焊接线能量

合集下载

焊接基本原理

焊接基本原理

焊接基本原理焊接:被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺。

比热流:单位时间内通过单位面积传入焊件的热能。

焊接温度场:焊件上包括内部某瞬时的温度分布称为温度场。

稳定温度场:焊接温度场各点的温度不随时间而变动时,称为稳定温度场;随时间而变动时,称为非稳定温度场。

准稳定温度场:经过一段时间后达到饱和状态,形成暂时稳定的温度场。

焊接线能量:电弧在单位焊缝长度上所释放的能量。

熔滴比表面积:熔滴的表面积与其质量之比 .R VA ρρ/ 3/S==短渣:随温度升高粘度急剧下降,随温度下降粘度急剧上升。

(适用所有焊)长渣:随温度升高粘度下降缓慢的熔渣。

联生结晶:焊接过程中,焊缝区在冷却过程中以熔合线上局部半融化的晶粒为核心向内生长,生长方向为散热最快方向,最终长成柱状晶粒。

晶粒前沿伸展到焊缝中心,呈柱状铸态组织,此种结晶方式为联生结晶。

竞争生长:晶粒长大具有一定结晶位向,当晶粒最大结晶位向与散热最快方向一致,最有利于晶粒长大,晶粒优先得到生长,当这两个方向不一致时,晶粒长大停止。

短段多层焊:多层焊时每道焊缝长度在50至400mm,在这种情况下,前层焊缝冷却到较低温度才开始焊接下一道焊缝。

长段多层焊:多层焊时每道焊缝长度在1m以上,在这种情况下,前层焊缝冷却到较低温度才开始焊接下一道焊缝。

焊接热循环:焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化称为焊接热循环。

碳当量:把钢中合金元素按其对淬硬的影响程度折合成碳的相当含量。

焊接热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域,称为焊接热影响区。

焊接拘束度:R单位长度焊缝,在根部间隙产生单位长度的弹性位移所需要的力。

焊接拘束应力:热应力、组织应力、结构自身拘束条件所造成的应力,三种应力的综合作用统称为拘束应力。

焊接工程验收要求

焊接工程验收要求

焊接工程验收要求I主控项目1.对有冲击韧性要求的焊缝,施焊时应测量焊接线能量,并应作记录。

焊接线能量应符合设计文件和焊接工艺文件的规定。

检查数量:全部检查。

检查方法:采用计量仪表、秒表、钢尺测量和检查焊接记录。

2、对规定进行中间无损检测的焊缝,无损检测应在外观检查合格后进行,焊健质量应符合本规范第8章的有关规定。

检查数量:符合设计文件的规定。

检查方法:检查无损检测报告。

3、对道间温度有明确规定的焊缝,道间温度应符合焊接工艺文件的规定。

要求焊前预热的焊件,其道间温度应在规定的预热温度范围内。

检查数量:全部检查。

检查方法:采用测温仪器测量和检查焊接记录。

4、规定背面清根的焊缝,在清根后应进行外观检查,清根后的焊缝应露出金属光泽,坡口形状应规整,满足焊接工艺要求。

当设计文件规定进行磁粉检测或渗透检测时,磁粉检测或渗透检测的焊缝质量不应低于现行行业标准《承压设备无损检测》JB/T4730规定的I级。

检查数量:全部检查。

检查方法:观察检查,检查磁粉检测或渗透检测报告。

5、当规定进行后热时,其后热温度、后热时间应符合现行国家标准《现场设备、工业管道焊接工程施工规范》GB50236的有关规定和焊接工艺文件的规定。

检查数量:全部检查。

检查方法:采用测温仪器测量和检查焊接记录。

11一般项目6、定位焊缝焊完后,应清除熔渣进行检查,定位焊缝的尺寸和质量应符合现行国家标准《现场设备、工业管道焊接工程施工规范》GB50236的有关规定和焊接工艺文件的规定。

