高一数学期中考试试题及答案

合集下载

高一数学期中试题及答案

高一数学期中试题及答案

高一数学期中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()。

A. m>4B. m<4C. m≥4D. m≤42. 已知函数f(x)=3x-2,g(x)=2x+1,若f[g(x)]=7x-1,则x的值为()。

A. 1B. 2C. 3D. 43. 已知集合A={x|x^2-5x+6=0},B={x|x^2-2x-3=0},则A∩B=()。

A. {1}B. {2}C. {1,2}D. {3}4. 若函数f(x)=x^3-3x+1,则f'(x)=()。

A. 3x^2-3B. x^2-3xC. 3x^2-9x+3D. x^3-35. 已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S5=()。

A. 25B. 26C. 27D. 286. 若函数f(x)=x^2-6x+8,g(x)=2x+3,则f[g(x)]的表达式为()。

A. 4x^2-9x+14B. 4x^2-12x+17C. 4x^2-15x+19D. 4x^2-18x+227. 已知函数f(x)=x^2-4x+3,若f(x)>0,则x的取值范围是()。

A. x<1或x>3B. x<3或x>1C. x<1或x>3D. x<-1或x>38. 已知等比数列{bn}的前n项和为Tn,若b1=2,q=2,则T4=()。

A. 30B. 32C. 34D. 369. 若函数f(x)=x^3-3x+1,则f(-x)=()。

A. -x^3+3x-1B. -x^3+3x+1C. -x^3-3x-1D. -x^3-3x+110. 已知函数f(x)=x^2-6x+8,若f(x)=0,则x的值为()。

A. 2B. 4C. 2或4D. 无解二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,若f(x)=0,则x的值为_________。

福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试 数学含答案

福建省厦门2024-2025学年高一上学期11月期中考试数学试题(答案在最后)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞2.命题“20,310x x x ∃>-->”的否定是()A.20,310x x x ∃>--≤B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A.B.C.D.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+B.+C.的最大值为14D.44m n +的最小值为410.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.13.411log 2324lg lg245(64)49---+-=__________.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923xxf x =-⋅,()22223xf x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xxm f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.福建省厦门2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1},{2}M xx N x x =≥=<∣∣,则R ()M N ⋂=ð()A.[1,2)B.(,1)[2,)-∞+∞ C.[0,1]D.(,0)[2,)-∞⋃+∞【答案】B 【解析】【分析】根据集合运算的定义计算.【详解】由已知{|12}M N x x =≤< 所以R (){|1M N x x ⋂=<ð或2}x ≥,故选:B .2.命题“20,310x x x ∃>-->”的否定是()A .20,310x x x ∃>--≤ B.20,310x x x ∃≤--≤C.20,310x x x ∀>--≤ D.20,310x x x ∀≤--≤【答案】C 【解析】【分析】根据存在量词命题的否定形式,即可求解.【详解】命题“20,310x x x ∃>-->”的否定是“20,310x x x ∀>--≤”.故选:C3.函数()22()log 2f x x x =--的单调递减区间是()A.1,2⎛⎫-∞ ⎪⎝⎭B.(,1)∞-- C.1,2⎛⎫+∞⎪⎝⎭D.(2,)+∞【答案】B 【解析】【分析】由对数函数性质计算出定义域后,结合复合函数单调性的判定方法计算即可得.【详解】由题意可得()()22210x x x x --=-+>,解得2x >或1x <-,由2219224y x x x ⎛⎫=--=-- ⎪⎝⎭,则其在(),1∞--上单调递减,在()2,∞+上单调递增,又2log y x =为单调递增函数,故()22()log 2f x x x =--的单调递减区间(),1∞--.故选:B.4.已知函数()()()f x x a x b =--(其中a ,b 为常数,且b a <),若()f x 的图象如图所示,则函数()x g x a b =+的图象是()A. B. C. D.【答案】A 【解析】【分析】由图可得101b a <-<<<,计算出()0g 并结合指数函数性质即可得解.【详解】由图可得101b a <-<<<,则有()0010g a b b =+=+<,且该函数为单调递减函数,故B 、C 、D 错误,A 正确.故选:A.5.已知132a -=,21log 3b =,121log 3c =,则().A.a b c >> B.a c b>> C.c a b>> D.c b a>>【答案】C 【解析】【详解】试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C .考点:比较大小6.“函数()2()lg 1f x ax ax =-+的定义域为R ”是“04a <<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【详解】若函数()2()lg 1f x ax ax =-+的定义域为,则当0a =,()lg10f x ==,符合要求;当0a ≠时,有2Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上所述,04a ≤<,故“函数()2()lg 1f x ax ax =-+的定义域为”是“04a <<”的必要不充分条件.故选:B .7.若函数)3()ln1f x mx n x =++(m ,n 为常数)在区间[]1,3上有最大值7,则()f x 在区间[3,1]--上()A.有最大值6B.有最大值5C.有最小值5- D.有最小值7-【答案】C【解析】【分析】构造新函数()()1g x f x =-为奇函数,利用奇函数求解.【详解】设3()()1)g x f x mx n x =-=+,则333()))()g x mx n x mx n mx n x g x -=-+-=-+=--+=-,所以()g x 是奇函数,()f x 在[1,3]上有最大值7,则()g x 在[1,3]上有最大值6,所以()g x 在[3,1]--上有最小值6-,于是()f x 在区间[3,1]--上有最小值5-,故选:C .8.已知函数()f x 对于任意x 、R y ∈,总有()()()2f x f y f x y +=++,且当0x >时,()2f x >,若已知()23f =,则不等式()()226f x f x +->的解集为()A.()2,∞+ B.()1,+∞ C.()3,+∞ D.4,+∞【答案】A 【解析】【分析】设()()2g x f x =-,分析出函数()g x 为R 上的增函数,将所求不等式变形为()()324g x g ->,可得出324x ->,即可求得原不等式的解集.【详解】令()()2g x f x =-,则()()2f x g x =+,对任意的x 、R y ∈,总有()()()2f x f y f x y +=++,则()()()g x g y g x y +=+,令0y =,可得()()()0g x g g x +=,可得()00g =,令y x =-时,则由()()()00g x g x g +-==,即()()g x g x -=-,当0x >时,()2f x >,即()0g x >,任取1x 、2x R ∈且12x x >,则()()()12120g x g x g x x +-=->,即()()120g x g x ->,即()()12g x g x >,所以,函数()g x 在R 上为增函数,且有()()2221g f =-=,由()()226f x f x +->,可得()()2246g x g x +-+>,即()()()2222g x g x g +->,所以,()()()32224g x g g ->=,所以,324x ->,解得2x >.因此,不等式()()226f x f x +->的解集为()2,∞+.故选:A.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设正数m ,n 满足1m n +=,则()A.12m n+的最小值为3+ B.+C.的最大值为14D.44m n +的最小值为4【答案】ABD 【解析】【分析】借助基本不等式中“1”的活用可得A ;由1m n +=+出后利用基本不等式计算可得B ;直接运用基本不等式可得C ;结合基本不等式与同底数幂的乘法运算可得D.【详解】由m ,n 为正数,且满足1m n +=,则有:对A :()121221233n m m n m n m n m n ⎛⎫+=++=+++≥++ ⎪⎝⎭,当且仅当2n mm n=,即2n ==-时,等号成立,故A 正确;对B :21m n +=-,则22122⎛++-= ⎝⎭,当且仅当12m n ==时,等号成立,即22≤+≤,故B 正确;对C :1m n +=≥,当且仅当12m n ==时,等号成立,12≤,故C 错误;对D :444m n ≥==+,当且仅当12m n ==时,等号成立,故D 正确.故选:ABD.10.声强级Li (单位:dB )与声强I (单位:2/m ω)之间的关系是:010lgILi I =⨯,其中0I 指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为21/m ω,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为[]70,80(单位:dB ).下列选项中正确的是()A.闻阈的声强为1210-2/m ωB.声强级增加10dB ,则声强变为原来的2倍C.此歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2/m ω)D.如果声强变为原来的10倍,对应声强级增加10dB 【答案】ACD 【解析】【分析】依题意求出0I ,即可判断A ;将70Li =、80Li =代入求声强范围判断C ;设声强变为原来的k 倍,对应声强级增加10dB ,依题意得到方程,解得k ,即可判断B 、D.【详解】解:由题意0110lg120I =,即01lg 12I =,所以120110I =,所以12010I -=2ω/m ,故1210lg(10)12010lg Li I I ==+,故A 正确;若70Li =dB ,即10lg 50I =-,则510I -=2ω/m ;若80Li =dB ,即10lg 40I =-,则410I -=2ω/m ,故歌唱家唱歌时的声强范围5410,10--⎡⎤⎣⎦(单位:2ω/m ),C 正确;设声强变为原来的k 倍,对应声强级增加10dB ,则()()12010lg 12010lg 10kI I +-+=,解得10k =,即如果声强变为原来的10倍,对应声强级增加10dB ,故D 正确,B 错误;故选:ACD11.已知函数()21,2,5,2,xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则下列说法正确的是()A.1c ≥ B.0a c +<C.25a d < D.222ab d ++的取值范围为()18,34【答案】CD 【解析】【分析】作出函数图像判断A ,举反例判断B ,转化为一元函数,利用二次函数的性质判断C ,指数函数的性质判断D 即可.【详解】结合函数()f x 的图象可知,()0,01,4,5a b d <<<∈,由c b >,得不出1c ≥,故A 错误,令1,2a c =-=,此时()()132f a f c =<=,但是0a c +>,故B 错误.因为215a d -=-,所以125a d -=-,所以24a d =-,则()24a d d d =-,又()4,5d ∈,所以()2244()a d d d d d f d =-=-=,由二次函数性质得()f d 在()4,5上单调递增,故()(5)5f d f <=,所以C 正确.因为2121a b-=-,所以222a b +=,故22222a b d d =+++,令2()2d g d +=,由指数函数性质得()g d 在()4,5上单调递增,所以222a b d ++的取值范围为(18,34),故D 正确.故选:CD【点睛】关键点点睛:本题考查求多变元表达式的范围,解题关键是合理利用函数图像找到变量关系,构造一元函数,然后利用指数函数的性质得到所要求的取值范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数()y f x =的图象过点(,则()16f =______.【答案】4【解析】【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求(16)f 的值【详解】解:由题意令()a y f x x ==,由于图象过点,2a =,12a =12()y f x x∴==12(16)164f ∴==故答案为:4.【点睛】本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值,属于基础题.13.411log 2324lg lg245(64)49---+-=__________.【答案】3-【解析】【分析】根据条件,利用指对数的运算法则,即可求出结果.【详解】因为4411log 1log 232214lg lg245(64)44lg 2lg 49(lg 5lg 49)44(lg 2lg 5)43492---+-=⨯-+-+-=⨯-+-=-,故答案为:3-.14.已知()f x 是定义在上的偶函数,且对x ∀∈R ,都有(2)(2)f x f x -=+,且当[]2,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则实数a 的取值范围是______.2a ≤<【解析】【分析】先根据题意分析函数()f x 的对称性及周期性;再利用函数的对称性和周期性作出函数()f x 在[]2,6-上的图象;最后数形结合列出不等式组求解即可.