飞机起落架的焊接工艺(文献综述)02

飞机起落架的焊接工艺(文献综述)02
飞机起落架的焊接工艺(文献综述)02

文献综述报告

飞机起落架的焊接工艺

专业班级:材料成型及控制工程061班学生姓名:

1 研究意义

起落架是供飞机起飞、着陆时在地面上滑跑、滑行停放用的。它是飞机的主要部件之一,其工作性能的好坏以及可靠性直接影响飞机的使用和安全。为了有效地完成起功能,起落架焊接设计面临着结构设计、机构设计、空气动力性能以及由飞机用途决定和维修人员提出的使用、维修等方面一系列存在的有一定矛盾的各种要求。举例来说,在多数情况下飞机起落架整个装置的重量占全机重量的3%~5%,占飞机结构重量的10%~15%;而它必须在飞机升空后能收入到机体结构和飞机阻力影响最小的空间中去。然而,现代飞机速度增大;现代战斗机均要求有近距离起落等高性能;一些大型运输机比过去重的多(如波音-747的重量是波音-707-320的两倍多),此时就必须采用大的多轮式起落架;同时上述种种原因使起落架的各种装置比过去更为复杂,而使其起落架的空间更显紧张。由此可见,焊接设计人员要找到一个能最好地协调各种要求,同时又使结构轻、成本低的设计方案变得越来越困难了。因此,开展起落架的研究具有重大意义。

1.1飞机起落架的功用

一是吸收并耗散飞机着陆垂直速度所产生的动能;二是保证飞机能够自如而又稳定地完成在地面上的各种动作。

1.2飞机起落架的焊接

欧美国家起落架选用300M和35NCD16低合金超高强度钢整体锻件结构加工工艺,零件外形加工后进行真空热处理或可控气氛热处理。材料利用率只12.5%-25.0%。俄罗斯起落架选用30CrMnSiNi2A(真空冶炼)低合金超高强度钢锻件焊接结构加工工艺,主要受力构件采用高压真空电子束焊焊接,焊后进行热处理(空气炉加热+盐浴炉淬火)。目前,新型的高强度、高韧性和高腐蚀抗力的改进型镍-钴

低碳合金钢已开始在舰载飞机起落架上应用,最典型的材料是AerMet100AF100,此类材料除具有优异的综合力学性能外,还具有优良的疲劳性能和焊接性能,可替代现在使用的起落架结构材料300M和4340钢等。国内

起落架受力构件材料主要采用300M和30CrMnSiNi2A超高强度钢,有的采用整体加,有的采用焊接结构。大型构件的深孔加工和热处理变形控制以及超高强度钢的高效数控切削加工是国内起落架加工存在的主要问题。另外AerMet100钢尚未应用。

2 国内外先进焊接技术历史背景、研究现状以及发展方向

2.1 先进/特种焊接技术

在航空飞机、发动机的研制和生产中,焊接技术已经成为主导工艺方法之一。它的进步与发展不仅能减轻飞机、发动机的重量,而且还为航空飞机、发动机结构设计新构思提供技术支持,促进航空飞机、发动机性能的提高。

2.1.1 国外情况

航空发动机结构中广泛采用了各种焊接技术。焊接结构件在喷气发动机零部件总数中所占比例已超过50%,焊接的工作量已占发动机制造总工时的10%左右。在飞机结构中,F111的机翼支承梁(钢结构)和狂风、F14的钛合金中央翼翼盒、机翼盒形梁及整体壁板结构等重要的结构上采用了焊接技术。F22后机身前后梁采用了热等静压钛合金铸件的电子束焊接结构,原苏联20世纪60年代研制的米烙25机体结构的80%(结构重量)是焊接的,焊缝长达4000多m,焊点达到140万个。苏27飞机,大量采用了钛合金材料和焊接技术(60多项发明创新),是其保证飞机性能和减重的决定性因素。用氩弧焊、电子束焊制造了米格29的机身整体油箱和米格33的机头(含座舱)。该油箱与原苏联D16铝合金铆接油箱相比,减重24%。其中,由于1420铝锂合金的密度小,减重12%(若重新设计,可减重15%~16%);另12%是因为焊接结构省掉金属重叠部分、铆钉、螺栓和密封胶。该油箱可在机场条件下修理,因为该结构补焊后无需热处理工序。俄罗斯皮列亚宁院士1990年在我国讲学时曾说过:“用发展的眼光看,其前景将出现全焊接结构的飞机,不仅可省掉重达几吨的密封件,更重要的是焊接过程比铆接过程更易于实现自动化。”