检查数量:全部检查。

检查方法:观察检查和钢尺、焊缝检测尺检查。

7、对规定进行酸洗、钝化处理后的焊缝及其附近表面的质量应符合设计文件和下列规定;1)酸洗后的焊缝及其附近表面不得有明显的腐蚀痕迹、颜色不均匀的斑纹和氧化色。

2)酸洗后的焊缝表面应用水冲洗干净,不得残留酸洗液。

3)钝化后的焊缝表面应用水冲洗,呈中性后擦干水迹。

检查数量:全部检查。

检查方法:观察检查和PH值检直,设计文件规定的其他检查方法及检查记录。

线能量

线能量

焊接电流——过小会使电弧不稳,造成未焊透、夹渣及焊缝成形不良等缺陷。焊接电流过大,易产生咬边、焊穿、增加焊件变形和金属飞溅量,也会使焊接接头的组织由于过热而发生变化。
电弧电压——焊条电弧焊的电弧电压主要由电弧长度来决定:电弧长度越长,电弧电压越高,降低保护效果,易产生电弧偏吹等。在焊接过程中,应尽量使用短弧焊接。 焊接线能量——熔焊时,由焊接热源输入给单位长度焊缝的能量。
焊接线能量:E=P/v
其中:v——焊接速度(cm/min)
焊条电弧焊的焊接线能量与焊接电流、电弧电压及焊接速度有关,在保证不焊穿和成形良好的条件下,应尽量采用较大的焊接电流,并适当提高焊接速度,以提高焊接生成率
焊接线能量的计算过程如下:
有效热功率:P=η×Po=ห้องสมุดไป่ตู้×U×I
其中:
Po——电弧功率(J/s)
U——电弧电压(V)
I——焊接电流(A)
η —— 功率有效系数,焊条电弧焊为0.74~0.87、埋弧焊为0.77~0.90、交流钨极氩弧焊为0.68~0.85、直流钨极氩弧焊为0.78~0.85。无特别说明时,取中间值。
熔焊时由焊接能源输入给单位长度焊道上的热量,称为焊接线能量。
线能量的计算公式:
q = IU/υ
式中:I—焊接电流 A
U—电弧电压 V
υ—焊接速度 cm/s
q—线能量 J/cm
焊接速度——过快,熔化温度不够,易造成未熔合、焊缝成形不良等缺陷;若焊接速度过慢,高温停留时间增长,热影响区宽度增加,焊接接头的晶粒变粗,力学性能降低,同时使焊件变形量增大。当焊接较薄焊件时,易形成烧穿。

焊接线能量名词解释

焊接线能量名词解释

焊接线能量名词解释
焊接线能量是指在焊接过程中发挥作用的能量。

焊接线能量包括热能、电能和光能三种形式。

1.热能:焊接过程中产生的热能是焊接线能量的主要形式。


过点燃焊接材料(如气焊、电弧焊)或者使用激光束在焊接区域聚焦等方式,将电能或者光能转化为热能,在焊接接头上升高温度,实现金属材料的熔化和熔池的形成。

2.电能:电焊是较常见的焊接方式之一,焊接电流通过焊接电
极流经焊件,产生由电流通过焊件引起的电阻加热。

电能是通过电流提供的,焊接电流的大小决定了焊接热量的多少。

3.光能:激光焊接是利用激光束对焊接区域进行聚焦,产生高
能量密度的光能,在焊接材料表面引起局部熔化。

光能在激光焊接中起到熔化金属的作用,实现高精度和高能量密度的焊接。

焊接线能量会根据焊接工艺、材料和焊接目标的不同而有所变化。

合理控制焊接线能量的大小和分布,对于获得理想的焊缝质量和焊接强度至关重要。

大线能量焊接钢板热影响区性能劣化机理分析及对策研究

大线能量焊接钢板热影响区性能劣化机理分析及对策研究

A src:h et f ce oe( Z alr m ca i ikpa a n ye ,n e f c o dtno h in u— bta tT e a f t zn HA )fi e ehns o t c l e s  ̄ zd adt f t f a io ni i t gas h ae d u m fh tw a h e e Mg d i n bi
Z HU Ka , ANG Ja W ANG Ru-h , HE in g o iY in, iz iS N Ja .u ( eerhIstt,asa rnadSel o ,t. S aga 2 10 C ia R sa tu B ohnI n te C .Ld ,hn hi 0 90, h ) c nie o n
21 0 2年 9月
内 蒙 古 科 技 大 学 学 报
J u a fI n r Mo g l n v r i fS i n e a d T c n lg o r lo n e n o i U i e s y o ce c n e h oo y n a t
S p e e , 01 e t mb r 2 2
tn t r i r wt fT — e r g l w c r o tes w s su i d T t es w t i e e tMg c n e t w r r p rd u i g a l b r tr e i g an g o h o ib a i o a b n s l a t d e . wo se l i df r n o tn s e e p e a e s a o ao y e n e h f n v c u T e p r r n e o a u m. h e o ma c fHAZ u d rw l h r ls lt n a n e tg td T e HAZ tu h e s w s i r v d e i e t . twa f n e ed t e ma i ai s w s iv sia e . h mu o o g n s a mp o e vd nl I y s o n h o g n st o s r ai y a c n o a c n i gl s rmir s o e ta h u tn t ga n i h fu d t ru h i — i b e v t n b o fc ls a n n a e co c p h tt ea se i r i n t e HAZ o te t d i o u o e fse l h Mg a d t n wi i si r s n sf e ga n d s u t r f ru d r on 0 ℃ h ai gf r 0 . h s ih b t n o u tn t r i rwt sma ny a — t l e e t i —r i e t cu e at n e g i g 14 0 lp n r e e t o 0 S T i n i i o f s i g an go h wa i l t n 3 i a e e tiu e o t ef r to f i nn at lsa e e a d t n o . h ba n d r s l r p s oe t l t o ri r vn r td t omain o n i gp ri e f rt d i o fMg T e o ti e e u t p o o e ap t n i h d f b h p c t h i s a me o mp o ig HAZ tu h e so ik p a e se l . o g n s ft c lt te s h