【详解】由(2)(2)f x f x -=+,可得:()()4f x f x -=+,又因为()f x 是定义在R 上的偶函数,则−=,且函数()f x 图象关于y 轴对称,所以()()4f x f x +=,即()f x 的周期为4,作出函数1()12xf x ⎛⎫=- ⎪⎝⎭在[]2,0x ∈-上的图象,根据()f x 对称性及周期为4,可得出()f x 在[]2,6-上的图象:令()()()log 21a g x x a =+>,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>至少有2个不同的实数根,至多有3个不同的实数根,则函数()f x 与函数()log (2)(1)a g x x a =+>在(2,6]-上至少有2个不同的交点,至多有3个不同的交点,所以()()()()2266g f g f ⎧≤⎪⎨>⎪⎩,即()()log 223log 623a a ⎧+≤⎪⎨+>⎪⎩2a ≤<.2a ≤<.【点睛】关键点点睛:本题考查函数性质的综合应用,函数与方程的综合应用及数形结合思想.解题关键在于根据题意分析出分析函数()f x 的对称性及周期性,并作出()f x 和()g x 图象;将方程根的问题转化为函数图象交点问题,数形结合解答即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在①A B A = ,②A B A = ,③A B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--≤(1)当2a =时,求A B ;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.【答案】(1){}27A B x x ⋃=-≤<(2)答案见解析【解析】【分析】(1)代入a 的值表示出A ,求解出一元二次不等式的解集表示出B ,根据并集运算求解出结果;(2)若选①:根据条件得到A B ⊆,然后分类讨论A 是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到B A ⊆,然后列出不等式组求解出结果;若选③:根据交集结果分析,A B 集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当2a =时,{}17A x x =<<,{}{}228024B x x x x x =--≤=-≤≤,因此,{}27A B x x ⋃=-≤<.【小问2详解】选①,因为A B A = ,可得A B ⊆.当123a a -≥+时,即当4a ≤-时,A B =∅⊆,合乎题意;当123a a -<+时,即当4a >-时,A ≠∅,由A B ⊆可得12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤,此时112a -≤≤.综上所述,实数a 的取值范围是{4a a ≤-或112a ⎫-≤≤⎬⎭;选②,因为A B A = ,可得B A ⊆.可得12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩,此时不等式组无解,所以实数a 的取值范围是∅;选③,当123a a -≥+时,即当4a ≤-时,A =∅,A B =∅ ,满足题意;当123a a -<+时,即当4a >-时,A ≠∅,因为A B =∅ ,则232a +≤-或14a -≥,解得52a ≤-或5a ≥,此时542a -<≤-或5a ≥,综上所述,实数a 的取值范围是52a a ⎧≤-⎨⎩或}5a ≥.16.已知函数()()log 1a f x x a =>,关于x 的不等式()1f x <的解集为(),m n ,且103m n +=.(1)求a 的值;(2)是否存在实数λ,使函数()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦的最小值为34?若存在,求出λ的值;若不存在,说明理由.【答案】(1)3a =(2)138λ=-或32【解析】【分析】(1)先根据()1f x <,求出不等式的解,结合103n m +=可得a 的值;(2)利用换元法,把函数()g x 转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由log 1a x <可得1log 1a x -<<,又1a >,所以1x a a <<,又因为()1f x <的解集为(),m n ,所以1,n a m a ==,因为103n m +=,所以1103a a +=,即()()231033130a a a a -+=--=,解得3a =或13a =,因为1a >,所以3a =;【小问2详解】由(1)可得()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦,令31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦,则[]1,2t ∈-,设()[]223,1,2h t t t t λ=-+∈-,①当1λ≤-时,()h t 在[]1,2-上单调递增,则()()min 31424h t h λ=-=+=,解得138λ=-,符合要求;②当12λ-<<时,()h t 在[]1,λ-上单调递减,在[],2λ上单调递增,()()22min 3234h t h λλλ==-+=,解得32λ=±,又12λ-<<,故32λ=;③当2λ≥时,()h t 在[]1,2-上单调递减,()()min 324434h t h λ==-+=,解得25216λ=<,不合题意;综上所述,存在实数138λ=-或32符合题意.17.已知()()()1m g x f x g x -=+的定义在上的奇函数,其中()g x 为指数函数,且()g x 的图象过点()2,9.(1)求实数m 的值,并求()f x 的解析式;(2)判断()f x 的单调性,并用单调性的定义加以证明.(3)若对于任意的[]1,2t ∈,不等式()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)1m =,()1313xxf x -=+(2)()f x 在R 上单调递减,证明见解析(3)178m ≥【解析】【分析】(1)利用待定系数法可求出()g x 的表达式,结合奇函数性质计算即可得解;(2)设12x x <,从而计算()()12f x f x -的正负即可得证;(3)由奇函数性质结合函数单调性可得212134mt t t -≥+对[]1,2t ∈恒成立,构造二次函()()21284h t t m t =+-+,结合二次函数性质可得()()1020h h ⎧≤⎪⎨≤⎪⎩,解出即可得.【小问1详解】设()()0,1x g x a a a =>≠,由()g x 的图象过点()2,9,可得29a =,∴3a =(负值舍去),即()3x g x =,故函数()()()3113xxm g x m f x g x --==++,由()f x 为奇函数,可得()()()01001011m g m f g --===++,∴1m =,即()1313xx f x -=+,满足()()13311313x x x x f x f x -----===-++,即()f x 为奇函数,故1m =;【小问2详解】()f x 在R 上单调递减,证明如下:()()2131321131313x x x x x f x -+-===-+++,设12x x <,则12033x x <<,则()()()()()211212122332213131313x x x x x x f x f x --=-=++++,结合12033x x <<,可得()212330x x ->,∴()()120f x f x ->,即()()12f x f x >,故()f x 在R 上单调递减;【小问3详解】由()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭且()f x 为奇函数,所以()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭,又()f x 在R 上单调递减,所以212134mt t t -≥+对[]1,2t ∈恒成立,所以()212840t m t +-+≤对[]1,2t ∈恒成立,令()()21284h t t m t =+-+,所以有()()1020h h ⎧≤⎪⎨≤⎪⎩,即1128404241640m m +-+≤⎧⎨+-+≤⎩,解得178m ≥.18.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).2.236≈)【答案】(1)车流密度x 的取值范围是(]0,90(2)隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.【解析】【分析】(1)根据题意得2400k =,再根据分段函数解不等式即可得答案;(2)由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,再根据基本不等式求解最值即可得答案.【小问1详解】解:由题意知当120x =(辆/千米)时,0v =(千米/小时),代入80150k v x=--,解得2400k =,所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩.当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤.所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.【小问2详解】解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩,当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时,()()2150180150450024004500808080180150150150150x x x y x x x xx --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈.当且仅当4500150150x x-=-,即30(583x =-≈时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19.若函数()f x 与区间D 同时满足:①区间D 为()f x 的定义域的子集,②对任意x D ∈,存在常数0M ≥,使得()f x M ≤成立,则称()f x 是区间D 上的有界函数,其中M 称为()f x 的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数()1923x x f x =-⋅,()22223x f x x x =-+是否为R 上的有界函数?并说明理由.(2)已知函数()121log 1x g x x +=-是区间[]2,3上的有界函数,设()g x 在区间[]2,3上的上界为M ,求M 的取值范围;(3)若函数()2313xx m f x m +⋅=+⋅,问:()f x 在区间[]0,1上是否存在上界M ?若存在,求出M 的取值范围;若不存在,请说明理由.【答案】(1)()1f x 不是R 上的有界函数,()2f x 是R 上的有界函数(2)[)2log 3,+∞(3)答案见解析【解析】【分析】(1)根据有界函数的定义,分别计算出()1f x 及()2f x 的值域即可判断;(2)先求解函数()g x 的值域,进而求解()g x 的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数()f x 及()f x ,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】()()21923311x x x f x =-⋅=-- ,()1f x ∴的值域为[)1,-+∞()1f x ∴不是R 上的有界函数;()22223x f x x x =-+,则()200f =,当0x ≠时,()22223232x f x x x x x ==-++-,当0x >时,3x x +≥=x =则()2102f x <≤,当0x <时,33x x x x ⎛⎫+=--+≤-- ⎪-⎝⎭,当且仅当x =则()2102f x ->≥,综上可得,()211,22f x ⎡⎤+∈⎢⎥⎣⎦,即有()212f x +≤在R 上恒成立,()2f x ∴是R 上的有界函数;【小问2详解】()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭,易知()g x 在区间[]2,3上单调递增,∴()[][]2log 3,1,2,3g x x ∈--∈,∴()[]1221log 1,log 31x g x x +=∈-,所以上界M 构成的集合为[)2log 3,+∞;【小问3详解】()23113311x x x m f x m m +⋅==++⋅+⋅,当0m =时,()2f x =,()2f x =,此时M 的取值范围是[)2,+∞,当0m >时,()1311x f x m =++⋅在[]0,1上是单调递减函数,其值域为()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,故()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦,此时M 的取值范围是2,1m m +⎡⎫+∞⎪⎢+⎣⎭,当0m <时,[]1331,1xm m m +⋅∈++,若()f x 在[]0,1上是有界函数,则区间[]0,1为()f x 定义域的子集,所以[]31,1m m ++不包含0,所以310m +>或10+<m ,解得:1m <-或103m -<<,0m <时,()1311x f x m =++⋅在[]0,1上是单调递增函数,此时()f x 的值域为232,131m m m m ++⎡⎤⎢⎥++⎣⎦,①232311m m m m ++≥++,即33m --≤或103m -<<时,()32323131m m f x m m ++≤=++,此时M 的取值范围是32,31m m +⎡⎫+∞⎪⎢+⎣⎭,②232311m m m m ++<++,即313m --<<-时,()2211m m f x m m ++≤=-++,此时M 的取值范围是2,1m m +⎡⎫-+∞⎪⎢+⎣⎭,综上:当0m ≥时,存在上界M ,2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当13m ≤--或103m -<<时,存在上界M ,32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭;当113m --<<-时,存在上界M ,2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭,当113m -≤≤-时,此时不存在上界M .【点睛】关键点点睛,本题关键点在于求出所给函数在对应定义域范围内的值域,从而可结合定义,得到该函数是否为有界函数.。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

