()2f xg x παβ-=-+是既奇又偶函数(数字只能奇数;22,()()2f xg x παβ-=-+是非奇非偶函数;第三层次,写出逆命题任何一种的一个(加法或乘法)均可以, 1、33()()f x g x +是偶函数(数字不分奇偶,但相同),则2παβ+=;2、55()()f x g x +是奇函数(数字只能正奇数),则 2παβ+=-;22()()f x g x +是偶函数(数字只能正偶数),则 2παβ+=- ;3、33()()f x g x +是偶函数(数字只能正奇数),则2παβ-=-;第四层次,写出充要条件中的任何一种均可以,1、2παβ+=的充要条件是()()f x g x +是偶函数,2、55()()f x g x +是奇函数(数字只能正奇数)的充要条件是2παβ+=-;22()()f x g x +是偶函数(数字只能正偶数)的充要条件是2παβ+=-;3、33()()f x g x +是偶函数(数字只能正奇数)的充要条件是 则2παβ-=-;第五层次,写出任何一种均可以(逆命题,充要条件等均可以), 1、*,2n N παβ+=∈时,()()n n f x g x +都是偶函数;2、*,2n N παβ+=-∈时,n 是正奇数,()()n n f x g x +是奇函数;*,2n N παβ+=-∈时,n 是正偶数,()()n n f x g x +是偶函数;3、*,2n N παβ-=-∈,n 奇数,()()n n f x g x +既奇又偶函数; 4、*,2n N παβ-=-∈,n 偶数,()()n n f x g x +是非奇非偶函数.【点睛】关键点点睛:掌握三角恒等变换公式与三角函数的奇偶性是解题关键. 18.已知函数()()()2sin 0,f x x ωϕωϕπ=+><,()f x 图象上相邻的最高点与最低点的横坐标相差2π,______; (1)①()f x 的一条对称轴3x π=-且()16f f π⎛⎫> ⎪⎝⎭; ②()f x 的一个对称中心5,012π⎛⎫⎪⎝⎭,且在2,63ππ⎡⎤⎢⎥⎣⎦上单调递减;③()f x 向左平移6π个单位得到的图象关于y 轴对称且(0)0f >从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式; (2)在(1)的情况下,令()()1cos 22h x f x x =-,()()g x h h x =⎡⎤⎣⎦,若存在,123x ππ⎡⎤∈⎢⎥⎣⎦使得()()()2230g g x a x a +-+-≤成立,求实数a 的取值范围.【答案】(1)选①②③,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2))⎡+∞⎣. 【解析】(1)根据题意可得出函数()f x 的最小正周期,可求得ω的值,根据所选的条件得出关于ϕ的表达式,然后结合所选条件进行检验,求出ϕ的值,综合可得出函数()f x 的解析式;(2)求得()sin 26h x x π⎛⎫=-⎪⎝⎭,由,123x ππ⎡⎤∈⎢⎥⎣⎦可计算得出()[]0,1h x ∈,进而可得出()1,sin 226g x π⎡⎤⎛⎫∈-- ⎪⎢⎥⎝⎭⎣⎦,由参变量分离法得出()()211a g x g x ≥+++,利用基本不等式求得()()211g x g x +++的最小值,由此可得出实数a 的取值范围.(1)由题意可知,函数()f x 的最小正周期为22T ππ=⨯=,22Tπω∴==. 选①,因为函数()f x 的一条对称轴3x π=-,则()232k k Z ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭, 解得()76k k Z πϕπ=+∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=-⎪⎝⎭,则()2sin 2162f f ππ⎛⎫⎛⎫=-=-< ⎪ ⎪⎝⎭⎝⎭,不合乎题意; 若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,则()2sin 2162f f ππ⎛⎫==> ⎪⎝⎭,合乎题意.所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭;选②,因为函数()f x 的一个对称中心5,012π⎛⎫⎪⎝⎭,则()5212k k Z πϕπ⨯+=∈,解得()56k k Z πϕπ=-∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=-⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,52,622x πππ⎡⎤-∈-⎢⎥⎣⎦,此时,函数()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递增,不合乎题意;若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,532,622x πππ⎡⎤+∈⎢⎥⎣⎦, 此时,函数()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减,合乎题意;所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭; 选③,将函数()f x 向左平移6π个单位得到的图象关于y 轴对称,所得函数为2sin 22sin 263y x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由于函数2sin 23y x πϕ⎛⎫=++ ⎪⎝⎭的图象关于y 轴对称,可得()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=-⎪⎝⎭,()502sin 16f π⎛⎫=-=- ⎪⎝⎭,不合乎题意; 若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()02sin 16f π==,合乎题意.所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭; (2)由(1)可知()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 所以,()()11cos 2sin 2cos 22cos 2cos 2262h x f x x x x x x x π⎛⎫=-=+-=+- ⎪⎝⎭12cos 2sin 226x x x π⎛⎫=-=- ⎪⎝⎭,当,123x ππ⎡⎤∈⎢⎥⎣⎦时,0262x ππ≤-≤,()01h x ∴≤≤,所以,()22666h x πππ-≤-≤-,所以,()()()1sin 2,sin 2626g x h h x h x ππ⎡⎤⎡⎤⎛⎫==-∈--⎡⎤ ⎪⎢⎥⎣⎦⎢⎥⎣⎦⎝⎭⎣⎦, ()11,1sin 226g x π⎡⎤⎛⎫∴+∈+- ⎪⎢⎥⎝⎭⎣⎦,2223ππ<<,2362πππ∴<-<sin 216π⎛⎫<-< ⎪⎝⎭, 由()()()2230gg x a x a +-+-≤可得()()()2231g x g x a g x ++≤+⎡⎤⎣⎦,所以,()()()()()()()22122321111g x g x g x a g x g x g x g x ++⎡⎤++⎣⎦≥==+++++, 由基本不等式可得()()211g x g x ++≥=+当且仅当()11,1sin 226g x π⎡⎤⎛⎫+=+- ⎪⎢⎥⎝⎭⎣⎦时,等号成立,所以,a ≥【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.19.已知函数2())2sin 1(0,0)2x f x x πωϕωϕωϕ+⎛⎫++-><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为π2. (1)求()f x 的解析式.(2)求()()sin cos h x f x x x =++的最大值. (3)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标变),得到函数()y g x =的图象,当[,]126ππx ∈-时,求函数()g x 的值域. (4)对于第(3)问中的函数()g x ,记方程4()3g x =在4[,]63ππx ∈上的根从小到依次为1x ,2x ,n x ,试确定n 的值,并求1231222n n x x x x x -+++++的值.【答案】(1)()2sin 2f x x =(2)2+3)[-(4)203π【解析】(1)利用三角恒等变换的公式,化简函数()f x 的解析式,利用正弦函数的周期,奇偶性求得函数的解析式;(2)令sin cos t x x =+,利用换元法转化为222y t t =+-,[t ∈求最大值即可;(3)利用函数()sin()f x A x ωϕ=+的图象变换规律,求得函数()g x 的解析式,进而求得函数的值域;(4)由方程4()3g x =,得到2sin(4)33x π-=,根据4[,]63ππx ∈,求得4[,5]33πx ππ-∈,设43x πθ=-,转化为2sin 3θ=,结合正弦函数的图象与性质,即可求解.(1)由题意,函数2())2sin 12x f x x ωϕωϕ+⎛⎫++- ⎪⎝⎭)cos()2sin()6x x x πωϕωϕωϕ=+-+=+-因为函数()f x 图象的相邻两对称轴间的距离为π2,所以T π=,可得2ω=,又由函数()f x 为奇函数,可得()02sin()06f πϕ=-=,所以,6k k Z πϕπ-=∈,因为0πϕ<<,所以6π=ϕ,所以函数()2sin 2f x x =.(2)()()sin cos 2sin 2sin cos h x f x x x x x x =++=++,令sin cos )[4t x x x π=+=+∈,则212sin cos t x x =+,所以222y t t =+-,[t ∈,因为对称轴14t =-, 所以当2t=时,max 22y =+,即()h x 的最大值为22+.(3)将函数()f x 的图象向右平移π6个单位长度,可得2sin(2)3y x π=-的图象,再把横坐标缩小为原来的12,得到函数()2sin(4)3y g x x π==-的图象,当[,]126ππx ∈-时,24[,]333x πππ-∈-, 当432x ππ-=-时,函数()g x 取得最小值,最小值为2-,当433x ππ-=时,函数()g x 取得最大值,最小值为3,故函数()g x 的值域[2,3]-. (4)由方程4()3g x =,即42sin(4)33x π-=,即2sin(4)33x π-=, 因为4[,]63ππx ∈,可得4[,5]33πx ππ-∈, 设43x πθ=-,其中[,5]3πθπ∈,即2sin 3θ=, 结合正弦函数sin y θ=的图象,如图可得方程2sin 3θ=在区间[,5]3ππ有5个解,即5n =,其中122334453,5,7,9θθπθθπθθπθθπ+=+=+=+=,即12233445443,445,447,44933333333x x x x x x x x ππππππππππππ-+-=-+-=-+-=-+-= 解得1223344511172329,,,12121212x x x x x x x x ππππ+=+=+=+=所以122331443552420()()()()2223x x x x x x x x x x x x x π=+++++++=+++++. 【点睛】关键点点睛:解决三角函数图象与性质的综合问题的关键是首先正确的将已知条件转化为三角函数解析式和图象,然后再根据数形结合思想研究函数的性质(单调性、奇偶性、对称性、周期性),进而加深理解函数的极值点、最值点、零点及有界函数等概念.20.已知向量3sin π2a x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,ππsin ,cos 22b x x ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,函数3()f x a b =⋅-.(1)求()f x 的最小正周期及()f x 图象的对称轴方程;(2)若先将()f x 的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移π3个单位长度得到函数()g x 的图象,求函数()15y g x =-在区间[]π,3π-内的所有零点之和.【答案】(1)最小正周期为π,对称轴方程为5ππ,122k x k =+∈Z ;(2)6π. 【解析】(1)结合向量的数量积的坐标运算,化简求得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,再利用三角函数的图象与性质,即可求解;(2)根据三角函数的图象变换,求得()sin gx x =,结合函数的零点的概念和正弦函数的图象的性质,即可求解.(1)由题意,向量3sin π2a x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,ππsin ,cos 22b x x ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3()f x a b =⋅-π3ππsin sin cos 2222x x x x ⎛⎫⎛⎫⎛⎫=⋅--⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin cos sin )(sin )x x x x =⋅+-⋅-1sin 2cos 2)2x x =+-πsin 23x ⎛⎫=- ⎪⎝⎭. 可得22ππ2T w π===,即函数的最小正周期为π, 令ππ2π,32x k k -=+∈Z ,解得5ππ,122k x k =+∈Z所以函数()f x 的最小正周期为π,对称轴方程为5ππ,122k x k =+∈Z . (2)由(1)知()πsin 23f x x ⎛⎫=-⎪⎝⎭, 将()f x 的图象上每个点横坐标变为原来的2倍,可得πsin 3y x ⎛⎫=- ⎪⎝⎭,然后将πsin 3y x ⎛⎫=- ⎪⎝⎭向左平移π3个单位长度得到函数()sin g x x =,令1()05g x -=,即1sin 5x =, 由图可知,1sin 5x =在[π,3π]-上有4个零点:1x ,2x ,3x ,4x ,根据对称性有12π22x x +=,345π22x x +=, 所以所有零点和为12346πx x x x +++=.【点睛】本题主要考查了三角函数的图象与性质,三角函数的图象变换,以及向量的数量积运算,函数与方程等知识点的综合应用,着重考查推理与运算能力,属于中档试题. 21.已知向量33cos,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,函数()1f x a b m a b =⋅-++,,34x ππ⎡⎤∈-⎢⎥⎣⎦,m R ∈.(1)当0m =时,求6f π⎛⎫⎪⎝⎭的值; (2)若()f x 的最小值为1-,求实数m 的值;(3)是否存在实数m ,使函数()()22449g x f x m =+,,34x ππ⎡⎤∈-⎢⎥⎣⎦有四个不同的零点?若存在,求出m 的取值范围;若不存在,说明理由.。