焊接线能量

焊接线能量

在焊接过程中热源沿焊件的某一方向移动,焊件上任一点的温度都经历由低到高的升温阶段,当温度达到最大值后又经历由高到低的降温阶段。

在焊缝两侧不同距离的各点,所经历的这种热循环是不同的,如图3-12所示。

焊接是一个不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。

与金属材料一般热处理相比,或与塑性成形或凝固成形相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。

焊接热循环的主要参数是加热速度,峰值温度T max,高温停留时间t H,冷却速度(或冷却时间t8/5或t8/3)如图3-13所示(1)加热速度采用不同的焊接方法和不同的线能量,焊接不同厚度的低碳钢或低合金结构钢,根据实测结果加热速度如表3-4所示通常随着加热速度的提高,钢的固态相变温度Ac1和Ac3也相应的提高,而且Ac1和Ac3之间的温差也变大,如表3-5所示。

随着钢中碳化元素的增多(例如18Cr2Wv钢),这一效果更为显著。

(2)峰值温度T max属的板厚h及离热源中心距离有关。

(3)高温停留时间t H所谓高温停留时间是指在相变温度Ac1以上停留时间。

如图3-13所示,它包含加热过程高温停留时间t和冷却过程高温停留时间t"。

在相变温度以上停留时间,对于相的溶解、奥氏体的扩散均匀化以及晶粒度都有很大影响。

对于钢来说t H越长,越有利于奥氏体的均匀化,但温度太高,例如在1100℃以上的停留时间过长,将会使奥氏体晶粒严重长大,造成晶粒脆化。

tH与焊接能量E,被焊金属的工件板厚h以及焊件的初始温度T0以及加热最高温度T max等因素有关。

(4)冷却速度冷却速度,特别是在固态相变温度范围内冷却速度,即800~500℃及800~300℃时的冷却速度是焊接热循环中极其重要的参数,它将决定焊接接头的组织、性能及接头质量。

