湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题 含答案

合集下载

2020-2021长沙市高中必修一数学上期中试卷附答案

2020-2021长沙市高中必修一数学上期中试卷附答案

2020-2021长沙市高中必修一数学上期中试卷附答案一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 3.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( ) A . B .C .D .4.不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦5.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .86.若函数2()sin ln(14f x x ax x =⋅+的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±7.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<8.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-9.已知函数2()2f x ax bx a b =++-是定义在[3,2]a a -的偶函数,则()()f a f b +=( ) A .5 B .5-C .0D .201910.函数sin21cos xy x=-的部分图像大致为A .B .C .D .11.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-12.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6二、填空题13.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.14.函数()22()log 23f x x x =+-的单调递减区间是______. 15.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.16.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.17.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.18.已知函数()log (4)a f x ax =-(0a >,且1a ≠)在[0,1]上是减函数,则a 取值范围是_________.19.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x x f x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.20.已知312ab +=a b =__________. 三、解答题21.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.22.已知函数()2(0,)af x x x a R x=+≠∈. (1)判断()f x 的奇偶性;(2)若()f x 在[)2,+∞是增函数,求实数a 的范围. 23.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 24.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >. (1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-. 25.已知函数2()log (0,1)2axf x a a x-=>≠+. (Ⅰ)当a=3时,求函数()f x 在[1,1]x ∈-上的最大值和最小值;(Ⅱ)求函数()f x 的定义域,并求函数2()()(24)4f x g x ax x a=--++的值域.(用a 表示)26.已知全集U ={1,2,3,4,5,6,7,8},A ={x |x 2-3x +2=0},B ={x |1≤x ≤5,x ∈Z},C ={x |2<x <9,x ∈Z}.求 (1)A ∪(B ∩C );(2)(∁U B )∪(∁U C ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C3.D解析:D 【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan ,tan sin {2sin ,tan sin x x x x x x<≥分段画出函数图象如D 图示, 故选D .4.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.5.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.6.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x Q 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =±本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.7.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.8.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.9.A解析:A 【解析】 【分析】根据函数f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数,即可求出a ,b ,从而得出f (x )的解析式,进而求出f (a )+f (b )的值. 【详解】∵f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数; ∴0320b a a =⎧⎨-+=⎩;∴a =1,b =0; ∴f (x )=x 2+2;∴f (a )+f (b )=f (1)+f (0)=3+2=5. 故选:A . 【点睛】本题考查偶函数的定义,偶函数定义域的对称性,已知函数求值的方法.10.C解析:C 【解析】由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.11.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--,由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.12.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.二、填空题13.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得22x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22,22y y y ==-=--.【详解】Q 241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=, 解得22x =-±1220,4223,-<-+<-<--当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.14.【解析】设()因为是增函数要求原函数的递减区间只需求()的递减区间由二次函数知故填解析:()-3∞-,【解析】设2log y t =,223t x x =+-,(0t >)因为2log y t =是增函数,要求原函数的递减区间,只需求223t x x =+-(0t >)的递减区间,由二次函数知(,3)x ∈-∞-,故填(,3)x ∈-∞-.15.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.16.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.17.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意.当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值. 故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-. 【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 18.;【解析】【分析】分为和两种情形分类讨论利用复合函数的单调性结合对数函数的性质求出取值范围【详解】∵函数(且)在上是减函数当时故本题即求在满足时函数的减区间∴求得当时由于是减函数故是增函数不满足题意 解析:(1,4);【解析】【分析】分为1a >和01a <<两种情形分类讨论,利用复合函数的单调性,结合对数函数的性质求出a 取值范围.【详解】∵函数()log (4)a f x ax =-(0a >,且1a ≠)在[0,1]上是减函数,当1a >时,故本题即求4t ax =-在满足0t >时,函数t 的减区间,∴40a ->,求得14a <<,当01a <<时,由于4t ax =-是减函数,故()f x 是增函数,不满足题意,综上可得a 取值范围为(1,4),故答案为:(1,4).【点睛】本题主要考查复合函数的单调性,对数函数,理解“同增异减”以及注意函数的定义域是解题的关键,属于中档题.19.f (x )=4﹣x ﹣3﹣x 【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f (x )已知当x∈03时f(x )=3x+a4x (a∈R)当x =0时f (0)=0解得解析:f (x )=4﹣x ﹣3﹣x【解析】【分析】先根据()00f =计算1a =-,再设30x ≤≤﹣ ,代入函数利用函数的奇偶性得到答案.【详解】定义在[﹣3,3]上的奇函数f (x ),已知当x ∈[0,3]时,f (x )=3x +a 4x (a ∈R ), 当x =0时,f (0)=0,解得1+a =0,所以a =﹣1.故当x ∈[0,3]时,f (x )=3x ﹣4x .当﹣3≤x ≤0时,0≤﹣x ≤3,所以f (﹣x )=3﹣x ﹣4﹣x ,由于函数为奇函数,故f (﹣x )=﹣f (x ),所以f (x )=4﹣x ﹣3﹣x .故答案为:f (x )=4﹣x ﹣3﹣x【点睛】本题考查了利用函数的奇偶性求函数解析式,属于常考题型.20.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力解析:3【解析】【分析】首先化简所给的指数式,然后结合题意求解其值即可.【详解】1321223333a b a b a a b +-+====.【点睛】本题主要考查指数幂的运算法则,整体数学思想等知识,意在考查学生的转化能力和计算求解能力. 三、解答题21.(1)1,0a b ==;(2)4k <.【解析】【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可.【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩. 解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立所以只需()min k f x <.有(1)知()()2211112222242222x x f x x x x x x x x -+==+=-++≥-⋅+=---- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<.【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题. 22.(1)当时,为偶函数,当时,既不是奇函数,也不是偶函数,;(2)(16]-∞,. 【解析】 【分析】【详解】(1)当时,,对任意(0)(0)x ∈-∞+∞U ,,,,为偶函数. 当时,2()(00)a f x x a x x =+≠≠,, 取,得(1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)(1)f f f f ∴-≠--≠,,函数既不是奇函数,也不是偶函数.(2)设122x x ≤<, ,要使函数在[2)x ∈+∞,上为增函数,必须恒成立. 121204x x x x -<>Q ,,即恒成立.又,.的取值范围是(16]-∞,. 23.(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ .【解析】【分析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可.【详解】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4),B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5).(2)A ∪B =A ⇔B ⊆A ,①B =∅时,则有2a ≥3-a ,∴a ≥1,②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为. 【点睛】本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心.24.(1)()10f = (2){|10}x x -≤<.【解析】【分析】(1)根据()()()f xy f x f y =+,令1x y ==,即可得出()1f 的值;(2)由0x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,根据()f x 的单调性,结合函数的定义域,列出不等式解出x 的范围即可.【详解】(1)令1x y ==,则()()()111f f f =+,()10f =.(2)解法一:由x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,且030x x ->⎧⎨->⎩,即0x <. ∵()()()f xy f x f y =+,(),0,x y ∈+∞且112f ⎛⎫= ⎪⎝⎭, ∴()()32f x f x -+-≥-可化为()()1322f x f x f ⎛⎫-+-≥- ⎪⎝⎭,即()()113022f x f f x f ⎛⎫⎛⎫-++-+≥ ⎪ ⎪⎝⎭⎝⎭=()()()331112222x x x x f f f f f f --⎛⎫⎛⎫⎛⎫⇔-+≥⇔-⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则03122x x x <⎧⎪⎨--⋅≤⎪⎩,解得10x -≤<. ∴不等式()()32f x f x -+-≥-的解集为{|10}x x -≤<.【点睛】本题主要考查抽象函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.25.(Ⅰ)max ()1f x =,min ()1f x =-;(Ⅱ)()f x 的定义域为(2,2)-,()g x 的值域为(4(1),4(1))a a -+-.【解析】【分析】【详解】试题分析:(Ⅰ)当3a =时,求函数()f x 在[1,1]x ∈-上的最大值和最小值,令()22x u x x-=+,变形得到该函数的单调性,求出其值域,再由()()log a f x u x =为增函数,从而求得函数()f x 在[1,1]x ∈-上的最大值和最小值;(Ⅱ)求函数()f x 的定义域,由对数函数的真数大于0求出函数()f x 的定义域,求函数()g x 的值域,函数()f x 的定义域,即()g x 的定义域,把()f x 的解析式代入()g x 后整理,化为关于x 的二次函数,对a 分类讨论,由二次函数的单调性求最值,从而得函数()g x 的值域.试题解析:(Ⅰ)令24122x u x x -==-++,显然u 在[1,1]x ∈-上单调递减,故u ∈1[,3]3,故3log [1,1]y u =∈-,即当[1,1]x ∈-时,max ()1f x =,(在3u =即1x =-时取得) min ()1f x =-,(在13u =即1x =时取得) (II)由20()2x f x x->⇒+的定义域为(2,2)-,由题易得:2()2,(2,2)g x ax x x =-+∈-, 因为0,1a a >≠,故()g x 的开口向下,且对称轴10x a =>,于是: 1o 当1(0,2)a ∈即1(,1)(1,)2a ∈+∞U 时,()g x 的值域为(11((2),()](4(1),]g g a a a-=-+;2o当12a≥即1(0,]2a∈时,()g x的值域为((2),(2))(4(1),4(1))g g a a-=-+-考点:复合函数的单调性;函数的值域.26.(1)A∪(B∩C)={1,2,3,4,5}.(2)(∁U B)∪(∁U C)={1,2,6,7,8}.【解析】试题分析:(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁U B,∁U C;再求(∁U B)∪(∁U C).试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}.(2)由∁U B={6,7,8},∁U C={1,2};故有(∁U B)∪(∁U C)={6,7,8}∪{1,2}={1,2,6,7,8}.。

湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析

湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析

湖南省长郡中学2020-2021学年高一入学分班考试数学试题答案和解析湖南省长郡中学高一入学分班考试数学试题一、单选题1.已知方程组$\begin{cases} x+y=-7-a \\ x-y=1+3a\end{cases}$的解x为非正数,y为非负数,则a的取值范围是()。

A。

$-2<a\leq3$ B。

$-2\leq a<3$ C。

$-2<a<3$ D。

$a\leq-2$2.已知$a^2+b^2=6ab$,且$a>b>0$,则$\dfrac{a+b}{a-b}$的值为()。

A。

2 B。

$\pm2$ C。

$2\sqrt{2}$ D。

$\pm2\sqrt{2}$3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()。

A。

$\dfrac{1}{3}$ B。

$\dfrac{2}{3}$ C。

$\dfrac{1}{9}$ D。

$\dfrac{1}{6}$4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便,原理是:如对于多项式$x-y$,因式分解的结果是$(x-y)(x+y)(x^2+y^2)$,若取$x=9$,$y=9$时,则各个因式的值是:$x-y=0$,$xy=81$,$x^2+y^2=162$,于是就可以把“”作为一个六位数的密码,对于多项式$x-xy$,取$x=20$,$y=10$时,用上述方法产生的密码不可能是()。

A。

B。

C。

D。

5.如果四个互不相同的正整数$m,n,p,q$,满足$(5-m)(5-n)(5-p)(5-q)=4$,那么$m+n+p+q=$()。

A。

24 B。

21 C。

20 D。

226.若$x_1,x_2$($x_1<x_2$)是方程$(x-a)(x-b)=1$($a<b$)的两个根,则实数$x_1,x_2,a,b$的大小关系为()。

【全国百强名校】长郡中学高一期中考试试卷-数学(附答案)

【全国百强名校】长郡中学高一期中考试试卷-数学(附答案)

!槡# ##
4%/7B;
" "
'(! /
)(#
*(/
+(!!"
.!-!
*!/!
!"#$%&'(! )*")
!!!0156%#%345&#,!de&*!4%#$$7f2;
'(&!,.
)(!,.
*!$!
+!&!$
!#!<%#;P56S#$ ?'%%#&8# 7ghic4&#$ g8?EFjh567ic
!"#$!%&'"(!/ )!*")"
#/!+,$-.6. 0123 "%#'#'%## ,(#,#$% #'##&',! %$S$+#+#<"%$./m6 ( 7ABCD!
!"#$%&'(!0 )*")
#0!!+,$-.6." 0156%!#"%º¹»¼7#%')%½l%!#,'"%%!#", %!'"%T#*$U%%!#"$$%S%!!"%&!#! !!"%!$"%%!-"7B+ !#"T&6+#+!$U%56%!#"7JKBOJMB!
(!!'!!&!!%!!$!!#!!"!!!
"
'(&!$ )($#
*(&#$ +(&##

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题高一期中考试本试卷分第Ⅰ卷﹙选择题﹚和第Ⅱ卷﹙非选择题﹚两部分。

满分150分,考试时间120分钟。

第Ⅰ卷第一部分:听力(共两小节,满分30分)该部分分为第一、第二两节,注意,做题时,请先将答案标在试卷上,该部分录音内容结束后,你将有两分钟的时间将你的答案转涂到客观题答题卡上。

第一节(共5题:每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,井标在试卷的相应位置。

听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。

1. What programs does the woman prefer?A. Talk shows.B. Sports programs.C. Cooking programs.2. What does the woman ask the man to do?A. Have dinner.B. Pick up a gift.C. Look at a piece of jewelry.3. What does the man usually take with him on vacation?A. A suitcase.B. A backpack.C.A sports bag.4. How does Anna feel about chemistry?A. Worried.B. Confident.C. Hopeless.5. Why did the man choose the guitar?A. He needs a cheap instrument.B. He wants to be like his friends.C. He thinks it is cool to play the guitar.第二节(共15题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2020-2021学年长沙市长郡中学高一上学期期末数学试卷(含解析)

2020-2021学年长沙市长郡中学高一上学期期末数学试卷(含解析)