三角恒等变换精讲精析(解析版)
三角恒等变换精讲精析点点突破热门考点01 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β; C (α+β):cos(α+β)=cos αcos_β-sin_αsin β; S (α+β):sin(α+β)=sin αcos β+cos αsin β; S (α-β):sin(α-β)=sin_αcos_β-cos αsin β; T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);)4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,函数f(α)=acos α+bsin α(a,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.【典例1】(2020·全国高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12B C .23D 【答案】B 【解析】由题意可得:1sin sin cos 122θθθ++=,则:3sin cos 122θθ+=,1sin cos 223θθ+=,从而有:sin coscos sin66ππθθ+=,即sin 6πθ⎛⎫+= ⎪⎝⎭故选:B.【典例2】(2020·全国高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2 B .–1C .1D .2【答案】D 【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.【典例3】(2018·全国高考真题(理))已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.【答案】12-【解析】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为【典例4】(2018·全国高考真题(文))已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 【答案】32. 【解析】5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2α=. 【方法技巧】1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用. 2.注意三角函数公式逆用和变形用的两个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.热门考点02 二倍(半)角公式的运用二倍角的正弦、余弦、正切公式: S 2α:sin 2α=2sin_αcos_α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α.变形公式:降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=⎝ ⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2【典例5】(2019·全国高考真题(理))已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( )A .15 B .5C D 【答案】B 【解析】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=,故选B . 【典例6】(2019·河南高三(理))若34tan 43πθ⎛⎫-=- ⎪⎝⎭,则tan 2θ=( ) A .725-B .725C .724-D .724【答案】C 【解析】 因为34tan 43πθ⎛⎫-=- ⎪⎝⎭,所以tan 141tan 3θθ+=--,解得tan 7θ=,从而22tan 7tan21tan 24θθθ==--. 故选:C 【总结提升】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tanβ=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.热门考点03 三角函数恒等变换中“角、名、式”的变换(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【典例7】(2019·上海市向明中学高一期中)已知tan 1α=,()3sin sin 2βαβ=+,则()tan αβ+=______.【答案】2 【解析】因为()βαβα=+-,()2αβαβα+=++, 所以()3sin sin 2βαβ=+即()()()()3sinsin αβααβα+-=++,即()()()()3sin cos 3cos sin sin cos cos sin αβααβααβααβα+-+=+++, 所以()()2sin cos 4cos sin αβααβα+=+, 所以()2tan 4tan 4αβα+==, 所以()tan 2αβ+=. 故答案为:2【典例8】(2019·宁夏银川一中高三)已知,2παπ⎛⎫∈ ⎪⎝⎭,1tan 47πα⎛⎫+= ⎪⎝⎭,则sin cos αα+=____.【答案】15- 【解析】 ∵1tan 47πα⎛⎫+= ⎪⎝⎭ ∴1tan 11tan 7αα+=-解得3tan 4α=-, ∵,2παπ⎛⎫∈ ⎪⎝⎭,∵22sin cos 1αα+=…①sin tan cos ααα=,…② 解①②得34sin ,cos 55αα==-∴341sin cos 555αα+=-=-.故答案为:15-.【典例9】(2018届河南省郑州外国语学校高三第十五次调研)已知,满足,则的最大值为______.【答案】.【解析】由, 得化为,,,的最大值为,故答案为.【典例10】求证:ααπαcos 1)24tan(1tan =++. 【解析】左边=sin αcos α+)24sin()24cos(απαπ++ )24sin(cos )24cos(cos )24sin(sin απααπααπα++++=)24sin(cos )24cos(απαααπ+-+=)24sin(cos )24cos(απααπ+-===++=ααπααπcos 1)24sin(cos )24sin(=右边. 故原式得证.【典例11】(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【答案】(Ⅰ)45;(Ⅱ)5665- 或1665.【解析】(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=. 【总结提升】1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式. (2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”. (3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等. 2.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号. 3.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目. (2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.热门考点04 函数y =Asin(ωx +φ)的图象及其性质1.函数的解析式(1)()sin y A x ωϕ=+的有关概念(2)用五点法画sin y A x =+一个周期内的简图用五点法画()sin y A x ωϕ=+一个周期内的简图时,要找五个关键点,如下表所示:2.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数()y f x =向左平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图象; 把函数()y f x =向右平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图象;+网】 把函数()y f x =向上平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图象; 把函数()y f x =向下平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图象. 伸缩变换:把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的1ω,得到函数()()01y fx ωω=<<的图象;把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的1ω,得到函数()()1y f x ωω=>的图象;把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的A ,得到函数()()1y Af x A =>的图象;把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的A ,得到函数()()01y Af x A =<<的图象. 3. 由sin y x =的图象变换出()sin y x ωϕ=+()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换)先将sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,再将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+的图象.途径二:先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右(0ϕ<)平移ωϕ||个单位,便得()sin y x ωϕ=+的图象.注意:函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到. 4.函数的综合运用(1)x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈. (2)对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系. sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈⎪⎝⎭.(3)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈.(4)()sin()f x A x ωϕ=+的最小正周期都是2||T πω=. 【典例12】(2019·广东高考模拟(理))把函数()y f x =的图象向左平移23π个单位长度,再把所得的图象上每个点的横、纵坐标都变为原来的2倍,得到函数()g x 的图象,并且()g x 的图象如图所示,则()f x 的表达式可以为( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()sin 46f x x π⎛⎫=+⎪⎝⎭C .()sin 46f x x π⎛⎫=- ⎪⎝⎭D .