冷却速度对过冷奥氏体的转变影响很大,图3-14 为冷却速度对Fe-C合金平衡状态图上各临界线及临界点的影响。

焊接冶金学基本原理要点归纳总计

焊接冶金学基本原理要点归纳总计

焊接冶金学基本原理绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。

2)焊接、钎焊和粘焊本质上的区别:焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。

3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。

压力焊和钎焊热源:电阻热、摩擦热、高频感应热。

4)焊接加热区:可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。

表示方法:等温线或者等温面。

特点:焊接时焊件上各点的温度在每一瞬时都在有规律的变化。

影响因素:(1)热源的性质;(2)焊接线能量;(3)被焊金属的热物理性质;<热导率,比热容容积比热容,热扩散率,热焓,表面散热系数>;(4)焊件的板厚和形状。

6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。

,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。

8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。

9)焊接热传递的三种形式:传导、对流和辐射。

由热源传热给焊件的热量以辐射和对流为主,而母材和焊丝获得热能后热的传播以传导为主。

10)焊接线能量:热源功率q与焊接速度v的比值。

热输入:在单位时间内,在单位长度上输入的热能。

第一章焊接化学冶金1)平均熔化速度:单位时间内熔化焊芯质量或长度。

平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。

(真正反应焊接质量的指标)损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。

大线能量焊接用钢的现状与发展讲解

大线能量焊接用钢的现状与发展讲解

大线能量焊接用钢板的应用领域
船舶
桥梁
高层建筑
海洋结构
石油储罐
球罐
国外大线能量焊接用钢的研究现状
造船
日本JFE公司的EH40船板钢的焊接 热输入量已经达到680kJ/cm,40 至100mm厚度的钢板可实现一道次 焊接成形,其焊接效率比传统方 法提高数十倍。
日本新日铁公司开发的EH40造船 钢板,其焊接热输入量能够达到 390 kJ/cm;
• 钢中第二相,包括传统意义上的夹杂物微细化及其形状 和分布状态的有效控制是未来钢铁材料科学与技术发展 的重要方向。
晶内针状铁素体含量与韧脆转变温度的关系
只有当HAZ组织中的针状铁素体含量达到50%以上 时,焊接热影响区才会显现出良好的低温韧性
HAZ部位奥氏体晶粒尺寸对韧性的影响 HAZ部位奥氏体晶粒细小有利于提高韧性
50mm
21mm
50mm
1水冷滑块 2金属熔池 3渣池 4焊接电源 5焊丝 6送丝轮 7导电杆 8引出板 9出水管 10金属熔滴 11进水管 12 焊缝 13起焊槽
普通热输入焊接:多道次、生产效率低
大热输入焊接:单道次、生产效率高,成本低
电渣焊焊缝
手工焊焊缝
1 大线能量焊接用钢的研究现状
近年,随着构件的大型化和大跨度化,使用低合金高强钢的下游企业为 提高施工效率和降低成本,逐步开始采用更为高效的大线能量焊接方法。 目前国内常见的大线能量焊接方法如下:
日本大线能量焊接用钢生产技术简介
日本大热输入焊接用钢的生产技术——氧化物冶金技术
新日铁的“HTUFF”技术:
使钢中形成纳米级Ca、Mg的氧化 物和硫化物粒子,细化奥氏体晶 粒的同时利用这些氧化物作为晶 内针状铁素体的形核点,提高大 热输入焊接CGHAZ的韧性。

(完整版)焊接冶金学(基本原理)习题总结

(完整版)焊接冶金学(基本原理)习题总结

焊接冶金学(基本原理)部分习题及答案绪论一、什么是焊接,其物理本质是什么?1、定义:焊接通过加热或加压;或两者并用,使焊件达到原子结合,从而形成永久性连接工艺.2、物理本质:焊接的物理本质是使两个独立的工件实现了原子间结合,对于金属而言,既实现了金属键结合。

二、怎样才能实现焊接,应有什么外界条件?1、对被焊接的材质施加压力:目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触.2、对被焊材料加热(局部或整体):对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。

三、试述熔焊、钎焊在本质上有何区别?钎焊母材不溶化,熔焊母材溶化.1. 温度场定义,分类及其影响因素。

1、定义:焊接接头上某一瞬间各点的温度分布状态.2、分类:1) 稳定温度场—-温度场各点温度不随时间而变动;2) 非稳定温度场——温度场各点随时间而变动;3) 准稳定温度场——温度随时间暂时不变动,热饱和状态;或随热源一起移动。

3、影响因素:1) 热源的性质2) 焊接线能量3) 被焊金属的热物理性质a. 热导率b. 比热容c. 容积比热容d. 热扩散率e. 热焓f. 表面散热系数4) 焊件厚板及形状第一章二、焊接化学冶金分为哪几个反应区,各区有何特点?1、药皮反应区:指焊条受热后,直到焊条药皮熔点前发生的一些反应。

(100-1200℃) 1) 水分蒸发:100 ℃吸附水的蒸发,200-400 ℃结晶水的去除,化合水在更高温度下析出 2) 某些物质分解:形成Co,CO2,H2O ,O2等气体 3) 铁合金氧化 :先期氧化,降低气相的氧化性2、熔滴反应区:指熔滴形成、长大、脱离焊条、过渡到整个熔池 1) 温度高:1800-2400℃ 2) 与气体、熔渣的接触面积大 :1000-10000 cm2/kg 3) 时间短速度快:0.01-0.1s ;0。

大线能量焊接问题

大线能量焊接问题

钢板被广泛用于诸如建筑、桥梁、压力容器、储罐、管线和船舶等基础建设和大型建筑中。

建筑构件的大型化和高层化发展趋势要求钢板的厚度增加,同时具有更高的综合性能,包括更高的力学性能、高效的加工性能以及优良的抗腐蚀性能和抗疲劳破坏性能等。

但是,随着钢板强度的提高,其冲击韧度和焊接性能显著下降,焊接裂纹敏感性增加。

特别是随着焊接线能量的提高,传统低合金高强钢的焊接热影响区性能(强度、韧性)恶化,易产生焊接冷裂纹问题,给大型钢结构的制造带来困难。

由于焊接为厚板加工的主要方式,满足大线能量焊接性能也逐步成为各种钢种所具备的一种性能。

所以,在追求高强度的同时,改善钢板的韧性以提高钢板的焊接性能越来越迫切。

提高钢大线能量焊接性能的主要技术手段钢大线能量焊接的主要难点在于其热影响区(HAZ)的强度和韧性随着输入线能量的增大而降低。

因此,HAZ的韧性成为制约钢大线能量焊接的关键因素。

为了解决HAZ的韧性问题,国内外相继开展了大线能量焊接用钢的研究工作,提出的改善韧性的方法主要有降低C含量和Ceq、利用微合金元素和氧化物夹杂细化奥氏体晶粒、获得韧性好的组织如针状铁素体以及贝氏体组织的超低碳钢、通过改进生产工艺提高韧性等。