武威一中2023年秋季学期期中考试高一年级 数学试卷第Ⅰ卷(选择题)一、单选题(共8小题,每小题5分)1.已知A 是由0,,三个元素组成的集合,且,则实数为( )A.2B.3C.0或3D.0,2,3均可2.已知全集,集合,,那么( )A. B. C. D.3.若集,合,则( )A. B. C. D.4.设,则( )A.B.C.1D.-25.若命题“,使得成立”是假命题,则实数的取值范围是( )A. B. C. D.6.已知函数是一次函数,且,则( )A.11B.9C.7D.57.已知函数是定义在上的偶函数,又,则,,的大小关系为( )A. B.C. D.8.若定义在R 的奇函数,若时,则满足的的取值范围是( )A. B.C. D.m 232m m -+2A ∈m U =R {}24A x x =-≤≤∣501x B x x ⎧⎫-=<⎨⎬+⎩⎭A B = ()1,4-(]1,4-()2,5-[)2,5-{}24x A x =<∣{N 13}B x x =∈-<<∣A B = {12}xx -<<∣{}0,1{}1{13}xx -<<∣()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15120R x ∃∈201k x >+k 1k >01k <<1k ≤0k ≤()f x ()23f f x x ⎡⎤-=⎣⎦()5f =()22f x ax a =+[],2a a +()()2g x f x =+()2g -()3g -()2g ()()()232g g g ->->()()()322g g g ->>-()()()223g g g ->>-()()()232g g g >->-()f x 0x <()2f x x =--()0xf x ≥x ()[],20,2-∞- ()(),22,-∞-+∞ ][(,20,2⎤-∞-⎦[]2,2-二、多选题(共4小题,每小题选对得5分,错选或多选得0分,少选或漏选得2分)9.下列结论中,不正确的是( )A. B. C. D.10.下列命题中,真命题的是( )A.,都有 B.任意非零实数,都有C.,使得D.函数211.下列命题正确的是( )A.命题“,,”的否定是“,,”B.与是同一个函数C.函数的值域为D.若函数的定义域为,则函数的定义域为12.函数的定义域为R ,已知是奇函数,,当时,,则下列各选项正确的是( )A. B.在单调递C. D.第Ⅱ卷(非选择题)三、填空题13.已知,集合,则图中阴影部分所表示的集合是________.14.函数的单调递减区间为________.15.已知集合,,若“”是“”的必要非充分条件,则实数的取值范围是________.0.20.20.20.3>113323--<0.10.20.81.25->0.33.11.70.9>x ∀∈R 21x x x -≥-,a b 2b a a b+≥()1,x ∃∈+∞461x x +=-y =x ∀y ∈R 220x y +≥x ∃y ∈R 220x y +<()1f x x =-()211x g x x -=+y x =[)0,+∞()1f x +[]1,4()f x []2,5()f x ()1f x +()()22f x f x +=-[]1,2x ∈()22f x ax =+()()4f x f x +=()f x []0,1()10f =13533f ⎛⎫=⎪⎝⎭U R ={11}A x x =->{B xy ==∣y =204x A xx ⎧⎫+=<⎨⎬-⎩⎭{}22210B x x ax a =-+-<∣x A ∈x B ∈a16已,,,知为四个互不相等的实数.若,,,中最大,则实数的取值范围为________.四、解答题17.(本小题10分)计算下列各式(式中字母都是正数):(1);(2);(3.18.(本小题12分)已知函数.(1)证明:函数在上是减函数;并求出函数在的值域;(2)记函数,判断函数的的奇偶性,并加以证明.19.(本小题12分)设关于的函数,其中,都是实数。

2024-2025学年四川省成都市高一上学期期中考试数学检测试题(含解析)

2024-2025学年四川省成都市高一上学期期中考试数学检测试题(含解析)

一、2024-2025学年四川省成都市高一上学期期中考试数学检测试题单选题1. 已知集合A ={1 ,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1 ,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B =I ,即A ∩B 的元素个数为3个.故选:B2. 函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是( )A. [2,)-+¥B. [2,+∞)C. (,2)-¥D. (,2]-¥【答案】A【解析】【分析】直接由抛物线对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m=-函数221y x mx =++在[2,+∞)单调递增,则2m -£,解得2m ³-.故选:A.3. 若函数的定义域为{}22M x x =-££,值域为{}02N y y =££,则函数的图像可能是()A. B.的C. D.【答案】B【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A,该函数的定义域为{}20x x-££,故A错误;对B,该函数的定义域为{}22M x x=-££,值域为{}02N y y=££,故B正确;对C,当()2,2xÎ-时,每一个x值都有两个y值与之对应,故该图像不是函数的图像,故C错误;对D,该函数的值域不是为{}02N y y=££,故D错误.故选:B.4. 已知函数()af x x=,则“1a>”是“()f x在()0,¥+上单调递增”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a>时,函数()af x x=在()0,¥+上单调递增,则1a>时,一定有()f x在()0,¥+上单调递增;()f x在()0,¥+上单调递增,不一定满足1a>,故“1a>”是“()f x在()0,¥+上单调递增”的充分不必要条件.故选:A.5. 已知0,0x y>>,且121yx+=,则12xy+的最小值为()A. 2B. 4C. 6D. 8【答案】D【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故11112224448x y x xy y x y xy æöæö+=++=++³+=ç÷ç÷èøèø,当且仅当14,121,xy xy y xì=ïïíï+=ïî即2,14x y =ìïí=ïî时,等号成立,故12x y +的最小值为8.故选:D6. 已知定义域为R 的函数()f x 不是偶函数,则( )A. ()(),0x f x f x "Î-+¹R B. ()(),0x f x f x "Î--¹R C. ()()000,0x f x f x $Î-+¹R D. ()()000,0x f x f x $Î--¹R 【答案】D【解析】【分析】根据偶函数的概念得()(),0x f x f x "Î--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为R 的函数()f x 是偶函数()(),0x f x f x Û"Î--=R ,所以()f x 不是偶函数()()000,0x f x f x Û$Î--¹R .故选:D .7. 若函数()22f x ax bx c=++的部分图象如图所示,则()1f =( ) A. 23- B. 112- C. 16- D. 13-【答案】D【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8. 奇函数()f x 在(),0-¥上单调递增,若()10f -=,则不等式()0xf x <的解集是( ).A. ()()101,∪,-¥- B. ()()11,∪,-¥-+¥C. ()()1001,∪,- D. ()()101,∪,-+¥【答案】C【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0¥-上单调递增,()10f -=则()f x 在()0,¥+上单调递增,f (1)=0.得()()()01,01,f x x È¥>ÞÎ-+;()()()0,10,1f x x ¥È<ÞÎ--.则()()000x xf x f x <ì<Þí>î或()()()01,00,10x x f x È>ìÞÎ-í<î.故选:C二、多选题9. 下列关于集合的说法不正确的有( )A. {0}=ÆB. 任何集合都是它自身的真子集C. 若{1,}{2,}a b =(其中,a b ÎR ),则3a b +=D. 集合{}2y y x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10. 已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是( )A. 该二次函数的图象一定过定点()1,5--;B. 若该函数图象开口向下,则m 的取值范围为:625m <<;C. 当2m >,且12x ££时,y 的最大值为45m -;D. 当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<ìí=--->î,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02m x m =-<-,故函数在12x ££时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD 11. 已知幂函数()()293m f x m x =-的图象过点1,n m æö-ç÷èø,则( )A. 23m =-B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>-的解集为(),1-¥【答案】AB【解析】【分析】利用幂函数的定义结合过点1,n m æö-ç÷èø,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n æö-ç÷èø,故23m ¹,当23m =-,幂函数()23f x x -=的图象过点3,2n æöç÷èø,则2332n -=,解得3232n -æö=±=ç÷èøA 正确,C 错误;()23f x x -=的定义域为{|0}x x ¹,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x -=在(0,)+¥上单调递减,由()()13f a f a +>-,可得()()13f a f a +>-,所以1310a a a ì+<-ïí+¹ïî,解得1a <且1a ¹-,故D 错误.故选:AB.三、填空题12. 满足关系{2}{2,4,6}A ÍÍ的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13. 已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y = 即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14. 已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-ÎR ,若[]10,1x "Î,[]20,1x $Î,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-¥【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x Î,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x Î,存在[]20,1x Î,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >Î,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2éö÷êëø递减,在,1,12æùçúèû递增,()2min 18,2g x g a æö==-ç÷èø()[]2224,0,1f x x ax a x =-+-Î,对称轴4a x =,①04a £即0a £时,()f x 在[0,1]递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a <<即04a <<时,()f x 在0,4a éö÷êëø递减,在,14a æùçúèû递增,22min min 7()4,()848a f x f a g x a æö==-=-ç÷èø,所以227488a a ->-,故04a <<;③14a ³即4a ³时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a £<,综上(),6a ¥Î-.故答案为:(),6¥-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15. 设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<£+(1)若1a =-,求集合()U P Q I ð;(2)若P Q =ÆI ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,æö-¥-+¥ç÷èøU 【解析】【分析】(1)先求出U Q ð,再求()U P Q Çð即可;(2)分Q =Æ和Q ¹Æ两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<£+=-<£;{|3U C Q x x =£-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x Ç=<<ð【小问2详解】解:由题意知,需分为Q =Æ和Q ¹Æ两种情形进行讨论:当Q =Æ时,即31a a ³+,解得12a ³,此时符合P Q =ÆI ,所以12a ³;当Q ¹Æ时,因为P Q =ÆI ,所以1231a a a +£-ìí<+î或3331a a a ³ìí<+î,解之得3a £-.综上所述, a 的取值范围为][1,3,.2¥¥æö--È+ç÷èø16 已知二次函数()()20f x ax bx c a =++¹满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t £-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ù++++-++=û,所以24ax a b x ++=,所以240a a b =ìí+=î,所以22a b =ìí=-î,即()222 1.f x x x =-+.【小问2详解】由()()2641f x t x t £-+-+,可得不等式()222440x t x t +++£,即()2220x t x t +++£,所以()()20x x t ++£,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -££-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -££-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -££-,当2t <时,不等式的解集为{|2}.x x t -££-17. 已知函数()221x f x x-=.(1)用单调性的定义证明函数()f x 在()0,¥+上为增函数;(2)是否存在实数l ,使得当()f x 的定义域为11,m n éùêúëû(0m >,0n >)时,函数()f x 的值域为[]2,2m n l l --.若存在.求出l 的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+¥.【解析】分析】(1)设()12,0,x x ¥Î+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x l -+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ¥Î+,且12x x <,【则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+æö--=---=-==ç÷èø,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上为增函数.【小问2详解】由(1)可知,()f x 在11,m n éùêúëû上单调递增,若存在l 使得()f x 的值域为[]2,2m n l l --,则22112112f m m m f n n n l l ìæö=-=-ç÷ïïèøíæöï=-=-ç÷ïèøî,即221010m m n n l l ì-+=í-+=î,因为0m >,0n >,所以210x x l -+=存在两个不相等的正根,所以21212Δ40100x x x x l l ì=->ï=>íï+=>î,解得2l >,所以存在()2,l ¥Î+使得()f x 的定义域为11,m n éùêúëû时,值域为[]2,2m n l l --.18. 习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ì+££ï=í<£ï+î其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?的【答案】(1)25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î; (2)当投入肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ££时,()f x 的最大值,由基本不等式求出当25x <£时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ì´+-££ì-+££ïï==íí-<£´-<£ïï+î+î.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ììæö-+££ï-+££ïç÷ïïèø==íí-<£éùïï-++<£+êúïï+ëûîî,当02x ££时,()f x 在30,10éùêúëû上单调递减,在3,210æùçúèû上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f \==;当25x <£时,16()51030(1)1f x x x éù=-++êú+ëû,16181x x ++³=+Q 当且仅当1611x x=++时,即3x =时等号成立. max ()510308270f x \=-´=.的因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19. 已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A Î,若i j a a ¹,都有i j a a B Î;②对于任意,m k b b B Î,若m k b b <,都有k mb A b Î.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ³可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B Í,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ³,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B Í.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k Î,而7411a a k>,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a Î,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a Î,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。