()2sin 46f x x π⎛⎫=-⎪⎝⎭【答案】B∵g (0)=2sinφ=1,即sinφ12=, ∴φ52,6k ππ=+或φ2,6k k Z ππ=+∈(舍去) 则g (x )=2sin (ωx 56π+),又755122,,2,12667k k Z k ππωπω⎛⎫+=∈∴=-⨯ ⎪⎝⎭当k=1, 2ω= 即g (x )=2sin (2x 56π+), 把函数g (x )的图象上所有点的横坐标缩短到到原来的12,得到y =2sin (4x 56π+),再把纵坐标缩短到到原来的12,得到y =sin (4x 56π+),再把所得曲线向右平移23π个单位长度得到函数g (x )的图象,即g (x )=sin[4(x -23π)56π+]=8511sin 4x sin 4sin 43666x x ππππ⎡⎤⎛⎫⎛⎫-+=-=+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭故选:B .【典例13】(2016年高考四川理)为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D.【典例14】(2018年理天津卷)将函数的图象向右平移个单位长度,所得图象对应的函数( ) A. 在区间上单调递增 B. 在区间上单调递减 C. 在区间上单调递增 D. 在区间上单调递减【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项. 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置. 2.利用图象变换求解析式:由sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,,得到函数()sin y x ϕ=+,将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+,将图象上各点的纵坐标变为原来的A 倍(0A >),便得()sin y A x ωϕ=+.3. 图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”,注意二者的“不同”之处.4.研究函数的性质,要注意“复合函数”这一特征.热门考点05 三角函数模型的应用【典例15】如图为一半径为3m 的水轮,水轮圆心O 距水面2m ,已知水轮每分钟转4圈,水轮上的点P 到水面距离y (单位:m )与时间x (单位:s )满足关系式()sin 2y A x ωϕ=++,则有( )A.5,512A πω== B.2,315A πω== C.5,312A πω== D.15,52A ωπ== 【答案】B 【解析】∵水轮的半径为3m ,水轮圆心O 距离水面2m , ∴max min 235,231y y =+==-=-,∴max min32y y A -==; 又水轮每分钟旋转4圈,故转1圈需要15s , ∴215T πω==,∴215πω=, 故选:B.【典例16】某港口一天内的水深y (米)是时间t (024t ,单位:时)的函数,下面是水深数据:t (时)0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦型函数()sin 0,0y A t B A ωω=+>>的图象.(1)试根据数据和曲线,求出sin y A t B ω=+的解析式.(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)【答案】(1)()3sin100246y t t π=+;(2)该船在1:00至5:00或13:00至1700:能安全进港.不能超过16小时. 【解析】(1)从拟合的曲线可知,函数sin y A t B ω=+的一个周期为12小时,因此26T ππω==.又()()min max max min max min 117,13,3,1022y y A y y B y y ==∴=-==+=. ∴函数的解析式为()3sin100246y t t π=+.(2)由题意,水深 4.57y +,即[]3sin1011.5,0,246y t t π=+∈,1sin62tπ∴, 52,2,0,1666t k k k πππππ⎡⎤∴∈++=⎢⎥⎣⎦,[]1,5t ∴∈或[]13,17t ∈. ∴该船在1:00至5:00或13:00至1700:能安全进港.若欲于当天安全离港,则船在港内停留的时间最多不能超过16小时. 【总结提升】三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.热门考点06 三角恒等变换的综合应用三角恒等变换在研究三角函数图象和性质中的应用(1)图象变换问题:先根据和角公式、倍角公式把函数表达式变为正弦型函数y =A sin(ωx +φ)+b 的形式,再进行图象变换.(2)函数性质问题:求函数周期、最值、单调区间的方法步骤①利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin(ωx +φ)+b 的形式; ②利用公式T =2πω(ω>0)求周期;③根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;④根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+b 的单调区间. 【典例17】(2018·北京高考真题(文))已知函数()2sin 3sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.【答案】(Ⅰ)π ;(Ⅱ)π3. 【解析】(Ⅰ)()1cos211π1sin2sin2cos2sin 22222262x f x x x x x -⎛⎫=+=-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦. 要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫-⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1. 所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3. 【典例18】(2018·上海高考真题)设常数R a ∈,函数()2sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫=⎪⎝⎭,求方程()1f x =[]ππ-,上的解. 【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-. 【解析】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数, ∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+, ∴2sin20a x =, ∴0a =;(2)∵π14f ⎛⎫= ⎪⎝⎭,∴2ππsin2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++= ⎪⎝⎭∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,, ∴5ππ24x k =-+,或13ππZ 24x k k =+∈,, ∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-【典例19】(2016高考天津理)已知函数f(x)=4tanxsin(2x π-)cos(3x π-(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f(x)在区间[,44ππ-]上的单调性.【答案】(Ⅰ),2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,.π(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【解析】()I 解:()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 34sin cos 333f x x x x x x ππ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭213=4sin cos sin 32sin cos 23sin 32x x x x x x ⎛⎫+-=+- ⎪ ⎪⎝⎭()()=sin 231-cos 23sin 23cos 2=2sin 23x x x x x π+-=--.所以, ()f x 的最小正周期2.2T ππ== ()II 解:令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【总结提升】1.函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 2.函数的性质(1).(2)周期(3)由 求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.巩固提升1. (2020·阜新市第二高级中学高一期末)式子22cos cos sin sin 3636ππππ-的值为( )A .12-B .0C .1D . 【答案】D 【解析】2ππ2ππcoscos sin sin 3636-=cos (2ππ36+)=cos 5π6=-cos π62=-,故选D . 2.(2020·四川南充�高二期末(理))若1cos 3α=,则cos2=α( ) A .79-B .89-C .79D .89【答案】A 【解析】由二倍角公式得217cos 22cos 12199αα=-=⨯-=-, 故选:A3.(2020·山东潍坊�高一期末)已知cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .2425【答案】D 【解析】因为cos 4πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D.4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=( )A .15B .5C .5D .1【答案】B 【解析】由,,O A B 三点共线,从而得到2b a =,因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即a =所以2a b a a -=-=,故选B. 5.(2018·全国高考真题(文))已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 【答案】B 【解析】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B.6.(2019·安徽高考模拟(文)()cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 2α=( )A B C D 【答案】B【解析】由题意得,cos αα=-,则tan 7α=. 22tan 7tan 211tan 317ααα∴===--,故选B . 7.(2019·辽宁高考模拟(文))若tan()34πα+=-,则2sin 2cos αα-=( )A .35B .25-C .-1D .3【答案】A 【解析】tan tan4tan 33tan 241tan tan 4παπααπα+⎛⎫+=-⇒=-⇒= ⎪⎝⎭-⋅, 22222222sin2cos 2sin cos cos 2tan 1sin2cos sin cos sin cos 1tan ααααααααααααα----===+++,把tan 2α=代入,求得23sin2cos 5αα-=,故本题选A. 8.(2019·四川高三月考(理))函数()2sin22f x x x =+-的一条对称轴是( ) A .π12x = B .π6x = C .π3x =D .π2x =【答案】A 【解析】依题意,()sin 22f x x x =π2sin 223x ⎛⎫=+⎪⎝⎭,由ππ2π32x k +=+解得ππ,212k x k Z =+∈为函数的对称轴,令0k =求得函数的一条对称轴为π12x =.故选:A.9.(2020·营口市第二高级中学高一期末)【多选题】化简下式,与tan α相等的是( )A B 1,(0,π)cos αα∈C .1cos2sin 2αα-D .sin 21cos 2αα-【答案】BC 【解析】对于A tan α====,由1cos 201cos 2αα-≥+解得1cos21α-<≤,即()22k k Z αππ≠+∈,解得()2k k Z παπ≠+∈,故A 错误;对于B :因为(0,π)α∈所以111tan cos cos cos n s si sin cos co αααααααα=====, 故B 正确;对于C :21cos 22sin sin tan sin 22sin cos cos αααααααα-===对于D :2sin 22sin cos cos tan 1cos 22sin sin αααααααα==≠- 故选:BC10.