1 奥氏体晶粒的细化晶粒细化是同时提高钢的强度和韧性的唯一途径。

通过降低奥氏体的晶粒尺寸来增加形核点密度以细化铁素体晶粒的方法已经被广泛研究。

原奥氏体晶粒越细小,HAZ的晶粒也就越小,韧性也就会越好。

在钢中引入微量的合金元素,形成弥散分布的高熔点颗粒。

这些颗粒一方面以“钉轧”的形式阻碍奥氏体晶界的迁移,限制奥氏体晶粒的长大,同时增加了相变过程中的形核点,从而使钢的组织更加细小。

目前研究较多的是Ti元素对高温奥氏体的细化作用。

研究发现,Ti在钢中形成细小弥散的TiN粒子,在焊接热循环过程中有效阻止奥氏体晶粒的长大,促进针状铁素体析出,从而改善HAZ的韧性。

研究人员发现,Nb可以加强Ti的细化作用。

Nb在钢中与N也有着强烈的亲和力,可以取代部分Ti,与N形成(Ti,Nb)N颗粒,其溶解温度在1350℃以上,可以钉轧、拖拽高温奥氏体晶界的迁移。

焊接冶金学复习资料

焊接冶金学复习资料

一、名词解释1.金属焊接性;P11金属焊接性是指同质或异质金属材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。

2.碳当量;P22把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,该参数指标就是碳当量。

3.焊接线能量;熔焊时由焊接热源输入给单位长度焊缝上的热量,又称为线能量。

4.熔合比;熔合比是指熔焊时,被熔化的母材在焊缝金属中所占的百分比。

5.t8/3(t8/5,t100);t8/3是指从800-300℃的冷却时间;t8/5是指从800-500℃的冷却时间;t100是指从峰值温度冷却至100℃的冷却时间。

6.微合金化;P47V、Ti、Nb强烈形成碳化物,Al、V、Ti、Nb还形成氮化物,析出的微小VC、TiC、NbC及AlN、VN、TiN、Nb(C、N)产生明显的沉淀强化作用,在固溶强化的基础上屈服强度提高50-100MPa,并保持了韧性。

上述元素均是微量加入,故称为微合金化。

7.焊缝成形系数;P56焊缝成形系数是指焊缝宽度与厚度之比。

8.回火脆性;P100铬钼耐热钢及其焊接接头在350-500℃温度区间长期运行过程中发生脆变的现象称为回火脆性。

9.点腐蚀;P116点腐蚀是指在金属材料表面大部分不腐蚀或腐蚀轻徽,而分散发生的局部腐蚀,又称坑蚀或孔蚀。

10.凝固模式;P126所谓凝面模式,首先是指以何种初生相相(γ或δ)开始结晶进行凝固过程,其次是指以何种相完成凝固过程。

11.稳定化处理;P117为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),将其加热到875℃以上温度时,以形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺牲Ti或Nb保Cr的目的,以此为目的的热处理就称为稳定化处理。

稳定化处理的工艺条件为:将工件加热到900-950℃,保温足够长的时间,空冷。

焊接线能量

焊接线能量

焊接线能量的控制对某些材料的焊接,为保证其焊接质量,除应正确选择焊接方法和焊接材料外,执行焊接工艺的一个共同特点就是控制焊接线能量。

1、不同的材料对焊接线能量控制的目的和要求:不同的材料对焊接线能量控制的目的和要求不一样。

如:(1)焊接低合金高强钢时,为防止冷裂纹倾向,应限定焊接线能量的最低值;为保证接头冲击性能,应规定焊接线能量的上限值。

(2)焊接低温钢时,为防止因焊缝过热出现粗大的铁素体或粗大的马氏体组织,保证接头的低温冲击性能,焊接线能量应控制为较小值。

(3)焊接奥氏体不锈钢时,为防止合金元素烧损,降低焊接应力,减少熔池在敏化温度区的停留时间,避免晶间腐蚀,应采用较小的焊接线能量。

(4)焊接耐热耐蚀高合金钢时,为减少合金元素烧损,避免焊接熔池过热而形成粗晶组织降低高温塑性和疲劳强度,防止热裂纹,获得较好“等强度”的接头,应采用较小的焊接线能量。

