人口增长模型的确定
人口增长模型有哪些【中国人口模型】
表二
而平均相对误差=0.009587
(2)求出原始数据平均值,残差平均值:
其中,
运用Excel求得:,
(3)求出原始数据方差与残差方差的均方差比值C和小误差概率p:
其中,
,
计算可得:,,,p=0.96
通常、、C值越小,p值越大,则模型的精度越好。若
0.95,则模型精度为一级.观察数据可知该模型为一级模型。有很高的信任度。Ⅱ模型二的结果的分析:
.分别令,
, .那么有
. (式七)
(式八)
(式九)
式十)
(式十一)
(
在社会稳定的前提下,生育率和死亡率都比较稳定,从而可以视A(t),B(t)为常矩阵A,B,则上式可化为
.
为了便于处理数据,我们采常矩阵的改进莱斯利模型,但由于矩阵A,B的维数过大,所以将具体的
--以及
--置于附录,相应的A(t)和B(t)也同样在附录。
人口指数:(1)人口总数
(2)平均年龄
(3)平均寿命
(4)老龄化指数
Байду номын сангаас依据这个模型不仅可以求出人口总数,还可以求出平均年龄、平均寿命及老龄化指数等众多量。子模型一:生育模型
若k(r,t)p(r,t)个妇女中t年代平均每年生育孩子数为整个育龄期间的妇女单位时间(t年代)生育孩子数为
数学建模 之 人口模型
数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
数学应用典型案例模型1马尔萨斯人口增长(指数增长)模型
xc e hx
C
其中 C 为任意常数,可由初始条件确定。
捕食----被捕食模型有着广泛的应用。当一个包含两个群体的系统中,只要
两个群体相互依存、相互制约,均可用捕食----被捕食模型来描述。例如,鲨鱼
与食用鱼、寄生虫与其宿主、害虫与其天敌、肿瘤细胞与正常细胞等都可用该模
型来描述。下图表明了狐狸----野兔(数量)随着时间 t 所发生的周而复始的变
化,正是这种变化维持着该系统的生态平衡。
在狐狸----野兔生态系统中,生态系统的平衡点就是使 dx 0, dy 0 的点。 dt dt
即
a byx 0 c hxy 0
(3-2)
只求非零解,可知平衡点为: x c , y a 。也就是说,当野兔数量保持在 c ,
设人类生存空间及可利用资源(食物、水、空气)等环境因素所能容纳的最 大人口容量为 K(称为饱和系数).人口数量 N(t)的增长速率不仅与现有人口 数量成正比,而且还与人口尚未实现的部分(相对最大容量 K 而言)所占比例 K N 成比例,比例系数为固有增长率 r.于是,修改后的模型为
K
dN
hb
h
狐狸数量保持在 a 时,就能维持狐狸----野兔生态系统的平衡。 b
图 3-2
例 狐狸----野兔模型为
dx dt
0.03x
0.001xy
dy dt
0.9 y 0.002xy
(3-3)
试问:狐狸、野兔的数目各为多少时,该系统才达到平衡?
解:由 dx 0 ,得 y狐狸 0.03 3(0 只);
模型 3 捕食——被捕食模型 所用知识:微分方程组 内容介绍:
美国人口增长预测模型
2016年数学建模论文第一套论文题目:人口增长模型的确定组别:第35组姓名:耿晨闫思娜王强提交日期:2016年7月4日题目:美国人口增长预测模型摘要本文根据近两个世纪美国每十年一次的人口统计数据,建立了指数增长模型,即Malthus模型,并通过1790-1890年的数据验证了它的准确性。
但是,随着时间的推移,拟合函数与统计数据误差逐渐增大,所以,又建立了阻滞增长模型,即Logistic模型,这个模型的拟合函数与统计数据误差较小,并用该模型对美国未来几年的人口做出了预测。
总体来说,阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。
关键词:指数增长模型,阻滞增长模型,人口预测一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示。
表1:人口记录表1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。
3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。
二、问题分析影响人口增长的因素很多,其中最主要的两个因素是出生率和死亡率。
出生率受到婴儿死亡率、对避孕的态度及措施效果、对堕胎的态度、怀孕期间的健康护理等因素的影响;死亡率则受到卫生设施与公共卫生状况、战争、污染、医疗水平、饮食习惯、心理压力和焦虑等因素的影响。
此外,影响人口在一个地区增长的因素还有迁入和迁出、生存空间的限制、水和食物、疾病等。
在这些因素中,有些是常态的或者有规律的,这些因素对人口的增长是恒定的;而有些因素是随机的,对人口的增长是没有规律的。
因此,当大范围、长时期研究人口增长问题时,对人口增长产生影响的随机因素就不在考虑了。
建立该模型的目的是要能通过模型预测美国后来每十年的人口数具体变化,并与实际的数据进行对比,看误差的大小。
人口指数增长模型
《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期:2009 年 4 月22 日实验报告日期:2009 年 4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到"地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在——或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程——这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑.一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
人口增长问题数学模型
