最新三角形解题技巧及例题整理

合集下载

(完整版)解三角形专题题型归纳

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳、知识点归纳(★☆注重细节,熟记考点☆★)1正弦定理及其变形a sin A变式: b c —— — 2R (R 为三角形外接圆半径)sin B sin C (1 a 2RsinA,b 2Rsin B,c 2RsinC (边化角公式) (2) si nA,si nB ,si nC (角化边公式)2R 2R2R(3 a: b: c sin A:si nB:si nC一、a sin A a sin A b sin Bb sin Bc sin C c sin C2 •正弦定理适用情况:(1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况) 3 •余弦定理及其推论2 22ab c 2bccosAb ac 2accosB 222cab 2abcosC4.余弦定理适用情况: (1)已知两边及夹角;注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作 用),统一成边的形式或角的形式•7. 实际问题中的常用角 (1)仰角和俯角b 22c 2 a2bc222ac b2ac2.22ab c (2)已知三边.5. 常用的三角形面积公式1(1) S ABC 底2 1(2) S 二一 absi nC26. 三角形中常用结论 1 1 acsin B bcsin A 24c R 为ABC 外接圆半径(两边夹一角);(1) a b c, b c (2) 在 ABC 中, A (3) 在 ABC 中,A Ba, a ③ tan A B tanC ;b(即两边之和大于第三边,两边之差小于第三边) b si nA si n B(即大边对大角,大角对大边) ,所以 ① sin A B sinC :② cos A B cosC ;A B C AB. C ④ sin cos ,⑤ cos sin2 2 2 2cos AcosB cosC 2ab在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图 ①)从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为a (如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.,【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.,再逆用正切的差角公式,结合第一问的结论得到3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b A BA A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.c【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sincos sin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC= ,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得11sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:222222cos 13213492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD面积16sin120S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理2sin AC R B ==sin θ==由余弦定理可得:AC ==sin θ∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。

三角形解题技巧及例题

三角形解题技巧及例题

三角形解题口诀及例题角平分线四连线,边垂折叠全等现.垂线要把三线连,平行等腰来构建.垂直平分若出现,线上一点两相连.六十三十四十五,等边直角作三角.要证线段倍与半,延长缩短与直角.两线之和等一线,截长补短试试看.线段和差比大小,三角形中来相见.三角形中有中线,延长中线等中线.中点若与中点见,两点相连中位线1.在△ABC中,AD是△ABC的角平分线,所示,E、F分别是AB、AC上的点,且∠EDF+∠BAC =180°,求证:DE=DF.边垂作全等证明:作DM⊥AB于点M,作DN⊥AC于点N,如右图所示,则∠EMD=∠FND=90°,∵AD平分∠BAC,∴DM=DN,∵∠EDF+∠BAC=180°,∴∠AED+∠AFD=180°,又∵∠DFN+∠AFD=180°,∴∠DEM=∠DFN,在△EMD和△FND中,,∴△EMD≌△FND(AAS),∴DE=DF.2.在△ABC中,AD为△ABC的角平分线.如图,∠C≠90°,如果∠C=2∠B,求证:AB=AC+CD.折叠作全等解:在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在在△AED和△ACD中∴△AED≌△ACD(SAS),∴∠C=∠AED,CD=ED,∵∠C=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB,∴EB=CD,∵AB=AE+EB,∴AB=AC+CD.3.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6, ∵MN ∥BC ,∴∠1=∠5,∠3=∠6, ∴∠1=∠2,∠3=∠4, ∴EO =CO ,FO =CO , ∴OE =OF ;4.如图,在△ABC 中,BC =AC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于点E ,且AE =BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F . ∵AE ⊥BE ,∴∠BEF =90°,又∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠FAC +∠AFC =90°, ∴∠DBC =∠FAC , 在△ACF 和△BCD 中,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又AE =BD ,∴AE =AF =EF ,即点E 是AF 的中点. ∵BE ⊥AF∴DE 是AF 的垂直平分线 ∴AB =BF ,根据等腰三角形三线合一的性质可知:BD 是∠ABC 的角平分线.角平分线与平行于角一边的线构造等腰三角形垂直于角平分线,构造三线合一5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB,AC于点D,E.求证:AE=2CE;有中垂线即向两端连线证明:连接BE.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣30°=60°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;6.如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.60°角找等边三角形解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=8.∴菱形ABCD的周长=4×8=32,∵BO==4,∴BD=2BO=8,∴菱形ABCD的面积=×8×=32.7.如图,△ABC 中,∠B =45°,∠C =60°,AC =10,求边AB 的长.解:作AD ⊥BC 于点D , 在Rt △ADC 中,∠C =60°, ∴∠CAD =30°, ∴CD =AC =5, ∴AD ==5,在Rt △ADB 中,∠B =45°, ∴BD =AD =5,由勾股定理得,AB ===5.8.如图,四边形ABCD 中,AD =4,BC =1,∠A =30°,∠B =90°,∠ADC =120°,求CD 的长.解:延长AD 、BC 交于E , ∵∠A =30°,∠B =90°, ∴∠E =60°, ∵∠ADC =120°, ∴∠EDC =60°, ∴△EDC 是等边三角形, 设CD =CE =DE =x , ∵AD =4,BC =1, ∴2(1+x )=x +4, 解得;x =2,60°角找直角三角形,45°角构造直角30°角找直角三角形∴CD =2.9.如图,△ABC 中,AB =AC =2,∠B =15°,求等腰△ABC 腰上高的值.解:作BD ⊥AC 交CA 的延长线于D , ∵AB =AC ,∠B =15°, ∴∠C =∠B =15°, ∴∠DAB =∠C +∠B =30°, ∴BD =AB =1.10.已知,如图,∠C =90°,∠B =30°,AD 是△ABC 的角平分线.求证:BD =2CD ;解:如图,过D 作DE ⊥AB 于E , ∵∠C =90°,AD 是△ABC 的角平分线, ∴DE =CD , 又∵∠B =30°,∴Rt △BDE 中,DE =BD , ∴BD =2DE =2CD ;11.已知:如图,AD 、AE 分别是△ABC 和△ABD 的中线,且BA =BD ,求证:AE =AC .证明:延长AE 至F ,使EF =AE ,连接DF . ∵AE 是△ABD 的中线, ∴BE =DE . ∵∠AEB =∠FED ,15°角构造30°找直角三角形线段倍与半构造直角三角形线段倍∴△ABE ≌△FDE (SAS ). ∴∠B =∠BDF ,AB =DF . ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF .∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC . ∵AD 是△ABC 的中线, ∴BD =CD . ∴DF =CD .∴△ADF ≌△ADC (SAS ). ∴AC =AF =2AE ,即AE =AC .12.如图,在△ABC 中,AB >BC ,BD 是高,P 是BD 上任意一点,求证:PA ﹣PC <AD ﹣CD .证明:在AD 上取一点E ,使得DE =CD , ∴AD ﹣CD =AD ﹣DE =AE , ∵BD ⊥AC , ∴PD ⊥CE , ∵DE =CD , ∴PE =PC , ∵PA ﹣PE <AE , 故PA ﹣PC <AD ﹣CD .13.如图,DC ∥AB ,∠BAD 和∠ADC 的角平分线相交于E ,过E 的直线分别交DC ,AB 于CB 两点.求证:AD =AB +DC线段和差比大小,构造三角形两线之和等一线,截长补短证明:在AD上截取AF=AB,连接EF,如图所示:在△ABE和△AFE 中,,∴△ABE≌△AFE(SAS),∴∠AFE=∠B,∵AB∥DC,∴∠B+∠C=180°,∵∠AFE+∠DFE=180°,∴∠DFE=∠C,在△DEF和△DEC 中,,∴△DEF≌△DEC(AAS),∴DF=DC,∴AB+DC=AF+DF=AD,即AD=AB+DC.14.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.中线倍长证明:延长DE到F,使EF=DE,连接BF,∵E是BC的中点,∴BE=CE,∵在△BEF和△CED中,∴△BEF≌△CED.∴∠F=∠CDE,BF=CD.∵∠BAE=∠CDE,∴∠BAE=∠F.∴AB=BF,又∵BF=CD,∴AB=CD.15.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.中位线解:DE=CF,理由如下:∵点D,E分别是AB,AC的中点,∴DE =BC,∵CF =BC,∴DE=CF.。

全等三角形解题方法与技巧例题练习题

全等三角形解题方法与技巧例题练习题

如何确定全等三角形的对应关系一、字母顺序确定法由于在表示两个全等三角形时,通常是把表示对应顶点的字母写在对应的位置上(在证明三角形全等时也要注意应这样写),所以可以利用字母的顺序确定对应元素.例1已知△ABC≌△ADE,指出△ABC和△ADE的对应边、对应角.分析:先把两个三角形顶点的字母按照同样的顺序排成一排:A→B→C,A→D→E,然后按同样的顺序找出对应元素:(1)点A、A;B、D;C、E分别是对应点;(2)线段AB、AD;BC、DE;AC、AE分别是对应线段;(3)∠ABC、∠ADE;∠ACB、∠AED;∠CAB、∠EAD分别是对应角.二、图形特征确定法(1)有公共边的,公共部分一定是对应边.如图1,△ADB和△ADC全等,则AD一定是两个三角形的对应边.(2)有公共角的,公共角一定是对应角.如图2中,△ABD和△ACE全等,∠DAB和∠EAC是对应角.(3)有对顶角的,对顶角一定是对应角.如图3中,∠1和∠2是对应角.(4)两个全等三角形的最大边(角)是对应边(角);最小的边(角)是对应边(角).(5)对应边(角)所夹(对)的角(边)是对应角(边)三、图形分解法从复杂的图形中,找出全等三角形的对应部分比较困难,这时可把要证全等的两个三角形从复杂图形中分离出来,用不同颜色标出或另画,图形简单了就容易找出对应元素.如图4,点C是线段AB上一点,AC=MC=AM,BC=NC=BN,请说明:BM=AN.此题若作如图5的分离,则容易找出对应部分:AC,MC;NC,BC;∠CAN,∠MCB分别是△ACN和△MCB中的对应边和对应角.“三步曲”证全等牢记判定定理:SSS SAS ASA AAS HL一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离出基本图形)二看条件:(一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。

)1、利用公共边(或公共角)相等如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么?2、利用对顶角相等如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗?3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等如图3,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由.4、利用平行线的性质得出同位角、内错角相等如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。

特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。

直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。

模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。

专题01 三角形(突破核心考点)【知识梳理+解题方法+专题过关】 (解析版)

专题01 三角形(突破核心考点)【知识梳理+解题方法+专题过关】 (解析版)

专题01三角形(突破核心考点)【聚焦考点+题型导航】考点一三角形三边关系考点二三角形的稳定性考点三三角形中的高线、中线、角平分线考点四三角形的内角、外角考点五多边形的对角线、内角和【知识梳理+解题方法】一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:ìïìííïîî直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:ìïìííïîî不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。

解直角三角形的几种方法

解直角三角形的几种方法

解直角三角形的几种方法(二)引言:直角三角形是一种特殊的三角形,其中一个角度为90度。

解直角三角形是高中数学中的重要内容。

本文将介绍几种解直角三角形的方法,包括正弦定理、余弦定理、特殊三角函数值以及特殊角度的计算方法等。

概述:解直角三角形主要涉及到三边的关系、三角函数的计算以及角度的计算。

在本文中,我们将详细讨论这些方法,并给出具体的解题步骤和例题,以帮助读者更好地理解和掌握解直角三角形的技巧。

正文内容:一、正弦定理1.推导正弦定理的原理与公式2.利用正弦定理解直角三角形的方法3.根据已知条件求解角度和边长的具体步骤4.通过示例说明正弦定理在解题中的应用5.注意事项和常见错误分析二、余弦定理1.推导余弦定理的原理与公式2.利用余弦定理解直角三角形的方法3.根据已知条件求解角度和边长的具体步骤4.通过示例说明余弦定理在解题中的应用5.注意事项和常见错误分析三、特殊三角函数值1.讨论特殊角度下正弦、余弦、正切的值2.借助特殊角度的数值计算直角三角形的边长和角度3.解析特殊角度下的直角三角形示例题4.探讨特殊角度对解直角三角形的影响5.实践中注意事项和常见错误分析四、特殊角度的计算方法1.利用标准角度和标准角度的三角函数值2.利用和差角公式计算特殊角度的三角函数值3.根据特殊角度的计算方法确定直角三角形的属性4.通过示例说明特殊角度计算方法在解题中的应用5.注意事项和常见错误分析五、综合运用各个方法1.结合正弦定理、余弦定理和特殊角度的计算方法解直角三角形2.根据题目条件选择合适的解题方法3.通过综合运用不同方法解答综合题目4.分析不同解题方法的优缺点和适用范围5.总结解直角三角形的方法和技巧总结:解直角三角形是数学学科中的基础内容,本文介绍了几种解直角三角形的方法,包括正弦定理、余弦定理、特殊三角函数值以及特殊角度的计算方法等。

对于不同的题目和条件,可以选择合适的方法进行解答。

在解题过程中,需要注意运用正确的公式和计算方法,避免常见的错误和误解。

(完整版)全等三角形知识总结和经典例题

(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS)9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测等距离。