2020-2021学年长沙市长郡中学高一上学期期末数学试卷一、单选题(本大题共12小题,共36.0分) 1.已知集合A ={0,1,2},B ={x|x 2+x −2≤0},则A ∩B =( )A. {0}B. {0,1}C. {1,2}D. {0,1,2}2.下列语句不是全称量词命题的是( )A. 任何一个实数乘以零都等于零B. 自然数都是正整数C. 高一(1)班绝大多数同学是团员D. 每一个实数都有大小3.若tanα=3,则4sin 2α−sinαcosα+cos 2α的值为( )A. −175B. 175C. 3D. −34.已知条件p:不等式的解集为R ;条件q:指数函数为增函数,则p 是q 的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件5.与函数y =x 是同一函数的函数是( )A. y =√x 2B. y =√x 33C. y =(√x)2D. y =x2x6.函数g(x)=lnx −1x 的零点所在区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)7.若角的终边上有一点,则的值是( )A.B.C.D.8.函数的部分图象大致是如图所示的四个图象中的一个,根据你的判断,a 可能的取值是( )A. 12B. 32C. 2D. 49.函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,要得到函数g(x)=2sin(2x +π4)的图象,只需将函数f(x)的图象( )A. 向右平移π12长度单位 B. 向左平移π24长度单位 C. 向左平移π12长度单位D. 向右平移π24长度单位10. 设,且,则= ( )A. 100B. 20C. 10D.11. 已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致是( )A.B.C.D. 图象大致形状是( )12. 若x +4x−1≥m 2−2am −3对所有的x ∈[2,4]和a ∈[−1,1]恒成立,则实数m 的取值范围是( )A. [−4,2]B. [−2,4]C. [−2,2]D. [−4,4]二、多选题(本大题共3小题,共9.0分)13. 在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点B (x,y )的轨迹方程是y =f (x ),则对函数y =f (x )的判断正确的是( )A. 函数y =f (x )是奇函数B. 对任意的x ∈R ,都有f (x +4)=f (x −4)C. 函数y =f (x )的值域为[0,2√2]D. 函数y =f (x )在区间[6,8]上单调递增14. 已知实数a ,b ,c 满足a >b >c 且abc <0,则下列不等关系一定正确的是( )A. ac >bcB. c a >cbC. b a +ab >2D. aln|c|>bln|c|15. 下列关于函数y =tan(−2x +π3)的说法正确的是( )A. 在区间(−π3,−π12)上单调递增 B. 最小正周期是π2C. 图象关于点(5π12,0)成中心对称D. 图象关于直线x =−π12成轴对称三、单空题(本大题共5小题,共15.0分)16. 计算2log 214−(827)23+lg 1100+(√2−1)lg1的值为______. 17. 周长为6的等腰△ABC 中,当顶角A =π3时,S △ABC 的最大值为√3,周长为4的扇形OAB 中,则当圆心角α,|α|=∠AOB = ______ (弧度)时,S 扇形△AOB 的最大值是1. 18. 设4a =5b =m ,且1a +2b =1,则m =______.19. 广州市出租车收费标准如下:在3km 以内路程按起步价9元收费,超过3km 以外的路程按2元/km收费,另每次收燃油附加费1元,则收费额Q 关于路程s 的函数关系是______ .20. 已知x 1,x 2是一元二次方程x 2−x −1=0的两实数根,则x 12+x 22= ______ .四、解答题(本大题共5小题,共40.0分)21. (1)1.513×(−76)0+80.25×√24+(√23×√3)6−√(23)23; (2)12lg3249−43lg8+lg √245.22. 为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000 m 2的矩形鱼塘,其四周都留有宽2 m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.23. (本小题满分12分) 向量(1)若a 为任意实数,求g(x)的最小正周期; (2)若g(x)在[o,)上的最大值与最小值之和为7,求a 的值,24. 某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB ⏜、CD ⏜所在圆的半径分别为f(x)、R 米,圆心角为θ(弧度).(1)若θ=π3,r 1=3,r 2=6,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?25.已知函数f(x)是定义在R上的偶函数,当x>0时,f(x)=log2x.(1)求当x<0时函数f(x)的解析式;(2)解不等式f(x2−1)>2.参考答案及解析1.答案:B解析:解:∵集合A={0,1,2},B={x|x2+x−2≤0}={x|−2≤x≤1},∴A∩B={0,1}.故选:B.先分别求出集合A和B,由此能求出A∩B.本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.答案:C解析:根据全称量词命题与存在量词命题的定义,直接判断即可.本题考查了全称量词命题与存在量词命题的定义,属于基础题.解:A,B,D中含有“任何一个”“都是”“每一个”,是含有全称量词的全称量词命题,而C中命题可以改写为:高一(1)班存在部分同学是团员,所以C不是全称量词命题,故选:C.3.答案:B解析:先利用同角三角函数的基本关系把1换成sin2α+cos2α,分子分母同时除以cos2α,最后把tanα的值代入即可求得答案.本题主要考查了三角函数的化简求值.解题的关键是把原式中的弦转化成切,利用已知条件求得问题的解决.解:∵tanα=3,则4sin2α−sinαcosα+cos2α=4sin2α−sinαcosα+cos2αsin2α+cos2α=4tan2α−tanα+1 tan2α+1=4×9−3+19+1=175故选B.4.答案:C。

湖南省长沙市长郡中学2023-2024学年高一上学期期中数学试题

湖南省长沙市长郡中学2023-2024学年高一上学期期中数学试题

27 8
ö÷ø
2 3
+ (1.5)-2 ;
试卷第41 页,共33 页
1
(2)若 x2
+
x
-
1 2
=
3 ,求
x3 + x-3 x + x-1 + 7
的值.
六、问答题
18.已知全集为 R
,集合
A
=
{x
2m
-1 £
x
£
m +1} , B
=
ì í
x
î
2
3 -
x
³
2üý . þ
(1)若
m
=
1 2
,求
A
I
(ðR B )
=
-2x x2 -1
=
-
f
(x)
,故函数为奇
函数,故排除 BD,

f
(2)
=
4 3
>
0

f
æ çè
1 2
ö ÷ø
=
1
-
3 4
=
-
4 3
,故
C
错误,
故选:A. 4.B 【分析】根据题意建立函数关系即可. 【详解】如图,
答案第11 页,共22 页
圆的直径 AC = 2OC = 50cm ,矩形的边 AB = x cm. ∵ ÐABC = 90° , ∴由勾股定理,得 BC = 2500 - x2cm , ∴矩形 ABCD 的面积 y = AB × BC = x × 2500 - x2 cm2 , 又∵ 0 < AB < AC = 50 , ∴ 0 < x < 50 . 故选:B. 5.C 【分析】根据函数的定义域和值域的定义,结合函数图象进行求解即可.

