数字电路练习题1
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Class 2 √ 0 (0,1) √ (0,2) √ (0,4) √ (0,8) I 1 (1,3) √ (1,5) √ (1,9) √ (2,3) √ (2,10) √ (4,5) √ (4,12) √ (8,10) √ (8,12) √ 2 (3,7) √ (3,11) (5,7) (5,13) (9,11) (9,13) (10,11) (10,14) (12,14) 3 (7,15) (11,15) (13,15) (14,15)
cu
3 3 1 1
1
14
1 1 1 1
Z2
Z2Z3
Z2 = bd + ab' + a'c'd + acd' -> done!!!
Z1 = bd + c'd' + a'cd Z2 = bd + ab' + a'c'd + acd' Z3 = bd + b'cd' + a'bc' + + a'c'd + {acd’'} Verification with K-maps: Z1 = bd + c'd' + a'cd cd 00 01 ab 00 01 11 10 1 1 0 1 11 1 1 10 0 0 0 0 cd ab 00 01 11 10 00 0 0 0 1 Z2 = bd + ab' + a'c'd + acd' 01 11 10 cd ab 1 1 1 1 0 1 1 1 0 0 1 1 00 01 11 10 Z3 = bd + b'cd' + a'bc' + + a'c'd + acd' 00 01 11 10 0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1
•
Z2
1 1 1* Z2Z3
{SEPI} : Z2 = bd + {ab'} +
Z3 = bd + b'cd' + a'bc' + + a'c'd + {acd'} -> done!!!
2) No dominating columns 3) Dominated rows
c'd ac a'c'd acd' (1,5,9,13) (10,11,14,15) (1,5) (10,14) --01 0-0 1-1- 0-0 0-01 0-1-10 0-D G K L
1) Find
c'd' bc' a'cd, c'd ab' ad ac b'cd' ab'c'd' a'bc' a'c'd acd' abc bd (0,4,8,12) (4,5,12,13) (3,7) (1,5,9,13) (8,9,10,11) (9,11,13,15) (10,11,14,15) (2,10) 8 (4,5) (1,5) (10,14) (14,15) (5,7,13,15)
1 1 1 1 1 1 Z2 1 1 1 1 1* 1* 1* 1 1 1 1 1 1 1 1 1 1 1* 1* Z3 = bd + b'cd' + a'bc' + a'c'd
Page 2 of 9
1
Z3 Z1Z2 Z1Z3 1 1 Z2Z3 1 1
Z1Z3Z3
2) No dominating columns
4 5
2. f(a,b,c,d) = a’c’d’+a’b’c+abd’+abd+ ab’d’ + d(a’bcd + ab’c’d) PI: ab , c’d’ , b’d’ , ad’, a’b’c, a’cd, ab’c’, ac’ , bcd EPI: c’d’ RPI: ac’ f1(a,b,c,d) = ab + c’d’ + b’d’ + a’cd c
3) Eliminate dominated rows
c'd ab' ad ac ab'c'd' a'c'd acd' abc (1,5,9,13) (8,9,10,11) (9,11,13,15) (10,11,14,15) 8 (1,5) (10,14) (14,15) --01 0-0 10-- 0-0 1--1 0-0 1-1- 0-0 1000 --0 0-01 0-1-10 0-111- 0-D E F G I K L M Z2 Z3
0 1 3 2
00
0
01
1
11
3
10
2
1*
7
1*
6
1
4 5
1
7
1
6
01 11
1*
12
1
13 15
d
14
1*
12 13
x
15 14
b 1
10
1
8 9
1*
11 10
1
a
8
1
9
1
11
10
d
d
d
d
1
x d
1
f2(a,b,c,d) = ab + c’d’ + b’d’ + a’b’c c
0 1 3 2
f3(a,b,c,d) = ab + c’d’ + ad’ + a’b’c c
cu
1 8 9 10 11 14 14
3 1 1 3 1 1 1 1 Z2 3 1 1 3 1 1 1 5 1 Z1Z2 1 1 4 1 1 1 Z2Z3 4 1 1
Iteration #2
1) Find SEPI
D E G K L
cu
3 3 3 1 4
1 8
9
10 11 14 14
• • • •
(1,5,9,13) --01 0-0 c'd ab' (8,9,10,11) 10-- 0-0 ac (10,11,14,15) 1-1- 0-0 (1,5) 0-01 0-a'c'd (10,14) 1-10 0-acd' 1 1 1* 1 1 1 1 1 1 1
b)
Using reduction methods of the prime implicant table find all sets of minimum sum of products expressions that covers the given set of functions. Iteration #1
1 1 1 1 0 0 Z1 = bd + c'd' + a'cd
Page 3 of 9
Question 3: a) Find the prime implicants of the following function by applying the Quine-McCluskey method: G(v,w,x,y,z) = Σm(0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 21, 23, 26, 28, 29, 30, 31)
Class 3 0 (0,4,8,12) (0,1,4,5) (0,2,8,10) (0,1,8,9) 1 (1,5,9,13) (4,5,12,13) (8,9,10,11) (8,9,12,13) (1,3,5,7) 2 (3,7,11,15) (5,7,13,15) (9,11,13,15) (10,11,14,15)
Digital Logic Design: Principles and Practices ELG5195 (EACJ5705 ), Carleton CRN: 18371
Assignment #1
Question 1: Use Karnaugh maps to find the prime implicants (PI), essential prime implicants (EPI) and redundant prime implicants (RPI) of the following functions. Provide the Boolean expressions of the minimized functions. 1. g(a,b,c,d) = ∑m(2,3,4,5,13,15) + ∑d(6,8,9,10,11) PI: ad , a’bc’ , bc’d, b’c EPI: ad , a’bc’ , b’c RPI: bc’d f(a,b,c,d) = ad + a’bc’ + b’c cd ab 00
0 4 1 3 2
0
4 5
1
7
1
6 5
1
7
1*
6
0
12 13
x
15
0
14
b
12 13
x
15 14
b 1
10
1
a
8 9
1
11
1
10
1
a
8 9
1
11
x
0 d
1
x d
1
Question 2: a) Find the prime implicants of the following multiple-output function by applying the modified QuineMcCluskey method: Z1 (a,b,c,d) = Σ(0, 3, 4, 5, 7, 8, 12, 13, 15) ; Z2 (a,b,c,d) = Σ(1, 5, 7, 8, 9, 10, 11, 13, 14, 15) ; Z3 (a,b,c,d) = Σ(1, 2, 4, 5, 7, 10, 13, 14, 15)
• • • • • • • • •
• •
•
• • • • • •
• •
•
Z1
3 1* 1 1 1 3 1 1 1 1 4 1* 1 3 1 1 1 3 1 1 3 1 3 4 5 1 1 4 1 1 4 1 1 4 4 3 1 1 1 1* 1 1* Z1 = bd + c'd' + a'cd - done! Z2 = bd + …..