以及等角,用于工业和军事。

有一定帮助。

5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。

六招搞定解三角形专题

六招搞定解三角形专题

解三角形专题【秒杀总结】在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.【典型例题】例题1.(2023秋·山西太原·高三统考期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2 +bc=a2.(1)求证:A=2B;(2)求6b+2cb cos B的取值范围.【解析】(1)由余弦定理得a2=b2+c2-2bc cos A,a2-b2=c2-2bc cos A∵b2+bc=a2,∴a2-b2=bc∴c2-2bc cos A=bc∴b(1+2cos A)=c,由正弦定理得bsin B=csin C,∴sin B(1+2cos A)=sin C=sin(A+B),∴sin B=sin(A-B),∵0<A,B<π,∴0<B<A<π,∴B=A-B,∴A=2B (2)由(1)得A=2B,c=b(1+2cos A),∴6b+2cb cos B=6+24cos2B-1cos B=8cos B+4cos B,∵A=2B,又0<A+B<180∘,∴0<B<π3,∴12<cos B<1,函数f x =8x+4x在12,22上单调递减,在22,1上单调递增f12 =f1 =12,f22 =82∴82≤8cos B+4cos B<12,∴6b+2cb cos B的取值范围为82,12.例题2.(2023·浙江·统考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a +b a +c=sin C -A 2sin C +A 2.(1)若A =π4,求B ;(2)求c a +c b的取值范围.【解析】(1)由正弦定理得a +b a +c =sin A +sin B sin A +sin C,又a +b a +c =sin C -A 2sin C +A 2,所以sin A +sin B sin A +sin C =sin C -A 2sin C +A 2,因为sin A +sin C =2sin C +A 2cos C -A 2,所以sin A +sin B =2sin C +A 2cos C -A 2⋅sin C -A 2sin C +A 2=2cos C -A 2sin C -A 2=sin C -A ,因为sin B =sin π-B =sin C +A ,所以sin A =sin C -A -sin C +A =-2cos C sin A ,因为0<A <π,所以sin A >0,故cos C =-12,又0<C <π,所以C =2π3,因为A =π4,所以B =π-A -C =π12.(2)由(1)得C =2π3,所以由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ,记T =c a +c b =c a +b ab ,则T 2=c 2ab ⋅a +b 2ab =a b +b a +1 a b +b a +2 ,因为a >0,b >0,所以b a +a b ≥2b a ⋅a b =2,当且仅当b a =a b ,即a =b 时,等号成立,即b a +a b≥2,故T 2≥3×4=12,则T ≥23,所以c a +c b ≥23,即c a +c b∈23,+∞ .例题3.(2023·河北衡水·河北衡水中学校考模拟预测)已知△ABC ,D 为边AC 上一点,AD =1,CD =2.(1)若BA ⋅BD =34,BC ⋅BD =0,求S △ABC ;(2)若直线BD 平分∠ABC ,求△ABD 与△CBD 内切圆半径之比的取值范围.【解析】(1)如图1,AD =1,CD =2,所以BA =BD +DA =BD +12CD =BD +12BD -BC =32BD -12BC ,因为BA ⋅BD =34,BC ⋅BD =0,所以BA ⋅BD =32BD -12BC ⋅BD =32BD 2-12BC ⋅BD =32BD 2=34,故BD 2=12,则BD =22,即BD =22,又BC ⋅BD =0,则BC ⊥BD ,故BC =CD 2-BD 2=142,不妨记∠ABD =α,AB =m ,则cos α=AB 2+BD 2-AD 22AB ⋅BD =m 2+12-12m =2m 2-122m ,因为BA ⋅BD =BA BD cos α=34,所以m ×22×2m 2-122m =34,解得m =2,则cos α=2×2-122×2=34,因为0<α<π,所以sin α=1-cos 2α=74,所以S △ABC =S △ABD +S △BCD =12AB ⋅BD sin α+12BD ⋅BC =12×2×22×74+12×22×142=378.(2)如图2,不妨设△ABD 与△CBD 内切圆的半径分别为r 与R ,因为直线BD 平分∠ABC ,所以由角平分线性质定理得AB BC =AD CD=12,记AB =c ,则BC =2c ,记∠ABC =β,则cos β=AB 2+BC 2-AC 22AB ⋅BC =c 2+4c 2-92×c ×2c =5c 2-94c 2,因为BD =BA +AD =BA +13AC =BA +13BC -BA =23BA +13BC ,所以BD 2=49BA 2+19BC 2+49BA BC cos β=49c 2+19×4c 2+49c ×2c×5c 2-94c2=2c 2-2,因为AB +BC >AC ,即c +2c >3,则c >1,所以BD =2c 2-2,即BD =2c 2-2,因为S △ABD S △BCD =12AD ⋅h 12CD ⋅h =12(h 为顶点B 到AC 的距离),又S △ABD =12AB +BD +AD r =12c +2c 2-2+1 r ,S △BCD =12BC +BD +CD R =122c+2c2-2+2R,所以c+2c2-2+1r2c+2c2-2+2R=12,则r R=12×2c+2c2-2+2c+2c2-2+1=121+c+1c+2c2-2+1,令t=c+1,则c=t-1,t>2,所以c+1c+2c2-2+1=tt+2t-12-2=11+2-4t,因为t>2,所以0<1t<12,则0<2-4t<2,故1<1+2-4t<1+2,所以2-1<11+2-4t<1,即2-1<c+1c+2c2-2+1<1,所以22<121+c+1c+2c2-2+1<1,故22<r R<1,所以△ABD与△CBD内切圆半径之比的取值范围为2 2,1 .例题4.(2023·全国·高三专题练习)在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,已知sin A-sin B3a-c =sin Ca+b.(1)求角B的值;(2)若a=2,求△ABC的周长的取值范围.【解析】(1)sin A-sin B3a-c=sin Ca+b,由正弦定理得:a-b3a-c=ca+b,即a2+c2-b2=3ac,由余弦定理得:cos B=a2+c2-b22ac=3ac2ac=32,因为B∈0,π,所以B=π6;(2)锐角△ABC中,a=2,B=π6,由正弦定理得:2sin A=bsinπ6=csin C,故b=1sin A,c=2sin Csin A=2sin A+π6sin A=3sin A+cos Asin A,则b+c=3sin A+cos A+1sin A=3+1+1cos Atan A=3+1+1+tan2Atan A=3+1tan A+1tan2A+1,因为锐角△ABC中,B=π6,则A∈0,π2,C=π-π6-A∈0,π2,解得:A ∈π3,π2,故tan A ∈3,+∞ ,1tan A∈0,33 ,则1tan 2A +1∈1,233 ,3+1tan A +1tan 2A+1∈1+3,23 ,故b +c ∈1+3,23 ,a +b +c ∈3+3,2+23所以三角形周长的取值范围是3+3,2+23 .例题5.(2023·全国·高三专题练习)设锐角三角形ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =b cos A -a cos B .(1)求证:B =2A ;(2)求b +c a的取值范围.【解析】(1)a =b cos A -a cos B ,由正弦定理得:sin A =sin B cos A -sin A cos B ,由积化和差公式可得:sin A =12sin B +A +12sin B -A -12sin A +B -12sin A -B =12sin B -A -12sin A -B ,因为12sin A -B =-12sin B -A ,所以sin A =sin B -A ,因为三角形ABC 为锐角三角形,故A ,B ∈0,π2,所以B -A ∈-π2,π2,故A =B -A ,即B =2A ;(2)由(1)知:B =2A ,由正弦定理得:b +c a =sin B +sin C sin A =sin2A +sin B +A sin A =sin2A +sin3A sin A,其中sin3A =sin 2A +A =sin2A cos A +cos2A sin A =2sin A cos 2A +cos2A sin A ,因为sin A ≠0,所以b +c a =2sin A cos A +2sin A cos 2A +cos2A sin A sin A=2cos A +2cos 2A +cos2A =2cos A +2cos 2A +2cos 2A -1=4cos 2A +2cos A -1=4cos A +14 2-54,由B =2A ∈0,π2 得:A ∈0,π4,由C =π-A -B =π-3A ∈0,π2 ,解得:A ∈π6,π3 ,结合A ∈0,π2 可得:A ∈π6,π4 ,cos A ∈22,32 ,故b +c a =4cos A +14 2-54在cos A ∈22,32上单调递增,所以b +c a =4cos 2A +2cos A -1∈4×12+2-1,4×34+3-1 ,即b +c a ∈2+1,3+2 .例题6.(2023·全国·高三校联考阶段练习)△ABC 中,D ,E 是边BC 上的点,∠BAD =∠CAE ,且BD ⋅BE CD ⋅CE=13.(1)若BC =3,求△ABC 面积的取值范围;(2)若AB =1,BC =2,平面内是否存在点P ,使得∠ABP =∠BCP =∠CAP ?若存在,求sin ∠ABP ;若不存在,说明理由.【解析】(1)由面积公式可得:S △ABD S △ADC=BD CD =12×AD ×AB ×sin ∠BAD 12×AD ×AC ×sin ∠CAD =AB ×sin ∠BAD AC ×sin ∠CAD ,S △ABE S △AEC =BE CE =12×AE ×AB ×sin ∠BAE 12×AE ×AC ×sin ∠CAE =AB ×sin ∠BAE AC ×sin ∠CAE ,因为∠BAD =∠CAE ,故∠CAD =∠BAE ,由BD ⋅BECD ⋅CE =13可得AB ×sin ∠BAD AC ×sin ∠CAD ×AB ×sin ∠BAE AC ×sin ∠CAE =13即AB AC=13,建立如图所示的平面直角坐标系,则 B 0,0 ,C 3,0 ,则A x ,y ,则x -3 2+y 2=3×x 2+y 2,整理得到:x +32 2+y 2=274,故△ABC 的BC 边上的高的范围为0,332,故其面积的取值范围为:0,934(2)因为AB =1,故AC =3,故AC 2+AB 2=4=BC 2,故△ABC 为直角三角形且∠ABC =60°,∠ACB =30°,如图,设∠ABP =α,则∠CBP =60°-α,故∠CPB =120°,同理∠PCA =30°-α,∠APC =150°,∠APB =90°,故PB =1×cos α=cos α,而3sin ∠APC=CP sin α,故CP =23sin α,在△PBC 中,由余弦定理可得:4=cos 2α+12sin 2α-2×cos α×23sin α×-12 ,整理得到:4=cos 2α+12sin 2α+23cos α×sin α所以4cos 2α+4sin 2α=cos 2α+12sin 2α+23cos α×sin α,整理得到:3=8tan 2α+23tan α,解得tan α=-32或tan α=34,但α为锐角,故tan α=34,故sin α=319=5719故P 存在且sin ∠ABP =5719.例题7.(2023·全国·高三专题练习)在①2a cos A =b cos C +c cos B ;②tan B +tan C +3=3tan B tan C 这两个条件中任选一个,补充在下面的问题中,并加以解答.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知______.(1)求角A 的大小;(2)若△ABC 为锐角三角形,且其面积为32,点G 为△ABC 重心,点M 为线段AC 的中点,点N 在线段AB 上,且AN =2NB ,线段BM 与线段CN 相交于点P ,求GP 的取值范围.注:如果选择多个方案分别解答,按 第一个方案解答计分.【解析】(1)若选①2a cos A =b cos C +c cos B ,由正弦定理可得2sin A cos A =sin B cos C +sin C cos B =sin B +C即2sin A cos A =sin A ,又sin A >0,所以2cos A =1,即cos A =12,因为A ∈0,π ,所以A =π3;若选②tan B +tan C +3=3tan B tan C ,即tan B +tan C =-3+3tan B tan C ,即tan B +tan C =-31-tan B tan C ,所以tan B +tan C 1-tan B tan C=-3,即tan B +C =-3,所以tan π-A =-3,即tan A =3,因为A ∈0,π ,所以A =π3;(2)依题意AN =23AB ,AM =12AC ,所以AG =AB +BG =AB +23BM =AB +23AM -AB =AB +2312AC -AB =13AB +13AC ,因为C 、N 、P 三点共线,故设AP =λAN +1-λ AC =23λAB +1-λ AC ,同理M 、B 、P 三点共线,故设AP =μAB +1-μ AM =μAB +121-μ AC ,所以23λ=μ1-λ=121-μ ,解得λ=34μ=12 ,所以AP=12AB +14AC ,则GP =AP -AG =12AB +14AC -13AB +13AC =16AB -112AC =1122AB -AC ,因为S △ABC =12bc sin A =32,所以bc =2,又△ABC 为锐角三角形,当C 为锐角,则AC ⋅BC >0,即AC ⋅AC -AB >0,即AC 2-AC ⋅AB >0,即b 2-12bc >0,即2b >c =2b ,所以b >1,当B 为锐角,则AB ⋅CB >0,即AB ⋅AB -AC >0,即AB 2-AC ⋅AB >0,即c 2-12bc >0,即2c >b ,即2⋅2b>b ,所以0<b <2,综上可得1<b <2,又GP =112⋅2AB -AC ,则144GP 2=2AB -AC 2=4AB 2-4AB ⋅AC +AC 2=4AB 2-4AB ⋅AC +AC2=4c 2-2bc +b 2=16b2-4+b 2因为1<b <2,所以1<b 2<4,而f x =16x-4+x 在1,4 上单调递减,所以f x ∈4,13 ,即16b 2-4+b 2∈4,13 ,即144GP 2∈4,13 ,所以12GP ∈2,13 ,则GP ∈16,1312 .【过关测试】1.(2023·湖南衡阳·校考模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin A sin B +sin C +b sin B b sin A +c sin B=1(1)求角C ;(2)CD 是∠ACB 的角平分线,若CD =433,△ABC 的面积为23,求c 的值.