人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。
为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。
下面是一个简单的人口增长问题数学模型的示例。
假设人口数量为P(t),时间t为以年为单位。
则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。
这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。
然而,实际情况要复杂得多。
以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。
这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。
除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。
这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。
例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。
建立数学模型有助于我们更好地理解和预测人口增长趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。
此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。
然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。
因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。
总之,数学模型是研究人口增长问题的重要工具之一。
通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。
人口增长模型
一、 人口增长模型: 1. 问题下表列出了中国1982—1998年的人口统计数据,取1982年为起始年(t=0),…人口自然增长率14%,以36亿作为我国的人口容纳量,是建立一个较好的数学模型并给出相从图中我们可以看到人口数在1982—1998年是呈增长趋势的,而且我们很容易发现上述图像和我们学过指数函数的图像有很大的相似性,所以我们很自然想到建立指数模型,但是指数模型有个不妥之处就是没有考虑社会因素的,即资源的有限性,也就是人口不可能无限制的增长,所以有必要改进模型,这里我们假设人口增长率随人口增加而呈线性递减,从而建立起比较优越阻滞增长模型 模型一:指数增长模型(马尔萨斯模型)1.假设:人口增长率r 是常数.2.建立模型:记时刻t=0时人口数为0X ,时刻t 的人口为X (t ),由于量大,X (t )可以视为连续、可微函数,t 到t+t ∆时间段人口的增量为:)()()(t rX tt X t t X =∆-∆+于是X (t )满足微分方程:)1()0(0⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==X X rX dt dx3.模型求解:解得微分方程(1)得: X (t )=0X )(0t t r e- (2)表明:t ∞−→−时,t X )0.(>∞−→−r . 4.模型的参数估计要用模型2对人口进行预报,必须对其中的参数r 进行估计,这可以用表1通过Matlab 拟合: 程序:x=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 19971998]';X=[ones(17,1),x]Y=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]';[b,bint,r,rint,stats]=regress(Y,X); %回归分析b,bint,stats%输出这些值rcoplot(r,rint);%画出残差及其置信区间z=b(1)+b(2)*x;plot(x,Y,'k+',x,z,'r'),%预测及作图运行结果:b =1.0e+006 *-2.84470.0015bint =1.0e+006 *-2.9381 -2.75130.0014 0.0015stats =1.0e+005 *0.0000 0.0455 0 1.9800图1各数据点及回归方程的图形 即回归模型为:y=-2844700+1500x从上图可用看出拟和得效果比较好。
马尔萨斯人口增长
2015年数学建模论文第二套题目:人口增长模型的确定专业、姓名:自动化强晓鹏提交日期:2015.7.3题目:人口增长模型的确定摘要人口预测是制定正确的人口政策的科学依据。
预测人口增长的数学模型通常采用 3 种函数 ,即指数函数、Logistic函数和双曲函数[5]。
3种模型的数学根源都在于二阶 Bernoulli 式微分方程。
文章用matlab等软件对美国1790-1980年的人口数据情况进行研究和处理,得到其人口增长所符合的不同模型结果,并探讨是否预测合理。
同时,根据走势预测了之后几十年的人口总数。
为控制人口发展提供了可靠依据。
关键词:美国人口模型matlab 马尔萨斯模型logistic模型一、问题重述:图表中给出的是1790-1980年间美国每隔10年的人口记录情况,从表中可以看出美国人口基本呈增长趋势。
由此,1.将表中的数据进行处理建立马尔萨斯(Malthus)人口指数增长模型。
2.进行分析预测接下来每隔十年的五次人口数量。
3.查阅实际数据与预测的数据进行对比。
4.马尔萨斯指数增长模型是否合理,尝试采用其他模型进行分析。
二、问题分析:首先,我们用matlab软件进行编程(见附录1),绘制出1790-1980年美国人口数据图,如图1。