2.1.2 国内情况

20世纪60年代以来,国内设计的飞机上采用焊接结构越来越少,飞机厂除增添了几台氩弧焊机(含脉冲氩弧焊)、三相低频或二次整流点缝焊机和个别真空充氩弧焊设备外,三四十年一切如故,车间及设计陈旧不堪,技术水平下降。MD-82飞机的生产除导管感应钎焊和薄板TIG焊、点缝焊外,其余变化不大。

引进苏27的生产权使国内航空界受到极大的震动。其机体的焊接组件部件

近千件,涉及的零件近万件,几乎遍及整个飞机机体。重要的承力构件较多地采用了焊接构件,如高强结构钢起落架的电子束焊,钛合金隔框和梁的潜弧焊,2号油箱钛合金下壁板和进气道防护隔栅采用穿透焊,后机身的钛合金蒙皮壁板采用TIG焊和点、缝焊,铝合金、不锈钢、钛合金导管采用TIG焊、感应钎焊(含现场安装感应钎焊)。通过建线及材料国产化阶段的攻关,对俄罗斯的焊接技术已基本掌握;在承力框上正以先进的EBW取代质量较差的潜弧焊工艺,由于免除反复机加工-焊接-热处理的过程,将明显地提高生产效率和降低成本。在该型机的机载设备建线阶段,除常规焊接方法外,还有电子束钎焊、扩散焊、激光焊、真空钎焊、等离子弧焊及凸焊等工艺。

国内发动机行业通过多个型号的实践,焊接技术已取得较大的进步,许多新工艺如EBW、IFW、VB、自动氩弧焊、轨迹氩弧焊和弧焊机器人、SPF/DB、PAW 及低应力无变形焊接技术等均得到了应用。但是国产材料成分及其状态的控制以及焊接工艺及其流程尚待完善,仍需积累经验和数据,为设计及制造的改进提供依据。表4是某型航空发动机典型电子束焊接件汇总。

2.1.3焊接技术的发展趋势

通过国内外情况对比分析,可看出焊接技术的主要发展趋势是:

1)新型或特种材料及异种材料构件的连接。

2)复杂产品、构件和器件精密连接。

3)焊接过程的自动化与智能控制。

4)太空等特殊环境工作条件下的焊接。

5)复杂焊接产品质量的可靠检测与寿命评估。

6)传统连接工艺的改进及新型焊接工艺方法的开发。

7)绿色连接技术和再利用修复技术。

3 焊接技术在国民经济中的地位和作用

焊接是一种先进的制造技术,它已从单一的加工工艺发展成为现代科技多学科互相交融的新学科,成为一种综合的工程技术,它涉及到材料、结构设计、焊接预处理、焊接工艺装备、焊接材料、下料、成形、焊接生产过程控制及机械化自动化、焊接质量控制、焊后热处理等诸多技术领域。焊接技术已广泛地应用于工业生产的各个部门,在推动工业的发展和产品的技术进步以及促进国民经济的

发展都发挥着重要作用。

焊接技术是机械制造关键技术之一,是许多高新技术产品制造不可缺少的加工方法。例如,世界上最大的1200KW火电机组、700KW水电机组、1300KW 的核电设备、重达1200吨的加氢反应器、航天技术的运载火箭、宇宙飞船、太空站以及微电子技术的元器件都是采用焊接技术完成制造的。不采用焊接技术这些高新技术产品的制造将是很难完成。

焊接技术是保证产品质量的基础,其技术水平高低直接影响到产品的质量和使用可靠性,例如,一台60万千瓦电站锅炉受热面焊接接头达6万多个,一台30万千瓦火电机组耐高温高压焊接接头有5万多个,连用安装接头达8.5万个,如果有千分之一的接头发生质量问题,就有85处隐患,直接威胁着电站的安全。核电主设备,如压力壳、蒸汽发生器、稳压器等,均为焊接结构,都在一回路中,经受辐射、高温、高压等长期作用,如果不慎接头发生泄漏造成的损失是不堪设想的。焊接技术是节能节材取得经济效益的重要手段。例如举世瞩目的三峡工程水电机组,单机容量为70万千瓦,其水轮机转轮直径为9.8米,重达500吨,采用异种钢拼接而成,与整体不锈钢转轮相比,每台可节省材料2000万元,三峡共有26台机组可节省人民币达5.2亿元,其经济效益是十分可观的。