【解析】(1)由正弦定理得a b +c +b 2ba +cb =1,即a b +c+b a +c =1,整理得a a +c +b b +c =a +c b +c ,化简得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又C ∈0,π ,则C =π3;(2)由面积公式得12ab sin C =12ab ×32=23,解得ab =8,又CD 是∠ACB 的角平分线,则S △ACD S △BCD=12⋅CA ⋅CD ⋅sin π612⋅CB ⋅CD ⋅sin π6=CA CB =AD BD ,即AD BD =b a ,则CD =CA +AD =CA +b a +b AB =CA +b a +b CB -CA =a a +b CA +b a +b CB ,所以CD 2=a a +b CA +b a +b CB 2=a 2a +b 2CA 2+2ab a +b 2CA ⋅CB +b 2a +b 2CB 2,即163=a 2b 2a +b 2+2ab a +b 2⋅ab ⋅12+a 2b 2a +b2,整理得163=3a 2b 2a +b2,又ab =8,解得a +b =6,则a 2+b 2=a +b 2-2ab =20,由(1)知c 2=a 2+b 2-ab =20-8=12,则c =23.2.(2023·全国·高三专题练习)△ABC 中,已知AB =1,BC =7,D 为AC 上一点,AD =2DC ,AB ⊥BD .(1)求BD 的长度;(2)若点P 为△ABD 外接圆上任意一点,求PB +2PD 的最大值.【解析】(1)设BD =x ,CD =y ,则AD =2y .在△ABD 与△CBD 中,由余弦定理知:AB 2=BD 2+AD 2-2BD ⋅AD ⋅cos ∠ADB ,即x 2+4y 2-4xy cos ∠ADB =1,BC 2=BD 2+CD 2-2BD ⋅CD ⋅cos ∠CDB ,即x 2+y 2-2xy cos ∠ADB =7.∵∠ADB +∠CDB =π,∴cos ∠ADB +cos ∠CDB =0,可得x 2+2y 2=5.∵AB ⊥BD ,∴AD 2=AB 2+BD 2,即1+x 2=4y 2.解得x =3,y =1.∴BD =3.(2)由(1)知:△ABD 中,∠ABD =π2,AD =2,AD 为△ABD 外接圆的直径.P 为△ABD 外接圆上任意一点,当P 在B 点时,PB +2PD =2PD =23.当P 在D 点时,PB +2PD =PB =3.当P 在优弧BAD 上时,∠BPD =∠BAD =π3,设∠PBD =θ0<θ<2π3 ,则∠PDB =2π3-θ.△PBD 中,由正弦定理知PB =2sin 2π3-θ ,PD =2sin θ.PB +2PD =2sin 2π3-θ +4sin θ=2sin 2π3cos θ-cos 2π3sin θ +4sin θ=5sin θ+3cos θ=27sin (θ+φ)tan φ=35,0<φ<π2 ,当θ+φ=π2时,PB +2PD 的最大值为27.当P 在劣弧BD 上时,∠BPD =π-∠BAD =2π3,设∠PBD =θ0<θ<π3 ,则∠PDB =π3-θ.△PBD 中,由正弦定理知PB =2sin π3-θ,PD =2sin θ.PB +2PD =2sin π3-θ +4sin θ=2sin π3cos θ-cos π3sin θ +4sin θ=3sin θ+3cos θ=23sin θ+π6.当θ+π6=π2时,PB +2PD 的最大值为23.综上,PB +2PD 的最大值为27.3.(2023·全国·高三专题练习)如图,某城市有一条MO 从正西方通过市中心O 后转向东偏北60°方向ON 的公路,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在MO ,NO 上分别设置两个出口A ,B ,B 在A 的东偏北θ的方向(A ,B 两点之间的高速路可近似看成直线段),由于A ,B 之间相距较远,计划在A ,B 之间设置一个服务区P .(1)若P 在O 的正北方向且OP =2km ,求A ,B 到市中心O 的距离和最小时tan θ的值;(2)若B 到市中心O 的距离为10km ,此时P 设在∠AOB 的平分线与AB 的交点位置,且满足OP 2+BP 2≥11OP ⋅BP ,则求A 到市中心O 的距离最大时tan θ的值.【解析】(1)由题意可知∠AON =2π3,∠OAB =θ,若P 在O 的正北方向,则OP⊥OA ,在Rt △AOP 中,OA =2tan θ,在△OPB 中,∠B =π3-θ,∠OPB =π2+θ,由正弦定理可得OP sin ∠B =OB sin ∠OPB,所以OB =2sin π2+θ sin π3-θ =2cos θ32cos θ-12sin θ=43-tan θ,则OA +OB =2tan θ+43-tan θ=2tan θ+23-tan 2θ+3tan θ=2-tan θ+3 2+33tan θ+3 -6tan θ+3=233-tan θ+3+6tan θ+3 ≥233-2tan θ+3 ⋅6tan θ+3=63+463,当且仅当tan θ+3+6tan θ+3,即tan θ=6-3时,取等号,所以A ,B 到市中心O 的距离和最小时tan θ=6-3;(2)因为OP 2+BP 2≥11OP ⋅BP ,所以OP 2+BP 2-2OP ⋅BP ≥9OP ⋅BP ,即OP -BP 2≥9OP ⋅BP ,即OB 2≥9OP ⋅OP -OB ,因为OP 平分∠AOB ,所以∠AOP =∠BOP =π3,则100≥9OP 2-45OP,所以0<OP ≤203,因为S △AOB =S △AOP +S △BOP ,所以12OA OB sin 2π3=12OA OP sin π3+12OB OP sin π3,即10OA =OA OP +10OP ,所以OA =10OP 10-OP =1010OP-1,因为0<OP ≤203,所以当OP =203时,OA 有最大值20,此时在△AOP 中,20sin 2π3-θ =203sin θ,即132cos θ+12sin θ=13sin θ,所以3=32cos θ+12sin θsin θ=32⋅1tan θ+12,所以tan θ=35,所以当A 到市中心O 的距离最大时tan θ=35.4.(2023秋·河北衡水·高三河北衡水中学校考阶段练习)已知△ABC 的外心为O ,M ,N 为线段AB ,AC 上的两点,且O 恰为MN 中点.(1)证明:|AM |⋅|MB |=|AN |⋅|NC |(2)若|AO |=3,|OM |=1,求S △AMNS △ABC的最大值.【解析】(1)证明:设AM =x 1,BM =y 1,AN =x 2,CN =y 2,由余弦定理知:cos ∠AMO =x 12+OM 2-AO 22x 1⋅OM ,cos ∠BMO =y 12+OM 2-BO 22y 1⋅OM,由O 是△ABC 外心知AO =BO =CO ,而cos∠AMO+cos∠BMO=0,所以x12+OM2-AO22x1⋅OM+y12+OM2-BO22y1⋅OM=0,即(x1y1+OM2-AO2)(x1+y1)=0,而x1+y1≠0,因此x1y1=AO2-OM2,同理可知x2y2=AO2-ON2,因此x1y1=x2y2,所以|AM|⋅|MB|=|AN|⋅|NC|;(2)由(1)知x1y1=x2y2=2,由余弦定理知:cos∠AOM=AO2+OM2-x122AO⋅OM,cos∠AON=AO2+ON2-x222AO⋅ON,代入cos∠AOM+cos∠AON=0得x12+x22=8,设μ=x1y1,λ=x2y2,则μ+λ=x122+x222=4,因此S△AMNS△ABC=AM⋅BMAB⋅AC=μλ(μ+1)(λ+1)=11+5μλ≤11+54=49,当且仅当μ=λ=2时取到等号,因此S△AMNS△ABC的最大值为49.5.(2023·全国·高三专题练习)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2c cos B=2a-b.(1)求C;(2)若AB=AC,D是△ABC外的一点,且AD=2,CD=1,则当∠D为多少时,平面四边形ABCD的面积S最大,并求S的最大值.【解析】(1)∵在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2c cos B=2a-b.∴由正弦定理得:2sin C cos B=2sin A-sin B,又A=π-B+C,∴2sin C⋅cos B=2sin B+C-sin B=2sin B cos C+2cos B sin C-sin B,2sin B cos C=sin B,∵sin B≠0,∴cos C=12,∵0<C<π,∴C=π3.(2)∵AB=AC,∠ACB=π3,∴△ABC是等边三角形,设AC=x,∠D=θ,∵AD=2,CD=1,∴S△ABC=34x2,S△ADC=12×AD×CD×sin D=sinθ,由余弦定理得AC2=x2=1+4-4cosθ=5-4cosθ,∴S=S△ABC+S△ADC=34x2+sinθ=345-4cosθ+sinθ=534+sinθ-3cosθ=534+2sinθ-π3,∵0<θ<π,∴-π3<θ-π3<2π3,∴当sin θ-π3 =1,即θ=5π6时,平面四边形ABCD 的面积S 取最大值S max =534+2.6.(2023·全国·高三专题练习)如图,四边形ABCD 中,AB 2+BC 2+AB ⋅BC =AC 2.(1)若AB =3BC =3,求△ABC 的面积;(2)若CD =3BC ,∠CAD =30∘,∠BCD =120∘,求∠ACB 的值.【解析】(1)在△ABC 中,cos B =AB 2+BC 2-AC 22AB ⋅BC =-AB ⋅BC 2AB ⋅BC =-12,因为0∘<B <180∘,所以B =120∘.S △ABC =12AB ⋅BC sin120∘=12×3×1×32=334.(2)设∠ACB =θ,则∠ACD =120∘-θ,∠ADC =30∘+θ,∠BAC =60∘-θ.在△ACD 中,由AC sin 30∘+θ =CDsin30∘,得AC =sin 30∘+θ sin30∘CD .在△ABC 中,由AC sin120∘=BC sin 60∘-θ ,得AC =sin120∘sin 60∘-θ BC .联立上式,并由CD =3BC 得3sin 30∘+θ sin30∘=sin120∘sin 60∘-θ ,整理得sin 30∘+θ sin 60∘-θ =14,所以sin 60∘+2θ =12,因为0∘<θ<60∘,所以60∘<60∘+2θ<180∘,所以60∘+2θ=150∘,解得θ=45∘,即∠ACB 的值为45∘.7.(2023·江苏苏州·苏州中学校考模拟预测)在△PAB 中,PA =PB ,点C ,D 分别在PB ,PA 边上.(1)若∠APB =π3,CD =1,求△PCD 面积的最大值;(2)设四边形ABCD 的外接圆半径为R ,若∠APB ∈π3,π ,且AB ⋅BC ⋅CD ⋅DA 的最大值为49,求R 的值.【解析】(1)由已知∠DPC =∠APB =π3,在△PCD 中,利用余弦定理知1=CD 2=PC 2+PD 2-2PC ⋅PD cos ∠PDC ,结合基本不等式有1≥2PC ⋅PD -2PC ⋅PD cosπ3=PC ⋅PD ,当且仅当PC =PD =1时,等号成立,即PC ⋅PD 的最大值为1,S △PCD =12PC ⋅PD sin π3=34PC ⋅PD ≤34所以△PCD 面积的最大值为34(2)四边形ABCD 存在外接圆,∴∠DAB +∠DCB =π又PA =PB ,∴∠DAB =∠CBA ,∴∠CBA +∠DCB =π,∴AB ⎳CD ,所以四边形ABCD 为等腰梯形,连接AC ,设∠CBA =θ,∠CAB =x ,在△BAC 中,由正弦定理得,AB sin (π-x -θ)=BC sin x =2R ,∴BC =2R sin x ,AB =2R sin (π-x -θ)=2R sin (θ+x )同理,在△ACD 中,由正弦定理得,CD =2R sin (θ-x ),所以AB ⋅BC ⋅CD ⋅DA =16R 2sin 2x sin (θ-x )sin (θ+x )=16R 2sin 2x sin 2θcos 2x -cos 2θsin 2x =16R 2sin 2x sin 2θ1-sin 2x -cos 2θsin 2x =16R 2sin 2x sin 2θ-sin 2x ∵∠APB ∈π3,π,∴0<x <θ≤π3,∴0<sin 2x ≤sin 2θ∴16R 2sin 2x sin 2θ-sin 2x ≤16R 2sin 2x +sin 2θ-sin 2x 22=4R 2sin 4θ,当且仅当sin 2x =sin 2θ-sin 2x ,即sin 2x =12sin 2θ∵θ∈0,π3 ,∴sin 2θ≤34,当且仅当θ=π3时,等号成立,即4R 2×34 2=49,即R =498.(2023·上海·高三专题练习)△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,满足b 2=a 2+c 2-ac .(1)当A 为何值时,函数y =2sin 2A +cos C -3A2取到最大值,最大值是多少?(2)若c -a 等于边AC 上的高h ,求sin C -A2的值.【解析】(1)由b 2=a 2+c 2-ac 得:cos B =a 2+c 2-b 22ac =ac 2ac =12,因为B ∈0,π ,所以B =π3,y =2sin 2A +cos C -3A 2 =1-cos2A +cos π-π3-A -3A 2=1-cos2A +cos π3-2A =1-cos2A +cos π3cos2A +sin π3sin2A =1+32sin2A -12cos2A =1+sin 2A -π6,因为A ∈0,2π3 ,所以2A -π6∈-π6,7π6 ,所以当2A -π6=π2,即A =π3时,y =2sin 2A +cos C -3A 2 =1+sin 2A -π6 取得最大值,最大值为2;(2)由(1)知:B =π3,由三角形面积公式得:12ac sin B =12bh =12b c -a ,从而ac sin B =b c -a ,由正弦定理得:sin A sin C sin B =sin B sin C -sin A ,因为sin B =32,所以sin A sin C =sin C -sin A ,由和差化积得:sin C -sin A =2cos C +A 2sin C -A 2=2cos π-B 2sin C -A 2=sin C -A2,因为sin 2C +A 2-sin 2C -A2=1-cos C +A 2-1-cos C -A 2=cos C -A 2-cos C +A 2=cos C cos A +sin C sin A -cos C cos A +sin C sin A 2=sin C sin A ,所以sin C sin A =sin 2C +A 2-sin 2C -A 2=sin 2π-B 2-sin 2C -A 2=34-sin 2C -A2,故sin C -A 2=34-sin 2C -A 2,解得:sin C -A 2=12或-32,因为sin C -A2∈-1,1 ,所以sin C -A 2=12.9.(2023·全国·高三专题练习)如图,四边形ABCD 中,∠DAB =∠DCB =π2,AB =3,BC =2,S △ABC=332且∠ABC 为锐角.(1)求DB ;(2)求△ACD 的面积.【解析】(1)由已知S △ABC =12AB ⋅BC ⋅sin ∠ABC =332,∴sin ∠ABC =32∵∠ABC 是锐角,∴∠ABC =π3.由余弦定理可得AC 2=AB 2+BC 2-2AB ⋅BC ⋅cos ∠ABC =7,则AC =7.