图1. 1790-1890年美国人口增长数据图从图1可以看出1790年到1980年的人口是呈增长的趋势的,而且类似指数增长。
马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比,其数学模型为dx(t)=rx(t)dt=x0(1)x(t0)其中r为常数。
则方程组(1)的的解为x t=x0e r(t−t0)(2)由此可看出,马尔萨斯生物总数增长定律指出任何生物都是随时间按指数方式增长的。
在此意义下,马尔萨斯方程(1)又称指数增长模型。
人作为特殊的生物总群,人口的增长也应满足马尔萨斯生物总数增长定律,此时的(1)式称为马尔萨斯人口方程。
人口指数增长模型
《数学模型》实验报告实验名称:如何预报人口的增长成绩:____________实验日期:2009年4月22日实验报告日期:2009年4月26日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到”地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义•本节介绍几个经典的人口模型•3.3.1模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1)模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2)模型建立及求解据模型假设,在t到时间内人口数的增长量为5两端除以,得到5即,单位时间人口的增长量与当时的人口数成正比令,就可以写出下面的微分方程:5如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得5两端积分,并结合初值条件得显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3)模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正•图3-24)模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的•这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的•人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.3.3.2模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在一一或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1)模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2)模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t)的减函数,特别是当P(t)达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令用代替指数增长模型中的导出如下微分方程模型:⑵这是一个Bernoulli方程的初值问题,其解为在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic 模型).其图形如图3-3所示.图3-33)模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4)模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线. 但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程一一这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑•、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
【数学建模】人口增长Leslie模型
【数学建模】⼈⼝增长Leslie模型问题分析· ⽤数学建模预测⼈⼝增长的⽅法:差分⽅程、微分⽅程、回归分析、时间序列等.· 结合所给数据以差分⽅程组的Leslie模型为基础.· 考虑不同地区、不同性别⼈⼝参数的差别及农村⼈⼝向城市迁移等因素.· 按照地区和性别建⽴以时间和年龄为基本变量的中国⼈⼝增长模型.· 利⽤历史数据估计⽣育率、死亡率及⼈⼝迁移等参数,代⼊模型求解并作预测.模型假设·中国⼈⼝是封闭系统, 将数据中的市、镇合并为城市, 与农村(乡)作为两个地区; 只考虑农村向城市⼈⼝的单向迁移, 不考虑与境外的相互移民.· 对中短期⼈⼝预测, ⽣育率、死亡率及⼈⼝迁移等参数⽤历史数据估计; 长期预测考虑总和⽣育率的控制、城镇化指数的变化趋势等因素.· ⼥性每胎⽣育⼀个⼦⼥.模型建⽴按地区和性别划分、以年龄为离散变量、随时段演变的⼈⼝发展模型,为4n阶差分⽅程组.参数估计存活率的估计死亡率与年龄关系⼤, 与地区、性别和时间的关系⼩.中国⼏⼗年来死亡率降低较快, 未来趋势仍持续下降.中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的死亡率简单地取平均值.长期预测:⽤统计⽅法对历史数据加以处理,并参考发达国家⼈⼝死亡率的演变过程给出估计值.⽣育率的估计中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的⽣育率简单地取平均值.长期预测:设定⼏个不同⽔平的总和⽣育率.⼈⼝迁移的估计模型求解选定初始年份⽤⼈⼝发展模型递推计算MATLAB实现clc;%初始化,设置各种参数和初始⼈数矩阵x = [206.46422.50478.72229.9253.44]';%x0⼥性各阶段⼈数%x0 = x .