2020-2021长沙市长郡中学高三数学上期中一模试题含答案

2020-2021长沙市长郡中学高三数学上期中一模试题含答案
解析:D
【解析】
【分析】
首先根据对数运算法则,可知 ,再根据等比数列的性质可知 ,最后计算 的值.
【详解】
由 ,
可得 ,进而可得 ,
.
【点睛】
本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.
9.A
解析:A
【解析】
【分析】
先画不等式组表示的平面区域,由图可得目标函数 何时取最大值,进而找到 之间的关系式 然后可得 ,化简变形用基本不等式即可求解。
11.设等差数列{an}的前n项和为Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,则下列结论正确的是( )
A.S2 016=-2 016,a2 013>a4
B.S2 016=2 016,a2 013>a4
C.S2 016=-2 016,a2 013<a4
解析:
【解析】
【分析】
待定系数得到 ,得到
【详解】
因为 满足 ,
所以 ,
即 ,得到 ,
所以 ,
而 ,
故 是以 为首项, 为公比的等比数列,
所以 ,
故 .
故答案为: .
【点睛】
本题考查由递推关系求数列通项,待定系数法构造新数列求通项,属于中档题.
16.1830【解析】【分析】由题意可得…变形可得…利用数列的结构特征求出的前60项和【详解】解:∴…∴…从第一项开始依次取2个相邻奇数项的和都等于2从第二项开始依次取2个相邻偶数项的和构成以8为首项以1
24.已知数列 满足 .
(1)证明数列 是等差数列,并求 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .

2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷试题及答案(解析版)