∵∠DAB =∠DCB =π2,∴BD 是四边形ABCD 外接圆的直径,∴BD 是△ABC 外接圆的直径,利用正弦定理知BD =AC ∠ABC =7×23=2213(2)由∠DAB =∠DCB =π2,BD =2213,AB =3,BC =2,则AD =33,CD =433,又∠ABC =π3,则∠ADC =2π3,因此S △ACD =12AD ⋅CD ⋅sin ∠ADC =12×33×433×32=33,故△ACD 的面积为33.10.(2023秋·湖南长沙·高三长郡中学校考阶段练习)如图,在梯形ABCD 中,AB ⎳CD ,AB =2,CD =5,∠ABC =2π3.(1)若AC =27,求梯形ABCD 的面积;(2)若AC ⊥BD ,求tan ∠ABD .【解析】(1)设BC =x ,在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ⋅BC cos ∠ABC 得:28=22+x 2-2⋅2⋅x ⋅cos2π3,即x 2+2x -24=0,而x >0,解得x =4,所以BC =4,则△ABC 的面积S △ABC =12AB ⋅BC ⋅sin ∠ABC =12⋅2⋅4⋅32=23,梯形ABCD 中,AB ⎳CD ,△ABC 与△ADC 等高,且CD =5AB2,所以△ADC 的面积S △ADC =5S△ABC 2=53,则梯形ABCD 的面积S =S △ABC +S △ADC =73;(2)在梯形ABCD 中,设∠ABD =α,而AC ⊥BD ,则∠BDC =α,∠BAC =π2-α,∠DBC =2π3-a ,∠BCA =α-π6,在△ABC 中,由正弦定理AB sin ∠BCA =BC sin ∠BAC 得:2sin α-π6 =BCsin π2-α ,在△BDC 中,由正弦定理CD sin ∠DBC =BC sin ∠BDC 得:5sin 2π3-α =BCsin α,两式相除得:2sin 2π3-α 5sin α-π6 =sin αsin π2-α ⇒2⋅32cos α+12sin α5⋅32sin α-12cos α =sin αcos α,整理得53sin 2α-7sin αcos α-23cos 2α=0,即53tan 2α-7tan α-23=0解得tan α=233或tan α=-35,因为α∈π6,π2,则tan α=233,即tan ∠ABD =233.11.(2023春·河南开封·高三统考开学考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin B -C tan A =sin B sin C .(1)若A =B ,求sin 2A 的值;(2)证明:a 2+b 2c2为定值.【解析】(1)由sin B cos C -sin C cos B sin Acos A=sin A sin C ,∵0<A <π,∴sin A ≠0,即sin B cos C -sin C cos B =cos A sin C ,∵A =B ,所以sin A cos C -sin C cos A =cos A sin C ,所以sin A cos C =2cos A sin C ,又∵C =π-2A ,∴sin A cos π-2A =2cos A sin π-2A ,-sin A cos2A =2cos A sin2A ,-sin A 1-2sin 2A =4sin A cos 2A ,2sin 2A -1=4-4sin 2A ,解得sin 2A =56;(2)由已知条件得sin B cos C -sin C cos B sin Acos A=sin B sin C ,sin A sin B cos C -sin A sin C cos B =cos A sin B sin C ,sin A sin B cos C =cos A sin B sin C +sin A sin C cos B ,sin A sin B cos C =sin C cos A sin B +sin A cos B ,sin A sin B cos C =sin C sin A +B ,∵A +B =π-C , ∴sin A sin B cos C =sin 2C ,由余弦定理得cos C =a 2+b 2-c 22ab,由正弦定理得ab ⋅a 2+b 2-c 22ab =c 2,整理得a 2+b 2c 2=3 ,即a 2+b 2c 2为定值.12.(2023春·江苏南通·高三校考开学考试)如图,△ABC 是以BC 为斜边的等腰直角三角形,△BCD 是等边三角形,BC =2,AD =7.(1)求证:BC ⊥AD ;(2)求平面ABD 与平面BCD 夹角的余弦值.【解析】(1)取BC 中点O ,连接OA ,OD ,因为△ABC 是以BC 为斜边的等腰直角三角形,所以OA ⊥BC .因为△BCD 是等边三角形,所以OD ⊥BC .OA ∩OD =O ,OA ⊂平面AOD ,OD ⊂平面AOD ,所以BC ⊥平面AOD .因为AD ⊂平面AOD ,故BC ⊥AD .(2)在△AOD 中,AO =1,OD =3,AD =7,由余弦定理可得,cos ∠AOD =-32,故∠AOD =150°.如图,以OA ,OB及过O 点垂直于平面ABC 的方向为x ,y ,z 轴的正方向建立空间直角坐标系O -xyz ,可得D -32,0,32 ,所以BD =-32,-1,32 ,CB =0,2,0 ,AB =-1,1,0 ,设n=x 1,y 1,z 1 为平面ABD 的一个法向量,则n ⋅AB =0n ⋅BD =0 ,即-x 1+y 1=0-32x 1-y 1+32z 1=0,令x =3,可得n=3,3,5 .设m=x 2,y 2,z 2 为平面BCD 的一个法向量,则m ⋅CB =0m ⋅BD =0 ,即2y 2=0-32x 2-y 2+32z 2=0,令x 2=3,可得m=3,0,3 .所以cos n ,m =3+0+1531×12=39331,故平面ABD 与平面BCD 夹角的余弦值为39331.13.(2023秋·山东菏泽·高三统考期末)在①sin π2+C -12cos B=sin C tan B ;②S =32AB ⋅CA ;③ctan A =-c +2b tan C .三个条件中选一个,补充在下面的横线处,并解答问题.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .且满足______.(1)求A 的大小;(2)设△ABC 的面积为6,点D 为边BC 的中点,求AD 2的最小值.【解析】(1)选①,由sin π2+C-12cos B =sin C tan B ,化简得:cos C -12cos B =sin C ⋅sin Bcos B,所以2cos B cos C -1=2sin C sin B ,即cos B +C =12,在△ABC 中,cos B +C =-cos A =12,cos A =-12,因为A ∈0,π ,所以A =2π3;选②,S =32AB ⋅CA =32bc cos π-A =12bc sin A ,所以tan A =-3,因为A ∈0,π ,所以A =2π3;选③,ctan A =-c -2b tan C ,由正弦定理和切化弦得sin C sin A cos A=-sin C -2sin B sin Ccos C ,在△ABC 中,sin C ≠0,所以-2sin B cos A =sin A cos C +sin C cos A =sin A +C =sin B ,在△ABC 中,sin B ≠0,因为A ∈0,π ,所以cos A =-12,得A =2π3;(2)由S △ABC =6=12bc sin A ,得bc =83,由AD =AB +12BC ,有AD =12AB +12AC ,所以AD 2=14AB 2+12AB ⋅AC +14AC 2=14c 2+14b 2+12bc -12 ≥2116b 2c 2-14bc =14bc =23,当且仅当b 2=c 2=83时,等号成立,所以AD 2的最小值为23.14.(2023·全国·高三专题练习)如图,P 为△ABC 内的一点,∠BAP 记为α,∠ABP 记为β,且α,β在△ABP 中的对边分别记为m ,n ,2m +n sin β=3n cos β,α,β∈0,π3.(1)求∠APB ;(2)若AB =23,BP =2,PC =3,记∠APC =θ,求线段AP 的长和△ABC 面积的最大值.【解析】(1)已知2m +n sin β=3n cos β,由正弦定理可得2sin α+sin β sin β=3sin βcos β,由sin β≠0,所以2sin α+sin β=3cos β,即sin α=32cos β-12sin β,所以sin α=sin π3-β.因为α,β∈0,π3 ,π3-β∈0,π3 ,所以α=π3-β,则α+β=π3,所以∠APB =π-α+β =2π3.(2)在△APB 中,由余弦定理得知:AB 2=AP 2+BP 2-2AP ⋅BP ⋅cos ∠APB ,即12=AP 2+4+2AP ,因为AP >0,所以AP =2.因为∠APB +∠BPC +∠APC =2π,所以∠BPC =2π-2π3-θ=4π3-θ.S △ABC =S △APB +S △APC +S △BPC=12×AP ×BP ×sin ∠APB +12×AP ×CP ×sin ∠APC +12×BP ×CP ×sin ∠BPC =12×2×2×sin 2π3+12×2×3×sin θ+12×2×3×sin 4π3-θ =3+3sin θ+sin 4π3-θ =3+3sin θ+sin 4π3cos θ-cos 4π3sin θ =3+3sin θ-32cos θ+12sin θ =3+332sin θ-32cos θ =3+3sin θ-π6 ,0<θ<π.因为,-π6<θ-π6<5π6,所以,当θ-π6=π2,即θ=2π3时,△ABC 面积有最大值3+3.15.(2023秋·湖南长沙·高三湖南师大附中校考阶段练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知a =4且cos2A -cos2B =2sin C sin B -sin C .(1)若c =3,求sin C ;(2)若BC 边上的高是AH ,求BH 的最大值.【解析】(1)由cos2A -cos2B =2sin C sin B -sin C 可得:1-2sin 2A -1+2sin 2B =2sin C sin B -2sin 2C ⇒sin 2B +sin 2C -sin 2A =sin B sin C ,即:b 2+c 2-a 2=bc ⇒b 2+c 2-a 22bc=12.即cos A =12,又A ∈0,π ,∴A =π3,由正弦定理得:sin C =c sin Aa=3×324=338.(2)由题意,BH =BA cos B =2R sin C cos B =833sin C cos 2π3-C =4sin 2C -433sin C cos C =2-233sin2C +2cos2C =2-433sin 2C +π3,∵C ∈0,2π3 ⇒2C +π3∈π3,5π3,∴2C +π3=3π2⇒C =7π12时,BH 取得最大值2+433.16.(2023秋·江苏南通·高三统考期末)已知四边形ABCD 内接于圆O ,AB =3,AD =5,∠BAD =120°,AC 平分∠BAD .(1)求圆O 的半径;(2)求AC 的长.【解析】(1)如图,在圆O 中,连接BD ,在△ABD 中,由余弦定理得:BD 2=AB 2+AD 2-2AB ⋅AD ⋅cos120°=9+25-2×3×5×-12=49,所以BD =7,设圆О半径为R ,由正弦定理得:∴2R =BD sin120°=732=1433,所以半径R =733;(2)由余弦定理得cos ∠ADB =AD 2+BD 2-AB 22AD ⋅BD =25+49-92×5×7=1314,由于∠ADB ∈0,π ,所以sin ∠ADB =1-cos 2∠ADB =3314,因为AC 平分∠BAD ,所以∠BDC =∠BAC =12∠BAD =60°,所以sin ∠ADC =sin ∠ADB +60° =sin ∠ADB ⋅cos60°+cos ∠ADB ⋅sin60°=3314×12+1314×32=437,由正弦定理得AC sin ∠ADC=2R =1433⇒AC =1433×437=8.17.(2023秋·黑龙江哈尔滨·高三哈师大附中校考期末)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c -a =2b cos A .(1)求B 的大小;(2)若b =3,①求a +c 的取值范围;②求aca +c的最大值.【解析】(1)因为2c-a=2b cos A,又asin A=bsin B=csin C,所以2sin C-sin A=2sin B cos A,所以2sin(A+B)-sin A=2sin B cos A,所以2sin A cos B-sin A=0,因为A∈0,π,sin A≠0,所以cos B=12,∵B∈0,π,可得B=π3.(2)①根据余弦定理a2+c2-b2=2ac cos B得a2+c2-ac=9,得(a+c)2=9+3ac,因为ac≤(a+c)24,所以(a+c)2≤9+34(a+c)2,结合a+c>3,所以3<a+c≤6(当且仅当a=c=3时取等号),②设t=a+c,则t∈(3,6],所以aca+c=t2-93t,设f(t)=t2-93t=13t-9t,则f(t)在区间(3,6]上单调递增,所以f(t)的最大值为f(6)=32,所以aca+c的最大值为32.18.(2023·安徽马鞍山·统考一模)已知条件:①tan B+tan Ctan B=2ab;②1+sin2C-cos2C1+sin2C+cos2C=3;③3a=2c sin B+π3.在这三个条件中任选一个,补充在下面的问题中,并解答.问题:在△ABC中,角A,B,C所对的边分别是a,b,c,满足:______.注:如果选择多个条件分别作答,按第一个解答计分.(1)求角C的大小;(2)若△ABC为锐角三角形,c=32,求a2+b2的取值范围.【解析】(1)选择条件①tan B+tan Ctan B=2ab:tan B+tan Ctan B=sin B cos C+cos B sin Csin B cos C=sin(B+C)sin B cos C=sin Asin B cos C=ab cos C,所以ab cos C=2ab,于是cos C=12,又C∈(0,π),所以C=π3.选择条件②1+sin2C-cos2C1+sin2C+cos2C=3:因为1+sin2C-cos2C1+sin2C+cos2C=2sin C cos C+2sin2C2sin C cos C+2cos2C=2sin C(cos C+sin C)2cos C(cos C+sin C)=tan C,解得tan C=3,又C∈(0,π),所以C=π3.选择条件③3a=2c sin B+π3:则3a=c(sin B+3cos B),由正弦定理得:3sin A=sin C sin B+3sin C cos B,即3sin(B+C)=sin C sin B+3sin C cos B,整理得:3sin B cos C=sin C sin B,由sin B ≠0得:tan C =3,又C ∈(0,π),所以C =π3.(2)由(1)知,C =π3,B =2π3-A ,△ABC 为锐角三角形,所以π6<A <π2,由正弦定理a sin A=b sin B =c sin C =1,得a =sin A ,b =sin B ,于是,a 2+b 2=sin 2A +sin 2B =sin 2A +sin 22π3-A =1-cos2A 2+1-cos 4π3-2A 2=1-12cos2A +cos 4π3-2A =1-1212cos2A -32sin2A 化简得,a 2+b 2=1+12sin 2A -π6,因为π6<A <π2,所以π6<2A -π6<5π6,所以12<sin 2A -π6 ≤1,54<1+12sin 2A -π6 ≤32,故a 2+b 2的取值范围为54,32 .。