*0.4988x0 = [102.9822210.7430238.7855114.684126.6559]';%H为状态转移矩阵,其实是存活矩阵H = zeros(5,5);H(2)=0.88; H(8)=0.97; H(14)=0.86; H(20)=0.22;%B是⽣育矩阵,即各个年龄段妇⼥的⽣育率B = [020.300];for n =1:1:5%y是x之下⼀年的⼈⼝数⽬,尚不包括迁移⼈数和1岁的⼈数y = H*x;%y(1)是下⼀年1岁的⼈⼝数⽬,即今年刚出⽣的⼈y(1)= B*x0;%g是迁移⼈数,也得按照年龄⽐例来存储数据g = [301201202010]';%迁移⼈数加到y上y = y + g;%求与y对应的年份的各个年龄段妇⼥⼈数%包括x0中存活下来的,迁移的⼀部分,第⼀时间段为刚出⽣的⼥性⼈数 y0 = zeros(5,1);y0(1)= y(1)/2;%或y(1)乘以⼥婴占总男⼥婴的⽐例for i=1:1:4y0(i+1)= x0(i)*H(i+1+5*(i-1));endg0 = g ./2;y0 = y0 + g0;%g0为迁移过来的各个年龄段的⼥性⼈数disp(2008+n*20)zong = y'nv = y0'x = y;x0 = y0;end%⾃此,则完成了⼀轮的计算%要预测更多,只需要循环计算以上步骤即可。
中国人口增长预测模型
三、问题的假设
① 不考虑机械增长率(如国际人口的迁入迁 出)对我国总人口的影响;
② 年龄在90及以上的,即90一行的数据 一律按
年龄为90来处理; ③ 调查数据是在全国随机调查所得的数据; ④ 在模型Ⅱ中不考虑出生率、死亡率随时间的变
bj (r,t) dij (r,t)
p(r,t)
第t年第j地区r岁人口中的妇女的生育率; 第t年第j地区r岁人口中的第i种性别的死亡率; 第t年r岁人口占第t年总人口的比例,即人口随年龄的分布密度函数;
h(r,t) 第t年r岁死亡人口占第t年r岁总人口的比例,即死亡率随年龄的分布密
度函数;
02?r622模型的建立621中已拟合出死亡率随年龄的分布密度函数hr生育率随年龄的分布密度函数fr及2001年人口随年龄的分布密度函数pr1根据假设frhr不随时间t变化prt是一个与时间有关的函数第t年r岁的人口为第t1年r1岁的人口转变而来而且可以认为p0t为t1年新出生的人口数即490r?????151rftrptp90岁以上含90的人口p90t为t1年89岁转变而来以及90岁以上未死亡的人数之和即89118990htptp????89118990htptp????故prt是一个分段函数90901?1?1?1?9090hhttpp?????????????????????????h?????????p9090119089118989111110r14915rhtptprrhtrrftrptrpr那么第t年的的人口增长量为总出生人口总死亡人口故建立模型如下
郑州大学 李兰 徐云辉 宋晓磊
中国人口增长模型预测
一、摘要 二、问题的重述 三、问题的假设 四、符号约定 五、问题的分析 六、模型的建立 七、模型的优化方向 八、模型的评价与推广 九、参考文献 十、附录
《人口增长模型》课件
周期性
人口增长呈现一定的周期 性,受经济、社会和政策 等因素影响。
人口增长的影响因素
自然增长率
出生率和死亡率的变化对 人口增长有直接影响。
迁入率和迁出率
迁入和迁出人口的数量对 地区人口增长有重要影响 。
政策因素
政府政策对生育、移民和 人口控制等方面具有重要 影响。
人口增长模型的分类
指数增长模型
01
通过模型模拟不同的人口政策效果, 为政府制定计划生育、移民政策等提 供科学依据。
分析人口变化原因
模型可以帮助我们了解影响人口增长 的各种因素,如生育率、死亡率、移 民等。
02
人口增长模型的基本概念
人口增长的特性
01
02
03
连续性
人口增长是连续的过程, 随着时间的推移不断变化 。
不确定性
人口增长受到多种因素的 影响,具有不确定性。
假设人口数量与时间 呈线性关系,即人口 数量随时间增长而呈 等比增加。
假设人口增长率是常 数,即不受时间、环 境等因素的影响。
模型建立
指数增长模型的一般形式为 (N(t) = N_0 e^{rt}),其中 (N(t)) 表示在时 间 (t) 的人口数量,(N_0) 表示初始人口数量,(r) 表示人口增长率。
05
阻滞增长模型(Logistic模型 )
模型假设
假设种群增长存在环境最大容 量,即当种群数量达到环境最 大容量时,种群增长速度将减 缓。
假设种群增长受环境阻力影响 ,种群增长率随种群数量增加 而降低。
假设种群增长是连续的过程, 不受时间步长限制。
模型建立
01
(N)((t)):种群数量
02
(K):环境最大容量
人口增长 连续模型
显然,这些数字说明马尔萨斯人口模型对长期的 预测是不正确的. 由上可以看出,马尔萨斯人口增长模型对17001961年的人口总数是对的,但对未来的人口总数预 测不正确,应予以修正.
二、logistic模型(阻滞增长模型)
由上面分析,马尔萨斯人口模型对1700-1961年 间人口总数的检验是对的,而未来的人口总数预测 又是错的,原因何在?
由此得:Logistic模型 dx r (1 x ) x dt xm x(t ) | x t t0 0
x( t ) ) 体现了对人口增长的阻滞作用. 因子 (1 xm
( 6)
8
解之得:x ( t )
xm xm r ( t t0 ) 1 ( 1)e x0
6
产生上述现象的主要原因是:随着人口的增加, 自然资源,环境条件等因素对人口继续增长的阻滞 作用越来越显著.如果当人口较少时(相对于资源而 言),人口增长率还可以看作常数的话,那么当人口增 加到一定数量后,增长率就会随着人口的继续增加 而逐渐减少,许多国家人口增长的实际情况完全证 实了这一点. 看来为了使人口预报,特别是长期预报更好地符 合实际情况,必须修改指数增长模型关于人口增长率 是常数这个基本假设.