(5)珠光体钢与奥氏体钢异种钢焊接时,应采用较小的线能量以降低熔合比,避免接头珠光体钢一侧产生淬硬组织,防止扩散层。

如果珠光体钢淬硬倾向较大,则焊前应预热,预热事实上是提高了焊接热输入。

(6)铝及铝合金焊接时,为防止气孔,应采用大的焊接电流配合较高的焊接速度应是焊接工艺参数的最佳匹配,即采用适中的焊接线能量。

(7)工业纯钛焊接时,为保证接头既不过热,又不产生淬硬组织,应采用小电流、快焊速,即采用较小的焊接线能量。

(8)镍及镍合金焊接时,为防止热裂纹,应采用小线能量。

等等。

本人认为:当设计文件、相关标准提出的性能指标如冲击韧性、耐腐蚀性能等对线能量及其相关的焊接层次、层间温度有严格要求时,应在焊接作业指导书规定焊接线能量、焊接层次(含焊道尺寸)和层间温度的控制要求,施焊中通过对这些参数的记录来检查和证实焊接线能量及其相关的焊接层次、层间温度的要求是否得到满足。

2、焊接线能量的测量方法:通常焊接线能量采用下列公式进行计算(适用于单电弧焊接方法,针对于每条焊道,并且不考虑累积):线能量Q=60IV/v (J/mm)式中:A--焊接电流(A);V--电弧电压(V);v--焊接速度(电弧行走速度)(mm/min)。

线能量

线能量
40.5
18-20
5
650-900
36-38
45-55
45.6
焊条电弧焊
焊件厚度
(mm)
焊条直径
(mm)
焊接电流
(A)
电弧电压
(V)
焊接速度
(cm/min)
线能量
(kJ/ cm)
10-12
3.2
120-130
22-25
8-12
24.4
14-16
4
160-180
23-27
9-13
32.4
18-20
5
200-220
(A)
电弧电压
(V)
焊接速度
(m/h)
线能量
(kJ)
10-12
4
600-650
32-34
30
26.5
14-16
5
700-750
32-34
28
32.8
18-20
5
750-800
34-36
26
40
埋弧焊
焊条电弧焊:
焊件厚度
(mm)
焊条直径
(mm)
焊接电流
(A)
电弧电压
(V)
焊接速度
(m/h)
线能量
(kJ)
焊接技术问答
表5-1焊条直径的选用(mm)
焊件厚度
<4
4-12
>12
焊条直径
不超过焊件厚度
3.2-4.0
>4.0
表5-2焊条的焊接电流与焊条直径关系mm/ A
焊条直径
1.6
2.0
2.5
3.2
4.0
5.0
焊接电流

焊接公式及实验

焊接公式及实验

1、碳当量国际焊接学会:CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 <0.4淬硬倾向不大日本焊接学会:Ceq(JIS)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14Ceq《0.46%,焊接性优良;0.46-0.52%淬硬倾向逐渐明显,焊接时需要采取合适的措施;Ceq>0.52%时,淬硬倾向明显,属于较难焊接材料。

淬硬倾向较大的钢, 焊后在空气中冷却时,焊缝易出现淬硬的马氏体组织,低温焊接或焊接刚性较大时易出现冷裂纹,焊接时需要预热,预热是防止冷裂纹和再热裂纹的有效措施。

与人是防止冷裂纹和再热裂纹的有效措施。

温度太低,焊缝会开裂,太高又会降低韧性,恶化劳动条件,所以确定合适的预热温度成为很重要的问题。

Rb=500MPa,Ceq=0.46 不预热Rb=600MPa,Ceq=0.52 预热75o CRb=700MPa, Ceq=0.52 预热75 o CRb=800MPa,Ceq=0.62 预热150 o C新日铁:CE IIW公式对碳钢和碳锰钢更合适,但不适用于低碳低合金钢;Pcm适于低碳低合金钢。

CEN在图表法中被用作评价钢冷裂纹敏感性的尺度(当碳增加时,CEN接近CE IIW,而当碳降低时他又接近Pcm)。

——用图表法确定钢焊接时的预热温度上2、冷裂纹敏感指数:PcmPcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B使用化学成分范围(质量分数):C=0.07-0.22%,Si=0-0.6%,Mn=0.4-1.4%,Cu=0-0.5%,Ni=0-1.2%,Cr=0-1.2%,Mo=0-0.7%,V =0-0.12%,Nb=0-0.04%,Ti=0-0.05%,B=0-0.005%.3、冷裂纹敏感性PwPw=Pcm+[H]/60+h/600或Pw=Pcm+[H]/60+R/40000[H]:熔敷金属中扩散氢含量(ml/100g)R:焊缝拉伸拘束度h:板厚(mm)当Pw>0时,即有产生裂纹的可能性。