(2020·沈阳市第一七〇中学高一期末)【多选题】已知函数()π1sin sin 34f x x x ⎛⎫=⋅+- ⎪⎝⎭的定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m -的值不可能是( ) A .5π12B .7π12C .34π D .11π12【答案】CD 【解析】()π1sin sin 34f x x x ⎛⎫=⋅+- ⎪⎝⎭11=sin sin 224x x x ⎛⎫+- ⎪ ⎪⎝⎭2131=sin sin cos 224x x x +- ()131=1cos 2sin 2444x x -+- 131sin 2cos 2222x x ⎛⎫=- ⎪ ⎪⎝⎭ 1π=sin 226x ⎛⎫- ⎪⎝⎭.作出函数()f x 的图象如图所示,在一个周期内考虑问题,易得π,25π7π66m n ⎧=⎪⎪⎨⎪≤≤⎪⎩或π5π,267π6m n ⎧≤≤⎪⎪⎨⎪=⎪⎩满足题意,所以n m -的值可能为区间π2π33⎡⎤⎢⎥⎣⎦,内的任意实数.所以A,B 可能,C,D 不可能. 故选CD.11.(2019·江苏高考真题)已知,则的值是_____.【答案】. 【解析】 由,得,解得,或.,当时,上式当时,上式=综上,12.(2019·全国高考真题(文))函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-. 【解析】23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.13.(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455--,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【答案】(Ⅰ)45;(Ⅱ)5665- 或1665.【解析】(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=.14.(2018·江苏高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos2α的值;(2)求tan()αβ-的值. 【答案】(1)725-;(2)211-【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos22cos 125αα=-=-.(2)因为,αβ为锐角,所以()0,παβ+∈.又因为()cos αβ+=()sin αβ+== 因此()tan 2αβ+=-. 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+. 15.(2019·上海市敬业中学高三)已知函数()2sin 22cos 20.2f x x x x π⎡⎤=++∈⎢⎥⎣⎦,,(1)求函数()y f x =的单调递减区间; (2)求函数()y f x =的值域.【答案】(1)递减区间:,82ππ⎡⎤⎢⎥⎣⎦;(2)3⎡⎤⎣⎦; 【解析】(1) ()2sin 22cos 2=sin 2cos23)34f x x x x x x π=++++=++,令3222,242k x k k Z πππππ+≤+≤+∈, 所以5,88k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为5[,],88k k k Z ππππ++∈ 令k=0,所以单调递减区间为5[,],88ππ因为[0,]2x π∈,所以递减区间为,82ππ⎡⎤⎢⎥⎣⎦. (2)因为[0,]2x π∈,所以52[0,]2x [,]444x ππππ∈∴+∈,,所以sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以2)+34x π≤+≤,所以函数()y f x =的值域为3⎡⎤⎣⎦.16.(2019·西藏拉萨中学高二月考)已知函数()()22f x sin x cos x x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】(Ⅰ)f (x )=sin 2x ﹣cos 2x -sin x cos x ,=﹣cos2x x , =﹣226sin x π⎛⎫+ ⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+.所以()f x 的最小正周期是π.由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,.。
高中数学考点专题3.2 三角函数化简以及恒等变换(解析版)
3.2三角函数化简及恒等变换一、选择题:每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【四川省绵阳市2020届高三上期第一次诊断性考试数学(理)试题】 函数)0)(6sin()(>+=w wx x f π在⎪⎭⎫⎝⎛22-ππ,上单调递增,且图像关于π-=x 对称,则w 的值为( ) A.32 B.35 C.2 D.38【答案】A 【解析】函数)0)(6sin()(>+=w wx x f π的递增区间)(22622-Z k k x k ∈+≤+≤+πππωππ,化简得:).(23232-Z k k x k ∈+≤≤+ωπωπωπωπ已知在⎪⎭⎫ ⎝⎛22-ππ,单增,所以.320.232-32-<<⇒⎪⎩⎪⎨⎧≥≤ωπωππωπ,又因为图像关于π-=x 对称,).(26Z k k x ∈+=+πππω所以)(3Z k k w ∈--=π.因为0>ω此时k=-1,所以32=ω 【方法总结】此题考查三角函数的对称轴和单调区间,涉及在知识的交叉点命题思路,这是高考命题的思路。
题目综合性强,需要逆向思维。
题目属于中等难度。
2. 【湖北省华中师大一附中2017级高三上学期理科数学期中考试试题】已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图像如右图所示,且(,1),(,1)2A B ππ-,则ϕ的值为 ( )A.56πB.6πC. 56π-D. 6π- 【答案】C【解析】由已知得:1,2==ωπT ,图像经过(,1),(,1)2A B ππ-65-πϕ=3. 【2019-2020学年秋季鄂东南省级示范高中教育教学改革联盟学校高三年级上学期期中考试理科数学】已知将函数()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则π3f ⎛⎫= ⎪⎝⎭( )A .BC .12-D .12【答案】A【解析】()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x []ϕ32cos +=x ,因为()g x 的图象关于原点对称,所以[]030cos )0(=+=ϕg ,所以6πϕ=,π3f ⎛⎫= ⎪⎝⎭23)362(cos -=+⨯ππ .4.【2019·四川棠湖中学开学考试】在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得到向量OQ →,则点Q的坐标是( )A.(-72,-2)B. (-72, 2)C.(-46,-2)D.(-46,2) 【答案】 A【解析】 因为点O (0,0),P (6,8),所以OP →=(6,8), 设OP →=(10cos θ,10sin θ),则cos θ=35,sin θ=45,因为向量OP →绕点O 按逆时针方向旋转3π4后得到OQ →,设Q (x ,y ),则x =10cos ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫cos θcos 3π4-sin θsin 3π4=-72, y =10sin ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫sin θcos 3π4+cos θsin 3π4=-2, 所以点Q 的坐标为()-72,-2,故选A.5.函数()2π2cos cos 26f x x x ⎛⎫=+- ⎪⎝⎭图象的一条对称轴方程为( )A .π6x =B .π4x =C .π3x =D .π2x = 【答案】A【解析】∵()2ππ2cos cos 21sin 266f x x x x ⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭,∴ππ2π62x k +=+(k ∈Z ),∴ππ26k x =+(k ∈Z ),当k =0时,π6x =.6. 【2019山东济南月考】M ,则下列结论中正确的是( )A .图象MB .将2sin2y x =MC .图象MD .()f x 【答案】C【解析】将2sin 2y x =的图象向左平移,故B 错;()f x D 错;M A 错误,C 正确,故选C .7.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.7. 【安徽省定远中学2019届高三全国高考猜题预测卷一数学试题】函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( )A .5π3B .2πC .7π6D .π【答案】B【解析】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =. 又[]π,2πx ∈-,所以2x π=-或32x π=或π6x =或5π6x =, 所以函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象交点的横坐标的和为π3ππ5π2π2266-+++=. 故选B.【名师点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.求解时,根据两个函数相等,求出所有交点的横坐标,然后求和即可. 8. 【广东省韶关市2019届高考模拟测试(4月)数学文试题】 已知函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2,将函数图象向左平移6π个单位得到函数()g x 的图象,则()g x =( ) A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2, 则π22T =, 解得:πT =, 所以2ππω=,解得2ω=,将函数π()sin(2)6f x x =+的图象向左平移6π个单位,得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象, 故选C .【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.求解时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果. 9. 【山东省栖霞市2019届高三高考模拟卷数学理)试题】将函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=-⎪⎝⎭, ()g x 的最大值为2,可知A 错误; ()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误; 当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 本题正确选项为D.【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.10【湖南省岳阳市第一中学2019届高三第一次模拟(5月)数学试题】设函数π()sin 6f x x ⎛⎫=- ⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为( )A .π6B .π2C .7π6D .π【答案】B【解析】当5ππ,62α⎡⎤∈--⎢⎥⎣⎦时,有π2π,63πα⎡⎤-∈--⎢⎥⎣⎦,所以()[f α∈. 在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()[0,]2f f βα=-∈. []πππ0,,[,]666m m ββ∈-∈--,所以ππ2ππ5π[,),[,)63326m m -∈∈. 故选B.【名师点睛】本题主要考查了三角函数的图象和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.求解时,先求()[f α∈,再由存在唯一确定的β,使得()()[0,2f f βα=-∈,得ππ2π[,)633m -∈,从而得解. 10. 【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】已知函数()cos f x x x ωω=+(>0)ω的零点构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π6个单位,得到函数()g x 的图象,关于函数()g x ,下列说法正确的是( ) A .在[,]42ππ上是增函数 B .其图象关于π4x =-对称C .函数()g x 是奇函数D .