dx r ( t , x( t )) x( t ) dt (1)
我们将逐步深入讨论上面这个模型
3
一,马尔萨斯(malthus)模型(指数增长模型)
英国人口学家马尔萨斯(1766—1834)根据百余 年的人口统计资料,于1798年提出了著名的人口指数 增长模型. 基本假设 人口增长率是常数, 或者说,单位时间内人口的增长量与当时人口成正比. 在(1)式中令 r (t , x(t )) =r(常数) 得 dx(t ) r x( t ) (2) dt x ( t ) t t x0
人口增长的Logistic模型分析及其应用资料讲解
人口增长的L o g i s t i c模型分析及其应用人口增长的Logistic模型分析及其应用作者:熊波来源:《商业时代》2008年第27期◆中图分类号:C923 文献标识码:A内容摘要:本文运用迭代的方法计算出人口极限值xm和人口增长率r,用 Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。
关键词:人口 Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。
这个模型的基本假设是:人口的增长率是一个常数。
记t时刻的人口总数为x(t)。
初始时刻t=0时的人口为x0。
人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。
那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。
于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。
在r>0时,人口将按指数规律增长。
但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。
然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。
历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。
原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。
基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。
这个模型假设增长率r是人口的函数,它随着x的增加而减少。
最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。
由r(x)的表达式可知,x=xm时r=0。
xm表示自然资源条件能容纳的最大人口数。
人口统计学中的人口增长与衰退模型
人口统计学中的人口增长与衰退模型人口统计学是研究人口变化规律、数量结构和特征的学科。
人口增长与衰退是其中的一个重要方面。
人口增长模型和衰退模型针对的是不同的人口现象,在研究时需要有相应的数据支撑,下面将介绍其基本定义以及一些常见的模型。
一、人口增长模型人口增长是指人口数量随时间的增加,包括自然增长和外部因素的影响。
自然增长是指出生率与死亡率的差异,外部因素则包括移民、战争和疾病等。
人口增长模型主要用来描述人口数量的变化规律,下文将介绍两种常见的模型。
1.1 指数增长模型指数增长模型认为,人口数量增长的速度与当前人口数量成正比,若人口数量为N,增长速度为r,则有:dN/dt = rN其中,dN/dt是人口数量随时间的变化率。
该模型的特点是,随着人口数量的增加,增长速度越来越快,最终可能会造成人口过剩和资源匮乏的问题。
1.2 Logistic增长模型Logistic增长模型是为了避免人口增长过快而提出的模型。
它假设人口数量增长的速度不仅与当前人口数量有关,还与最大承载能力K有关,若人口数量为N,增长速度为r,则有:dN/dt = rN(1-N/K)其中,1-N/K表示剩余生育空间的比例。
随着人口数量的增加,增长速度逐渐减缓,最终趋向于一个稳定的数量。
二、人口衰退模型人口衰退是指人口数量相对稳定或减少的过程,它涉及到出生率、死亡率、迁移率等因素。
人口衰退模型主要用来描述人口数量在长期内的变化趋势,下文将介绍两种常见的模型。
2.1 指数衰退模型指数衰退模型认为,人口数量随时间的减少速度与当前人口数量成正比,若人口数量为N,衰退速度为r,则有:dN/dt = -rN其中,符号“-”表示人口数量减少。
该模型的特点是,随着时间的推移,人口数量减少的速度越来越快,最终可能导致人口不足的问题。
2.2 Logistic衰退模型Logistic衰退模型则是为了避免人口数量减少过快而提出的模型。
它和Logistic增长模型类似,假设人口数量减少的速度不仅与当前人口数量有关,还与最低承载能力K有关,若人口数量为N,衰退速度为r,则有:dN/dt = -rN(N/K-1)其中,N/K-1表示剩余存活空间的比例。
中国人口增长的预测模型
中国人口增长的预测模型摘要:本文研究的是根据中国实际情况,结合近年中国人口发展出现的新特点(老龄化加速、出生人口性别比持续升高以及乡村人口城镇化等),对中国人口的增长趋势做出中短期及长期预测的问题。
首先,我们扩充了中国历年的总人口数据,建立了BP神经网络模型,对中国短、中、长期的人口增长分别做了简单预测;其次借用Logistic人口增长模型,将各种影响人口发展的因素归结到环境的容量因素中,建立了符合中国实际情况的人口增长模型,并编程求解。
之后,我们对宋健人口模型进行了改进,建立了一阶偏微分方程模型,并借用高斯赛德尔迭代法的思想将已预测出的数据加以迭代来预测下一年的数据,使该模型具有更好的时效性,利用 Excel 对所给数据进行统计和筛选,并用 Matlab6.5 编程实现,对中国人口发展进行了预测。
最后我们以改进的宋健模型为基础,将农村人口城镇化的因素纳入考虑范围,提出了人口城镇化影响因子,从而建立了人口城镇化影响因子,从而建立了人口城镇化过程中的人口增长型四。
四种模型均用 Matlab6.5 编程求解。