A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。

A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。

A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。

A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。

A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。

___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。

___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。

___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。

A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。

A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。

A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。

12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。

13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。

14. 函数y = log_2(x)的定义域是{x | x > ______ }。

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。

2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。

3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。

4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。

山东省2023-2024学年高一上学期期中考试 数学含解析

山东省2023-2024学年高一上学期期中考试 数学含解析

山东省2023~2024学年第一学期期中高一数学试题(答案在最后)2023.11说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1为第1页至第2页,第II 卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第Ⅰ卷(共60分)一、单选题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为()A.{0,2}B.{1,1,3,4}-C.{1,0,2,4}- D.{1,0,1,2,3,4}-2.命题“x ∀∈R 都有210x x ++>”的否定是()A.不存在2,10x R x x ∈++>B.存在2000,10x R x x ∈++≤C.存在2000,10x R x x ∈++>D.对任意的2,10x R x x ∈++≤3.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是()A. B.C. D.4.“12x >”是“12x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数()22132f x x +=+,则()3f 的值等于()A.11B.2C.5D.1-6.函数()f x =的单调递增区间是()A.(]-1∞, B.[)1+∞,C.[]1,3 D.[]1,1-7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()112f a f a -=+,则a 的值为()A.1B.12-C.-1D.28.已知函数y =的定义域与值域均为[]0,1,则实数a 的取值为()A.-4B.-2C.1D.1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若0a b c >>>则以下结论正确的是()A.c c a b> B.22ac bc >C.a b b c->- D.b c ba c a+>+10.设正实数a 、b 满足1a b +=,则()A.有最大值12B.1122a b a b +++有最小值3C.22a b +有最小值12D.有最大值11.若定义域为R 的函数()f x 满足()2f x +为奇函数,且对任意[)12,2,x x ∈+∞,12x x ≠,已知()()()1212[]0f x f x x x -->恒成立,则下列正确的是()A.()f x 的图象关于点()2,0-对称B.()f x 在R 上是增函数C.()()44f x f x +-=D.关于x 的不等式()0f x <的解集为(),2-∞12.设函数()y f x =的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数2()21f x x x =-+,则下列结论正确的是()A.()424f = B.()4f x 的值域为[]0,4C.()4f x 在[]1,1-上单调递减D.函数()41y f x =+为偶函数第II 卷(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合{}21,2,4m M m +=+,且5M ∈,则m 的值为________.14.函数()f x =的定义域为______.15.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则实数a 的取值范围为__________.16.设()f x 是定义在R 上的奇函数,对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()1122120x f x x f x x x ->-,若()24f =,则不等式8()0f x x->的解集为___________.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}27,{121}A xx B x m x m =-≤≤=+<<-∣∣,(1)3m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.18.已知幂函数()()215m f x m m x+=--,且函数在()0,∞+上单增(1)函数()f x 的解析式;(2)若()()122f a f -<,求实数a 的取值范围.19.已知函数()2bf x ax x=-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+∞的单调性.20.一家商店使用一架两臂不等长的天平称黄金,其中左臂长和右臂长之比为λ,一位顾客到店里购买10克黄金,售货员先将5g 砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 砝码放在天平右盘中,然后取出一些黄金放在天平左盘中使天平平衡,最后将两次称得的黄金交给顾客(1)试分析顾客购得的黄金是小于10g ,等于10g ,还是大于10g ?为什么?(2)如果售货员又将5g 的砝码放在天平左盘中,然后取出一些黄金放在天平右盘中使天平平衡,请问要使得三次黄金质量总和最小,商家应该将左臂长和右臂长之比λ,设置为多少?请说明理由.21.已知命题:“[]1,3x ∀∈-,都有不等式240x x m --<成立”是真命题.(1)求实数m 的取值集合A ;(2)设不等式()223200x ax a a ≥-+≠的解集为B ,若x A ∈是x B ∈的充分条件,求实数a 的取值范围.22.已知函数()f x 是定义域在R 上的奇函数,当0x ≥时,()2f x x ax =-+.(1)当1a =时,求函数()f x 的解析式;(2)若函数()f x 为R 上的单调函数.且对任意的[)1,m ∈+∞,()221240tf mt m f m m ⎛⎫-+-> ⎪⎝⎭恒成立,求实数t 的范围.山东省2023~2024学年第一学期期中高一数学试题2023.11说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1为第1页至第2页,第II 卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第Ⅰ卷(共60分)一、单选题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为()A.{0,2}B.{1,1,3,4}-C.{1,0,2,4}-D.{1,0,1,2,3,4}-【答案】B 【解析】【分析】求()()A B A B ð得解.【详解】解:图中阴影部分所表示的集合为()(){1,1,3,4}A B A B =- ð.故选:B2.命题“x ∀∈R 都有210x x ++>”的否定是()A.不存在2,10x R x x ∈++>B.存在2000,10x R x x ∈++≤C.存在2000,10x R x x ∈++>D.对任意的2,10x R x x ∈++≤【答案】B 【解析】【分析】由全称命题的否定:将任意改为存在并否定原结论,即可写出原命题的否定.【详解】由全称命题的否定为特称命题,∴原命题的否定为:存在2000,10x R x x ∈++≤.故选:B3.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是()A. B.C. D.【答案】C 【解析】【分析】根据函数的定义,依次分析选项中的图象,结合定义域值域的范围即可得答案.【详解】对于A ,其对应函数的值域不是{}01N y y =≤≤,A 错误;对于B ,图象中存在一部分与x 轴垂直,即此时x 对应的y 值不唯一,该图象不是函数的图象,B 错误;对于C ,其对应函数的定义域为{|01}M x x = ,值域是{|01}N y y = ,C 正确;对于D ,图象不满足一个x 对应唯一的y ,该图象不是函数的图象,D 错误;故选:C .4.“12x >”是“12x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分必要条件的定义判断.【详解】12x >时12x <成立,12x <时如112x =-<,则=1x -12<,因此只能是充分不必要条件,故选:A .5.已知函数()22132f x x +=+,则()3f 的值等于()A.11B.2C.5D.1-【答案】C 【解析】【分析】根据给定条件,令213x +=求出x 即可计算作答.【详解】函数()22132f x x +=+,令213x +=,得1x =,所以()233125f =⨯+=.故选:C6.函数()f x =的单调递增区间是()A.(]-1∞, B.[)1+∞,C.[]1,3 D.[]1,1-【答案】D 【解析】【分析】先求出()f x 定义域,在利用二次函数单调性判断出结果.【详解】函数()f x =的定义域需要满足2320x x +-≥,解得()f x 定义域为[]13,-,因为232y x x =+-在[]11-,上单调递增,所以()f x =在[]11-,上单调递增,故选:D .7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()112f a f a -=+,则a 的值为()A.1B.12-C.-1D.2【答案】B 【解析】【分析】对a 进行分类讨论,分别确定1a -与12a +的范围,代入相应的函数解析式,再利用()()112f a f a -=+即可求解.【详解】当0a >时,有11a -<,121a +>,又因为()()112f a f a -=+,所以()()21122a a a a -+=-+-,解得:1a =-,又0a >,所以1a =-舍去;当a<0时,有11a ->,121a +<,又因为()()112f a f a -=+,所以()()21212a a a a ++=---,解得:12a =-.故选:B.8.已知函数y =的定义域与值域均为[]0,1,则实数a 的取值为()A.-4B.-2C.1D.1【答案】A 【解析】【分析】依题意知2y ax bx c =++的值域为[]0,1,则方程20ax bx c ++=的两根为0x =或1,可得0c =,a b =-,从而确定当12x =时,2124a y a x ⎛⎫=-- ⎪⎝⎭取得最大值为1,进而解得4a =-.【详解】依题意,2y ax bx c =++的值域为[]0,1,且20ax bx c ++≥的解集为[]0,1,故函数的开口向下,a<0,则方程20ax bx c ++=的两根为0x =或1,则0c =,0122b a +-=,即a b =-,则222124a y ax bx c ax ax a x ⎛⎫=++=-=-- ⎪⎝⎭,当12x =时,2124a y a x ⎛⎫=-- ⎪⎝⎭取得最大值为1,即14a-=,解得:4a =-.故选:A.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若0a b c >>>则以下结论正确的是()A.c c a b> B.22ac bc >C.a b b c ->- D.b c ba c a+>+【答案】AB 【解析】【分析】对于AB ,可利用不等式的性质直接判断;对于CD ,可赋值判断.【详解】对于A ,因为0a b >>,所以11a b <,又因为0c >,所以c c a b>,故A 正确;对于B ,因为0a b c >>>,则有20c >,所以22ac bc >,故B 正确;对于C ,因为0a b c >>>,若2a =,1b =,1c =-,则211a b -=-=,()112b c -=--=,此时a b b c -<-,故C 错误;对于D ,因为0a b c >>>,若2a =,1b =,1c =-,则11021b c a c +-==+-,12b a =,此时b c b a c a +<+,故D 错误.故选:AB.10.设正实数a 、b 满足1a b +=,则()A.有最大值12B.1122a b a b +++有最小值3C.22a b +有最小值12 D.有最大值【答案】ACD 【解析】【分析】利用基本不等式求出各选项中代数式的最值,由此可判断各选项的正误.【详解】设正实数a 、b 满足1a b +=.对于A 122a b +=,当且仅当12a b ==时,等号成立,A 选项正确;对于B 选项,由基本不等式可得()111113322322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭()()111122=222322322a b a b a b a b a b a b a b a b ++⎛⎫⎛⎫++++=+⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,B 选项错误;对于C 选项,()()()222222122222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,C 选项正确;对于D 选项,()222a b a b =+++=≤,当且仅当22a b ==时,等号成立,D 选项正确.故选:ACD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.11.若定义域为R 的函数()f x 满足()2f x +为奇函数,且对任意[)12,2,x x ∈+∞,12x x ≠,已知()()()1212[]0f x f x x x -->恒成立,则下列正确的是()A.()f x 的图象关于点()2,0-对称B.()f x 在R 上是增函数C.()()44f x f x +-=D.