在区间π2π[,]63上的值域为[−2,1]【答案】D【解析】()cos f x x x ωω=+可变形为π()2sin()6f x x ω=+,因为()y f x =的零点构成一个公差为π2的等差数列,所以()y f x =的周期为π, 故2ππω=,解得2ω=,所以π()2sin(2)6f x x =+,函数()f x 的图象沿x 轴向左平移π6个单位后得到()()22sin[()]sin()cos(22)222x g f x x x x ++===++=πππ666π,选项A :222,k x k k -+≤≤∈πππZ ,解得:k x k k 2-+≤≤∈πππ,Z , 即函数()y g x =的增区间为π[π,π],2k k k -+∈Z ,显然π[,][π,π]422k k ππ⊄-+,故选项A 错误; 选项B :令2π,x k k =∈Z ,解得:k x k 2=∈π,Z ,即函数()y g x =的对称轴为k x k 2=∈π,Z , 不论k 取何值,对称轴都取不到π4x =,所以选项B 错误; 选项C :()y g x =的定义域为R ,因为2cos02(00)g ==≠,所以函数()y g x =不是奇函数,故选项C 错误;选项D :当π2π[,]63x ∈时,故42[,]33x ∈ππ,根据余弦函数图象可得,2cos(2[)2(),1]x g x ∈-=,故选项故本题应选D.【名师点睛】本题考查了三角函数的图象与性质,考查了图象平移的规则,整体法思想是解决本题的思想方法.根据()y f x =的零点构成一个公差为π2的等差数列可得函数()y f x =的周期,从而得出函数()y f x =的解析式,沿x 轴向左平移π6个单位,便可得到函数()g x 的解析式,由()y g x =的解析式逐项判断选项的正确与否即可.11.【2019全国Ⅲ理12】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是( )A . ①④B . ②③C . ①②③D . ①③④ 【答案】D【解析】 当[0,2]x ∈π时,,2555x ωωπππ⎡⎤+∈π+⎢⎥⎣⎦, 因为()f x 在[0,2]π有且仅有5个零点,所以5265ωπππ+<π„, 所以1229510ω<„,故④正确, 因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当(0,)10x π∈时,(2),5510x ωωππ+π⎡⎤+∈⎢⎥⎣⎦,若()f x 在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ω+ππ<,即3ω<,因为1229510ω<„,故③正确.12.【2019天津理7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫=⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( ) A.2-B.D.2 【答案】C【解析】 因为()f x 是奇函数,所以0ϕ=,()sin f x A x ω=.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,即()1sin 2g x A x ω⎛⎫= ⎪⎝⎭,因为()g x 的最小正周期为2π,所以2212ωπ=π,得2ω=, 所以()sin g x A x =,()sin 2f x A x =.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =, 所以()2sin 2f x x =,332sin 22sin 2884f ππ3π⎛⎫⎛⎫=⨯=== ⎪ ⎪⎝⎭⎝⎭故选C .13.将函数()2cos2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( ) A .,32ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C.,63ππ⎡⎤⎢⎥⎣⎦ D .3,48ππ⎡⎤⎢⎥⎣⎦【答案】A14.若将函数()sin2cos2f x x x =+的图象向左平移()0ϕϕ>个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4π B. 8π C. 38π D. 58π 【答案】B【解析】函数()sin2cos22sin 24f x x x x π⎛⎫=+=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位,得到2sin 224y x πϕ⎛⎫=++ ⎪⎝⎭ 图象关于y 轴对称,即()242k k Z ππϕπ+=+∈,解得1=28k πϕπ+,又0ϕ>,当0k =时, ϕ的最小值为8π,故选B. 15. 【2019四川遂宁、广安、眉山、内江四高三上学期第一次联考】已知不等式262sin cos 6cos 0444x x x m +--≥对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是( )A .(,2⎤-∞-⎦B .2,2⎛⎤-∞ ⎥ ⎝⎦ C .2,22⎡⎤⎢⎥⎣ D .)2,⎡+∞⎣ 【答案】B【点评】解决恒成立问题的关键是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()f x 的最小值大于A ;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()f x 最大值小于B .16.已知实数,x y 满足221x y +=,则()()11xy xy -+有( )A .最小值21和最大值1B .最小值43和最大值1 C .最小值21和最大值43D .最小值1,无最大值【答案】B【解析】由221x y +=,可设cos ,sin x y θθ== ,则()()11xy xy -+=111sin 21sin 222θθ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭2131sin 2,144θ⎡⎤=-∈⎢⎥⎣⎦,故选B 17.【四川省成都市成都第七中学万达学校高2020届高三(上)第一次月考数学(文科)试题】定义在⎪⎭⎫⎝⎛20π,上的函数)(x f y =满足:x x f x f tan )()('>恒成立,则下列不等式中成立的是( )A .)3()6(3ππf f > B .1sin )3(332)1(πf f >C .)4()6(2ππf f >D .)3(2)4(3ππf f > 【答案】A【解析】分析:x x f x f tan )()('>⇒0tan )(-)('>x x f x f ⇒0)(sinx -)(cos '>x f x xf ,故此构造函数)(sin x f x x F =)(,)(x F 在⎪⎭⎫ ⎝⎛20π,上上增函数。
高中数学第三章三角恒等变换3.2倍角公式和半角公式例题与探究新人教B版必修4(2021学年)
高中数学第三章三角恒等变换3.2倍角公式和半角公式例题与探究新人教B版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章三角恒等变换 3.2倍角公式和半角公式例题与探究新人教B版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章三角恒等变换 3.2 倍角公式和半角公式例题与探究新人教B版必修4的全部内容。
3.2 倍角公式和半角公式典题精讲例1 求下列各式的值:(1)c os12πc os 125π; (2)(cos 12π-s in 12π)(c os 12π+sin 12π);(3)21-cos 28π;(4)-32+34cos 215°.思路分析:本题考查倍角公式的变形及应用。
(1)题添加系数2,即可逆用倍角公式;(2)题利用平方差公式之后再逆用倍角公式;(3)中提取系数21后产生倍角公式的形式;(4)则需提取系数32. 解:(1)cos 12πc os125π=cos 12πsin 12π=21×2cos 12πsin 12π=21s in 6π=41; (2)(cos12π—s in 12π)(co s12π+s in 12π)=cos 212π-si n212π=c os 6π=23; (3)21-cos28π=-21(2c os28π-1)=—21co s4π=—42;(4)-32+34cos 215°=32(2cos 215°-1)=32cos 30°=33。
绿色通道:根据式子本身的特征,经过适当变形,进而利用公式,同时制造出特殊角,获得式子的值,在变形中一定要整体考虑式子的特征。
压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。
三角函数的恒等变换
三角函数的恒等变换三角函数是高中数学中常见的一类函数,包括正弦函数、余弦函数、正切函数等。
在学习三角函数的过程中,我们会遇到一些恒等变换,即一些等式关系,通过这些等式关系可以将一个三角函数的表达式转化为另一个等价的三角函数表达式。
这些恒等变换在解题中非常有用,可以简化计算或者转化为更容易求解的形式。
首先,我们来看看正弦函数和余弦函数的恒等变换。
对于任意实数x,我们有以下几个恒等变换:1. 正弦函数的恒等变换:- 正弦函数的周期性:sin(x + 2π) = sin(x),sin(x + 360°) = sin(x)。
- 正弦函数的奇偶性:sin(-x) = -sin(x),sin(π - x) =sin(x),sin(π + x) = -sin(x),sin(2π - x) = -sin(x)。
- 正弦函数的平方和恒等式:sin²(x) + cos²(x) = 1。
- 正弦函数的和差恒等式:sin(A + B) = sin(A)cos(B) +cos(A)sin(B),sin(A - B) = sin(A)cos(B) - cos(A)sin(B)。
2. 余弦函数的恒等变换:- 余弦函数的周期性:cos(x + 2π) = cos(x),cos(x + 360°) = cos(x)。
- 余弦函数的奇偶性:cos(-x) = cos(x),cos(π - x) = -cos(x),cos(π + x) = -cos(x),cos(2π - x) = cos(x)。
- 余弦函数的平方和恒等式:cos²(x) + sin²(x) = 1。
- 余弦函数的和差恒等式:cos(A + B) = cos(A)cos(B) -sin(A)sin(B),cos(A - B) = cos(A)cos(B) + sin(A)sin(B)。
接下来,我们来看看正切函数的恒等变换。
三角函数的恒等变换总结
三角函数的恒等变换总结三角函数是数学中的重要概念,涉及到三角学和解析几何等多个领域。
在解决各种数学问题和实际应用时,经常需要使用到三角函数的恒等变换。
三角函数的恒等变换指的是将一个三角函数表示为另外一个或多个三角函数的等价形式,这种变换可以简化问题的求解过程,扩展问题的应用范围。
本文将对常用的三角函数的恒等变换进行总结,以便读者了解和掌握。
1.正弦函数的恒等变换:-正弦函数的平方和余弦函数的平方等于1:sin²(x) + cos²(x) = 1-正弦函数的余角与余弦函数的关系:sin(π/2 - x) = cos(x)-正弦函数的反函数与余弦函数的关系:sin^(-1)(x) = arcsin(x) = π/2 - cos^(-1)(x)2.余弦函数的恒等变换:-余弦函数的平方和正弦函数的平方等于1:cos²(x) + sin²(x) = 1-余弦函数的补角与正弦函数的关系:cos(π/2 - x) = sin(x)-余弦函数的反函数与正弦函数的关系:cos^(-1)(x) = arccos(x) = π/2 - sin^(-1)(x)3.正切函数的恒等变换:-正切函数可以表示为正弦函数与余弦函数的比值:tan(x) = sin(x) / cos(x)-正切函数的平方与余切函数的平方等于1:tan²(x) + cot²(x) = 1-正切函数的倒数与余切函数的关系:tan^(-1)(x) = arctan(x) = π/4 - cot^(-1)(x) 4.余切函数的恒等变换:-余切函数可以表示为余弦函数与正弦函数的比值:cot(x) = cos(x) / sin(x)-余切函数的平方与正切函数的平方等于1:cot²(x) + tan²(x) = 1-余切函数的倒数与正切函数的关系:cot^(-1)(x) = arccot(x) = π/4 - tan^(-1)(x) 5.正割函数和余割函数的恒等变换:-正割函数可以表示为1与余弦函数的商:sec(x) = 1 / cos(x)-余割函数可以表示为1与正弦函数的商:csc(x) = 1 / sin(x)-正割函数和余割函数与正弦函数和余弦函数的关系:sec(x) = 1 / cos(x) = 1 / (1 / tan(x)) = cos^(-1)(x) /sin^(-1)(x)csc(x) = 1 / sin(x) = 1 / (1 / cot(x)) = sin^(-1)(x) /cos^(-1)(x)以上是常见的三角函数的恒等变换,可以应用于三角函数的化简、解方程、证明等各种数学问题的求解中。
高中数学第三章三角恒等变换3.2.2半角的正弦、余弦和正切bb高一数学
利用半角公式求值
已知 sin θ=45,且52π<θ<3π,求 cosθ2和 tanθ2的值. 【解】 因为 sin θ=45, 52π<θ<3π, 所以 cos θ=- 1-sin2θ=-35. 由 cos θ=2cos2θ2-1, 得 cos2θ2=1+c2os θ=15.