2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷一、选择题:本大题共15个小题,每小题3分,共45分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|12}A x x =-<<,2{|20}B x x x =+<,则(A B = )A .(1,0)-B .(0,2)C .(2,0)-D .(2,2)-2.函数()f x =+的定义域为( )A .(3-,0]B .(3-,1]C .(-∞,3)(3--⋃,0]D .(-∞,3)(3--⋃,1]3.若函数(2),1()1,1a x x f x ax x -⎧=⎨+<⎩…,在R 上是增函数,则a 的取值范围为( )A .(,2)-∞B .(0,2)C .1(0,]2D .1[,2)24.下列函数既是偶函数,又在(0,)+∞上为增函数的是( ) A .y x =B .2y x =-C .||y x =D .1y x=5.函数21y x x =-+,[1x ∈-,1]的最大值与最小值之和为( ) A .1.75B .3.75C .4D .56.已知定义在R 上的奇函数()f x 满足(1)(1)f x f x +=-,且当[0x ∈,1]时,()2x f x m =-,则(1)(f -= ) A .1-B .1C .2-D .27.下列不等式成立的是( ) A .231.2 1.2> B .321.2 1.2--< C . 1.2 1.2log 2log 3>D .0.20.2log 2log 3<8.设251()3a =,432b =,21log 3c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<9.函数25()log (2)f x x x =-的单调递增区间是( ) A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知幂函数()y f x =的图象过点1(2,则f (4)的值为( )A .14B .2C .4D .11611.已知函数()log (1)a f x x =+(其中1)a >,则()0f x <的解集为( ) A .(1,)-+∞B .(1,)+∞C .(0,1)D .(1,0)-12.若()f x 为奇函数,且0x 是()x y f x e =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()1x y f x e =+B .()1x y f x e -=--C .()1x y f x e =-D .()1x y f x e =-+13.若函数()(1)(3)()f x lg x lg x lg a x =-+---只有一个零点,则实数a 的取值范围是( ) A .13a <…或134a =B .1334a <… C .1a …或134a =D .134a >14.若方程222(2)0x x lg a a ---=有一个正根和一个负根,则实数a 的取值范围是( ) A .1a >或12a <-B .112a -<<C .12a >-D .1a <15.函数()g x 的图象如图所示,则方程3(())0g g x =的实数根个数为( )A .3B .6C .9D .12二、填空题:本大题共5个小题.每小题3分,共15分,将答案填在答题纸上. 16.设集合{1A =,2},则满足{1AB =,2,3},{2}AB =的集合B = .17.已知函数(22)32f x x +=+,且f (a )4=,则a = .18.已知3()3f x x x =+,x R ∈,且2(2)()0f a f a -+<,则实数a 的取值范围是 . 19.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质36%,若要使水中杂质减少到原来的5%以下,则至少需要过滤 次.(参考数据:20.3010)lg ≈ 20.若规定集合1{M a =,2a ,⋯,*}()n a n N ∈的子集1{i a ,2i a ,}(*)m i a m N ⋯∈为M 的第k 个子集,其中12111222n i i i k ---=++⋯+,则M 的第25个子集是 .三、解答题:本大题共5个小题,共40分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)5log 2log 2545lg lg ++;(2)已知1122x x-+=,求22165x x x x --+-+-的值. 22.已知2lg a =,3lg b =,试用a ,b 表示12log 5.23.科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122(04,0)x x y m x m -=+>剟.(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度; (2)如果该物质温度总不低于2摄氏度,求m 的取值范围.24.集合2{(,)|2}A x y y x mx ==++,{(,)|10B x y x y =-+=,02}x 剟.若A B ≠∅,求实数m 的取值范围.25.已知函数()f x ,对于任意的x ,y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,f (3)的值;(2)当810x -剟时,求函数()f x 的最大值和最小值.2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|12}A x x =-<<,2{|20}B x x x =+<,则(A B = )A .(1,0)-B .(0,2)C .(2,0)-D .(2,2)-【解答】解:{|12}A x x =-<<,{|20}B x x =-<<, 则(1,0)AB =-.故选:A .2.函数()f x =+的定义域为( )A .(3-,0]B .(3-,1]C .(-∞,3)(3--⋃,0]D .(-∞,3)(3--⋃,1]【解答】解:根据题意:12030x x ⎧-⎨+>⎩…,解得:30x -<… ∴定义域为(3-,0]故选:A .3.若函数(2),1()1,1a x x f x ax x -⎧=⎨+<⎩…,在R 上是增函数,则a 的取值范围为( )A .(,2)-∞B .(0,2)C .1(0,]2D .1[,2)2【解答】解:根据题意,函数(2),1()1,1a x x f x ax x -⎧=⎨+<⎩…,在R 上是增函数,则有20012a a a a->⎧⎪>⎨⎪+-⎩…,解可得:102a <…,即a 的取值范围为(0,1]2;故选:C .4.下列函数既是偶函数,又在(0,)+∞上为增函数的是( )A .y x =B .2y x =-C .||y x =D .1y x=【解答】解:根据题意,依次分析选项:对于A ,y x =为正比例函数,不是偶函数,不符合题意;对于B ,2y x =-,为二次函数,是偶函数,在(0,)+∞上为减函数,不符合题意; 对于C ,,0||,0x x y x x x ⎧==⎨-<⎩…,是偶函数,又在(0,)+∞上为增函数,符合题意;对于D ,1y x=,为反比例函数,不是偶函数,不符合题意; 故选:C .5.函数21y x x =-+,[1x ∈-,1]的最大值与最小值之和为( ) A .1.75B .3.75C .4D .5【解答】解:函数21y x x =-+,对称轴为12x =, 13()24min y f ==,(1)3f -=,f (1)1=,故最大值为3,最小值为0.75 所以最大值和最小值的和为3.75, 故选:B .6.已知定义在R 上的奇函数()f x 满足(1)(1)f x f x +=-,且当[0x ∈,1]时,()2x f x m =-,则(1)(f -= ) A .1- B .1C .2-D .2【解答】解:()f x 为奇函数且[0x ∈,1]时()2x f x m =-,(0)10f m ∴=-=, 1m ∴=,f (1)211=-=, (1)f f ∴-=-(1)1=-.故选:A .7.下列不等式成立的是( ) A .231.2 1.2>B .321.2 1.2--<C . 1.2 1.2log 2log 3>D .0.20.2log 2log 3<【解答】解:函数x y a =,1a >时,函数是增函数,231.2 1.2∴>不正确;321.2 1.2--<正确; 函数 1.2log y x =,是增函数, 1.2 1.2log 2log 3∴>不正确; 函数0.2log y x =是减函数,0.20.2log 2log 3∴<不正确; 故选:B .8.设251()3a =,432b =,21log 3c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<【解答】解:251()(0,1)3a =∈,4321b =>,21log 03c =<,则c a b <<. 故选:D .9.函数25()log (2)f x x x =-的单调递增区间是( ) A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞【解答】解:由220x x ->得2x >或0x <,即函数的定义域为(-∞,0)(2⋃,)+∞, 设22t x x =-,则5log y t =是增函数, 则要求()f x 的单调递增区间, 即求22t x x =-的单调递增区间, 22t x x =-的单调递增区间为(2,)+∞, ()f x ∴的单调递增区间为(2,)+∞,故选:B .10.