关于x 的不等式()0f x <的解集为(),2-∞【答案】BD 【解析】【分析】根据给定条件,探讨函数的对称性及单调性,再逐项判断即得答案.【详解】由()2f x +为奇函数,得()2(2)f x f x -+=-+,即(4)()0f x f x -+=,因此()f x 的图象关于点()2,0对称,由任意[)12,2,x x ∈+∞,12x x ≠,()()()1212[]0f x f x x x -->恒成立,得函数()f x 在[)2,+∞上单调递增,于是()f x 在R 上单调递增,B 正确;显然(2)(2)0f f -<=,即()f x 的图象关于点()2,0-不对称,A 错误;对C ,由(4)()0f x f x -+=,得()()44f x f x +-≠,C 错误;对D ,由于()f x 在R 上单调递增,()()0(2)f x f x f <⇔<,则2x <,即不等式()0f x <的解集为(),2-∞,D 正确.故选:BD12.设函数()y f x =的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数2()21f x x x =-+,则下列结论正确的是()A.()424f = B.()4f x 的值域为[]0,4C.()4f x 在[]1,1-上单调递减 D.函数()41y f x =+为偶函数【答案】BCD 【解析】【分析】令2214x x -+≤求出不等式的解,即可求出()4f x 的解析式,即可判断A 、B 、C ,再求出()41y f x =+的解析式,画出图象,即可判断D.【详解】根据题意,由2214x x -+≤,解得13x -≤≤,∴()2421,134,14,3x x x f x x x ⎧-+-≤≤⎪=<-⎨⎪>⎩,所以()24222211f =-⨯+=,故A 错误;当13x -≤≤时()()224211f x x x x =-+=-,且()4f x 在[]1,1-上单调递减,在[]1,3上单调递增,()401f =,()()44431f f -==,所以()404f x ≤≤,即()4f x 的值域为[]0,4,故B 、C 正确;因为()24,2214,24,2x x y f x x x ⎧-≤≤⎪=+=<-⎨⎪>⎩,则()41y f x =+的图象如下所示:由图可知()41y f x =+的图象关于y 轴对称,所以函数()41y f x =+为偶函数,故D 正确;故选:BCD第II 卷(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合{}21,2,4m M m +=+,且5M ∈,则m 的值为________.【答案】1或3##3或1【解析】【分析】根据题意得到25m +=,245m +=,解方程再验证得到答案.【详解】{}21,2,4m M m +=+,5M ∈,当25m +=时,3m =,此时{}1,9,13M =,满足条件;当245m +=时,1m =±,1m =-时,不满足互异性,排除;1m=时,{}1,3,5M =,满足条件.综上所述:1m =或3m =.故答案为:1或3.14.函数()f x =的定义域为______.【答案】1,12⎛⎤- ⎥⎝⎦【解析】【分析】根据偶次方根的被开方数非负且分母不为零得到不等式组,解得即可.【详解】对于函数()f x =,则1021210xx x -⎧≥⎪+⎨⎪+≠⎩等价于()()1210210x x x ⎧-+≥⎨+≠⎩,解得112x -<≤,所以函数()f x =的定义域为1,12⎛⎤- ⎥⎝⎦.故答案为:1,12⎛⎤-⎥⎝⎦15.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则实数a 的取值范围为__________.【答案】[]1,4【解析】【分析】根据分段函数单调性的定义,解不等式求实数a 的取值范围.【详解】函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则44(1)32(5)21250a a a a a -++≥--⎧⎪+≥⎨⎪-<⎩,解得14a ≤≤,所以实数a 的取值范围为[]1,4.故答案为:[]1,4.16.设()f x 是定义在R 上的奇函数,对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()1122120x f x x f x x x ->-,若()24f =,则不等式8()0f x x->的解集为___________.【答案】(2,0)(2,)-+∞ 【解析】【分析】令()()F x xf x =,可得函数利()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数且在(0,)+∞上单调递增,原不等式等价于()80F x x->,分析可得答案.【详解】令()()F x xf x =,由()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,可得()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数,由对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()2211210x f x x f x x x ->-,可得()()F x xf x =在(0,)+∞上单调递增,由(2)4f =,可得(2)8F =,所以()F x 在(,0)-∞上单调递减,且(2)8F -=,不等式8()0f x x ->,即为()80xf x x ->,即()80F x x->,可得0()8x F x >⎧⎨>⎩或0()8x F x <⎧⎨<⎩,即02x x >⎧⎨>⎩或020x x <⎧⎨-<<⎩解得2x >或20x -<<.故答案为:(2,0)(2,)-+∞ .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}27,{121}A xx B x m x m =-≤≤=+<<-∣∣,(1)3m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.【答案】(1){}|45A B x x =<<I (2)(]4∞-,【解析】【分析】(1)代入m 求集合B ,根据交集的定义即可得解;(2)A B B = ,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.【小问1详解】解:若3m =,则{}45B x x =<<,又{}27A xx =-≤≤∣,所以{}|45A B x x =<<I ;【小问2详解】解:因为A B B = ,所以B A ⊆,当B =∅时,则211m m -≤+,解得2m ≤,此时B A ⊆,符合题意,当B ≠∅时,则12112217m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得24m <≤,综上所述4m ≤,所以若A B B = ,m 的取值范围为(]4∞-,.18.已知幂函数()()215m f x m m x+=--,且函数在()0,∞+上单增(1)函数()f x 的解析式;(2)若()()122f a f -<,求实数a 的取值范围.【答案】(1)()4f x x =(2)13,22⎛⎫-⎪⎝⎭【解析】【分析】(1)幂函数()()215m f x m m x+=--,有251m m --=,再由函数在()0,∞+上单调递增,解出m 的值,得函数()f x 的解析式;(2)由函数的奇偶性和单调性解不等式.【小问1详解】()()215m f x m m x +=--为幂函数,则有251m m --=,解得3m =或2m =-,3m =时,()4f x x =,在()0,∞+上单调递增,符合题意;2m =-时,()1f x x -=,在()0,∞+上单调递减,不合题意;所以()4f x x =.【小问2详解】()4f x x =,函数定义域为R ,()()()44f x x x f x -=-==,函数为偶函数,在(),0∞-上单调递减,在()0,∞+上单调递增,若()()122f a f -<,有2122a -<-<,解得1322a -<<,所以实数a 的取值范围为13,22⎛⎫- ⎪⎝⎭.19.已知函数()2bf x ax x=-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+∞的单调性.【答案】(1)()22f x x x=+(2)单调递增,证明见解析.【解析】【分析】(1)依题意可得1a b +=-,3a b -=,解方程即可得函数解析式;(2)利用函数单调性的定义法判断即可.【小问1详解】因为()11f -=-,()13f =,所以1a b +=-,3a b -=,解得:1a =,2b =-,所以函数()f x 解析式为:()22f x x x=+.【小问2详解】函数()f x 在区间()1,+∞上单调递增,证明如下:由(1)知()22f x x x=+,取任意1x 、()21,x ∈+∞,令12x x <,则()()()22121212121212222f x f x x x x x x x x x x x ⎛⎫-=+--=-+- ⎪⋅⎝⎭因为12x x <,所以120x x -<,又211x x >>,则122x x +>,121x x ⋅>,所以12101x x <<⋅,则12202x x <<⋅,所以1222x x ->-⋅,即121220x x x x +->⋅,所以()()120f x f x -<,即函数()f x 在区间()1,+∞上单调递增.20.一家商店使用一架两臂不等长的天平称黄金,其中左臂长和右臂长之比为λ,一位顾客到店里购买10克黄金,售货员先将5g 砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 砝码放在天平右盘中,然后取出一些黄金放在天平左盘中使天平平衡,最后将两次称得的黄金交给顾客(1)试分析顾客购得的黄金是小于10g ,等于10g ,还是大于10g ?为什么?(2)如果售货员又将5g 的砝码放在天平左盘中,然后取出一些黄金放在天平右盘中使天平平衡,请问要使得三次黄金质量总和最小,商家应该将左臂长和右臂长之比λ,设置为多少?请说明理由.【答案】(1)顾客购得的黄金是大于10g ,理由见详解(2)三次黄金质量总和要最小,则左臂长和右臂长之比2λ=,理由见详解【解析】【分析】(1)设天平的左臂长为a ,右臂长b ,则a b ¹,售货员先将5g 的砝码放在左盘,将黄金x g 放在右盘使之平衡;然后又将5g 的砝码放入右盘,将另一黄金y g 放在左盘使之平衡,则顾客实际所得黄金为x y +(g)利用杠杆原理和基本不等式的性质即可得出结论.(2)再一次将5g 的砝码放在天平左盘,再取黄金m g 放在右盘使之平衡,加上前两次利用基本不等式进行分析即可.【小问1详解】由于天平两臂不等长,设天平左臂长为a ,右臂长为b ,且a b ¹,先称得黄金为x g,后称得黄金为y g,则5,5bx a ay b ==,则55,a b x y b a ==,所以555210a b x y b a +=+≥⨯=当且仅当a bb a=,即a b =时取等号,由a b ¹,所以10x y +>顾客购得的黄金是大于10g【小问2详解】由(1)再一次将5g 的砝码放在天平左盘,再取黄金m g 放在右盘使之平衡,则此时有5a bm =,此时有5am b=,所以三次黄金质量总和为:55525()52a b a a b x y m b a b b a ++=++=+≥⨯=当且仅当2a b b a =,即2a b b λ=⇒==所以三次黄金质量总和要最小,则左臂长和右臂长之比22λ=.21.已知命题:“[]1,3x ∀∈-,都有不等式240x x m --<成立”是真命题.(1)求实数m 的取值集合A ;(2)设不等式()223200x ax a a ≥-+≠的解集为B ,若x A ∈是x B ∈的充分条件,求实数a 的取值范围.【答案】(1){}5A m m =>(2)5002a a a ⎧⎫<<≤⎨⎩⎭或【解析】【分析】(1)分析可知24m x x >-在[]13,x ∈-时恒成立,利用二次函数的基本性质可求得实数m 的取值集合A ;(2)分析可知A B ⊆,分a<0、0a >两种情况讨论,求出集合B ,结合A B ⊆可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:由[]1,3x ∀∈-,都有不等式240x x m --<成立,得240x x m --<在[]13,x ∈-时恒成立,所以()2max4m x x>-,因为二次函数24y x x =-在[]1,2-上单调递减,在[]2,3上单调递增,且()21145x y=-=-+=,233433x y ==-⨯=-,所以,当[]13,x ∈-时,max 5y =,5m ∴>,所以,{}5A m m =>.【小问2详解】解:由22320x ax a -+≥可得()()20x a x a --≥.①当0a <时,可得{2B x x a =≤或}x a ≥,因为x A ∈是x B ∈的充分条件,则A B ⊆,则5a ≤,此时,0a <;②当0a >时,可得{B x x a =≤或}2x a ≥,因为x A ∈是x B ∈的充分条件,则A B ⊆,则25a ≤,解得52a ≤,此时502a <≤.综上所述,实数a 的取值范围是5002a a a ⎧⎫<<≤⎨⎩⎭或.22.已知函数()f x 是定义域在R 上的奇函数,当0x ≥时,()2f x x ax =-+.(1)当1a =时,求函数()f x 的解析式;(2)若函数()f x 为R 上的单调函数.且对任意的[)1,m ∈+∞,()221240tf mt m f m m ⎛⎫-+-> ⎪⎝⎭恒成立,求实数t 的范围.【答案】(1)22,(0)(),(0)x x x f x x x x ⎧-+≥=⎨+<⎩(2)5,3⎛⎫-∞ ⎪⎝⎭【解析】【分析】(1)根据奇函数的定义和0x ≥时()f x 的解析式,即可得出0x <时的解析式,进而得出答案;(2)由()f x 的单调性和奇偶性解不等式,通过参变分离、换元法、构造函数求单调性,求得函数的最值,可求实数t 的范围.【小问1详解】函数()f x 是定义域在R 上的奇函数,1a =,当0x ≥时,2()f x x x =-+.当0x <时,有0x ->,22()()()f x f x x x x x =--=---=+.所以22,(0)(),(0)x x x f x x x x ⎧-+≥=⎨+<⎩.【小问2详解】因奇函数在关于原点对称的区间上有相同的单调性,由2()f x x ax =-+在[)0,∞+上单调递减,故函数()f x 为单调递减函数,由()221240t f mt mf m m⎛⎫-+->⎪⎝⎭,可得()2221124t t f mt mf f m m m m ⎛⎫⎛⎫->--=- ⎪ ⎪⎝⎭⎝⎭,故22124t mt m m m -<-,即221124m t m m m ⎛⎫+<+ ⎪⎝⎭,又注意到22211424m m m m ⎛⎫+=+- ⎪⎝⎭,结合[)1,m ∈+∞,知120m m +>,得:14(21(2)t m m m m<+-+.令1()2=+g x x x,其中[)1,x ∞∈+,任取121x x ≤<,故2112121212121212111()()222()()2x x g x g x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因121x x ≤<,则120x x -<,121x x >,12120->x x ,故12121()20x x x x ⎛⎫--< ⎪⎝⎭,即12()()<g x g x ,所以()g x 在[)1,+∞上单调递增,得()()13g x g ≥=.又令12m n m +=,则14(21(2)t m m m m <+-+转化为4t n n <-,其中3n ≥.要使式子成立,需t 小于4n n-的最小值.又注意到函数y x =与函数4y x=-均在[)3,+∞上单调递增,则函数4y x x=-在[)3,+∞上单调递增.故445333n n -≥-=,得53t <,则t 的范围为5,3⎛⎫-∞ ⎪⎝⎭.。