=ccooss22αα2s-inα2sicno2sα2α2=cos2αcsoisnαα2cosα2
=sinα2cosα2cos α=12sin αcos α
=14sin 2α=右边.
所以原式成立.
12/13/2021
(1)三角恒等式的证明,包括有条件的恒等式和无条件的恒等式 两种. ①无条件的恒等式证明,常用综合法(执因索果)和分析法(执果 索因),证明的形式有化繁为简,左右归一,变更论证等. ②有条件的恒等式证明,常常先观察条件与欲证式中左、右两 边三角函数的区别与联系,灵活使用条件,变形得证. (2)进行恒等变形时,既要注意分析角之间的差异,寻求角的变 换方法,还要观察三角函数的结构特征,寻求化同名(化弦或 化切)的方法,明确变形的目的.
第三章 三角恒等变换
3.2.2 半角的正弦、余弦和正切
12/13/2021
第三章 三角恒等变换
1.了解半角公式推导的过程. 2.理解半角的正弦、余 弦和正切公式. 3.能正确运用半角公式进行简单三角函数式的化简、求值和 恒等式的证明.
12/13/2021
半角公式
12/13/2021
1.判断(正确的打“√”,错误的打“×”)
12/13/2021
失误防范 运用半角公式求值时,要特别注意根据半角的范围去确定半角 三角函数值的正负号,若半角的范围不明确则求值时正负号都 要取.
2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角(解析版)
专题01三角的顶点为坐标原点,始边与,则tansin2所以此时B 有两解.故答案为:2.35.(2023下·上海奉贤·高一校考期中)题正确的序号是.①.若2a b c +>,则π3C <②.若222a b c +>,则ABC 是锐角三角形③.若2cos 22A b c c+=,则ABC 是直角三角形④.若cos cos a b B A=,则ABC 为等腰三角形⑤.若锐角ABC 中,则sin sin A +【答案】①③【分析】根据正弦定理,余弦定理,三角函数恒等变换的应用逐一判断各个选项即可.经测量知(1)霍尔顿发现无论BD 多长,(2)霍尔顿发现小麦的生长和发育与分割土地面积的平方和呈正相关关系分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出【答案】(1)证明见解析,(2)3132【分析】(1)利用余弦定理,整理等式,可得答案;(2)利用三角形面积公式,结合三角函数恒等式,可得答案【解析】(1)在ABD △中,在BCD △中,2BD CD =4cos 32cos A C ∴-=,则2cos (2)2221214S S AB AD +=⋅(2211sin cos 1A C =+-=一、填空题cos【点睛】本题考查解三角形中的正弦定理的应用,关键在于由反射的条件得出边、角之间的关系,再由302,AP <≤建立不等式,求得范围,属于难度题二、单选题7.(2023上·上海杨浦·高三上海市控江中学校考期中)设集合2π4πsin sin sin 20232023A x x ⎧==++⎨⎩|A .1011B .1012【答案】B的取值会随着三、解答题ABC方案一:在墙壁OB 上取两点P 、Q ,用长度为20m 的移动围挡围成一个以(只有MP ,MQ 两边为移动围挡);方案二:在墙壁OA 、OB 上分别取点E 、F 用长度为20m 别求出两个方案下展台面积的最大值;若现有材料下所围成展台的面积越大方案越好,请问选择哪个方案?【答案】MPQ 的面积的最大值为250m ,EOF 的面积的最大值为【分析】设m,m MP x MQ y ==,表示出MPQ 的面积,利用基本不等式可求出其最大值,设从而可求出,比较可知存在。
2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形
[解析] 由题意S △ABC =12ab sin C =a2+b2-c24.即sin C =a2+b2-c22ab .由余弦定理可知sin C =cos C .即tan C =1.又C ∈(0.π).所以C =π4.3.(20xx·全国Ⅰ卷.11)已知角α的顶点为坐标原点.始边与x 轴的非负半轴重合.终边上有两点A ()1,a .B ()2,b .且cos2α=23.则||a -b =( B )A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1.化简可得tan α=±55;当tan α=55时.可得a 1=55.b 2=55.即a =55.b =255.此时|a -b |=55;当tan α=-55时.仍有此结果.故|a -b |=55. 4.(20xx·天津卷.6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.得到函数y =sin2x 的图象. 用五点法作出草图.如图:从图中可以看出选项A 正确.其他都不正确.⎝ ⎛4-α=5.sin22+=4.+c=.则△7.(20xx·淮北二模)在△ABC 中.角A .B .C 的对边分别为a .b .c .若a 2=3b 2+3c 2-23bc sin A .则C 等于π6.[解析] 由余弦定理得a 2=b 2+c 2-2bc cos A . 所以b 2+c 2-2bc cos A =3b 2+3c 2-23bc sin A .3sin A -cos A =b2+c2bc .2sin(A -π6)=b2+c2bc ≥2.因此b =c .A -π6=π2⇒A =2π3.所以C =π-2π32=π6. 8.(20xx·长沙三模)在锐角△ABC 中.D 为BC 的中点.满足∠BAD +∠C =90°.则角B .C 的大小关系为B =C .(填“B <C ”“B =C ”或“B >C ”)[解析] 设∠BAD =α.∠CAD =β.因为∠BAD +∠C =90°.所以α=90°-C .β=90°-B . 因为D 为BC 的中点. 所以S △ABD =S △ACD . 所以12c ·AD sin α=12b ·AD sin β.所以c sin α=b sin β.所以c cos C =b cos B . 由正弦定理得.sin C cos C =sin B cos B .即sin2C =sin2B .所以2B =2C 或2B +2C =π. 因为△ABC 为锐角三角形.所以B =C .9.为了竖起一块广告牌.要制造三角形支架.如图.要求∠ACB =60°.BC 的长度大于1米.且AC 比AB 长0.5米.为了稳定广告牌.要求AC 越短越好.则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米. AC =t (t >0)米.依题设AB =AC -0.5 =(t -0.5)米.在△ABC 中.由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°.所以sin2A =2sin A cos A =1213. cos2A =1-2sin 2A =-513. 所以sin(2A +π4)=sin2A cos π4+cos2A sin π4=7226.B 组1.(20xx·福州三模)已知a .b .c 分别是△ABC 的内角A .B .C 所对的边.点M 为△ABC 的重心.若a MA →+b MB →+33c MC →=0.则C =( D )A .π4B .π2 C .5π6D .2π3[解析] ∵M 为△ABC 的重心.则MA →+MB →+MC →=0. ∴MA →=-MB →-MC →. ∵a MA →+b MB →+33c ·MC →=0.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0.∵MB →与MC →不共线. ∴b -a =0.32c -a =0.得a b33c =111.令a =1.b =1.c =3.则cos C =a2+b2-c22ab =1+1-32×1×1=-12.∴C =2π3.故选D .2.(20xx·××市一模)若sin(π6-α)=13.则cos(2π3+2α)=( A )。
2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形