4 我国焊接行业的特点

改革开放20余年来,随着我国社会主义市场经济的进一步成熟,我国焊接行业也有了很大的发展,特别是大型焊接生产骨干企业的焊接生产技术有了显著的提高,但就整个焊接行业来看,我国焊接技术与工业发达国家相比,还存在较大的差距,目前我国行业有以下特点:

1、焊接结构与钢材产量的比例偏低

2、焊接生产机械化、自动化水平低

3、焊接生产工艺落后,手工焊比重过大

4、电焊机产品结构不合理,自动、半自动焊机所占比例低

5、焊接材料产品结构不合理,品种少

结语:

通过大量的资料收集,我深刻的了解了飞机起落架的发展历史,学习了飞机起落架的焊接工艺,并且相信随着飞机、发动机对减重、提高性能的需要,先进

及特种焊接技术起着越来越重要作用。相信中国航空焊接技术在需求牵引,技术推动的相互作用下,一定会取得快速进步。

这次对飞机起落架的结构有了一定的了解之后,为接下来的毕业设计打下了一定的基础,我相信我一定能顺利完成任务的。

文献综述:

[1] 雷先华,航空工业CAE应用简述[J].航空制造技术.2004(2):40-41.

[2] 郭恩明,航空制造技术的发展及对策[J].航空制造技术.2000(6):1-8.

[3] 周振丰,张文钺.焊接冶金与金属焊接性.北京:机械工业出版社.1994.

[4] 李亚江,特殊及难焊材料的焊接.北京:化学出版社.2003.

[5] 姜敬先,航空材料的焊接.信阳:空军第一航空学院出版社.1998.

[6] 李亚江,王娟,张永喜,等.焊接修复技术.北京:化学工业出版社。20o5.

[7] 雷世明,焊接方法与设备.北京:机械工业出版社.2005.

[8] 二十一世纪新技术开发的新特点[J],国际航空.2004(2):1.

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

(完整word版)飞机起落架基本结构

起落架 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。任何人造的飞行器都有离地升空的过程,而且除了一次性使用的火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆或回收阶段。对飞机而言,实现这一起飞着陆(飞机的起飞与着陆过程)功能的装置主要就是起落架。 基本介绍 起落架就是飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。 概括起来,起落架的主要作用有以下四个:承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;滑跑与滑行时的制动;滑跑 与滑行时操纵飞机。 2结构组成 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。 2.1减震器 飞机在着陆接地瞬间或在不平的跑道上高速滑跑时,与地面发生剧烈的撞击,除充气轮胎可起小部分缓冲作用外,大部分撞击能量要靠减震器吸收。现代飞机上应用最广的是油液空气减震器。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。而油液以极高的速度穿过小孔,吸收大量撞击能量,把它们转变为热能,使飞机撞击后很快平稳下来,不致颠簸不止。 2.2收放系统 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 2.3机轮和刹车系统 机轮的主要作用是在地面支持收飞机的重量,减少飞机地面运动的阻力,吸收飞机着陆和地面运动时的一部分撞击动能。主起落架上装有刹车装置,可用来缩短飞机着陆的滑跑距离,并使飞机在地

NG飞机结构与起落架复习资料

NG飞机结构与起落架复习资 料

作者: 日期:

737NG飞机结构与起落架复习资料 一、填空题 1、可用下列标注尺寸在机身上查找部件:机身站位线、机身纵剖线、水线。 2、垂直安定面有四个基准尺寸:垂直安定面站位、垂直安定面前缘站位、方向舵站位、垂直安定面水线 3、飞机有八个主要分区帮助查找并识别飞机部件和零件:100 -下半机身、200 —上半机 身、300 —机尾、400 —动力装置和吊舱支柱、 500 —左机翼、600 —右机翼、700 —起落架和起落架舱门、800 —舱门 4、发动机工作时周围的危险:进气吸力、排气热量、排气速度、发动机噪音。 5、飞行操纵系统包括:主操纵系统、辅助操纵系统。 6、驾驶舱内的主要面板:P宜机长仪表板、PZ中央仪表板、P5前顶板、P5后顶板、P 乙遮光板、P3副驾驶仪表板、P9前电子面板、控制台、P8后电子面板。 7、在控制台上的操纵和指示装置包括以下部件:前油门杆、反推油门杆、速度刹车手 柄、水平安定面配平轮和指示器、停留刹车手柄和指标灯、襟翼手柄、安定面配平切断 电门、起动手柄。 & 737NG 飞机液压动力系统由:主液压系统、地面勤务系统、辅助液压系统、液压指 示系统组成。 9、备用液压系统是一个必备系统,为以下部件提供备用液压动力:方向舵、前缘襟翼和缝翼、两个反推装置 10、备用油箱低油量电门在油箱内油液少于50%时,向位于驾驶舱内飞行操纵面板上的琥珀色备用液压低油量灯发送信号,使灯点亮。 11、当飞行控制面板上的任一盏琥珀色灯亮时,主警告灯和位于系统通告面板( P7) 上的飞行控制灯也会点亮。 12、当油泵压力低于1300 psi时,液压系统A和B的发动机驱动泵(EDP )和电动马达驱动泵(EMDP )的琥珀色油泵低压指示灯会点亮。当液压压力高于1600psi时,琥珀色 低压指示灯熄灭 13、利用地面勤务车为系统增压时,首先必须卸掉液压油箱的压力

民航客机起落装置

飞机起落架系统简介 起落架是飞机的重要部件,用来保证飞机在地面灵活运动,减小飞机着陆撞击与颠簸,滑行刹车减速;收上起落架减小飞行阻力,放下支持飞机。本文将简要介绍现代民用飞机起落架的组成及工作。一、起落架的作用起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。概括起来,起落架的主要作用有以下四个:1、承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;2、承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;3、滑跑与滑行时的制动;4、滑跑与滑行时操纵飞机。二、起落架的配置形式起落架的布置形式是指飞机起落架支柱(支点)的数目和其相对于飞机重心的布置特点。目前,飞机上通常采用四种起落架形式:1、后三点式:这种起落架有一个尾支柱和两个主起落架。并且飞机的重心在主 起落架之后。后三点式起落架的结构简单,适合于低速飞机,因此在四十年代中叶以前曾得到广泛的应用。目前这种形式的起落架主要应用于装有活塞式发动机的轻型、超轻型低速飞机上。 后三点式起落架具有以下优点:(1)在飞机上易于装置尾轮。与前轮 相比,尾轮结构简单,尺寸、质量都较小;(2)正常着陆时,三个机 轮同时触地,这就意味着飞机在飘落(着陆过程的第四阶段)时的姿态与地面滑跑、停机时的姿态相同。也就是说,地面滑跑时具有较大的迎角,因此,可以利用较大的飞机阻力来进行减速,从而可以减小着陆时和滑跑距离。因此,早期的飞机大部分都是后三点式起落架布置形式。随着飞机的发展,飞行速度的不断提高,后三点式起落架

暴露出了越来越多的缺点:(1)在大速度滑跑时,遇到前方撞击或强烈 制动,容易发生倒立现象(俗称拿大顶)。因此为了防止倒立,后三点式起落架不允许强烈制动,因而使着陆后的滑跑距离有所增加。(2)如着 陆时的实际速度大于规定值,则容易发生“跳跃”现象。因为在这种情况下,飞机接地时的实际迎角将小于规定值,使机尾抬起,只是主轮接地。接地瞬间,作用在主轮的撞击力将产生抬头力矩,使迎角增大,由于此时飞机的实际速度大于规定值,导致升力大于飞机重力而使飞机重新升起。以后由于速度很快地减小而使飞机再次飘落。这种飞机不断升 起飘落的现象,就称为“跳跃”。如果飞机着陆时的实际速度远大于规定值,则跳跃高度可能很高,飞机从该高度下落,就有可能使飞机损坏。 (3)在起飞、降落滑跑时是不稳定的。如处在滑跑过程中,某些干扰(侧风或由于路面不平,使两边机轮的阻力不相等)使飞机相对其轴线转过 一定角度,这时在支柱上形成的摩擦力将产生相对于飞机质心的力矩,它使飞机转向更大的角度。(4)在停机、起、落滑跑时,前机身仰起, 因而向下的视界不佳。基于以上缺点,后三点式起落架的主导地位便 逐渐被前三点式起落架所替代,目前只有一小部分小型和低速飞机仍然采用后三点式起落架。2、前三点式:这种起落架有一个前支柱和两个主起落架。并且飞机的重心在主起落架之前。前三点式起落架是目前大多数飞机所采用的起落架布置形式,与后三点式起落架相比较,前三点式起落架更加适合于高速飞机的起飞降落。 前三点式起落架的主要优点有:1)着陆简单,安全可靠。若着陆时的实际速度