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。

北京市中学2024-2025学年高一上学期期中考试数学试卷含答案

北京市中学2024-2025学年高一上学期期中考试数学试卷含答案

北京2024—2025学年高一年级第一学期数学期中测试题(答案在最后)本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题1.下列说法不正确的是()A.*0∈N B.0∈NC.0.1∉ZD.2∈Q2.已知集合{}0,1,2A =,则集合{},B x yx A y A =-∈∈∣中元素的个数是()A.1B.3C.5D.93.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件4.“运动改造大脑”,为了增强身体素质,某班学生积极参加学校组织的体育特色课堂,课堂分为球类项目A 、径赛项目B 、其他健身项目C .该班有25名同学选择球类项目A ,20名同学选择径赛项目B ,18名同学选择其他健身项目C ;其中有6名同学同时选择A 和,4B 名同学同时选择A 和C ,3名同学同时选择B 和C .若全班同学每人至少选择一类项目且没有同学同时选择三类项目,则这个班同学人数是()A.51B.50C.49D.485.用二分法求函数的零点,经过若干次运算后函数的零点在区间(),a b 内,当a b ε-<(ε为精确度)时,函数零点的近似值02a bx +=与真实零点的误差的取值范围为()A.0,4ε⎡⎫⎪⎢⎣⎭B.0,2ε⎡⎫⎪⎢⎣⎭C.[)0,ε D.[)0,2ε6.已知关于x 的不等式210mx mx +->的解集为∅,则实数m 的取值范围是()A.()(),40,∞∞--⋃+ B.[)4,0- C.][(),40,∞∞--⋃+ D.[]4,0-7.设()f x 是定义在R 上的函数,若存在两个不等实数12,x x ∈R ,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭,则称函数()f x 具有性质P ,那么下列函数:①()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩;②()2f x x =;③()21f x x =-;具有性质P 的函数的个数为()A.0B.1C.2D.38.已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 中的元素不都是P 的元素;②M 的元素都不是P 的元素;③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为()A.1个B.2个C.3个D.4个9.已知函数()f x =,则()()1212g x f x x =-+-的定义域为()A.3,2∞⎡⎫+⎪⎢⎣⎭B.()3,22,2∞⎡⎫⋃+⎪⎢⎣⎭C.()3,22,4∞⎡⎫⋃+⎪⎢⎣⎭D.()(),22,∞∞-⋃+10.已知函数()f x m =+,若存在区间[](),1a b b a >≥-,使得函数()f x 在[],a b 上的值域为[]2,2a b ,则实数m 的取值范围是()A.178m >-B.102m <≤C.2m ≤- D.1728m -<≤-二、填空题11.下列集合:①{}0;②{}21,0,M xx n x n ==+<∈R ∣;③{}∅;④∅;⑤(){}0,0;⑥方程210x+=的实数解组成的集合.其中,是空集的所有序号为__________.12.若集合{}2210M xax x =++=∣只含一个元素,则a =__________.13.若二次函数()y f x =图象关于2x =对称,且()()()01f a f f <<,则实数a 的取值范围是__________.14.若关于x 的不等式212kx x k ≤++≤的解集中只有一个元素,则实数k 的取值集合为__________.15.若关于m 的方程2260m am a -++=的两个实数根是,x y ,则22(1)(1)x y -+-的最小值是__________.三、解答题16.设集合A 中的三个元素分别为,0,1a -,集合B 中的三个元素分别为1,,1c b a b++.已知A B =,求,,a b c 的值.17.已知集合{}(){}{}22224430,10,220A xx ax a B x x a x a C x x ax a =+-+==+-+==+-=∣∣∣,其中至少有一个集合不是空集,求实数a 的取值范围.18.已知关于x 的不等式()221x x a a -->∈R .(1)若1a =,求不等式的解集;(2)若不等式的解集为R ,求实数a 的范围.19.已知函数()2a f x x x =-,且()922f =.(1)求实数a 的值;(2)判断函数()f x 在()1,∞+上的单调性,并证明;(3)求函数()f x 在[]2,3上的最值.20.定义在区间[]0,1上的函数()f x 满足()()010f f ==,且对任意的[]12,0,1x x ∈都有()()12122x x f f x f x +⎛⎫≤+ ⎪⎝⎭.(1)证明:对任意的[]0,1x ∈都有()0f x ≥;(2)求34f ⎛⎫⎪⎝⎭的值;(3)计算202411112422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.已知函数()()2f x x x a x a =-+∈R .(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若存在实数[]0,4a ∈使得关于x 的方程()()0f x tf a -=恰有三个不相等的实数根,求实数t 的取值范围.答案一、单选题1.A2.C3.B4.B5.B6.D7.C8.B9.C10.D二、填空题11.②④⑥12.0或113.()(),04,∞∞-⋃+14.12,22⎧-+⎪⎨⎪⎪⎩⎭15.8三、解答题16.因为1,0A B a b=≠+,所以10,1,1c b a a b+==-=+,解得1,2,2a b c ==-=,所以,,a b c 的值分别为1,2,2-.17.当三个集合全是空集时,所对应的三个方程都没有实数解,即()2122223Δ164430,Δ(1)40,Δ480.a a a a a a ⎧=--+<⎪=--<⎨⎪=+<⎩解此不等式组,得312a -<<-.所以所求实数a 的取值范围为[)3,1,2∞∞⎛⎤--⋃-+ ⎥⎝⎦.18.(1)1a =时,原不等式为2211x x -->,整理,得2220x x -->,对于方程2220x x --=,因为Δ120=>,所以它有两个不等的实数根,解得1211x x ==+结合函数222y x x =--的图象得不等式的解集为{1x x <-∣或1x >+.(2)原不等式可化为2210x x a --->,由于不等式解集为R ,结合函数221y x x a =---图象可知,方程2210x x a ---=无实数根,所以()Δ441840a a =++=+<,所以a 的范围是{2}aa <-∣.19.(1)因为()2a f x x x =-,且()922f =,所以9422a -=,所以1a =-.(2)函数()f x 在()1,∞+上单调递增.证明如下:由(1)可得,()12f x x x=+,任取()12,1,x x ∞∈+,不妨设12x x <,则()()2121211122f x f x x x x x ⎛⎫-=+-+ ⎪⎝⎭()2121112x x x x ⎛⎫=-+- ⎪⎝⎭()1221122x x x x x x -=-+()211212x x x x ⎛⎫=-- ⎪⎝⎭()()21121221x x x x x x --=因为()12,1,x x ∞∈+且12x x <,所以2112120,210,0x x x x x x ->->>,所以()()210f x f x ->,即()()21f x f x >,所以()f x 在()1,∞+上单调递增.(3)由(2)知,函数()f x 在[]2,3上单调递增,则当2x =时,()f x 有最小值()922f =;当3x =时,()f x 有最大值()1933f =.20.(1)任取[]120,1x x x ==∈,则有()()22x f f x f x ⎛⎫≤+⎪⎝⎭,即()()2f x f x ≤,于是()0f x ≥,所以,对任意的[]0,1x ∈都有()0f x ≥.(2)由()()010f f ==,得()()01010002f f f +⎛⎫≤+=+=⎪⎝⎭,于是102f ⎛⎫≤ ⎪⎝⎭,但由(1)的结果知102f ⎛⎫≥⎪⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,由()10,102f f ⎛⎫== ⎪⎝⎭,则()1112100022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭,于是304f ⎛⎫≤ ⎪⎝⎭,由(1)的结果知304f ⎛⎫≥ ⎪⎝⎭,所以304f ⎛⎫= ⎪⎝⎭.(3)由()100,02f f ⎛⎫== ⎪⎝⎭,得()1012000022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭,于是104f ⎛⎫≤ ⎪⎝⎭,但由(1)的结果知104f ⎛⎫≥ ⎪⎝⎭,所以211042f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,继续求下去,可得10,1,2,3,,20242k f k ⎛⎫== ⎪⎝⎭,因此,2024111102422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++=⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭.21.(1)()()()222,22,x a x x a f x x x a x x a x x a ⎧+-≥⎪=-+=⎨-++<⎪⎩.由()f x 在R 上是增函数,则2,22,2a a a a -⎧≥-⎪⎪⎨+⎪≤⎪⎩即22a -≤≤,则a 范围为22a -≤≤.(2)当22a -≤≤时,()f x 在R 上是增函数,则关于x 的方程()()0f x tf a -=不可能有三个不等的实数根.当(]2,4a ∈时,由()()()222,2,x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩,得x a ≥时,()()22f x x a x =+-对称轴22a x -=,则()f x 在[),x a ∞∈+为增函数,此时()f x 的值域为())[),2,f a a ∞∞⎡+=+⎣;x a <时,()()22f x x a x =-++对称轴22a x +=,则()f x 在2,2a x ∞+⎛⎤∈- ⎥⎝⎦为增函数,此时()f x 的值域为2(2),4a ∞⎛⎤+- ⎥⎝⎦,()f x 在2,2a x ∞+⎡⎫∈+⎪⎢⎣⎭为减函数,此时()f x 的值域为2(2)2,4a a ⎛⎤+ ⎥⎝⎦;由存在(]2,4a ∈,方程()()2f x tf a ta ==有三个不相等的实根,则2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭,即存在(]2,4a ∈,使得2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭即可,令()2(2)8a g a a+=,只要使()max ()t g a <即可,而()g a 在(]2,4a ∈上是增函数,()max 9()48g a g ==,故实数t 的取值范围为91,8⎛⎫ ⎪⎝⎭.综上所述,实数t 的取值范围为91,8⎛⎫⎪⎝⎭.。