解三角形图形类问题

解三角形图形类问题

解三角形图形类问题【方法技巧与总结】解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.【题型归纳目录】题型一:妙用两次正弦定理题型二:两角使用余弦定理题型三:张角定理与等面积法题型四:角平分线问题题型五:中线问题题型六:高问题题型七:重心性质及其应用题型八:外心及外接圆问题题型九:两边夹问题题型十:内心及内切圆问题【典例例题】题型一:妙用两次正弦定理例⒈(2022·全国·高三专题练习)在①cos Bcos C=-b2a+c,②sin Asin B-sin C=b+ca+c,③2S=-3BA⋅BC三个条件中任选一个补充在下面的横线上,并加以解答.在△ABC中,角A,B,C的对边分别为a,b,c且______,作AB⊥AD,使得四边形ABCD满足∠ACD=π3,AD=3,求BC的取值范围.例⒉(2020·北京·北师大二附中高三期中)如图,四边形ABCD中∠BAC=90∘,∠ABC=30∘,AD⊥CD,设∠ACD=θ.(1)若ΔABC面积是ΔACD面积的4倍,求sin2θ;(2)若∠ADB=π6,求tanθ.例⒊(江苏省南京市宁海中学2022届高三下学期4月模拟考试数学试题)在△ABC中,内角A,B,C的对边分别为a,b,c,A=150∘,点D在边BC上,满足CD=2BD,且sin∠BADb+sin∠CADc=32a.(1)求证:AD=13a;(2)求cos∠ADC.例⒋(广东省2022届高三二模数学试题)如图,已知△ABC 内有一点P ,满足∠PAB =∠PBC =∠PCA =α.(1)证明:PB sin ABC =AB sin α.(2)若∠ABC =90∘,AB =BC =1,求PC .例⒌(2022·全国·高三专题练习)如图,在梯形ABCD 中,AB ⎳CD ,AB =2,CD =5,∠ABC =2π3.(1)若AC =27,求梯形ABCD 的面积;(2)若AC ⊥BD ,求tan ∠ABD .例⒍(2022·河南安阳·模拟预测(理))如图,在平面四边形ABCD中,DC =2AD =42,∠BAD =π2,∠BDC =π6.(1)若cos ∠ABD =53,求△ABD 的面积;(2)若∠C =∠ADC ,求BC .例⒎(2019·安徽省怀远第一中学高三阶段练习(理))ΔABC的内角A,B,C的对边分别为a,b,c,设(sin A +sin B+sin C)⋅(sin A+sin B-sin C)=2sin A sin B.(1)求C;(2)若D为BC边上的点,M为AD上的点,CD=1,∠CAB=∠MB D=∠D MB.求AM.例⒏(2022·山东烟台·一模)如图,四边形ABCD中,AB2+BC2+AB⋅BC=AC2.(1)若AB=3BC=3,求△ABC的面积;(2)若CD=3BC,∠CAD=30∘,∠BCD=120∘,求∠ACB的值.例⒐(2022·全国·高三专题练习)在①AB=2AD,②sin∠ACB=2sin∠ACD,③S△ABC=2S△ACD这三个条件中任选一个,补充在下面问题中,并解答.已知在四边形ABCD中,∠ABC+∠ADC=π,BC=CD=2,且______.(1)证明:tan∠ABC=3tan∠BAC;(2)若AC=3,求四边形ABCD的面积.例⒑(2022·福建·厦门一中高一阶段练习)在平面四边形ABCD 中,∠ABC =π3,∠ADC =π2,BC =4.(1)若△ABC 的面积为33,求AC ;(2)若AD =33,∠BAC =∠DAC ,求tan ∠DAC .例⒒(2022·湖北武汉·模拟预测)如图,在平面四边形ABCD 中,∠BCD =π2,AB =1,∠ABC =3π4.(1)当BC =2,CD =7时,求△ACD 的面积;(2)当∠ADC =π6,AD =2时,求cos ∠ACD .题型二:两角使用余弦定理例⒓(2022·湖北·襄阳四中模拟预测)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,角A 的平分线AD 交BC 边于点D .(1)证明:AB AC=DB DC ,AD 2=AB ⋅AC -DB ⋅DC ;(2)若AD =1,A =2π3,求DB ⋅DC 的最小值.例⒔(2022·湖北武汉·二模)如图,△ABC内一点P满足PB⊥PC,AC=BP=2.(1)若AB=6,PC=2,求sin∠ACP的值;(2)若AB=5,sin∠ACP=110,求AP的长.例⒕(2022·江苏·泗阳县实验高级中学高一阶段练习)如图,在凸四边形ABCD中,已知AB=AD=4,BC=6.(1)若∠ADB=π6,C=π3,求cos∠BDC的值;(2)若CD=2,四边形ABCD的面积为4,求cos A+C的值.例⒖(2021·全国·高考真题)记△ABC是内角A,B,C的对边分别为a,b,c.已知b2=ac,点D在边AC 上,BD sin∠ABC=a sin C.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.例⒗(2022·全国·高三专题练习(理))如图,在△ABC中,D是AC边上一点,∠ABC为钝角,∠DBC= 90°.(1)证明:cos∠ADB+sin C=0;(2)若AB=27,BC=2,再从下面①②中选取一个作为条件,求△ABD的面积.①sin∠ABC=32114;②AC=3AD.注:若选择两个条件分别解答,则按第一个解答计分.例⒘(2022·重庆·二模)已知△ABC的外心为O,M,N为线段AB,AC上的两点,且O恰为MN中点.(1)证明:|AM|⋅|MB|=|AN|⋅|NC|(2)若|AO|=3,|OM|=1,求S△AMNS△ABC的最大值.题型三:张角定理与等面积法例⒙(广东省2022届高三三模数学试题)已知△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A= 2b+csin B+2c+bsin C.(1)求角A的大小;(2)设点D为BC上一点,AD是△ABC的角平分线,且AD=2,b=3,求△ABC的面积.例⒚(2022·湖北武汉·模拟预测)在△ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且c -b sin C =a -b sin A +sin B(1)求A ;(2)若D 为BC 上的点,AD 平分角A ,且c =32,AD =3,求BD DC.例⒛(2022·辽宁·高一期中)如图,在△ABC 中,AB =2,3sin 2B -2cos B -2=0,且点D 在线段BC 上.(1)若∠ADC =2π3,求AD 的长;(2)若BD =2DC ,sin ∠BAD sin ∠CAD=42,求△ABD 的面积.例21(2022·江苏·华罗庚中学三模)在△ABC 中,已知AB =4,AC =5,cos B =57. (1)求sin A 的值;(2)若AD 是∠BAC 的角平分线,求AD 的长.例22(2022·山东淄博·三模)已知函数f(x)=3sinωx cosωx-cos2ωx+12(ω>0),其图像上相邻的最高点和最低点间的距离为4+π2 4.(1)求函数f(x)的解析式;(2)记△ABC的内角A,B,C的对边分别为a,b,c,a=4,bc=12,f(A)=1.若角A的平分线AD交BC于D,求AD的长.例23(2022·黑龙江·哈尔滨三中高三阶段练习(理))在△ABC中,角A,B,C的对边分别是a,b,c,且2b cos C=2a+c.(1)求角B的大小;(2)若b=23,D为AC边上的一点,BD=1,且______,求△ABC的面积.①BD是∠B的平分线;②D为线段AC的中点.(从①,②两个条件中任选一个,补充在上面的横线上并作答).题型四:角平分线问题例24(2022·北京·首都师范大学附属中学三模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且3sin π6+B +sin π3-B =0.(1)求∠B 的值;(2)给出以下三个条件:条件①:a 2-b 2+c 2-3c =0;条件②a =3;条件③S △ABC =1534.这三个条件中仅有两个正确,请选出正确的条件并回答下面的问题:(i )求sin A 的值;(ii )求∠ABC 的角平分线BD 的长.例25(2022·江苏·南京师大附中模拟预测)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足2c b=1+tan A tan B .(1)求角A ;(2)角A 的内角平分线交BC 于点M ,若a =47,AM =33,求sin ∠AMC .例26(2022·北京八十中模拟预测)在△ABC中,3sin B+π6=-cos B+π6.(1)求B的值;(2)给出以下三个条件:①a2-b2+c2+3c=0;②a=3,b=1;③S△ABC=1534,若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题:(i)求sin A的值;(ii)求∠ABC的角平分线BD的长.例27(2022·河南·模拟预测(理))如图,在△ABC中,D为边BC的中点,∠ACB的平分线分别交AB,AD于E,F两点.(1)证明:sin∠ABC⋅sin∠CAD=sin∠ACB⋅sin∠BAD;(2)若∠BAC=π2,sin∠ABC=23,AD=32,求DE.例28(2022·广东佛山·三模)设△ABC的内角A、B、C的对边分别为a、b、c,已知b sin A+3a cos B= 0,∠ABC的平分线交AC于点D,且BD=2.(1)求B;(2)若a=3,求b.例29(2022·山东潍坊·模拟预测)已知△ABC的内角A、B、C的对边分别为a、b、c,且△ABC的面积为3a2+b2-c24.(1)求∠C;(2)若∠A=π2,∠C的角平分线CE与边AB相交于点E,延长CE至点D,使得CE=DE,求cos∠ADB.题型五:中线问题例30(2022·广东佛山·高三期末)△ABC中,内角A,B,C所对的边分别为a,b,c,且a cos C=(2b-c) cos A.(1)求角A的大小;(2)若b=2,BC边上的中线AD=3,求△ABC的面积.例31(2022·全国·模拟预测)在△ABC中.sin A cos A-π6=34.(1)求角A;(2)若AC=8,点D是线段BC的中点,DE⊥AC于点E,且DE=334,求CE的长.例32(2022·海南海口·二模)在△ABC中,角A,B,C的对边分别为a,b,c,已知B=π3,b=75a.(1)求sin A;(2)若a=5,AB边的中点为D,求CD.例33(2022·山东·烟台二中模拟预测)设△ABC的内角A,B,C的对边分别为a,b,c,且b cos C+3c sin Ba+c=1.(1)求角B的大小;(2)设D,E分别为边AB,BC的中点,已知△BCD的周长为3+3,且AECD=192,若c<5a,求a.