飞机起落架机构设计及安全性分析开题报告

毕业设计(论文)开题报告 题目飞机起落架机构设计及安全性分析 一、毕业设计(论文)依据及研究意义: 飞机的起落架是飞机起飞和着陆的重要装置,它在工作过程中承受着极大的冲击载荷,所以采用高强度钢或超高强度钢制作。起落架在长期使用的过程中,受到外界各种因素的影响,它的坚固程度会变差,甚至产生裂纹。本文针对起落架的焊接进行了深入的分析与研究,并在此基础上研究了完善和加强飞机起落架的焊接工艺与材料的焊接性,从而大大的降低了飞机起落架焊接时出现的问题并提高了其焊接质量。起落架是飞机起飞、着陆系统,对飞机的性能和安全起着十分重要的作用 起落架是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个: ①承受飞机在地面停放、滑行、起飞着陆滑跑时的重力。 ②承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量。 ③滑跑与滑行时的制动。

④滑跑与滑行时操纵飞机。 二、国内外研究概况及发展趋势 起落架的收放机构运动复杂,起落架的收放,上、下位锁开锁和上锁,舱门的打开和关闭等均要正确匹配和协调,否则将会发生飞行事故。 我国开展了与起落架现代设计技术密切相关的专题研究,并取得了一大批研究成果,其中有些达到世界先进水平,如变油孔双腔缓冲器设计技术,飞机前轮防摆技术,飞机地面运动动力学分析技术,长寿命、高可靠性起落架设计及寿命评估技术,起落架结构优化设计技术,起落架收放系统仿真分析技术,起落架主动控制技术等,这些成果部分地应用于型号研制中,并取得了一定效果。许多学者与研究生在理论方面也开展了一系列研究工作。《起落架设计与评定技术指南》集中反应了我国近年来在起落架现代设计理论与方法方面的进展情况。但与国外相比,我国的大量研究成果是分散的,孤立的,没有作为模型、算法或程序模块集成于一套系统中,成为设计师的实用工具,更没有在高水平的硬件与软件平台上形成一套先进、实用、高效的起落架专业CAD/CAE软件系统,因而我国型号研制基本上仍是完全采用传统模式,费时、费力、耗资。 国内起落架的研究软件主要有南京航空航天大学和西北工业大学共同开发的起落架设计分析软件系统LCAE,功能比较强大,能进行结构布局设计、起落架机构运动分析或应力分析、有限元总体应力分析、变形及载荷分析、缓冲性能分析、损伤绒线分析、及破坏危险性分析。可以实现图形及文本的前处理功能、后处理功能、分析程序的过程处理功能。另外还有南京理工大学和沈阳飞机研究所的起落架设计专家系统ALGDES,它能进行结构布局设计和强度分析、系统空间位置造型仿真机干涉分析,它建立了起落架设计的知识表示形式和组织形式,即专家系统。北京航空航天大学和西北工业大学都做过起落架防滑刹车系统的机械装置和仿真软件。有人研究了飞机接地时所受到的加速度的计算方法[6],介绍了最大过载对飞行、起落架和气动力参数的敏感性。从国外文献上来看,有的从动能的角度研究了起落架摆振,还有的对在各种条件下的起落架性能进行了仿真,主要是在载荷及变形方面给予仿真。 在起落架行业,国外在大力开展起落架理论与专题研究的基础上,发展和推广应用起落架现代设计技术。在与现代设计技术密切相关的起落架专业理论研究方面,国外从六十年代开始,己做了大量专题研究工作。如DAUTI等公司从六、

民航专业文献客机起落架系统

民航专业文献客机起落架系统

————————————————————————————————作者:————————————————————————————————日期:

三客机起落架系统 1.功用: 起落架用于在地面停放及滑行时支撑飞机,使飞机在地面上灵活运动,并吸收飞机运动时产生的撞击载荷。以B737-300飞机为例。 B737-300飞机起落架为前三点式,采用油气式减震支柱进行减震。可利用液压进行起落架正常收放。也可以人工应急放下起落架。减震支柱的压缩可用于空地感应控制。 在地面滑行时,可利用前轮进行转弯。刹车组件装在主起落架机轮内,防滞系统用于提高刹车效率。 1.1系统操纵和指示: 起落架收放和位置指示:在P2板上有1个起落架收放手柄,可控制起落架液压收放。 当手柄在“UP”位,所有起落架收上。当手柄在“DN”位,起落架放下。手柄在“OFF”位,是正常的巡航方式,所有起落架收放作动筒释压。有一个手柄电磁锁,用于限制在地面选择“UP”位。在手柄上方共有六个指示灯,可提供起落架位置指示和警告。绿灯亮表示起落架放下锁好。红灯亮表示起落架处于运动过程中或收放手柄与起落架位置不一致。灯都不亮,表示起落架收上锁好。3个红色人工应急放下手柄位于驾驶舱地板下,位于副驾驶座椅后部,用于液压A系统故障时人工放下起落架。应急放起落架时,起落架手柄应放在“OFF”位。 1.2前轮转弯:当飞机在地面运动时,前轮转弯系统可提供方向控制。转弯手轮位于机长座 椅旁边的侧壁上,可提供左右78°的最大转弯角度。飞机在地面时,通过方向舵脚蹬也可操纵前轮左右偏转7°。在P1板上有1个备用前轮转弯电门,提供备用压力(B系统)进行前轮转弯操纵。 1.3正常刹车:驾驶员通过刹车脚蹬可以进行人工正常刹车。

飞机起落架的减震系统

8. 6起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成?其中减震器(也称缓冲器)是所有现代 起落架所必须具备的构件,也是最重要的构件?某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%?15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动?减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作 用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实一一也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%?80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架 恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o. 8s。以上⑵,(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mn高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8. 24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/ LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8. 25所示波音-737 主起落架的试验曲线表明其效

飞机起落架结构及其系统设计_本科毕业论文

本科毕业论文题目:飞机起落架结构及其故障分析专业:航空机电工程 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式 目录 1. 引言 (1)

2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22) 4.4.2 试验结果与使用情况差异分析 (23) 4.5 主起落架机轮半轴失效分析结论 (24) 4.6 主起落架机轮半轴结构设计改进 (24)

某型飞机起落架设计改进及制造技术

2010 年第 8 期·航空制造技术 69 学术论文 RESEARCH [摘要] 详细介绍了某型飞机起落架设计改进及制造技术。改进后的起落架经试验以及预先飞行验证,各项指标符合要求,满足了新研飞机的使用需要。 关键词: 起落架 设计改进 制造技术 [ABSTRACT] The new technology and processes are introduced in detail, which are adopted in the landing gear design improvement for one type of aircraft. The testing and advance flight validation after improvement shows that all functional performances are qualified and can meet the application requirements of the retrofit aircraft. Keywords: Landing gear Design improvement Manufacturing technology 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、工艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安 全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。1.1 缓冲支柱优化设计 飞机着陆重量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。 通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架 某型飞机起落架设计改进及制造技术 Design Improvement and Manufacturing Technology of Landing Gear for One Type of Aircraft 中国人民解放军驻陕飞公司军事代表室 王晓平 周 亮 李 鹏 阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2 部分零 (组)件结构重新设计对起落架的部分零(组)件结构重新进行设计,改善 了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起 图1 圆角方形截面油针 Fig. 1 Square section pin with round corner 落架斜撑杆的协调承载能力,减少结构不协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结构如图2、图3所示。 1.3 关键重要件结构加强 由于新研飞机载荷的增加,经计算分析起落架部分零件强度不够,因此必须对零件结构进行改进,对簿弱部位进行加强。为了克服焊接结构的缺点,提高结构件的疲劳强度,前起落架活塞杆、主起落架外筒、前 图2 刚性斜撑杆(原结构) Fig. 2 Rigid batter brace (original structure) 图3 弹性斜撑杆(改进结构) Fig. 3 Flexible batter brace (improved structure) 3mm 3mm A腔