已知幂函数()y f x =的图象过点1(2,则f (4)的值为( )A .14B .2C .4D .116【解答】解:设幂函数为()f x x α=,()y f x =的图象过点1(2,∴121()222αα--===∴12α=. 12()f x x ∴=,f ∴(4)1242===,故选:B .11.已知函数()log (1)a f x x =+(其中1)a >,则()0f x <的解集为( ) A .(1,)-+∞B .(1,)+∞C .(0,1)D .(1,0)-【解答】解:1a >时,函数()log (1)a f x x =+在定义域上单调递增, ∴不等式()0f x <可化为011x <+<,解得10x -<<,∴所求不等式的解集为(1,0)-.故选:D .12.若()f x 为奇函数,且0x 是()x y f x e =-的一个零点,则0x -一定是下列哪个函数的零点( )A .()1x y f x e =+B .()1x y f x e -=--C .()1x y f x e =-D .()1x y f x e =-+【解答】解:0x 是()x y f x e =-的一个零点,00()0x f x e ∴-=,又()f x 为奇函数,00()()f x f x ∴-=-,00()0x f x e ∴---=,即00()0x f x e -+=, 故000()()10x x x f x e f x ee--+-+==; 故0x -一定是()1x y f x e =+的零点, 故选:A .13.若函数()(1)(3)()f x lg x lg x lg a x =-+---只有一个零点,则实数a 的取值范围是( )A .13a <…或134a =B .1334a <… C .1a …或134a =D .134a >【解答】解:原题等价于{213530x x x a x a<<-++=<,当△0=时,135,42a x ==; 当△0>,即134a <时,令2()53g x x x a =-++,满足(1)0(3)0g g >⎧⎨⎩…,解得13a <….综上,实数a 的取值范围为13a <…或134a =. 故选:A .14.若方程222(2)0x x lg a a ---=有一个正根和一个负根,则实数a 的取值范围是( ) A .1a >或12a <-B .112a -<<C .12a >-D .1a <【解答】解:方程222(2)0x x lg a a ---=有一个正根和一个负根, ∴两根之积2(2)0lg a a --<,故2(2)0lg a a ->,221a a ∴->,求得1a >或12a <-,故选:A .15.函数()g x 的图象如图所示,则方程3(())0g g x =的实数根个数为( )A .3B .6C .9D .12【解答】解:令3t x =,()u g t =,则由3(())0g g x =,有()0g u =, 由图象知有三个根1u ,2u ,3u , 分别令1()u g t =,2()u g t =,3()u g t =, 解出有9个t 符合方程,在令3t x =解出相应x 的根的个数为9个,故选:C .二、填空题:本大题共5个小题.每小题3分,共15分,将答案填在答题纸上. 16.设集合{1A =,2},则满足{1A B =,2,3},{2}AB =的集合B = {2,3} .【解答】解:{1A =,2},{1AB =,2,3},{2}A B =,2B ∴∈,3B ∈,1B ∉, {2B ∴=,3}.故答案为:{2,3}.17.已知函数(22)32f x x +=+,且f (a )4=,则a = 3. 【解答】解:(22)32f x x +=+,令22x t +=,则22t x -=, 232()3222t t f t --∴=+=, f ∴(a )3242a -==, 则103a =. 故答案为:10318.已知3()3f x x x =+,x R ∈,且2(2)()0f a f a -+<,则实数a 的取值范围是 (2,1)- . 【解答】解:因为3()()3()f x x x f x -=--=-,所以是奇函数,且递增, 且2(2)()0f a f a -+<,即22(2)()()f a f a f a -<-=-, 22a a -<-,220a a +-<,所以(2,1)a ∈-, 故答案为:(2,1)-.19.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质36%,若要使水中杂质减少到原来的5%以下,则至少需要过滤 7 次.(参考数据:20.3010)lg ≈ 【解答】解:设至少需过滤的次数为n ,则由题意可得0.640.05n …,即0.640.05nlg lg …,0.0552121,301060.642(81)62260.30102lg lg lg n lg lg lg ----∴====--⨯- (706)再由n 为正整数可得n 的最小值为7, 故答案为:7.20.若规定集合1{M a =,2a ,⋯,*}()n a n N ∈的子集1{i a ,2i a ,}(*)m i a m N ⋯∈为M 的第k 个子集,其中12111222n i i i k ---=++⋯+,则M 的第25个子集是 1{a ,4a ,5}a .【解答】解:由题意得,M 的第k 个子集,且12111222n i i i k ---=++⋯+, 又03411415125222222---=++=++, 所以M 的第25个子集是1{a ,4a ,5}a , 故答案为:1{a ,4a ,5}a .三、解答题:本大题共5个小题,共40分.解答应写出文字说明、证明过程或演算步骤. 21.计算:(1)5log 2log 2545lg lg ++;(2)已知1122x x-+=,求22165x x x x --+-+-的值.【解答】解:(1)3144333-==;∴5log 2log 2545lg lg ++;143115log 310022244lg -=++=-++=;(2)1122x x-+=,111222()23x x x x --∴+=+-=;2212()27x x x x --∴+=+-=;∴22167615352x x x x --+--==-+--. 22.已知2lg a =,3lg b =,试用a ,b 表示12log 5. 【解答】解:125121log 5122232lg lg alg lg lg a b--===++.23.科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122(04,0)x x y m x m -=+>剟.(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度;(2)如果该物质温度总不低于2摄氏度,求m 的取值范围.【解答】解:(1)由题意,当2m =,则12225x x -+=,解得1x =或1x =-; 由0x …,1x ∴=, 故经过1时间,温度为5摄氏度.(2)由题意得1222x x m -+…对一切0x …恒成立, 则 由20x >,得22x m …, 令2x t -=则01t <…,2211()222()22f t t t t =-+=--+, 当12t =时,取得最大值为12. 12m ∴…,故的取值范围为1[2,)+∞. 24.集合2{(,)|2}A x y y x mx ==++,{(,)|10B x y x y =-+=,02}x 剟.若A B ≠∅,求实数m 的取值范围.【解答】解:联立得:221y x mx y x ⎧=++⎨=+⎩, 消去y 得:221x mx x ++=+,即2(1)10x m x +-+=,[0x ∈,2], 由题设知2()(1)1f x x m x =+-+,[0x ∈,2]必有零点,分两种情况考虑:()i 若在[0,2]只有一个零点,则f (2)0<,即32m <-; 或2(1)401022m m ⎧--=⎪⎨-⎪⎩剟,解得:1m =-; ()ii 若在[0,2]有两个零点,则(2)010220f m ⎧⎪-⎪<-<⎨⎪>⎪⎩…,解得:312m -<-…, 由()()i ii 知:1m -….25.已知函数()f x ,对于任意的x ,y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-. (1)求(0)f ,f (3)的值;(2)当810x -剟时,求函数()f x 的最大值和最小值. 【解答】解:(1)对于任意的x ,y R ∈,都有()()()f x y f x f y +=+, 令0x y ==,则(0)0f =,1(1)2f =-.令1x y ==,则(11)f f +=(1)f +(1),f ∴(2)1=-; (21)f f ∴+=(2)f +(1);即3(3)2f =-. (2)令y x =-,则()()()(0)0f x x f x f x f -=+-==,()()f x f x ∴-=-,()f x ∴为奇函数, 任取1x ,2x R ∈,且12x x <,210x x ->,则21()0f x x -<,212121()()()()()0f x f x f x f x f x x -=+-=-<,21()()f x f x ∴<, 所以()f x 在R 上为减函数,故当810x -剟时,()(8)2(4)4(2)4max f x f f f f =-=-=-=-(2)4=, ()(10)10min f x f f ==(1)5=-.故当810x -剟时,函数()f x 的最大值是4,最小值是5-.。