山东省德州市2023-2024学年高一下学期期中考试 数学含答案

山东省德州市2023-2024学年高一下学期期中考试 数学含答案

高一数学试题(答案在最后)2024.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1-2页,第Ⅱ卷3-4页,共150分,测试时间120分钟.注意事项:选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.第Ⅰ卷选择题(共58分)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.设x ∈R ,向量(1,)a x =r ,(2,1)b =r,若a b ⊥r r ,则x =()A .2B .12C .12-D .2-2.已知复数z 满足(14z +=(i 是虚数单位),则||z =()A .2B .4C .8D .163.已知02παβ<<<,且5cos()13αβ-=,4cos 25β=,则cos()αβ+=()A .3365-B .1665-C .5665D .63654.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,3A π=,sin 2sin C B =,则ABC △的面积是()A .32B .2C .94D .45.若23||||||3a b a b b +=-=r r r r r ,则a b -r r 与b r 的夹角是()A .6πB .3πC .23πD .56π6.在Rt ABC △中,2AB AC ==,,BC AC 边上的两条中线AM ,BN 相交于点P ,则MPN ∠的余弦值是()A .105-B .1010-C .1010D .1057,数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线,该定理被称为欧拉线定理,设点O ,G ,H 分别为三角形ABC 的外心,重心,垂心,则()A .1233AG AO AH=-uuu r uuu r uuu r B .1233AG AO AH=+uuu r uuu r uuu rC .2133AG AO AH=-uuu r uuu r uuu r D .2133AG AO AH=+uuu r uuu r uuu r 8.在锐角ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3B π=,sin sin sin B C b A ac =2取值范围是()A .21,52⎛⎫⎪⎝⎭B .21,52⎡⎫⎪⎢⎣⎭C .22,53⎡⎫⎪⎢⎣⎭D .22,53⎛⎫⎪⎝⎭二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.设z 为非零复数(i 是虚数单位),下列命题正确的是()A .若||z z =,则z 为正实数B .若2z ∈R ,则z ∈R C .若210z +=,则iz =±D .若0z z +=,则z 为纯虚数10.下列命题中正确的是()A .若,a b r r是单位向量,则a b=r r B .若(0)a b b ≠∥r r r,则存在唯一的实数λ,使得a b λ=r rC .若向量a r 和b r ,满足||1a =r ,||||2b a b =+=r r r ,则||a b -=r rD .若向量(1,3)a =-r ,(3,0)b =r ,则a r 在b r 方向上投影的数量是10-11.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,以下命题中正确的是()A .若9a =,10b =,3A π=,则符合条件的三角形有两个B .若22tan tan a b A B=,则ABC △为等腰或直角三角形C .若2sin ABC S b B =△,则cos B 的最小值为54D .若3A π=,BC =BC 边上的高为1,则符合条件的三角形有两个第Ⅱ卷非选择题(共92分)三、填空题(本题共3小题,每小题5分,共15分)12.已知,2παπ⎛⎫∈⎪⎝⎭,2sin 2cos 21αα=-,则tan 2α=___________.13.若O 为ABC △的外心,且2BO BA BC =+uu u r uu r uu u r ,则AB BC ⋅=uu u r uu u r___________.14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,满足(1cos )(2cos )a B b A +=-,sin cos sin B A C =,且16AB AC ⋅=uu u r uuu r ,则b =___________;若在线段AB 上存在动点P 使得2||||CA CBCP x y CA CB =+uu r uu ruu r uu r uu r ,则xy 的最大值为___________.(第一空2分,第二空3分)四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知θ为三角形的一个内角,i 为虚数单位,复数cos isin z θθ=+,且2z z +在复平面上对应的点在实轴上.(1)求θ;(2)设2,i z z ,21z z ++在复平面上对应的点分别为A ,B ,C ,求ABC △的面积.16.(本小题满分15分)已知平面上三点A ,B ,C ,且(0,4)A ,(,3)B k -,(2,0)C .(1)若A ,B ,C 不构成三角形,求实数k 应满足的条件;(2)若ABC △为针角三角形,求k 的取值范围.17.(本小题满分15分)已知函数()sin (sin )1f x x x x =+-,x ∈R .(1)若31(),0,222f πθθ⎛⎫=-∈ ⎪⎝⎭,求tan θ的值;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使等式2[()]()0f x f x m ++=成立,求实数m 的取值范围.18.(本小题满分17分)如图所示,在扇形AOB 中,AOB ∠为锐角,四边形OMPN 是平行四边形,点P 在弧»AB 上,点M ,N分别在线段OA ,OB 上,OP =,6OA OB ⋅=uu r uu u r,记POB θ∠=.(1)当6πθ=时,求OP NB ⋅uu u r uu u r ;(2)请写出阴影部分的面积S 关于θ的函数关系式,并求当θ为何值时,S 取得最小值.19.(本小题满分17分)在ABC △中,角A ,B ,C 的对边分别为,,a b c ,sin sin cos cos cos cos sin C B B AB A C--=+.(1)若236ABC S c =△,求证:23c b =;(2)若2DC BD =uuu r uu u r ,求||||AD BD uuu ruu u r 的最大值.高一数学试题参考答案一、选择题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.D2.A3.C4.B5.D6.B7.D8.A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.ACD10.BC11.ABD三、填空题(本题共3小题,每小题5分,共15分)12.4313.014.4,32四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.解:(1)22(cos sin )cos 2sin 2z i i θθθθ=+=+Q ,2(cos 2cos )(sin 2sin )z z i θθθθ+=+++,因为2z z +在复平面上对应的点在实轴上,所以sin 2sin 2sin cos sin 0,(0,)θθθθθθπ+=+=∈,所以1cos 2θ=-,2;3πθ=(2)由(1)知:sin 2θ=,21z =-+,所以11i i i 2222z ⎛⎫=-+=-- ⎪⎝⎭,213313i i 44222z =--=--所以2131311i i 02222z z ++=-+--=.在复平面上对应的点分别为(A -,31,22B ⎛⎫-- ⎪⎝⎭,(0,0)C ,所以2AC =,1BC =,1(022CA CB ⎛⎫⋅=-⋅-= ⎪⎝⎭uu r uu r 所以,CA CB ⊥uu r uu r ,所以,12112ABC S =⨯⨯=△.16.解:(1)由题可知,(2,3)BC k =-uu u r ,(2,4)AC =-uuu r,三点A ,B ,C 不构成三角形,得A ,B ,C 三点共线,所以4(2)230k ---⨯=,解得72k =.(注:利用AB uu u r求解,同样得分)(2)当C 为钝角时,0AC BC ⋅<uuu r uu u r,所以2(2)3(4)0k ⨯-+⨯-<,解得4k >-且72k ≠,当A 为钝角时,(,7)AB k =-uu u r ,(2,4)AC =-uuu r,0AB AC ⋅<uu u r uuu r,即(,7)(2,4)0k -⋅-<,2280k +<,所以14k <-.当B 为钝角时,(,7)BA k =-uu r ,(2,3)BC k =-uu u r,(,7)(2,3)0BA BC k k ⋅=-⋅-<uu r uu u r,22210k k -+<,无解.所以14k <-或4k >-且72k ≠.17.解:(1)()sin (sin )1f x x x x =+-2sin cos 1x x x =+-1cos 2212xx -=+-1sin 262x π⎛⎫=--⎪⎝⎭131()sin 26222f πθθ⎛⎫=--=- ⎪⎝⎭,sin 262πθ⎛⎫-= ⎪⎝⎭,02πθ<<,52666πππθ-<-<,所以263ππθ-=或23π,即4πθ=或512π,当4πθ=时,tan tan 14πθ==,当512πθ=时,tan tan46tan tan 2461tan tan 46ππππθππ+⎛⎫=+==+ ⎪⎝⎭-(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52666x πππ-≤-≤,则111sin 2622x π⎛⎫-≤--≤ ⎪⎝⎭,即11()2f x -≤≤,令()t f x =,112t -≤≤,关于t 的方程20t t m ++=在11,2⎡⎤-⎢⎥⎣⎦上有解,即2m t t -=+在11,2⎡⎤-⎢⎥⎣⎦上有解,当112t -≤≤时,21344t t -≤+≤,由1344m -≤-≤,得3144m -≤≤,即实数m 的取值范围是31,44⎡⎤-⎢⎥⎣⎦.18.解:(1)根据题意,||||cos cos 6OA OB OA OB AOB AOB ⋅=∠=∠=uur uu u r uur uu u r,1cos 2AOB ∠=因为AOB ∠为锐角,所以,3AOB π∠=,6πθ=,四边形OMPN 是平行四边形,所以,OPM △为等腰三角形,OP =2OM ON ==,||||cos 2)662OP NB OP NB π⋅=⋅=-⨯=uu u r uu u r uu u r uu u r .(2)由题可知,在PMO △中,OP =23PMO π∠=,MPO θ∠=,3MOP πθ∠=-,则由正弦定理sin sin sin OP OM PMPMO MPO MOP==∠∠∠,sin sin 3OM PMπθθ==⎛⎫- ⎪⎝⎭,故可得4sin OM θ=,4sin 3PM πθ⎛⎫=-⎪⎝⎭,1sin 2PMO S OM MP PMO =⨯⨯⨯∠△14sin 4sin 232πθθ⎛⎫=⨯⨯-⨯ ⎪⎝⎭sin 3πθθ⎛⎫=- ⎪⎝⎭sin cos cos sin 33ππθθθ⎛⎫=- ⎪⎝⎭26πθ⎛⎫=+- ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,所以,AOB OMPNS S S =-扇形平行四边形226ππθ⎛⎫=-++ ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,当6πθ=时,sin 216πθ⎛⎫+= ⎪⎝⎭,此时S取得最小值2π-.19.解:(1)sin sin cos cos cos cos sin C B B AB A C--=+(sin sin )sin (cos cos )(cos cos )C B C B A B A -=+-222sin sin sin cos cos C B C B A-=-()222sin sin sin 1sin 1sin C B C B A-=---由正弦定理得222c b a bc +-=,2221cos 22c b a A bc +-==,0A π<<,所以3A π=,21sin 26ABC S bc A c ==△,所以23c b =.(2)2DC BD =uuu r uuu r ,11()33BD BC AC AB ==-uu ur uu u r uuu r uu u r ,又2133AD AB BD AB AC =+=+uuu r uu u r uu u r uu u r uuu r ,所以1|2|||31||||3AB AC AD BD AC AB +==-uu u r uuu ruuu r uu u r uuu r uu u r ,令0bt c=>,所以||||AD BD ===uuu r uu u r ,1=≤==+.当且仅当1t =取等号,所以||||AD BD uuu r uu u r1+.。