焊接热效率、热循环、线能量、预热温度和层间温度

焊接热效率、热循环、线能量、预热温度和层间温度

焊接热效率、热循环、线能量、预热温度和层间温度1. 焊接热效率焊接过程中,由电极(焊条、焊丝、钨极)与工件间产生强烈气体放电,形成电弧,温度可达6000℃,是比较理想的焊接热源。

由热源所产生的热量并没有全部被利用,而有一部分热量损失于周围介质和飞溅中。

被利用的热占发出热的百分比就是热效率。

它是一个常数,主要取决于焊接方法、焊接工艺、极性、焊接速度以及焊接位置等。

各种焊接方法的热效率见下表。

2. 焊接热循环在焊接热源作用下,焊件某点的温度是随着时间而不断变化的,这种随时间变化的过程称为该点的焊接热循环。

当热源靠近该点时,温度立即升高,直至达到最大值,热源离去,温度降低。

整个过程可以用一条曲线表示,此曲线称为热循环曲线,见图6。

距焊缝越近的各点温度越高,距焊缝越远的各点,温度越低。

焊接热循环的主要参数是加热速度、加热所达到的最高温度、在组织转变温度以上停留的时间和冷却速度。

加热到1100℃以上区域的宽度或在1100℃以上停留时间t△,即使停留时间不长,也会产生严重的晶粒粗大,焊缝性能变坏。

t△越长,过热区域越宽,晶粒粗化越严重,金属塑性和韧性就越差。

当钢材具有淬硬倾向时,冷却速度太快可能形成淬硬组织,极易出现焊接裂纹。

从t8/5可反映出此情况,有时还常用650℃时的冷却速度υ650℃或80 0~300℃的冷却时间t8/3来衡量。

应当注意的是熔合线附近加热到1 350℃时,该区域的冷却过程中约540℃左右时的瞬时冷却速度,或者800~500℃时的冷却时间tP8/5对焊接接头性能影响最大,因为此温度是相变最激烈的温度范围。

影响焊接热循环的因素有:焊接规范、预热温度、层间温度、工件厚度、接头形式、材料本身的导热性。

3. 焊接线能量熔焊时,热源输给焊缝单位长度上的能量,称为焊接线能量。

电弧焊时的焊接规范,如电流、电压和焊接速度等对焊接热循环有很大影响。

电流I与电压U的乘积就是电弧功率。

例如,一个220 A、24V的电弧,其功率W=5280W,当其他条件不变时,电弧功率越大,加热范围越大。

焊接线能量的计算公式 -教学文案

焊接线能量的计算公式 -教学文案

焊接线能量的计算公式-线能量的计算公式:q = IU/υ式中:I—焊接电流 AU—电弧电压 Vυ—焊接速度 cm/sq—线能量 J/cm决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。

但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西熔焊时,由焊接能源输入给单位长度焊缝上的能量,称为焊接线能量,用下式表示为IUq=───υ式中 I——焊接电流熔焊时,由焊接能源输入给单位长度焊缝上的能量,称为焊接线能量,用下式表示为IUq=───υ式中 I——焊接电流(A);U——电弧电压(V);υ——焊接速度(cm/s);q——线能量(J/cm)。

例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝ф4mm,I=650A,U=38V,υ=0.9cm/s。

,则焊接线能量q为IU 650×38q=─── = ────── = 27444 J/cmυ 0.9线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。

线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,焊接线能量综合了焊接电流、电弧电压和焊接速度三个工艺因素对焊接热循环的影响。

线能量增大时,过热区的晶粒尺寸粗大,韧性降低;线能量减小时,硬度和强度提高,但韧性也会降低。

生产中根据不同的材料成分,在保证焊缝成形良好的前提下,适当调节焊接工艺参数,以合适的线能量焊接,可以保证焊接接头具有良好的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接线能量
在焊接过程中热源沿焊件的某一方向移动,焊件上任一点的温度都经历由低到高的升温阶段,当温度达到最大值后又经历由高到低的降温阶段。