EPI
--00 -00 -10- -00 0-11 -00 --01 0-0 10-- 0-0 1--1 0-0 1-1- 0-0 -010 001000 --0 010- -00-01 0-1-10 0-111- 0--1-1 --EPI: A B C D E F G H I J K L M N
0 3 4 5 7 8 12 13 15 1 5 7 8 9 10 11 13 14 15 1 2 4 5 7 10 13 14 15
Class 0 Class 1 Min Group Dec vwxyz Group vwxyz term 0 (0,2) 000-0 √ 0 0 00000 √ (0,4) 00-00 √ (0,8) 0-000 √ 1 2 00010 √ 4 00100 √ 1 (2,6) 00-10 √ 8 01000 √ (2,10) 0-010 √ (4,5) 0010- √ 2 5 00101 √ (4,6) 001-0 √ 6 00110 √ (8,9) 0100- √ 9 01001 √ (8,10) 010-0 √ 10 01010 √ 2 (5,7) 001-1 √ 3 7 00111 √ (5,13) 0-101 √ 11 01011 √ (5,21) -0101 √ 13 01101 √ (6,7) 0011- √ 21 10101 √ (9,11) 010-1 √ 26 11010 √ (9,13) 01-01 √ 28 11100 √ (10,11) 0101- √ 4 15 01111 √ (10,26) -1010 A 23 10111 √ 3 (7,15) 0-111 √ 29 11101 √ (7,23) -0111 √ 30 11110 √ (11,15) 01-11 √ 5 31 11111 √ (13,15) 011-1 √ (13,29) -1101 √ (21,23) 101-1 √ (21,29) 1-101 √ (26,30) 11-10 B (28,29) 1110- √ (28,30) 111-0 √ 4 (15,31) -1111 √ (23,31) 1-111 √ (29,31) 111-1 √ (30,31) 1111- √ Group 0 Class 2 Dec (0,2,4,6) (0,2,8,10) (0,4,2,6) (0,8,2,10) (4,5,6,7) (4,6,5,7) (8,9,10,11) (8,10,9,11) (5,7,13,15) (5,7,21,23) (5,13,7,23) (5,13,21,29) (5,21,7,23) (5,21,13,29) (9,11,13,15) (9,13,11,15) (7,15,23,31) (7,23,15,31) (13,15,29,31) (13,29,15,31) (21,23,29,31) (21,29,23,31) (28,29,30,31) (28,30,29,31) vwxyz 00--0 0-0-0 00--0 0-0-0 001-001-010-010-0-1-1 -01-1 0-1-1 --101 -01-1 --101 01--1 01--1 --111 --111 -11-1 -11-1 1-1-1 1-1-1 111-111--
a b c d Z1Z2Z3 --00 -00 A 0-0-0-0 -00--01 -1010-1-00--1 --11 -1-1 1--1 1-1000 000 000 0-0 -00 0-0 000 000 000 --0-0 0-0
D B Eห้องสมุดไป่ตู้
N F G
Class 4 (0,1,4,5,8,9,12,13) --0- 000
Class 1
0 1
2
3
4
0 1 2 4 8 3 5 9 10 12 7 11 13 14 15
a b c d Z1Z2Z3 0000 -00 0001 0-0010 000100 -01000 --0 0011 -00 0101 --1001 0-0 1010 0-1100 -00 0111 --1011 0-0 1101 --1110 0-1111 ---
a b c d Z1Z2Z3 000- 000 00-0 000 0-00 -00 √ -000 -00 √ 00-1 000 0-01 0-- K -001 0-0 √ 001- 000 -010 00- H 010- -0- J -100 -00 √ 10-0 0-0 √ 1-00 -00 √ 0-11 -00 C -011 000 01-1 --- √ -101 --- √ 10-1 0-0 √ 1-01 0-0 √ 101- 0-0 √ 1-10 0-- L 11-0 000 -111 √ 1-11 0-0 √ 11-1 --- √ 111- 0-- M