民航专业文献 客机起落架系统

三客机起落架系统 1.功用: 起落架用于在地面停放及滑行时支撑飞机,使飞机在地面上灵活运动,并吸收飞机运动时产生的撞击载荷。以B737-300飞机为例。 B737-300飞机起落架为前三点式,采用油气式减震支柱进行减震。可利用液压进行起落架正常收放。也可以人工应急放下起落架。减震支柱的压缩可用于空地感应控制。在地面滑行时,可利用前轮进行转弯。刹车组件装在主起落架机轮内,防滞系统用于提高刹车效率。 1.1系统操纵和指示: 起落架收放和位臵指示:在P2板上有1个起落架收放手柄,可控制起落架液压收放。 当手柄在“UP”位,所有起落架收上。当手柄在“DN”位,起落架放下。手柄在“OFF” 位,是正常的巡航方式,所有起落架收放作动筒释压。有一个手柄电磁锁,用于限制在地面选择“UP”位。在手柄上方共有六个指示灯,可提供起落架位臵指示和警告。绿灯亮表示起落架放下锁好。红灯亮表示起落架处于运动过程中或收放手柄与起落架位臵不一致。灯都不亮,表示起落架收上锁好。3个红色人工应急放下手柄位于驾驶舱地板下,位于副驾驶座椅后部,用于液压A系统故障时人工放下起落架。应急放起落架时,起落架手柄应放在“OFF”位。 1.2前轮转弯:当飞机在地面运动时,前轮转弯系统可提供方向控制。转弯手轮位于机长座 椅旁边的侧壁上,可提供左右78°的最大转弯角度。飞机在地面时,通过方向舵脚蹬也可操纵前轮左右偏转7°。在P1板上有1个备用前轮转弯电门,提供备用压力(B 系统)进行前轮转弯操纵。 1.3正常刹车:驾驶员通过刹车脚蹬可以进行人工正常刹车。 1.4自动刹车:通过P2板上的自动刹车选择电门可以在飞机着陆前选用自动刹车,飞机接 地后,自动施加刹车压力。自动刹车解除指示灯(琥珀色)在选择电门的上方。 1.5防滞刹车:防滞刹车控制电门在P2板上,在电门上方有1个防滞不工作警告灯(琥珀 色) 1.6停留刹车:停留刹车的操纵手柄和工作指示灯(红色)在中央操纵台上。 2.主起落架及其舱门 2.1功用:主起落架的作用是支撑机身后部。当起落架收起后,舱门关闭,可以减小阻力。

飞机起落架的减震系统讲解学习

8.6 起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8.24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8.25所示波音-737主起落架的试验曲线表明其效率达到了90%。此外它还具有很好的能量消散能力。因此现代飞机一般多采用泊气式减震器。全泊液式减震器结构紧凑,尺寸小,效率

飞机起落架的研究

起落架的研究 现实生活中,飞机已经成为了重要的交通工具,其每一部分的构造都对飞机的安全性能发挥了重要的作用。其中,起落架的作用更是不可忽视,它的性能对飞机着陆时的安全是至关重要的。因此,我将自己大脑里已经酝酿了很久的问题和很多自己的想法提取了出来,我想通过自己平时在机场的实际观察和查找资料后得到的一些关于飞机起落架的介绍,对起落架的构造及性能进行研究与探讨,在现有的基础上进行大胆的创新和假设,并得出一些研究后的结论与经验,以此来让自己对飞机的起落架有更加深入的了解,并且帮助其他人对起落架有更好的认识。最终的希望是自己的研究结果可以得到实际应用,对飞机的起落架的优化起到参考作用。 首先,我会先对起落架做简要介绍。 概念 起落架就是飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。简单地说,起落架有一点像汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个:承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;滑跑与滑行时的制动;滑跑与滑行时操纵飞机。 基本组成 综述 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。 在这里,我的主要研究方向是收放系统,下面开始我的主要研究内容介绍: 收放系统 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 首先,收放系统对于起落架自身的强度有着很高的要求,这就需要在制作起落架时选择质轻、高强度的功能材料,这样才能满足起落架支撑起整个飞机的重量后而不会发生断裂的要求,从而才能保证飞机着陆的安全。 但是,除了材料的高性能之外,是否还有别的因素制约着整个起落架所能承受的压力大小呢?这个问题一整萦绕在我的心头,经过几个星期的思考之后,我提出了自己的猜想:由于起落架各个支撑杆是在互相支撑后协同作用将整个飞机支撑起来的。(如下图3-14和 3-41所示)那么,它们之间所成的角度以及其中一条支撑杆撑在另一条支撑杆上的位置会不会对整个起落系统的性能产生影响呢?它们之间的角度关系和位置关系应该如何配合才能更好地将所能承受的力的极限值再往上提高一个层次呢?这样的话不就可以把对材料的要求放的更低一些了吗?不就可以大大节省在材料方面的开支了吗?我怀着这样的想法开