例34(2022·新疆克拉玛依·三模(理))在△ABC中,a,b,c分别为三个内角A,B,C的对边,若2a2=a2+c2-b21-sin B cos B.(1)求角C;(2)若c=210,sin A=1010,D为AC的中点,求BD的长度.例35(2022·湖北·模拟预测)记△ABC的内角A,B,C的对边分别为a,b,c,若b2+c2-a2=2ab sin C.(1)求角A;(2)若AB=32,AC=3,点P在线段BC上,且CP=13CB,Q是线段AC中点,AP与BQ交于点M,求cos∠A MB.例36(2022·陕西·交大附中模拟预测(理))设△ABC的内角A,B,C所对边的长分别为a,b,c,且a=b cos C+33c sin B.(1)求B;(2)若c=1,a=3,AC的中点为D,求BD的长.题型六:高问题例37(2022·河南·平顶山市第一高级中学模拟预测(理))在△ABC中,角A,B,C所对的边分别为a,b,c,且a2-b2=c a cos B-b2.(1)求角A的大小;(2)若c=8,△ABC的面积为43,求BC边上的高.例38(2022·江苏·南京市江宁高级中学模拟预测)从①A为锐角且sin B-cos C=c2-a22ab;②b=2a sin C+π6这两个条件中任选一个,填入横线上并完成解答.在三角形ABC中,已知角A,B,C 的对边分别为a,b,c,.(1)求角A;(2)若b=34c且BC边上的高AD为23,求CD的长.例39(2022·北京房山·二模)在△ABC中,a cos B+12b=c,b=2.(1)求∠A;(2)再从下列三个条件中选择一个作为已知,使△ABC存在且唯一确定,求BC边上的高.条件①:cos B=-23;条件②:sin B=22;条件③:△ABC的面积为3+32.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.例40(2022·山东青岛·一模)在△ABC中,内角A,B,C的对边分别为a,b,c,且sin B-sin C2=sin2A -sin B sin C.(1)求角A;(2)若b=5,BC边上的高为1077,求边c.例41(2022·福建·模拟预测)已知△ABC的内角A,B,C的对边分别为a,b,c,2c-b=2a cos B.(1)求角A;(2)若3b2sin B+c-b2cos B=7,b-c=2,求BC边上的高.题型七:重心性质及其应用例42(2022·湖北省仙桃中学模拟预测)如图,在△ABC 中,已知AB =2,AC =23,∠BAC =30°,BC 边上的中线AM 与∠ABC 的角平分线BN 相交于点P .(1)∠MPN 的余弦值.(2)求四边形PMCN 的面积.例43(2022·全国·高三专题练习)G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,若20aGA +15bGB+12cGC =0 ,则cos A =( )A.0B.35C.45D.1例44(2022·全国·高三专题练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B +3a sin B=c +1,b =1,点G 是△ABC 的重心,且AG =213,则△ABC 的面积为( )A.32B.3C.3D.23例45(2022·全国·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的外接圆的面积为π,b -c sin B +2sin 2C =a sin A .(1)求A ;(2)AD 是角A 的平分线,若BD =3DC ,△ABC 的重心为G ,求AG 的长.题型八:外心及外接圆问题例46(2022·全国·高三专题练习)设O 为△ABC 的外心,若AO =AB +2AC ,则sin ∠BAC 的值为___________.例47(2022·江苏·泰兴市第一高级中学高三阶段练习)在△ABC 中,AB =4,AC =6,BC =5,点O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ=( )A.23B.35C.47D.59例48(2022·广东·模拟预测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a 3sin B -cos C =c -b cos A .从下列①②③这三个条件中选择一个补充在横线处,并作答.①O 为△ABC 的内心;②O 为△ABC 的外心;③O 为△ABC 的重心.(1)求A ;(2)若b =6,c =10,__________,求△OBC 的面积.注:如果选择多个条件分别解答,则按第一个解答计分.例49(2022·黑龙江齐齐哈尔·二模(理))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a 3sin B -cos C =c -b cos A .从下列①②这两个条件中选择一个补充在横线处,并作答.①O 为△ABC 的内心;②O 为△ABC 的外心.注:如果选择多个条件分别解答,则按第一个解答计分.(1)求A ;(2)若b =3,c =5,________,求△OBC 的面积.例50(2022·江苏省白蒲高级中学高三阶段练习)在△ABC中,角A,B,C的对边分别为a,b,c;3b=4c,cos C=45.(1)求cos A的值;(2)若△ABC的外心在其外部,a=7,求△ABC外接圆的面积.例51(2022·辽宁·三模)在△ABC中,内角A,B,C的对边分别为a,b,c.已知A=π3,c=4.(1)若sin B-cos B=22,求△ABC外接圆的直径;(2)若a=13,求△ABC的周长.例52(2022·四川·树德中学模拟预测(理))已知的数f x =3sin x2cosx2-cos2x2+12.(1)求f x 的单调增区间;(2)设△ABC的内角A,B,C的对边分别为a,b,c,若f A =12,a=3,求△ABC外接圆的面积.例53(2022·湖南·长郡中学高三阶段练习)法国著名军事家拿破仑·波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这个三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a cos B -C =cos A 23b sin C -a .以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为O 1,O 2,O 3.(1)求A ;(2)若a =3,△O 1O 2O 3的面积为7312,求△ABC 的周长.题型九:两边夹问题例54(2021•双流区校级模拟)在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos A +sin A -2sin B +cos B=0,则a +b c 的值是( )A.2 B.3 C.2 D.1例55(2020•苏州二模)在ΔABC中,已知边a,b,c所对的角分别为A,B,C,若2sin2B+3sin2C= 2sin A sin B sin C+sin2A,则tan A= .例56(2013•成都模拟)在ΔABC中,若(cos A+sin A)(cos B+sin B)=2,则角C= .例57(2018•如皋市二模)在ΔABC中,角A、B、C的对边分别为a,b,c,设S是ΔABC的面积,若b2+ c2=13a2+433S,则角A的值是 .题型十:内心及内切圆问题例58(2022·全国·高三专题练习)△ABC的内角A,B,C所对的边分别为a,b,c,a=6,b+12cos B=2c.(1)求A的大小;(2)M为△ABC内一点,AM的延长线交BC于点D,________,求△ABC的面积.请在下列三个条件中选择一个作为已知条件补充在横线上,使△ABC存在,并解决问题.①M为△ABC的外心,AM=4;②M为△ABC的垂心,MD=3;③M为△ABC的内心,AD=33.例59(2022·安徽·芜湖一中一模(理))已知ΔABC的内角A,B,C的对边分别为a,b,c,tan C= sin A2-cos A(1)求b c的值;(2)设M和N分别是ΔABC的重心和内心,若MN⎳BC且c=2,求a的值.例60(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且A 为锐角,a =32,AB ⋅AC =3,再从条件①:b sin B +C 2=a sin B ,条件②:b tan A =(2c -b )tan B ,这两个条件中选择一个作为已知.求:(1)角A ;(2)△ABC 的内切圆半径r .例61(2022·陕西·武功县普集高级中学一模(文))在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知b =4,c =2,且sin C =sin B +sin (A -B ).(1)求角A 和边a 的大小;(2)求△ABC 的内切圆半径.例62例62.(2022·全国·高三专题练习)如图,在△ABC 中,D 是BC 上一点,AD 平分∠BAC .(1)求证:BDDC =AB AC;(2)若AC =2,CD =1,AD =322,求△ABC 的内切圆面积.例63(2022·陕西·西北工业大学附属中学模拟预测(理))在△ABC中,a,b,c分别为角A,B,C的对边,且3b sin C-c cos B tan C=a.(1)求角A;(2)若△ABC的内切圆面积为4π,求△ABC面积S的最小值.例64(2022·全国·高三专题练习)已知函数f x =23sin x cos x+2cos2x(1)求函数f x =23sin x cos x+2cos2x的对称轴;对称中心;单调递增区间;(2)在ΔABC中,a,b,c分别是A,B,C所对的边,当f A =2,a=2时,求ΔABC内切圆面积的最大值.例65(2022·河南南阳·高三期末(理))在△ABC中,3sin C+cos C=sin B+sin Csin A.(1)求A;(2)若△ABC的内切圆半径r=2,求AB+AC的最小值.例66(2022·陕西·模拟预测(文))已知△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =6,b =54c ,A =2C ,设O 为△ABC 的内心,则△AOB 的面积为_________.例67(2022·全国·高三专题练习)已知点O 是ABC 的内心,若AO =49AB +19AC ,则cos ∠BAC =( )A.15B.16C.18D.19。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。