从四个模型的结果中可以看出:短期预测时,Logistic人口模型预测结果准确,而中长期预测时,偏微分方程更加优越。
在2045年左右,中国人口达到峰值约14.6亿,之后在一个较小的范围内波动。
而城镇人口增长模型和乡村人口增长模型更是从图像上直观地反映出未来中国人口发展的趋势,先是缓慢上升,到2040年左右人口达到一个最大值14.5亿,之后人口缓慢下降,到2080年时,中国人口约为11.1亿。
模型四最能刻划我国人口发展趋势的特点。
本文的四种模型相互印证,相互补充,其中改进后的微分方程模型能推广用于多因素影响的预测问题。
而模型四更是很好的描述了中国在城市化进程中的人口发展趋势,该模型不仅适用于中国,也同时适用与所有处于城市化阶段的发展中国家,有一定的创新。
关键词:人口预测神经网络 Logistic 人口增长模型宋健人口模型偏微分方程人口城镇化1 问题重述(略)2 模型假设1)将出生人口数、死亡人口数、老龄化、人口迁移以及性别比作为衡量人口状态变化的全部因素,不再考虑其他方面对人口状态的影响;(2)所有表征和影响人口变化的因素都是在整个社会人口的平均意义下确定的;(3)人口死亡率函数只依赖于各个年龄段,而与时间的流逝无关,即针对同一年龄段,假设人口死亡率在各个年份是相同的3 符号说明4 问题分析对于我国这样的人口大国来说,人口问题始终是制约我们经济、文化等各方面发展的重要因素。
人口增长模型
x (0) x (0) (1), x (0) (2), x (0) (3), , x (0) (n)
x
1
x (1), x (2), x (3), , x (n)
(1) (1) (1) (1)
x 1 的紧邻均值生成序列 (2) 确定
Z 1 z (1) (1), z (1) (2), z (1) (3), , z (1) ( n)
指标 维度
a
5维(2006-2010) 0.005776%
c
0.0045
P
1
6维(2005-2010)
0.011580%
0.0103
1
7维(2004-2010)
0.012183%
0.0086
1
8维(2003-2010)
0.025345%
0.0145
1
9维(2002-2010)
0.036936%
0.0170
x(t t ) x(t ) rx(t )t
dx rx dt x(0) x0
令t 0得
求解得 x x0e
rt
阻滞增长模型(Logistic模型)(姜启源)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
则第k+1年按年龄人数分布向量递推公式为:
N (k 1) LN (k )
1 短期预测模型 模型一:灰色GM(1.1)模型,选择最 佳维度来建立模型进行预测 模型二:采用新陈代谢灰色GM(1.1) 建模,并与模型一作对比,最后选择最 佳的5维新陈代谢灰色GM(1.1)来预测人 口数,并对结果进行了验证和分析。
人口增长模型的确定
人口增长模型的确定 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT题目:人口增长模型的确定摘要人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。
本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。
通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。
关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测一、问题重述问题背景1790-1980年间美国每隔10年的人口记录如下表所示。
表1 人口记录表问题提出我们需要解决以下问题:1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。
3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。
二、问题分析首先,我们运用Matlab软件绘制出1790到1980年的美国人口数据图,如图1。
图1 1790到1980年的美国人口数据图从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。
因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。
三、问题假设为简化问题,我们做出如下假设:(1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响;(2)所给出的数据具有代表性,能够反映普遍情况;(3)一段时间内我国人口死亡率不发生大的波动;(4)在查阅的资料与文献中,所得数据可信;(5)假设人口净增长率为常数。
人口模型
r2
f (t ) (t ) h(r , t )k (r , t ) p(r , t )dr.
r1
r2
r1
(4)
从上面可以看出, (t )的直接含义是 t时刻平均每个育龄女性 单位 时间内的生育数 , 也可以理解为平均每个 女性一生的总和生育数 或生育胎次.h(r , t )是年龄为 r为女性的生育加权因子 , 称生育模式.
F (0, t ) 0, F (rm , t ) N (t ).
定义人口密度函数为 p( r , t ) F lim F ( r r , t ) F ( r , t ) .
r
r 0
r
F (r dr, t ) F (r , t ) p(r , t )dr
(2)
( s ) ds p0 ( r t ) e , 0t r p(r , t ) ( s ) ds , tr f (t r )e
r r t r 0
(3)
r
p0 ( r t )e
r t
( s ) ds
r
解释
f (t r )e人口指数 Nhomakorabea通俗的一些人口数据更容易被接受,它们能 够反映人口的一些基本特征.我们来看看.