在焊缝两侧不同距离的各点,所经历的这种热循环是不同的,如图3,12所示。

焊接是一个不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。

与金属材料一般热处理相比,或与塑性成形或凝固成形相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。

焊接热循环的主要参数是加热速度,峰值温度 max,高温停留时间,冷却速度 (或冷 TtH却时间或)如图3,13所示 tt8/58/3
(1)加热速度
采用不同的焊接方法和不同的线能量,焊接不同厚度的低碳钢或低合金结构钢,根据实测结果加热速度如表3,4所示
通常随着加热速度的提高,钢的固态相变温度Ac1和Ac3也相应的提高,而且Ac1和Ac3之间的温差也变大,如表3,5所示。

随着钢中碳化元素的增多(例如
18Cr2Wv钢),这一效果更为显著。

(2)峰值温度Tmax
峰值温度Tmax将直接影响到焊接热影响区
焊接或切割过程中母材因受热的影响(未熔化),而发生金相组织变化和力学性能变化的区域。

的组织和性能。

峰值温度过高,将使晶粒严重长大,甚至产生过热的魏氏体组织不易淬火钢焊接热影响区中的过热区,由于奥氏体晶粒长得非常粗大,这种粗大的奥氏体在较快的冷却速度下会形成一种特殊的过热组织,其组织特征为在一个粗大的奥氏体晶粒内会形成许多平行的铁素体针片,在铁素体针片之间的剩余奥氏体最后转变为珠光体,这种过热组织称
为魏氏组织。

,造成晶粒脆化;同时还影响到焊接接头的应力应变,
应力为焊接过程中焊件内产生的应力。

(按作用时间可分为焊接瞬时应力和焊接残余应力)。

应变为焊接过程中在焊件中所产生的变形。

形成较大的焊接残余应力或变形。

峰值温度Tmax与焊件的初始温度T,焊接线能量E,被焊金0
属的板厚h及离热源中心距离有关。

(3)高温停留时间t H
所谓高温停留时间是指在相变温度Ac1以上停留时间。

如图3,13所示,它包含加热过程高温停留时间'和冷却过程高温停留时间t"。

t
在相变温度以上停留时间,对于相的溶解、奥氏体的扩散均匀化以及晶粒度都有很大影响。

对于钢来说越长,越有利于奥氏体的均匀化,但温度太高,例如在1100?以上的停留时间过长,tH
将会使奥氏体晶粒严重长大,造成晶粒脆化。

,被焊金属的工件板厚以及焊件的初始温度max等因素t与焊接能量EhT以及加热最高温度TH0
有关。

(4)冷却速度
冷却速度,特别是在固态相变温度范围内冷却速度,即800,500?及800,300?时的冷却速度是焊接热循环中极其重要的参数,它将决定焊接接头的组织、性能及接头质量。

冷却速度对过冷奥氏体的转变影响很大,图3,14 为冷却速度对Fe,C 合金平衡状态图上各临界线及临界点的影响。

从图中可以看出,随冷却速度ω地提高,A、A、A均移向更低地温度,c13cm同时共析点成分不再是一个点(w=0.83%),而是一个成分范围,当冷却速度ω,30?/s时,共cc析成分范围w=0.4%,0.8%。

这就意味着w,0.4%的钢在快速冷却时有可能得到全部为珠光体的c
组织(伪共析组织)。

(5)冷却时间t(t或t及t) c8/58/3100
在试验研究中,准确地测量瞬时冷却速度有一定地困难,因此目前多采用一定温度范内地冷却时间来代替冷却速度,并以此作为研究焊接接头的组织、性能及抗裂性的重要参数。

对于一般碳钢及低合金钢常采用固态相变温度范围的800,500?冷却时间t;而对于淬硬8/5倾向比较大的钢种有时采用800,300?冷却时间t或由峰值温度冷至100?的冷却时间t。

8/3100
为了方便,在理论计算的基础上建立了不同条件下从线算图上直接获取t或t 的图解法。

8/58/3手工电弧焊、CO气体保护焊和埋弧焊时的t或t线算法如图3,15所示。

28/58/3
在研究高强钢焊接冷裂纹时发现,从峰值温度冷却到100?时的冷却时间对冷裂有重要影响,为此常采用t作为冷裂倾向的参数之一。

由于影响因素比较复杂,目前t主要依靠以实100100验为基础所获得的图3,16中查出。

根据不同的焊接线能量,板厚和预热温度可直接从图中找出t的值。

100
根据t、t及t配合不同的钢种在焊接条件下的连续冷却组织转变图(SHCCT图)可以8/58/3100
比较准确的判断焊接热影响区的组织、性能和抗裂性,因此能预先求得t、t 及t具有十分8/58/3100
重要的意义。

相关文档
最新文档