高考考点考点解读[解析] 由题意S △ABC =12ab sin C =a2+b2-c24,即sin C =a2+b2-c22ab ,由余弦定理可知sin C =cos C ,即tan C =1,又C ∈(0,π),所以C =π4.3.(20xx·全国Ⅰ卷,11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A ()1,a ,B()2,b ,且cos2α=23,则||a -b =( B ) A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1,化简可得tan α=±55;当tan α=55时,可得a 1=55,b 2=55,即a =55,b =255,此时|a -b |=55;当tan α=-55时,仍有此结果,故|a -b |=55. 4.(20xx·天津卷,6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,得到函数y=sin2x 的图象.用五点法作出草图,如图:从图中可以看出选项A 正确,其他都不正确.⎝ ⎛4-α=5,则sin22 .=4+2c=R,则△9.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳定广告牌,要求AC 越短越好,则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米, AC =t (t >0)米,依题设AB =AC -0.5 =(t -0.5)米,在△ABC 中,由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°, 即(t -0.5)2=t 2+x 2-tx ,化简并整理得: t =x2-0.25x -1(x >1),即t =x -1+0.75x -1+2,因为x >1,故t =x -1+0.75x -1+2≥2+3, 当且仅当x =1+32时取等号,此时取最小值2+3.10.(20xx·全国卷Ⅰ,17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解析] (1)在△ABD 中,由正弦定理得BD sinA =AB sin ∠ADB. 由题设知,5sin45°=2sin ∠ADB ,所以sin ∠ADB =25. 由题意知,∠ADB <90°, 所以cos ∠ADB =1-225=235.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0,∵MB →与MC →不共线, ∴b -a =0,32c -a =0. 得a b33c =111,令a =1,b =1,c =3, 则cos C =a2+b2-c22ab =1+1-32×1×1=-12,∴C =2π3,故选D .2.(20xx·××市一模)若sin(π6-α)=13,则cos(2π3+2α)=( A ) A .-79B .79C .-29D .29[解析] ∵cos(2π3+2α)=-cos(π3-2α)=-[1-2sin 2(π6-α)]=-(1-29)=-79.3.(20xx·威海二模)已知等腰△ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上的一点且AD =BD ,则sin ∠ADB 的值为( C )A .36B .23C .223D .63[解析] 如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB ,。
三角函数的恒等变换
三角函数的恒等变换三角函数是数学中的重要概念,由正弦函数、余弦函数和正切函数组成。
在解决数学问题中,我们经常需要使用到三角函数的恒等变换,以便简化计算或者转换问题的表达形式。
本文将介绍三角函数的恒等变换的概念、常用恒等变换公式以及它们的应用。
一、恒等变换的概念三角函数的恒等变换是指在三角函数表达式中,通过变换将一个三角函数替换成另一个三角函数的等价形式,从而得到相同结果的变换过程。
通过利用恒等变换,我们可以将一个复杂的三角函数表达式简化为更加简洁的形式,方便计算和理论推导。
二、常用恒等变换公式1. 余弦函数的恒等变换(1)余弦函数的倒数公式:cos(x) = 1 / sec(x)(2)余弦函数的平方公式:cos^2(x) + sin^2(x) = 1(3)余弦函数的倍角公式:cos(2x) = 2*cos^2(x) - 1(4)余弦函数的半角公式:cos^2(x/2) = (1 + cos(x)) / 2 2. 正弦函数的恒等变换(1)正弦函数的倒数公式: sin(x) = 1 / csc(x)(2)正弦函数的平方公式: sin^2(x) + cos^2(x) = 1(3)正弦函数的倍角公式: sin(2x) = 2*sin(x)*cos(x)(4)正弦函数的半角公式: sin^2(x/2) = (1 - cos(x)) / 2 3. 正切函数的恒等变换(1)正切函数的倒数公式: tan(x) = 1 / cot(x)(2)正切函数的平方公式: tan^2(x) + 1 = sec^2(x)(3)正切函数的补角公式:tan(π/2 - x) = 1 / tan(x)三、应用示例以下是几个常见的应用示例,展示了三角函数的恒等变换在解决实际问题中的应用。
1. 三角函数表达式的简化通过利用恒等变换公式,我们可以将一个复杂的三角函数表达式简化为更加简洁的形式。
例如,可以根据恒等变换将 sin^2(x) + cos^2(x) 简化为 1,从而简化数学计算过程。
2024年高考数学专项三角恒等变换4种常见考法归类(解析版)
三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。
三角恒等变换的化简与变形
三角恒等变换的化简与变形三角恒等变换是数学中常用的一种运用三角函数的等式,通过变换等式形式可以对复杂的三角函数进行化简,从而简化计算过程和推导过程。
本文将介绍三角恒等变换的化简和变形方法,帮助读者更好地理解和应用这一数学工具。
一、基本恒等变换1. 正弦与余弦关系恒等变换:根据三角函数的定义,正弦和余弦函数之间存在着以下关系:sin^2θ + cos^2θ = 1利用这个恒等变换,可以将一个三角函数的平方化简为另一个三角函数。
2. 正切与余切关系恒等变换:正切和余切函数之间的关系可以通过以下恒等变换表示:tanθ = 1/cotθcotθ = 1/tanθ利用这些关系,可以将问题中的一个三角函数变换为另一个三角函数。
3. 双角恒等变换:双角恒等变换用于处理涉及两倍角的三角函数表达式。
常用的双角恒等变换包括:sin(2θ) = 2sinθcosθcos(2θ) = cos^2θ - sin^2θ等等。
通过运用这些恒等变换可以将涉及双角的复杂表达式化简为简单的形式。
二、化简与变形方法1. 利用基本恒等变换:在计算过程中,首先要熟练掌握基本的三角恒等变换,例如正弦与余弦关系、正切与余切关系等。
通过灵活运用这些基本变换,可以将复杂的三角函数表达式化简为简单的形式。
2. 利用三角函数的周期性:三角函数具有周期性的特点,例如正弦和余弦函数的周期为2π,而正切和余切函数的周期为π。
通过利用周期性,将三角函数的值转化到同一个周期范围内,有助于简化计算。
3. 利用双角恒等变换:当遇到涉及两倍角的复杂表达式时,可以尝试运用双角恒等变换来进行化简。
通过将原始表达式转化为双角表达式,再运用双角恒等变换将其化简为简单的形式。
4. 利用三角函数的倒数关系:正切与余切函数、正割与余割函数之间存在倒数关系。
当遇到倒数形式的表达式时,可以利用三角函数的倒数关系将其化简为简单的形式。
5. 利用和差恒等变换:和差恒等变换可以将两个三角函数的和或差转化为一个三角函数的乘积形式,从而简化表达式。
高中数学第三章三角恒等变换3.2简单的三角恒等变换知识巧解学案新人教A版必修04
,π<2α< ,求 tanα.
13
2
3
3
解: ∵π<2α< ,∴ <α< .
2
2
4
由 cos 2
1 sin 2
5
1 ( 12 ) 2
5 ,得 tan
1 cos2
1 13
3
13
13
sin 2
12 2
13
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
或 tan 或 tan
或 tan
2 1 cos
2 sin
可避开符号的讨论 .
③若角α的倍角 2α是特殊角,则可用半角公式求α的函数值,以α为桥梁,可把
的函数值连在一起 .
知识点二 积化和差公式的应用
例 4 求下列各式的值:
5 (1) cos sin ; (2)2cos50° cos70° -cos20° .
12 12
5
15
1
3
.
2
24
(2)原式 =cos(50° +70° )+cos(50°-70° )-cos20°
1
=cos120°+cos20° -cos20° =cos120°=-cos60° = .
2
31
例 5 求证: (1)sin80°cos40° =
sin 40 ;
42
11
(2)sin37.5° sin22.5° = + cos15° .
( 2 3) .