1.人口总数N(t):
2.平均年龄R(t):
R (t ) rp (r , t )dr / N (t )
0
rm
3.平均寿命S(t): 它表示时刻t出生的人不论活到什么时候, 死亡率都按时刻t的μ(r,t)计算,于是 t
f (t ) b(r , t )k (r , t ) p(r , t )dr,再将b(r , t )定义 为 b(r , t ) (t )h(r , t ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人口增长模型的确定 Prepared on 22 November 2020题目:人口增长模型的确定摘要人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。
本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。
通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。
关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测一、问题重述问题背景1790-1980年间美国每隔10年的人口记录如下表所示。
表1 人口记录表问题提出我们需要解决以下问题:1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。
3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。
二、问题分析首先,我们运用Matlab软件绘制出1790到1980年的美国人口数据图,如图1。
图1 1790到1980年的美国人口数据图从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。
因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。
三、问题假设为简化问题,我们做出如下假设:(1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响;(2)所给出的数据具有代表性,能够反映普遍情况;(3)一段时间内我国人口死亡率不发生大的波动;(4)在查阅的资料与文献中,所得数据可信;(5)假设人口净增长率为常数。
四、变量说明在此,对本文所使用的符号进行定义。
表2 变量说明符号符号说明N(0) 起始年人口容纳量N(t) t年后人口容纳量t 年份r 增长率五、模型建立问题一:马尔萨斯(Malthus)人口指数增长模型设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。
当考察一个国家或一个很大地区的人口时,N(t)是很大的整数。
为了利用微积分这一数学工具,将N(t)视为连续、可微函数。
记初始时刻(t=0)的人口为N(0),人口增长率为r,r是单位时间内N(t)的增量与N(t)的比例系数。
根据r是常数的基本假设,于是N(t)满足如下的微分方程:dN(t)/dt=r*N(t) (5-1) 由这个线性常系数微分方程容易解出:N(t)=N(0)e rt (5-2) 表明人口将按指数规律无限增长(r>0)。
将以t年为单位,上式表明,人口以e r为公比的等比数列增长。
因为这时r表示年增长率,通常r<<1,所以可用近似关系e r≈1+r可得出N(t)=N(0)(1+r)t (5-3) (5-3)式即人口增长模型。
问题二:改进模型-阻滞增长模型(Logistic模型)自从英国人口学家和政治经济学家托马斯·罗伯特·马尔萨斯1798年发表《人口学原理》后,马尔萨斯(Malthus)人口指数增长模型在世界上引起了轩然大波,并在后来的人口预测中扮演着重要的角色。
但是随着时间的发展,由于现代社会与自然环境的改变,马尔萨斯人口指数增长模型在预测未来人口时,误差可能会比较大。
上述模型对较早时期的统计数据吻合得较好,但也存在问题,即人口是呈指数规律无止境地增长,此时人口的自然增长率随人口的增长而增长,这不可能。
由于社会的快速发展,自然环境遭受严重破坏,人口的高速增长等一系列原因,人口的增长率不能按照马尔萨斯所假设为一个常数r不改变。
一般说来,当人口较少时增长得越来越快,即增长率在变大;人口增长到一定数量以后,增长就会慢下来,即增长率变小这是因为,自然资源、环境条件等因素不允许人口无限制地增长,它们对人口的增长起着阻滞作用,而且随着人口的增加,阻滞作用越来越大。
而且人口最终会饱和,趋于某一个常数x,我们假设人口的净增长率为r(1-x(t)/x),即人口的净增长率随着人口的增长而不断减小,当t 时,净增长率趋于零。
按照这个假设,得到:⎪⎩⎪⎨⎧=-=∞00)())(1(xt x x t x r dt dx (5-4) 这便是荷兰数学家Verhulst 于19世纪中叶提出的阻滞增长模型(Logistic 模型)。
在MATLAB 命令窗口键入 dsolve(‘Dx=r*x*(1-x/c)’,’x(1790)=’) 输出:ans=c/(1+1/39*exp(-r*t)*exp(1790*r)*(10*c-39)) 其中c=x因此,人口的变化规律为:r t e x x x )1790(3910)1(1--∞∞-+=(5-5)问题三模型建立经调查,1790-2010年间中国每隔10年的人口记录如下表所示。
表7 中国人口记录表我们分别应用马尔萨斯人口指数增长模型和Logistic 人口阻滞增长模型来对中国人口进行预测。