飞机起落架的减震系统

` 8.6 起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8.24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8.25所示波音-737主起落架的试验曲线表明其效率达到了90%。此外它还具

民航执照考试上册-第4章起落架系统

(上册)第4章起落架系统 1、后三点起落架的特点:结构比较简单、重量也较轻。但飞机在地面稳定性较差,易发生 所谓的“跳跃”现象,大力刹车可能使飞机发生倒立。 前三点起落架的特点:地面运动稳定性好,滑行中不容易偏转和倒立,可大力刹车。 主要缺点是前起落架承受的载荷较大。 2、支柱套筒是起落架特点:结构简单,易于收放;吸收水平撞击载荷性能差。 3、撑杆式支柱套筒起落架是现代民航飞机主起落架结构的一般形式。 4、摇臂式起落架结构特点:机轮通过摇臂与减震器连接,但结构复杂。 5、在小车架式起落架中,轮架与支柱是铰接的。 6、小车架俯仰稳定减震器在不平地面滑行时,减缓小车架的震动。小车架倾斜定位机构的目的是减小轮舱的设计尺寸。 7、大型飞机上使用小车架式起落架的主要目的是将飞机重量分散到更大的面积上。 8、减震原理:将吸收的撞击动能转换为飞机的势能和热能。 9、油气减震器主要是利用气体的压缩变形吸收撞击能量,起缓冲作用,利用油液高速流过小孔的摩擦消耗能量。 10、现代民航飞机起落架减震器支柱内灌充的油液为石油基液压油、气体为干燥的氮气。 11、油气减震器在伸张过程中,气体放出能量,其中一部分转变为飞机的势能,另一部分也由油液高速流过小孔时的摩擦以及密封装置等的摩擦,转变为热能消散掉。 12、油气减震器在压缩和伸张过程中,油液作用力与活塞运动速度的平方成正比,与油孔面积的平方成反比。 13、油液作用力随压缩量的增大,先增大后减小。 14、载荷高峰:减震器所受的载荷在压缩过程之初会出现一个起伏,这种现象叫载荷高峰。 15、调节油针的作用:消除载荷高峰,增大热耗系数。 16、单向调节活门:减小飞机减震柱伸张速度,从而消除反跳现象,同时也增大了热耗作用。单向调节活门又叫防反跳活门。 17:油气减震充灌不正常的危害: (1)油量正常、气压小于规定值:当飞机粗猛着陆的撞击动能等于规定的最大能量时,要产生刚性撞击;

飞机基本结构

飞机结构详细讲解 机翼 机翼是飞机的重要部件之一,安装在机 上。其最主要作用是产生升力,同时也 在机翼内布置弹药仓和油箱,在飞行中 收藏起落架。另外,在机翼上还安装有 起飞和着陆性能的襟翼和用于飞机横向 纵的副翼,有的还在机翼前缘装有缝翼 加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架 机翼的纵向骨架由翼梁、纵 樯和桁条等组成,所谓纵向是指沿翼展方 向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它承受 全部或大部分弯矩和剪力。翼梁一般由凸 缘、腹板和支柱构成(如图所示)。凸缘通 常由锻造铝合金或高强度合金钢制成,腹板 用硬铝合金板材制成,与上下凸缘用螺钉或 铆钉相连接。凸缘和腹板组成工字型梁,承 受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在 樯的凸缘很弱并且不与机身相连,其长 时仅为翼展的一部分。纵樯通常布置在 的前后缘部分,与上下蒙皮相连,形成 盒段,承受扭矩。靠后缘的纵樯还可以 襟翼和副翼。 * 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承力,并共同将气动力分布载荷传给翼肋。 二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,

相关文档
最新文档