例 2 求 cos , tan 的值 . 8 12
2
解: 由于 cos2
1 cos 1
4
2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2三角函数化简及恒等变换一、选择题:每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【四川省绵阳市2020届高三上期第一次诊断性考试数学(理)试题】 函数)0)(6sin()(>+=w wx x f π在⎪⎭⎫⎝⎛22-ππ,上单调递增,且图像关于π-=x 对称,则w 的值为( ) A.32 B.35 C.2 D.38【答案】A 【解析】函数)0)(6sin()(>+=w wx x f π的递增区间)(22622-Z k k x k ∈+≤+≤+πππωππ,化简得:).(23232-Z k k x k ∈+≤≤+ωπωπωπωπ已知在⎪⎭⎫ ⎝⎛22-ππ,单增,所以.320.232-32-<<⇒⎪⎩⎪⎨⎧≥≤ωπωππωπ,又因为图像关于π-=x 对称,).(26Z k k x ∈+=+πππω所以)(3Z k k w ∈--=π.因为0>ω此时k=-1,所以32=ω 【方法总结】此题考查三角函数的对称轴和单调区间,涉及在知识的交叉点命题思路,这是高考命题的思路。
题目综合性强,需要逆向思维。
题目属于中等难度。
2. 【湖北省华中师大一附中2017级高三上学期理科数学期中考试试题】已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图像如右图所示,且(,1),(,1)2A B ππ-,则ϕ的值为 ( )A.56πB.6πC. 56π-D. 6π- 【答案】C【解析】由已知得:1,2==ωπT ,图像经过(,1),(,1)2A B ππ-65-πϕ=3. 【2019-2020学年秋季鄂东南省级示范高中教育教学改革联盟学校高三年级上学期期中考试理科数学】已知将函数()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则π3f ⎛⎫= ⎪⎝⎭( )A .BC .12-D .12【答案】A【解析】()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x []ϕ32cos +=x ,因为()g x 的图象关于原点对称,所以[]030cos )0(=+=ϕg ,所以6πϕ=,π3f ⎛⎫= ⎪⎝⎭23)362(cos -=+⨯ππ .4.【2019·四川棠湖中学开学考试】在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得到向量OQ →,则点Q的坐标是( )A.(-72,-2)B. (-72, 2)C.(-46,-2)D.(-46,2) 【答案】 A【解析】 因为点O (0,0),P (6,8),所以OP →=(6,8), 设OP →=(10cos θ,10sin θ),则cos θ=35,sin θ=45,因为向量OP →绕点O 按逆时针方向旋转3π4后得到OQ →,设Q (x ,y ),则x =10cos ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫cos θcos 3π4-sin θsin 3π4=-72, y =10sin ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫sin θcos 3π4+cos θsin 3π4=-2, 所以点Q 的坐标为()-72,-2,故选A.5.函数()2π2cos cos 26f x x x ⎛⎫=+- ⎪⎝⎭图象的一条对称轴方程为( )A .π6x =B .π4x =C .π3x =D .π2x = 【答案】A【解析】∵()2ππ2cos cos 21sin 266f x x x x ⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭,∴ππ2π62x k +=+(k ∈Z ),∴ππ26k x =+(k ∈Z ),当k =0时,π6x =.6. 【2019山东济南月考】M ,则下列结论中正确的是( )A .图象MB .将2sin2y x =MC .图象MD .()f x 【答案】C【解析】将2sin 2y x =的图象向左平移,故B 错;()f x D 错;M A 错误,C 正确,故选C .7.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.7. 【安徽省定远中学2019届高三全国高考猜题预测卷一数学试题】函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( )A .5π3B .2πC .7π6D .π【答案】B【解析】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =. 又[]π,2πx ∈-,所以2x π=-或32x π=或π6x =或5π6x =, 所以函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象交点的横坐标的和为π3ππ5π2π2266-+++=. 故选B.【名师点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.求解时,根据两个函数相等,求出所有交点的横坐标,然后求和即可. 8. 【广东省韶关市2019届高考模拟测试(4月)数学文试题】 已知函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2,将函数图象向左平移6π个单位得到函数()g x 的图象,则()g x =( ) A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2, 则π22T =, 解得:πT =, 所以2ππω=,解得2ω=,将函数π()sin(2)6f x x =+的图象向左平移6π个单位,得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象, 故选C .【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.求解时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果. 9. 【山东省栖霞市2019届高三高考模拟卷数学理)试题】将函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=-⎪⎝⎭, ()g x 的最大值为2,可知A 错误; ()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误; 当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 本题正确选项为D.【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.10【湖南省岳阳市第一中学2019届高三第一次模拟(5月)数学试题】设函数π()sin 6f x x ⎛⎫=- ⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为( )A .π6B .π2C .7π6D .π【答案】B【解析】当5ππ,62α⎡⎤∈--⎢⎥⎣⎦时,有π2π,63πα⎡⎤-∈--⎢⎥⎣⎦,所以()[f α∈. 在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()[0,]2f f βα=-∈. []πππ0,,[,]666m m ββ∈-∈--,所以ππ2ππ5π[,),[,)63326m m -∈∈. 故选B.【名师点睛】本题主要考查了三角函数的图象和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.求解时,先求()[f α∈,再由存在唯一确定的β,使得()()[0,2f f βα=-∈,得ππ2π[,)633m -∈,从而得解. 10. 【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】已知函数()cos f x x x ωω=+(>0)ω的零点构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π6个单位,得到函数()g x 的图象,关于函数()g x ,下列说法正确的是( ) A .在[,]42ππ上是增函数 B .其图象关于π4x =-对称C .函数()g x 是奇函数D .在区间π2π[,]63上的值域为[−2,1]【答案】D【解析】()cos f x x x ωω=+可变形为π()2sin()6f x x ω=+,因为()y f x =的零点构成一个公差为π2的等差数列,所以()y f x =的周期为π, 故2ππω=,解得2ω=,所以π()2sin(2)6f x x =+,函数()f x 的图象沿x 轴向左平移π6个单位后得到()()22sin[()]sin()cos(22)222x g f x x x x ++===++=πππ666π,选项A :222,k x k k -+≤≤∈πππZ ,解得:k x k k 2-+≤≤∈πππ,Z , 即函数()y g x =的增区间为π[π,π],2k k k -+∈Z ,显然π[,][π,π]422k k ππ⊄-+,故选项A 错误; 选项B :令2π,x k k =∈Z ,解得:k x k 2=∈π,Z ,即函数()y g x =的对称轴为k x k 2=∈π,Z , 不论k 取何值,对称轴都取不到π4x =,所以选项B 错误; 选项C :()y g x =的定义域为R ,因为2cos02(00)g ==≠,所以函数()y g x =不是奇函数,故选项C 错误;选项D :当π2π[,]63x ∈时,故42[,]33x ∈ππ,根据余弦函数图象可得,2cos(2[)2(),1]x g x ∈-=,故选项故本题应选D.【名师点睛】本题考查了三角函数的图象与性质,考查了图象平移的规则,整体法思想是解决本题的思想方法.根据()y f x =的零点构成一个公差为π2的等差数列可得函数()y f x =的周期,从而得出函数()y f x =的解析式,沿x 轴向左平移π6个单位,便可得到函数()g x 的解析式,由()y g x =的解析式逐项判断选项的正确与否即可.11.【2019全国Ⅲ理12】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是( )A . ①④B . ②③C . ①②③D . ①③④ 【答案】D【解析】 当[0,2]x ∈π时,,2555x ωωπππ⎡⎤+∈π+⎢⎥⎣⎦, 因为()f x 在[0,2]π有且仅有5个零点,所以5265ωπππ+<π„, 所以1229510ω<„,故④正确, 因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当(0,)10x π∈时,(2),5510x ωωππ+π⎡⎤+∈⎢⎥⎣⎦,若()f x 在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ω+ππ<,即3ω<,因为1229510ω<„,故③正确.12.【2019天津理7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫=⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( ) A.2-B.D.2 【答案】C【解析】 因为()f x 是奇函数,所以0ϕ=,()sin f x A x ω=.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,即()1sin 2g x A x ω⎛⎫= ⎪⎝⎭,因为()g x 的最小正周期为2π,所以2212ωπ=π,得2ω=, 所以()sin g x A x =,()sin 2f x A x =.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =, 所以()2sin 2f x x =,332sin 22sin 2884f ππ3π⎛⎫⎛⎫=⨯=== ⎪ ⎪⎝⎭⎝⎭故选C .13.将函数()2cos2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( ) A .,32ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C.,63ππ⎡⎤⎢⎥⎣⎦ D .3,48ππ⎡⎤⎢⎥⎣⎦【答案】A14.若将函数()sin2cos2f x x x =+的图象向左平移()0ϕϕ>个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4π B. 8π C. 38π D. 58π 【答案】B【解析】函数()sin2cos22sin 24f x x x x π⎛⎫=+=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位,得到2sin 224y x πϕ⎛⎫=++ ⎪⎝⎭ 图象关于y 轴对称,即()242k k Z ππϕπ+=+∈,解得1=28k πϕπ+,又0ϕ>,当0k =时, ϕ的最小值为8π,故选B. 15. 【2019四川遂宁、广安、眉山、内江四高三上学期第一次联考】已知不等式262sin cos 6cos 0444x x x m +--≥对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是( )A .(,2⎤-∞-⎦B .2,2⎛⎤-∞ ⎥ ⎝⎦ C .2,22⎡⎤⎢⎥⎣ D .)2,⎡+∞⎣ 【答案】B【点评】解决恒成立问题的关键是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()f x 的最小值大于A ;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()f x 最大值小于B . 16.已知实数,x y 满足221x y +=,则()()11xy xy -+有( )A .最小值21和最大值1B .最小值43和最大值1 C .最小值21和最大值43D .最小值1,无最大值【答案】B【解析】由221x y +=,可设cos ,sin x y θθ== ,则()()11xy xy -+=111sin 21sin 222θθ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭2131sin 2,144θ⎡⎤=-∈⎢⎥⎣⎦,故选B 17.【四川省成都市成都第七中学万达学校高2020届高三(上)第一次月考数学(文科)试题】定义在⎪⎭⎫⎝⎛20π,上的函数)(x f y =满足:x x f x f tan )()('>恒成立,则下列不等式中成立的是( )A .)3()6(3ππf f > B .1sin )3(332)1(πf f >C .)4()6(2ππf f >D .)3(2)4(3ππf f > 【答案】A【解析】分析:x x f x f tan )()('>⇒0tan )(-)('>x x f x f ⇒0)(sinx -)(cos '>x f x xf ,故此构造函数)(sin x f x x F =)(,)(x F 在⎪⎭⎫ ⎝⎛20π,上上增函数。