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知a∈R,若集合M={1,a},N={−1,0,1},则“a=0”是“M⊆N”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是A. ∀a,b∈R,a2+b2<0B. 菱形的两条对角线相等C. ∃x0∈R,x20=x0D. 一次函数的图象是直线3.设全集U=R,集合A={1,2,3,4,5},B={x|3<x<8,x∈N},则下图中的阴影部分表示的集合是A. {1,2,3,4,5}B. {3,4}C. {1,2,3}D. {4,5,6,7}4.若函数f(x)=4x2−kx−8在[5,8]上是单调函数,则实数k的取值范围是A. (−∞,40)B. (−∞,40]∪[64,+∞)C. [40,64]D. [64,+∞)5.已知关于x的不等式ax2+bx+c>0的解集为{x|13<x<12},则不等式cx2+bx+a>0的解集为A. {x|−12<x<−13}B. {x|x>3或x<2}C. {x|2<x<3}D. {x|−3<x<−2}6.已知关于x的不等式2x+2x−a≥7在区间(a,+∞)上恒成立,则实数a的最小值为A. 1B. 32C. 2 D. 527.17世纪初,约翰·纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,这便是科学记数法,若两边取常用对数,则有lg N=n+lg a.现给出部分常用对数值(如下表),则可以估计22023的最高位的数值为真数x2345678910lg x(近0.301030.477120.602060.698970.778150.845100.903090.95424 1.000似值)A. 6B. 7C. 8D. 98.已知函数g(x)是R上的奇函数,且当x<0时,g(x)=−x2+2x,函数f(x)={x,x≤0,g(x),x>0,若f(2−x2 )>f(x),则实数x的取值范围是A. (−2,1)B. (−∞,−2)∪(1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)二、多选题:本题共3小题,共18分。