六、模型求解问题一模型求解在应用预测模型的过程中考虑到,若要提高预测结果的准确性,就必须增加预测方案的数量,对比各方案的预测值和误差,选取误差最低的一组预测方案。
特别是马尔萨斯模型中,人口增长率r是一定时期内人口增加的综合结果,在预测中它的取值直接关系到预测结果的精度,因此在进行不同阶段的人口预测时根据实际情况对人口增长率r加以分类和处理才能得到理想的预测结果。
本文根据1790-1980年计算美国常住人口每年的增长率,按照人口增长率r 的大小设置了高中低三个方案,以此加强预测结果的对比,提高预测的准确度。
表3 美国每10年自然增长率通过表3可以确定自然增长率高,中,低三个方案。
通过数据分析可得,上述表格为10年的累计增长率,而自然增长率强调一年,所以可近似除以10求得,高方案中自然增长率为,中方案中自然增长率为,低方案中自然增长率为。
依据人口增长率的大小分为高、中、低、三个预测方案,将预测值与实际值进行拟合比较。
图2 r=时马尔萨斯模型曲线拟合图3 r=马尔萨斯模型曲线拟合图4 r=马尔萨斯模型曲线拟合根据上述分析,及曲线拟合可知,取中方案即r=时,马尔萨斯模型更符合实际情况。
因此本文自然增长率取r=来预测美国人口数量并与实际情况对比。
由预测公式预测1790-1980年的人口数量,由指数增长模型可得各个年份的真实值与预测值之间的差别如下表:表4 1790年-1980年美国人口真实值与预测值通过调查得知1990-2010年人口数量统计如下表表5 1990年-2010年美国人口真实值与预测值图5 美国人口真实值与预测值曲线拟合通过上图可以发现,1790-1870指数增长模型确实拟合的比较好,但从1870年开始往后发现误差越来越大,可知指数增长模型只适合于短期的人口预测。
为了生存以及人类的发展,人们自然会采取有效措施来控制人口的过度增长,自然资源、环境资源的条件也限制了人口数量的过度增长。
因此为了使人口预报模型适合长期的发展趋势,更好地符合实际情况,必须修改指数增长模型中关于人口增长率是常数这个基本假设了,这时必将导致更适合人类发展的规律的新数学模型的产生。
问题二模型求解利用MATLAB软件中的“curvefit”命令和式(5-5)来拟合所给的人口统计数据,从而确定出(5-5)中的待定参数r和x。
查阅资料可得r 的初值取为小于1的数,比如取a=[200, ]时,得到a =[ ],y1 =,即(5-5)中的r=, x=,2010年美国的人口预计为百万人。
这个结果还比较合理,当t 趋于无穷时,静增长率趋于零,人口数趋于百万人,即极限人口x=百万百万。
拟合效果见图5。
根据该题已给数据可作如下图形:图6 Logistic 模型拟合曲线从图6可以看出,在前一段吻合得比较图,但在最上面,若拟合曲线更接近原始数据,对将来人口的预测应该更好。
因此略加修改将拟合准则改为:∑∑+==-+-=211212))(())(()(min n i i i ni i i x t f w x t f a E (5-6)其中w 为右端几个点的误差权重,在此处应该取为大于1的数,这样会使右边的拟合误差减小,相应的,其他点的误差会有所增加。
我们要使这些误差的增减恰当,可以通过调整w 和n 的具体取值,比较他们取各种不同值时的拟合效果,从而确定出一个合适的数值。
1) 先取n=17,w=,运行上述程序,得到结果a = [, ]; x1 = .2) 再取n=16,w=2,运行上述程序,得到结果a=[,];x1=.我们把两种情况的拟合曲线画在同一个坐标系中,很容易作出比较,见图6。
第二种情形后半段的变化趋势与原始数据更吻合,因此,对将来人口的预测应该更好。
图7 Logistic 模型优化拟合曲线经过修改,得到了一个较满意的结果,人口增长率r=,极限人口x m =(百万),并预测1990年--2010年美国人口。
通过调查得知1990-2010年人口数量统计如下表表6 1990年-2010年Logistic 模型美国人口真实值与预测值问题三模型求解马尔萨斯(Malthus)人口指数增长模型求解中国人口问题参照问题一,我们来求解中国人口问题。
表8 中国每10年自然增长率同样,取高、中、低三种自然增长率方案,高方案中自然增长率为,中方案中自然增长率为,低方案中自然增长率为。
图8 r=时马尔萨斯模型曲线拟合图9 r=时马尔萨斯模型曲线拟合图10 r=时马尔萨斯模型曲线拟合根据上述分析,及曲线拟合可知,取中方案即r=时,马尔萨斯模型更符合实际情况。
因此本文自然增长率取r=来预测中国人口数量并与实际情况对比。
由预测公式预测1790-1980年的人口数量,由指数增长模型可得各个年份的真实值与预测值之间的差别如下表:表9 1790年-1980年中国人口真实值与预测值通过调查得知1990-2010年人口数量统计如下表表10 1990年-2010年中国人口真实值与预测值图11 中国人口真实值与预测值曲线拟合Matlab中cftool()工具箱求解应用Matlab中cftool()工具箱来进行图像拟合。
图12 cftool工具箱拟合经过不同模型的应用比对,我们发现应用3阶高斯分布可以达到较好的拟合效果,误差相对较小。
此时,a1 = 1002 , 1339)b1 = 1992 (1978, 2006)c1 = ,a2 = ,b2 = 1932 (1907, 1958)c2 = ,a3 = ,b3 = 1837 (1828, 1846)c3 = ,七、结果分析综合做出假设的两种模型与原始数据所描述的图形如下:可以看出,当世界人口总数不大时,生存空间,资源等极充裕,人口总数指数的增长是可能的,但当人口总数非常大时,指数增长的线性模型则不会反映这样的现实。