中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

解直角三角形知识点及典型例题

解直角三角形知识点及典型例题

板块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳:cba CBA⑴ 三边之间的关系:222a b c += (勾股定理); ⑵ 锐角之间的关系:90A B ∠+∠=︒; ⑶ 边角之间的关系:sin a A c =,cos b A c =,tan a A b =,cot b A a=. 三、 解直角三角形的四种基本类型⑴ 已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; ⑵ 已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =;⑶ 已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,cot b a A =,sin ac A=;⑷ 已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠.具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin ac A =等.四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 直角三角形两锐角间的三角函数关系(五)解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故s in c o s (90)c o s A A B =︒-=,cos sin A B =,tan cot A B =,cot tan A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.(六)如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化解直角三角形为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是: ①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 在三角形ABC 中,903010C A AB ∠=︒∠=︒=,,,则AC 的长度为( )A. B. C. D.【例2】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,4b =;【例3】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,6a b +=;【例4】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:45A ∠=︒,12S ∆=.【例5】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果40BCD ∠=︒,求AC 的长度D C BA【例6】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果1tan 3BCD ∠=,求CD 的长度D C BA【例7】 如图所示,在ABC ∆中,90C ∠=︒,D 是AC 边上的一点,且53AD DB CD ===,,求t a n CBD ∠和sin A 的值.DCB A【例8】 如图,在凯里市某广场上空飘着一只汽球P ,A B ,是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角45PAB ∠=︒,仰角30PBA ∠=︒,求汽球P 的高度(精确到0.1米,3=1.732)PACPBA【例9】 在Rt ABC ∆中,90C ∠=︒,若sin tan A B =,求cos A 的值.【例10】 在Rt ABC ∆中,90C ∠=︒,若cos cot A B =,求sin A 的值.【例11】 在三角形ABC 中,90C ∠=︒,a b c ,,分别是A B C ∠∠∠,,的对边,已知603B a b ∠=︒+=+,求a b ,【例12】 如图,在ABC ∆中,已知20AB AC BC ===,ABC ∆中各内角的度数 DCBA【例13】 如图,已知:ABC ∆是等腰直角三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,求sin ACE ∠的值.FED CBA【例14】 如图所示,天空中有一静止的广告气球C ,从地面A 点测得C 的仰角为45°,从地面B 点测得C 的仰角为60°.已知20AB =米,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度CD (结果保留根号).DCBA【例16】 已知:如图,ABC ∆中,45B AB ∠=︒=,,D 是BC 上一点,53AD CD ==,,求ADC ∠的度数及AC 的长.C BA板块二 解直角三角形应用(七)直角三角形中其他重要概念⑴ 仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.⑵ 坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为hi l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. ⑶ 方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线2. 解直角三角形应用题的解题步骤及应注意的问题:⑴ 分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;⑵ 找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);⑶ 根据已知条件,选择合适的边角关系式解直角三角形;⑷ 按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.(一)、仰角俯角【例17】 如图,一艘核潜艇在海面下500米A 点处测得俯角为30︒正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60︒正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度?(精确到米)海面60°30°D CBA【例18】 亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C D N 、、在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?M【例19】 某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=︒,在B 处测得A 的仰角40ABC ∠=︒,在D 处测得A 的仰角85ADF ∠=︒,过D 点作地面BE 的垂线,垂足为C . ⑴ 求ADB ∠的度数; ⑵ 求索道AB 的长.(结果保留根号)【例20】 如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=︒,量得树干倾斜角38BAC ∠=︒,大树被折断部分和坡面所成的角604m ADC AD ∠=︒=,. ⑴求CAE ∠的度数;⑵求这棵大树折断前的高度.1.4 1.72.4==).A CDE FBGACDEFB【例21】 一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米( 1.732≈ 1.414≈供计算时选用)DPGCO A【例22】 如图,某公园入口处原有三级台阶,每级台阶高20cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,斜坡的坡角BCA ∠为12︒,设台阶的起点为A ,斜坡的起点为C ,求AC 的长度(精确到1cm )DC BA【例23】 课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15︒,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30︒,求旗杆EG 的高度.C60°38°BDE23°AF【例24】 在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点 C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:3tan315︒≈,1sin312︒≈)【例25】 如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.A⑴ 请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n …表示,角用α,β…表示,测倾器高度忽略不计);⑵ 根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).【例26】 如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45︒和60︒,且A 、B 、E三点在一条直线上,若15BE =米,求这块广告牌的高度.(取1.73≈,计算结果保留整数)EDC BA60︒45︒【例27】 由山脚下的一点A 测得山顶D 的仰角是45︒,从A 沿倾斜角为30︒的山坡前进1500米到B ,再次测得山顶D 的仰角为60︒,求山高CD .DCBA【例28】 如图,在山脚的C 处测得山顶A 的仰角为45︒,沿着坡度为30︒的斜坡前进400米到D 处(即30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【例29】 如图所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A 点看C 点,仰角为5︒;从A点看D 点,俯角为30,解决下列问题:⑴ 求两幢楼分别高多少米?(结果精确到1米)⑵ 若冬日上午9:00太阳光的入射角最低为30(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米)(参考数据:tan50.0875≈ tan300.5774≈ cos30 1.732≈)DCDCB A【例30】 若每层楼高2.2米,问在例题的第⑵问中,在一号楼中至少住在第几层光照就不会受到二号楼的影响?F 30︒ED CBA【例31】 某住宅小区有一郑南朝向的居民楼,如图,该楼底层是高为6m 的超市,超市以上是居民住房,在该楼前方15m 处准备盖一幢高20m 的新楼,已知当地冬季正午的阳光与水平线夹角为32︒ ⑴超市以上居民住房采光是否受到影响?为什么?⑵若要使居民住房采光不受影响,两楼至少应相距多少米?(精确到0.1m )新楼居民楼新楼32°BADCBA【例32】 如图,“五一”期间在某商贸大厦上从点A 到点B 悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上.小明在四楼D 点测得条幅端点A 的仰角为30︒,测得条幅端点B 的俯角为45︒;小雯在三楼C 点测得条幅端点A 的仰角为45︒,测得条幅端点B 的俯角为30︒.若设楼层高度CD 为3米,请你根据小明和小雯测得的数据求出条幅AB 的长.(结果精确到个位,参考数据1.732)【例33】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD (用含a αβθ,,,的代数式表示)(二)、坡度角【例34】 为了加固一段河堤,需要运来砂石和土将堤面加宽1m ,使坡度由原来的1:2变成1:3,如图所示,已知原来背水坡长12BC m ,堤长100m ,那么需要运来砂石和土多少立方米?(参考数据3≈1.7,5≈2.7)CFEDBA【例35】 燕尾槽的横断面是等腰梯形,下图是个燕尾槽的横断面,其中燕尾角B 为55°,外口宽AD 为180 mm ,燕尾槽的深度为70 mm ,求它的里口宽BC (精确到1 mm )F EDCBA【例36】 创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.⑴请你帮助小王在下图中把图形补画完整;⑵由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中1:0.75i=是坡面CE的坡度),求r的值.【例37】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.⑴求整修后背水坡面的面积;⑵如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?DCBA【例38】城市规划期间,欲拆除一电线杆AB,如图所示,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度为2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30︒,D、E之间是宽为2m的人行道,试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心.以AB的长为半径的圆形区域为危险区域).FE人行道DCB A【例39】 如图,甲、乙两建筑物的水平距离为30m ,从乙的顶部A 测得甲的顶部C 的仰角为60︒,测得甲的底部D 的俯角为30︒,求两建筑物的高.B【例40】 在建筑楼梯时,设计者要考虑楼梯的安全程度.如图1,虚线为楼梯的斜度线,斜度线与地板的夹角为倾角θ,一般情况下,倾角θ愈小,楼梯的安全程度愈高.如图2,设计者为提高楼梯的安全程度,要把楼梯的倾角由1θ减至2θ,这样楼梯占用地板的长度由1d 增加到2d ,已知11440d m θ=∠=︒,,236θ∠=︒,求楼梯占用地板的长度增加了多少?(精确到0.01 m . 参考数据:tan36°=0.7256, tan40°=0.8391.)θ地板地板【例41】 武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44︒减至32︒,已知原台阶AB 的长为5米(BC 所在地面为水平面). ⑴ 改善后的台阶会加长多少?(精确到0.01米)⑵ 改善后的台阶多占多长一段地面?(精确到0.01米)44︒32︒CBA【例42】 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=︒,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?ABD CEF G ECDBA(三)、方位角【例43】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上, 2AB km =,15DAC ∠=︒. (1)求B D ,之间的距离; (2)求C D ,之间的距离.中山路文化路和平路环城路环城路和平路文化路中山路BCD45°30°15°15°30°45°ODC BABCA44︒【例44】 如图所示,某轮船以30海里/时的速度航行,在A 点处测得海面上的哨所P 在南偏东60︒,向北航行40分钟后到达B 点,测得哨所P 在南偏东30︒,轮船改变为北偏东60︒的航向再航行2小时到达C 点,若在PC 上存在一点M ,点M 在点B 的南偏东60︒处,且在点M 的周围有方圆15海里的暗礁区,问轮船从B 点到C 点的航行中有无触礁的危险?是否需要改变航向?EDB A【例45】 为缓解“停车难”的问题,某单位拟建造地下停车库,设计师提供了车库入口设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你计算图中CE 的长(精确到0.1m )【例46】 如图所示,某船以每小时36海里的速度向正东航行,在A 点测得某岛C 在北偏东60°方向上,航行半小时后到B 点,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁. (1)试说明B 点是否在暗礁区域外.(2)若继续向东航行,有无触礁危险?请说明理由.东【例47】 如图,公路MN 和公路PQ 在P 处交会,且30QPN ∠=︒,点A 处有一所学校,160m AP =,假设拖拉机行使时,周围100m 以内会受到噪音的影响,那么当拖拉机在公路MN 上沿PN 的方向以10m/s 的速度行使时,⑴ 学校是否会受到噪音的影响?为什么?⑵若学校会受到噪音的影响,受影响的时间是多少?【例48】 随着科学技术的发展,机器人已经能按照设计的指令完成各种动作,在坐标平面上,根据指令[s ,]α(0a ≥,0360α︒≤<︒)机器人能完成下列动作:先原地顺时针旋转角度α,再朝其面对的方向沿直线行走距离s.⑴填空:如图,若机器人在直角坐标系的原点,且面对y轴的正方向,现要使其移动到点(2A,2),则给机器人发出的指令应是_________⑵机器人在完成上述指令后,发现(6P,0)处有一小球正向坐标原点做匀速直线运动,已知小球的滚动速度与机器人行走的速度相同,若忽略机器原地旋转时间,请你给机器人发一个指令,使它能最快截住小球.(如图,点C为机器人最快截住小球的位置)(角度精确到度;参考数据:sin490.75︒≈,cos370.80︒≈,tan370.75︒≈,tan390.80︒≈)NyxPOANyxPO CBA【例49】第⑵问中,将“小球的滚动速度与机器人行走的速度相同”改为“小球速度为机器人的2”,则要在最短时间内截住小球应下的指令为.【例50】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.【例51】渔船上的渔民在A处看见灯塔M在北偏东60︒方向,这艘渔船以28海里/时的速度向正东航行,半小时到B处.在B处看见灯塔M在北偏东15︒方向,求此时灯塔M与渔船的距离.北东北15︒60︒MBA北东北60︒15︒NM BA【例52】 如图,某剧组在东海拍摄广告风光片,拍摄基地位于A 处,在其正南方向15海里处一小岛B ,在B的正东方向20海里处有一小岛C ,小岛D 位于AC 上,且距小岛A 有10海里. ⑴ 求A ∠的度数(精确到1︒)和点D 到BC 的距离;⑵ 摄制组甲从A 处乘甲船出发,沿A B C →→的方向匀速航行,摄制组乙从D 处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B 、C 间的F 处相遇,问相遇时乙船航行了多少海里?(结果精确到0.1海里)北C B北EC B【例53】 海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)【例54】 为保卫祖国的海疆,我人民解放军海军在海岸线上相距20n mile 的A B ,两地设立观测站,按国际惯例,海岸线以外12n mile 范围内均为我国领海,外国船只除特许外,不得私自进入我国领海,某日,观测员发现一外国船只行驶至P 处,在A 观测站测得P 在北偏东27︒,同时在B 观测站测得P 在北偏西56︒,问此时是否需要向此未经特许的船只发出警告,命令其退出我国领海?(参考数据:932sin63tan632sin34tan341053︒≈︒≈︒≈︒≈,,,)56°27°PBA【例55】 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. ⑴ 该城市是否会受这次台风影响?请说明理由.⑵ 若受台风影响,那么台风影响该城市的持续时间会有多长? ⑶ 该城市受台风影响的最大风力是几级?(四)其它【例56】 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=︒,45A ∠=︒.请你求出这块草地的面积.DCBA【例57】 如图,不透明圆锥体DEC 放在水平面上,在A 处灯光照射下形成影子,设BP 过底面圆的直径,已知圆锥体的高为,底面半径为2m ,4BE m =⑴求B ∠的度数;⑵若2ACP B ∠=∠,求光源A 距水平面的高度PEDCBA【例58】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【例59】 如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.⑴ 求AO 与BO 的长;⑵ 若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.图1图2图3【例60】 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)图3图2B【例61】 如图,在ABC ∆中,90C ∠=︒,AB的垂直平分线MN 交AC 于点D ,连结BD ,若3cos 5BDC ∠=, 求tan A 的值.(图1)NM DCA【例62】 如图所示,已知在Rt ABC ∆中,90ACB ∠=︒,3sin 5B =,D 是BC 上一点,DE AB ⊥,垂足为E ,CD DE =,9AC CD +=.求:⑴ BC 的长;⑵ CE 的长.EDCBA【例63】 如图,某居民小区内A B ,两楼之间的距离30MN =米,两楼的高都是20米,A 楼在B 楼正南,B楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高 1.8CD =米.当正午时刻太阳光线与地面成30角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(1.4141.732=2.236=)【例64】 如图,水坝的横截面为梯形ABCD ,坝顶宽6m AD =,坡面CD =,AB 的坡度为,135ADC ∠=︒,求水坝的横截面积.DBA【例65】 水坝的横截面是等腰梯形ABCD ,坝顶宽6AD m =,坝高4m ,斜坡AB 的坡度为1:2,现要将水坝加高2m ,要求坝顶宽度不变,背水坡AB 改为EG 后,坡度改为1:2.5,如图,按这样的要求,加固一条长为50m 的水坝,需要多少土方?Q HR G FEDCB A【例66】 如图所示,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时的速度沿北偏西60︒方向前进,乙船以每小时15km 的速度沿东北方向前进,甲船航行2h 到达C 处,发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75︒的方向追赶,结果两船在B 处相遇. ⑴ 甲船从C 处追上乙船用了多长时间? ⑵ 甲船追赶乙船的速度是多少?北【例67】 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,建筑物周围没有开阔平整地带,建筑物顶端宽度AD 、高度DC 都可以直接测得,从A D C ,,三点都可看到塔顶H⑴试根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案,具体要求如下:①可供使用的测量工具有皮尺、测角器;②测量数据尽可能少;③在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A D ,间距离,用m 表示,D C ,间距离,用n 表示;如果测角,用αβγ,,表示)⑵根据你测量的数据,计算塔顶端到地面的高度HG (用字母表示,测角器高度忽略不计)DBA【例68】 如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C ,两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)。

解三角形方法与技巧例题和知识点总结

解三角形方法与技巧例题和知识点总结

解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。

解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。

三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。

解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。

二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。

正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。

例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。

首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。

然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。

同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。

2、已知两边和其中一边的对角,求另一边的对角和其他边。

例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。

由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。

解三角形常见题型及技巧

解三角形常见题型及技巧

解三角形常见题型及技巧1.正弦定理 a sin A =b sin B =c sin C=2R 其中2R 为△ABC 外接圆直径。

变式1:a =2R sin A ,b =2R sin B ,c =2R sin C 。

变式2:sin 2a A R =,sin 2b B R =,sin 2c C R= 变式3:a ∶b ∶c =sin A ∶sin B ∶sin C 。

变式4:R CB A cb a C Ac a C B c b B A b a A a 2sin sin sin sin sin sin sin sin sin sin =++++=++=++=++= 2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C 。

(边换角后)sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。

变式1:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。

变式2:a 2=(b +c )2-2b c (1+cos A )(题目已知b +c ,bc 或可求时常用) 3.解三角形(知道三个元素,且含有边)(1)已知三边a ,b ,c 或两边a ,b 及夹角C 都用余弦定理(2)已知两边a ,b 及一边对角A,一般先用正弦定理,求sin B ,sin B =b sin Aa 。

(3)已知一边a 及两角A ,B (或B ,C )用正弦定理(已知两角,第三角就可以求)。

4.三角形常用面积公式(1)S =12a ·h (2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R (3)S =12r (a +b +c )(r 为内切圆半径)5.在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。

解三角形(总结+题+解析)

解三角形(总结+题+解析)

解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。

俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。

解题技巧专题:判定三角形全等的基本思路压轴题三种模型全攻略(学生版)

解题技巧专题:判定三角形全等的基本思路压轴题三种模型全攻略(学生版)