【解析】湖南省长沙市长郡中学2019-2020学年高一上学期期中考试数学试题

【解析】湖南省长沙市长郡中学2019-2020学年高一上学期期中考试数学试题
A. B. C. D.
【答案】D
【分பைடு நூலகம்】
因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可。
【详解】因为 ,
所以 在 单调递增,
所以
所以 ,解得
故选D。
【点睛】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化。
12.若 为奇函数,且 是 的一个零点,则 一定是下列哪个函数的零点 ( )
5.函数 的最大值与最小值之和 ( )
A.1.75B.3.75C.4D.5
【答案】B
【分析】
先求出函数的对称轴,判断其在 上的单调性,根据单调性求出最值,即可得出结果。
【详解】解:函数 的对称轴为 ,其在 上单调递减,在 上单调递增,

故选:B
【点睛】本题考查二次函数在给定区间上的单调性及最值,是基础题。
8.设 , , ,则( )
A. B. C. D.
【答案】D
因为 , , ,故 ,所以选D.
9.函数 的单调递增区间是( )
A. B. C. D.
【答案】B
【分析】
先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间
3.若函数f(x)= 在R上是增函数,则a的取值范围为( )
A.(﹣∞,2)B.(0,2)C.(0, ]D.[ ,2)
【答案】C
【分析】
函数f(x)= 在R上是增函数,等价于当 时, 是增函数,当 时, 是增函数;另外还要满足 在分界点 处,左边的函数值小于等于右边的函数值,即 ,通过解不等式组,可确定 的取值范围.

【优质文档】2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷试题及答案(解析版)

【优质文档】2019-2020学年湖南省长沙市长郡中学高一(上)期中数学试卷试题及答案(解析版)

)
ax 1,x 1
A . ( ,2)
B . (0,2)
C. (0, 1 ] 2
4.下列函数既是偶函数,又在 (0, ) 上为增函数的是 (
)
A. y x
B . y x2
C. y | x |
5.函数 y x2 x 1 , x [ 1, 1]的最大值与最小值之和为 (
D. [ 1 ,2) 2
D. y 1 x

17.已知函数 f (2 x 2) 3 x 2 ,且 f ( a) 4 ,则 a

18.已知 f ( x) x3 3x , x R ,且 f (a 2) f (a2 ) 0 ,则实数 a 的取值范围是

19.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质
36% ,若要使水
中杂质减少到原来的 5% 以下,则至少需要过滤
)
A . a 1或 a 1 B. 1 a 1
2
2
C. a 1 2
D. a 1
15.函数 g ( x) 的图象如图所示,则方程 g( g( x3 )) 0 的实数根个数为 (
)
A .3
B.6
C. 9
D. 12
二、填空题:本大题共 5 个小题.每小题 3 分,共 15 分,将答案填在答题纸上.
16.设集合 A {1 , 2} ,则满足 A B {1 , 2, 3} , A B {2} 的集合 B
2019-2020 学年湖南省长沙市长郡中学高一(上)期中数学试卷
一、选择题:本大题共 15 个小题,每小题 3 分, 共 45 分,在每个小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知 A { x | 1 x 2} , B { x | x2 2x 0} ,则 A B (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档