解题技巧专题:判定三角形全等的基本思路压轴题三种模型全攻略【考点导航】目录【典型例题】【考点一已知两边对应相等解题思路】【考点二已知两角对应相等解题思路】【考点三已知一边一角对应相等解题思路】【过关检测】【典型例题】【考点一已知两边对应相等解题思路】基本解题思路:已知两边对应相等:①找夹角对应相等(SAS);②找第三边对应相等(SSS).1(2023·云南昭通·统考二模)如图,点A,F,C,D在同一直线上,BC∥EF,AF=DC,BC=EF.求证:△ABC≌△DEF.【变式训练】1(2023·云南昆明·统考二模)如图,点A,D,B,E在一条直线上,AD=BE,BC=EF,AC=DF.求证:∠C=∠F.2(2023春·上海徐汇·七年级上海市第二初级中学校考阶段练习)如图,AD⊥AB,AC⊥AE,BE与DC交于点F,且AD=AB,AC=AE.试说明:DC=BE,DC⊥BE.【考点二已知两角对应相等解题思路】基本解题思路:已知两角对应相等:①找夹边对应相等(ASA);②找非夹边的边对应相等(AAS).1(2022·云南昭通·八年级期末)如图,已知:∠1=∠2,∠C=∠D.求证:BC=BD.【变式训练】1(2023·湖南长沙·八年级期中)如图,∠A=∠D,∠B=∠C,BF=CE,求证:AB=DC.2(2022·四川泸州·八年级期末)已知:∠B=∠C,∠1=∠2,AB=AC.求证:BE=CD.3(2023·云南文山·统考二模)如图,AB=AC,∠BAD=∠CAE,∠B=∠C,求证:AD=AE.4(2023春·全国·七年级专题练习)如图,点D在BC上,∠ADB=∠B,∠BAD=∠CAE.(1)添加条件:(只需写出一个),使△ABC≅△ADE;(2)根据你添加的条件,写出证明过程.【考点三已知一边一角对应相等解题思路】基本解题思路:(1)有一边和该边的对角对应相等:找另一角对应相等(AAS).(2)有一边和改边的领角对应相等:①找夹该角的另一边对应相等(SAS);②找另一角对应相等(AAS或ASA).1(2023·湖南邵阳·统考二模)如图,AC与BD相交于点E,已知AB=CD,∠ABE=∠DCE,求证:△ABC≌△DCB.【变式训练】1(2023·陕西榆林·校考模拟预测)如图,已知∠C=∠DBA=90°,BC=EB,DE∥BC,求证:AC= DB.2(2023·陕西西安·校考模拟预测)如图,已知点B,E,C,F在一条直线上,AB=DF,BC=FE,∠A =∠D=90°.求证:AC∥DE.3(2023·江苏苏州·统考三模)如图,AD,BC交于点E,AC=BD,∠C=∠D=90°.(1)求证:△ACE≌△BDE;(2)若∠CAE=26°,求∠ABC的度数.【过关检测】一、解答题1(2023·陕西西安·西安市曲江第一中学校考模拟预测)如图,已知∠B=∠F,BD=CF,请添加一个条件,使得△ABC≌△EFD,(只需添加一个条件),并写出证明过程.2(2023·福建福州·福州黎明中学校考模拟预测)如图,在等腰△ABC中,BA=BC,点F在AB边上,延长CF交AD于点E,BD=BE,∠ABC=∠DBE.求证:AD=CE.3(2023·四川泸州·四川省泸县第四中学校考二模)如图,点A、D、B、E在同一条直线上,若AD= BE,∠A=∠EDF,∠E=∠ABC.求证:AC=DF.4(2023·福建泉州·统考二模)如图,点B,D重合,点F在BC上,若BF=AC,BC=EF,∠E+∠EDG=∠A,求证:AB=DE.5(2023·全国·八年级假期作业)如图,四边形ABCD中,BC=CD,AC=DE,AB∥CD,∠B=∠DCE=90°,AC与DE相交于点F.(1)求证:ΔABC≅ΔECD(2)判断线段AC与DE的位置关系,并说明理由.6(2023·江苏·八年级假期作业)在△ABC中,∠ACB=90°,AC=BC,过点C作直线MN,AM⊥MN于点M,BN⊥MN于点N.(1)若MN在△ABC外(如图1),求证:MN=AM+BN;(2)若MN与线段AB相交(如图2),且AM=2.6,BN=1.1,则MN=.7(2023·浙江·八年级假期作业)如图,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE,点D在线段AB上(与A,B不重合),连接BE.(1)证明:△ACD≌△BCE.(2)若BD=3,BE=7,求AB的长.8(2023·黑龙江哈尔滨·统考三模)已知:AB=AC,点D,E分别在AB,AC上,且BD=CE.(1)如图1,求证:∠B=∠C;(2)如图2,BE交CD于点F,连接AF,在不添加任何辅助线的情况下,请直接写出图2中四对全等的三角形.9(2023春·广东深圳·七年级深圳实验学校中学部校考期中)如图所示,已知AB=DC,AE=DF,EC=BF,且B,F,E,C在同一条直线上(1)求证:AB∥CD(2)若BC=10,EF=7,求BE的长度10(2023·全国·八年级假期作业)如图,C为BE上一点.点A,D分别在BE两侧.AB∥ED,AB= CE,BC=ED.(1)证明:△ABC≅△CED;(2)若∠A=135°,求∠BCD的度数.11(2023春·江苏无锡·九年级统考期中)如图,已知∠B=∠E,AB=AE,∠1=∠2.(1)求证:△ABC≅△AED;(2)若∠1=40°,求∠3的度数.12(2023·甘肃兰州·统考一模)如图,已知点B,F,C,E在同一直线上.AB=EF,AC=DF.从下面①②③中选取一个作为已知条件,使得△ABC≌△FED.①∠A=∠DFE;②∠ACB=∠D;③BC=DE.你选择的已知条件是(填序号),利用你选择的条件能判定AB∥DE吗?请说明理由.13(2023秋·八年级单元测试)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA.(2)若∠ABC=35°,求∠CAO的度数.1114(2023·辽宁鞍山·统考一模)如图,在△ABC 中,AB =AC ,CD ∥AB ,连接AD ,E 为AC 边上一点,∠ABE =∠CAD ,求证:△ABE ≌△CAD.15(2023秋·四川绵阳·八年级校考期末)已知:如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE ≅△BEC ;(2)若DE =10,试求△CDE 的面积.。

第十一章+三角形常见题型及解题技巧+课件++2023—2024学年人教版数学八年级上册

第十一章+三角形常见题型及解题技巧+课件++2023—2024学年人教版数学八年级上册
返回
6 . 如 图 , 在 △ABC 中 , ∠ ABC , ∠ ACB 的 平 分 线 交 于 点 O , D 是 外 角 ∠ACH与内角∠ABC平分线的交点,∠BOC=120°.
(1)求∠A的度数;
解:(1)∵∠BOC=120°, ∴∠OBC+∠OCB=60°. ∵∠ABC,∠ACB的平分线交于点O, ∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=120°. ∴∠A=180°-(∠ABC+∠ACB)=60°.
①+②,得 2S=
∴S=(n+2)2(n+1).
返回
4.【2023·连云港宁海中学模拟】观察如图所示的图形, 根据其变化规律,可知第10个图形中三角形的个数为 ____3_7___.
返回
5.【2023·北京八中月考】阅读下面材料. 在△ABC中,有一点P,当P,A,B,C没有任何三点 在同一条直线上时,可构成三个不重叠的小三角形(如 图 ) . 当 △ABC 内 的 点 的 个 数 增 加 时 , 若 其 他 条 件 不 变,三角形内互不重叠的小三角形的个数情况怎样?
解:∠BDC=∠A+∠ABD+∠ACD. 理由:∵∠BDC+∠DBC+∠DCB=180°, ∠A+∠ABC+∠ACB=∠A+∠ABD+ ∠ACD+∠DBC+∠DCB=180°, ∴∠BDC=∠A+∠ABD+∠ACD.
应 用 : 某 零 件 如 图 ② 所 示 , 要 求 ∠ A= 90° , ∠ B= 32°,∠C=21°,当检验员量得∠BDC=145°时,就 断定这个零件不合格.你能说出其中的道理吗? 由上述结论得合格零件中
1 见习题 2 见习题 3 见习题 4 37 6 见习题
答案显示
7; 5 4 049;
2n+1
素养集训 1.如图,过A,B,C,D,E五个点中任意三点画三角形. (1)其中以AB为一边可以画出____3____个三角形; (2)其中以C为顶点可以画出_____6___个三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形解题口诀及例题
角平分线四连线,边垂折叠全等现.
垂线要把三线连,平行等腰来构建.
垂直平分若出现,线上一点两相连.
六十三十四十五,等边直角作三角.
要证线段倍与半,延长缩短与直角.
两线之和等一线,截长补短试试看.
线段和差比大小,三角形中来相见.
三角形中有中线,延长中线等中线.
中点若与中点见,两点相连中位线
1.在△ABC中,AD是△ABC的角平分线,所示,E、F分别是AB、AC上的点,且∠EDF+∠BAC=180°,求证:DE=DF.
边垂作全等
证明:作DM⊥AB于点M,作DN⊥AC于点N,如右图所示,
则∠EMD=∠FND=90°,
∵AD平分∠BAC,
∴DM=DN,
∵∠EDF+∠BAC=180°,
∴∠AED+∠AFD=180°,
又∵∠DFN+∠AFD=180°,
∴∠DEM=∠DFN,
在△EMD和△FND中,

∴△EMD≌△FND(AAS),
∴DE=DF.
2.在△ABC中,AD为△ABC的角平分线.如图,∠C≠90°,如果∠C=2∠B,求证:AB
=AC+CD.
折叠作全等
解:在AB上截取AE=AC,连接DE,
∵AD为△ABC的角平分线,
∴∠CAD=∠EAD,
在在△AED和△ACD中
∴△AED≌△ACD(SAS),
∴∠C=∠AED,CD=ED,
∵∠C=2∠B,
∴∠AED=2∠B,
∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴ED=EB,
∴EB=CD,
∵AB=AE+EB,
∴AB=AC+CD.
3.如图,点O是△ABC边AC上的一个动点,过O点作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;
证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,∠4=∠6,∵MN ∥BC ,
∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO =CO ,FO =CO ,∴OE =OF ;
4.如图,在△ABC 中,BC =AC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于点E ,且AE =
BD ,求证:BD 是∠ABC 的角平分线.
证明:延长AE 、BC 交于点F .∵AE ⊥BE ,
∴∠BEF =90°,又∠ACF =∠ACB =90°,∴∠DBC+∠AFC =∠FAC+∠AFC =90°,∴∠DBC =∠F AC ,在△ACF 和△BCD 中,
∴△ACF ≌△BCD (ASA ),∴AF =BD .又AE =BD ,
∴AE =
AF =EF ,即点E 是AF 的中点.
∵BE ⊥AF
∴DE 是AF 的垂直平分线∴AB =BF ,
根据等腰三角形三线合一的性质可知:BD 是∠ABC 的角平分线.
角平分线与平行于角一边的线构造等腰三角形
垂直于角平分线,构造三线合一
5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB,AC于点D,E.求证:AE=2CE;
有中垂线即向两端连线
证明:连接BE.
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∵∠C=90°,
∴∠ABC=90°﹣30°=60°,
∴∠CBE=∠ABC﹣∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE;
6.如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.
60°角找等边三角形
解:∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC=8.
∴菱形ABCD的周长=4×8=32,
∵BO==4,
∴BD=2BO=8,
∴菱形ABCD 的面积=×8×=32.
7.如图,△ABC 中,∠B =45°,∠C =60°,AC =10,求边AB 的长.
解:作AD ⊥BC 于点D ,在Rt △ADC 中,∠C =60°,∴∠CAD =30°,∴CD =AC =5,
∴AD =
=5

在Rt △ADB 中,∠B =45°,∴BD =AD =5

由勾股定理得,AB ==
=5

8.如图,四边形ABCD 中,AD =4,BC =1,∠A =30°,∠B =90°,∠ADC =120°,求
CD 的长.
解:延长AD 、BC 交于E ,∵∠A =30°,∠B =90°,∴∠E =60°,∵∠ADC =120°,∴∠EDC =60°,∴△EDC 是等边三角形,设CD =CE =DE =x ,∵AD =4,BC =1,∴2(1+x )=x+4,
60°角找直角三角形,45°角构造直角
30°角找直角三角形
解得;x =2,∴CD =2.
9.如图,△ABC 中,AB =AC =2,∠B =15°,求等腰△ABC 腰上高的值.
解:作BD ⊥AC 交CA 的延长线于D ,∵AB =AC ,∠B =15°,∴∠C =∠B =15°,∴∠DAB =∠C+∠B =30°,∴BD =
AB =1.
10.已知,如图,∠
C =90°,∠B =30°,A
D 是△ABC 的角平分线.求证:
BD =2CD ;
解:如图,过D 作DE ⊥AB 于E ,
∵∠C =90°,AD 是△ABC 的角平分线,∴DE =CD ,又∵∠B =30°,∴Rt △BDE 中,DE =BD ,
∴BD =2DE =2CD ;
11.已知:如图,AD 、AE 分别是△ABC 和△ABD 的中线,且BA =BD ,求证:AE =
AC .
证明:延长AE 至F ,使EF =AE ,连接DF .∵AE 是△ABD 的中线,
15°角构造30°找直角三角形
线段倍与半构造直角三角形
∴BE =DE .∵∠AEB =∠FED ,∴△ABE ≌△FDE (SAS ).∴∠B =∠BDF ,AB =DF .∵BA =BD ,
∴∠BAD =∠BDA ,BD =DF .
∵∠ADF =∠BDA+∠BDF ,∠ADC =∠BAD +∠B ,∴∠ADF =∠ADC .∵AD 是△ABC 的中线,∴BD =CD .∴DF =CD .
∴△ADF ≌△ADC (SAS ).∴AC =AF =2AE ,即AE =
AC .
12.如图,在△ABC 中,AB >BC ,BD 是高,P 是BD 上任意一点,求证:PA ﹣PC <AD ﹣
CD .
证明:在AD 上取一点E ,使得DE =CD ,∴AD ﹣CD =AD ﹣DE =AE ,∵BD ⊥AC ,∴PD ⊥CE ,∵DE =CD ,∴PE =PC ,∵P A ﹣PE <AE ,故P A ﹣PC <AD ﹣CD .
13.如图,DC ∥AB ,∠BAD 和∠ADC 的角平分线相交于E ,过E 的直线分别交DC ,AB
于CB 两点.求证:AD =AB+DC
线段倍与半延长缩短
线段和差比大小,构造三角形
两线之和等一线,截长补短
证明:在AD上截取AF=AB,连接EF,如图所示:
在△ABE和△AFE中,,
∴△ABE≌△AFE(SAS),
∴∠AFE=∠B,
∵AB∥DC,
∴∠B+∠C=180°,
∵∠AFE+∠DFE=180°,
∴∠DFE=∠C,
在△DEF和△DEC中,,
∴△DEF≌△DEC(AAS),
∴DF=DC,
∴AB+DC=AF+DF=AD,
即AD=AB+DC.
14.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.
中线倍长
证明:延长DE到F,使EF=DE,连接BF,
∵E是BC的中点,
∴BE=CE,
∵在△BEF和△CED中

∴△BEF≌△CED.
∴∠F=∠CDE,BF=CD.
∵∠BAE=∠CDE,
∴∠BAE=∠F.
∴AB=BF,
又∵BF=CD,
∴AB=CD.
15.如图,在△ABC中,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且CF =BC.试猜想DE与CF有怎样的数量关系,并说明理由.
中位线
解:DE=CF,
理由如下:∵点D,E分别是AB,AC的中点,
∴DE=BC,
∵CF=BC,
∴DE=CF.。

相关文档
最新文档