四川省成都市2024-2025学年高一上学期期中考试 数学含答案

四川省成都市2024-2025学年高一上学期期中考试 数学含答案

高2024级高一上学期11月半期测试数学试题(答案在最后)一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.设全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{5,4,3}B =,则=U A B ⋂ð()A.{1,2,3,4,5}B.{1,2}C.{0,1,2}D.{0,1,2,3}2.已知集合{}2|1,M y y x x R ==+∈,{}|1,N y y x x R ==+∈,则M N ⋂=A.()()0,1,1,2B.()(){}0,1,1,2C.{|1y y =或2}y =D.{}|1y y ≥3.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法正确的是()A.若a b >,则22a b >B.“2x >”是“112x <”的充分不必要条件C.若幂函数()22231m m y m m x--=--在区间 ㈮㔷∞上是减函数,则2m =D.命题“2,0x x x ∀∈+≥R ”的否定为“2,0x x x ∃∈+≥R ”;5.已知命题()()2:R,110p x m x ∃∈++≤,命题2:R,10q x x mx ∀∈-+>恒成立.若p 和q 都为真命题,则实数m 的取值范围为()A.2m ≥B.21m -<≤-C.2m ≤-或2m ≥D.12m -<≤6.已知函数()f x =,则()A.()1ff f >>- B.()1ff f >>-C.()1ff f>-> D.()1f ff ->>7.用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩.已知{}1,2A =,()(){}22|20B x x ax x ax =+++=,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =()A .4B.3C.2D.18.已知函数()()()21,12,1x x f x f x x ⎧-≥⎪=⎨--<⎪⎩,若对于任意的实数x ,不等式()24()1f x a f x -≤+恒成立,则实数a 的取值范围为()A.1,2⎡⎫-+∞⎪⎢⎣⎭B.1,12⎡⎤-⎢⎥⎣⎦C.3,4⎡⎫-+∞⎪⎢⎣⎭D.3,14⎡⎤-⎢⎥⎣⎦二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.知函数()f x 满足1211x f x x +⎛⎫= ⎪+⎝⎭,则关于函数()f x 正确的说法是()A.()f x 的定义域为{}1x x ≠- B.()f x 值域为{1y y ≠,且2}y ≠C.()f x 在 ㈮㔷∞ 单调递减D.不等式()2f x >的解集为(1,0)-10.已知a ,b 均为正数,且1a b -=,则()A.a >B.221->a b C.411-≤a bD.13a b+>11.已知函数()2211x xf x x x +=++,则下列结论正确的是()A.()f x 在()1,+∞上单调递增B.()f x 值域为][(),22,∞∞--⋃+C.当0x >时,恒有()f x x >成立D.若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共3小题,每小题5分,共15分.12.不等式3223x x -≥+的解集为________.13.若两个正实数x ,y 满足40x y xy +-=,且不等式26xy m m ≥-恒成立,则实数m 的取值范围是__________.14.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()()()234f f f ++=________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}{}23,31P x x Q x a x a =-<<=<≤+.(1)若,x Q x P ∀∈∈,求a 的取值范围;(2)若,x P x Q ∃∈∈,求a 的取值范围.16.已知集合A为使函数y =R 的a 的取值范围,集合{}22210B x x ax a =++-≤(a 为常数,R a ∈).若x A ∈是x B ∈的必要条件,试求实数a 的取值范围.17.在园林博览会上,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80万元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:1802,020()2000900070,20(1)x x G x x x x x -<≤⎧⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.18.已知函数()f x 的定义域为()0,∞+,对任意正实数a b 、都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.(1)求()120242024f f ⎛⎫+⎪⎝⎭的值,(2)判断函数()f x 的单调性并加以证明:(3)当[]1,3x ∈时,关于x 的不等式()()32f kx f x -+>恒成立,求实数k 的取值范围.19.设函数()2,y ax x b a b =+-∈∈R R .(1)若54b a =-,且集合{|0}x y =中有且只有一个元素,求实数a 的取值集合;(2)0a <时,求不等式(22)2y a x b <--+的解集;(3)当0,1a b >>时,记不等式0y >的解集为P ,集合{|22}Q x t x t =--<<-+,若对于任意正数t ,P Q ⋂≠∅,求11a b-的最大值.高2024级高一上学期11月半期测试数学试题一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.【1题答案】【答案】B 【2题答案】【答案】D 【3题答案】【答案】A 【4题答案】【答案】BC 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】B 【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】BC 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】(,3)[8,)-∞-+∞【13题答案】【答案】[]28-,【14题答案】【答案】6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)2,3⎡⎫-+∞⎪⎢⎣⎭(2)13,2⎛⎫- ⎪⎝⎭【16题答案】【答案】11a -≤≤【17题答案】【答案】(1)2210050,020()9000101950,201x x x W x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩;(2)当年产量为29万台时,该公司获得的年利润最大为1360万元.【18题答案】【答案】(1)2(2)()f x 在()0,+∞上是增函数,证明见解析(3)()4,+∞【19题答案】【答案】(1)1{0,,1}4;(2)答案见解析;(3)12.。

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。

2024高一数学期中试卷及答案

2024高一数学期中试卷及答案

2024高一数学期中试卷及答案一、选择题(每题5分,共25分)1. 设集合A = {x | x = 2k, k ∈ Z},B = {x | x = 3k, k ∈ Z},则A∩B =____。

A. {x | x = 6k, k ∈ Z}B. {x | x = 2k, k ∈ Z}C. {x | x = 3k, k ∈Z}D. ∅2. 若f(x) = x² - 4x + 3,则f(2 - x) =____。

A. x² - 4x + 3B. 4 - xC. x² + 4x - 3D. 4 - x²3. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为____。

A. 1B. 3C. 5D. 94. 设函数f(x) = 2x + 1,若f(a) + f(b) = 3,则a + b =____。

A. 0B. 1C. -1D. 25. 下列函数在区间(-∞, 1)上单调递减的是____。

A. y = x²B. y = -x²C. y = 2xD. y = 1/x二、填空题(每题5分,共25分)6. 若|x - 2| ≤ 3,则____ ≤ x ≤ ____。

7. 已知log₂(x - 1) = 3,则x - 1 =____,x =____。

8. 函数f(x) = 2x + 1的反函数为____。

9. 若向量a = (1, 2),向量b = (-2, 3),则向量a + b =____,向量a - b =____。

10. 若矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),矩阵B = \(\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}\),则矩阵A + B =____。

三、解答题(共50分)11. (10分)已知函数f(x) = 2x + 1,求f(f(x))的表达式。

安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)

安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)

安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题考试时间:120分钟满分150分一、单选题:本题共8小题,每小题5分,共40分.1.下列集合中表示同一集合的是()A. B.C. D.2.若,则下列不等式不能成立的是()A. B.C. D.3.不等式的解集为A.或B.或C.或D.4.函数的图象可能是()A. B. C. D.5.已知,则()A.27B.18C.15D.256.函数的单调递减区间是()A. B. C. D.7.已知是偶函数,且其定义域为,则()A. B.-1 C.1 D.78.已知函数,若存在,且两两不相等,则的取值范围为A. B. C.[0,1] D.{(3,2)},{(2,3)}M N=={4,5},{5,4}M N=={(,)1},{1}M x y x y N y x y=+==+=∣∣{1,2},{(1,2)}M N==a b<<||||a b>2a ab>11a b>11a b a>-23540x x-+->{3x x≤-∣2}x≥{3x x≤-∣1}x≥{31x x-≤≤∣2}x≥∅1(0,1)xy a a aa=->≠13a a-+=33a a-+=()f x=(,3]-∞-[1,1]-(,1]-∞-[1,)-+∞2()35f x ax bx a b=+-+[61,]a a-a b+=1725,0()22,0x xf xx x x->⎧=⎨+-≤⎩()()()123f x f x f x==123x x x、、123x x x++()(1,1)-(1,1]-(0,1]二、多选题:本题共3小题,共18分.9.(多选)下列说法正确的有( )A.命题,则B.“”是“”成立的充分条件C.命题,则D.“”是“”的必要条件10.若正实数a ,b 满足,则下列说法正确的是( )A.ab 有最大值C.有最小值4 D.11.对于函数的定义域中任意的,当时,如下结论正确的是( )A. B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.命题“对任意,都有”的否定是_______________.13.已知,求函数的最小值是_______________.14.已知是上的增函数,则实数的取值范围是_______________.四、解答题:本题共5小题,共77分.15.(本小题13分)已知集合,集合.(1)求;(2)设集合,且,求实数的取值范围.16.(本小题15分)已知二次函数.(1)若的解集为,求a ,b 的值;(2)若f (x )在区间上单调递增,求的取值范围.:,(0,1),2p x y x y ∀∈+<0000:,(0,1),2p x y x y ⌝∃∈+≥1,1a b >>1ab >2:,0p x R x ∀∈>2:,0p x R x ⌝∃∈<5a <3a <1a b +=14+11a b+22a b +()f x ()1212,x x x x ≠()2xf x =()()()1212f x x f x f x +=⋅()()()1212f x x f x f x ⋅=+()()12120f x f x x x ->-()()121222f x f x x x f ++⎛⎫<⎪⎝⎭x R ∈20x ≥54x >14245y x x =-+-2,1()4,12x a x f x a x x ⎧->⎪=⎨⎛⎫-≤ ⎪⎪⎝⎭⎩R a {22}A xx =-∣……{1}B x x =>∣()R B A ⋂ð{6}M xa x a =<<+∣A M M ⋃=a 2()3()f x x ax a R =--∈()0f x <{3}xx b -<<∣[2,)-+∞a17.(本小题15分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x m ,宽为y m.(1)若菜园面积为18m 2,则当x ,y 为何值时,可使所用篱笆总长最小?并求出最小值.(2)若使用的篱笆总长度为16m ,则当x ,y 为何值时,可使菜园面积最大?并求出最大值.18.(本小题17分)已知函数在上是偶函数,当时,,(1)求函数在上的解析式;(2)求单调递增区间和单调递减区间;(3)求在的值域.19.(本小题17分)已知函数对任意实数x ,y 恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数并求函数在区间上的最大值;(3)若对任意,不等式恒成立,求的取值范围.()f x R 0x (2)()23f x x x =+-()f x R ()f x ()f x [4,4]-()f x ()()()f x y f x f y +=+0x >()0f x <(1)2f =-()f x ()f x R ()f x [3,3]-x R ∈()23()4f axf x <+a高一期中考试数学参考答案1.B2.D3.D4.D5.B6.B7.A8.D 7.A 8.D9.ABD 10.AC 11.ACD12.存在,使得13.514.[4,8)14.解:(1)由已知,又,所以;(2)因为,所以,又,所以,解得.所以的取值集合为.16.解:(1)的解集为,和是方程的两根,由根与系数关系得:;.(2)的对称轴为且在区间上单调递增,;.17.解:(1)由已知可得,而篱笆总长为;又因为,当且仅当时,即时等号成立所以菜园的长为6m ,宽为3m 时,可使所用篱笆总长最小,最小值为12;0x R ∈200x ≤{1}R B x x =≤∣ð{22}A x x =-∣……(){21}R B A xx ⋂=-∣......ðA M M ⋃=A M ⊆{22},{6}A x x M x a x a =-=<<+∣∣ (62)2a a +>⎧⎨<-⎩42a -<<-a {42}a a -<<-∣()0f x < {3}x x b -<<∣3∴-b 230x ax --=∴3,33b a b -+=-⨯=-2,1a b ∴=-=()f x 2ax =()f x [2,)-+∞22a∴≤-4a ∴≤-18xy =2L x y =+212x y +≥=2x y =6,3x y ==x y(2)由已知得,而菜园面积为,则,当且仅当即时取等号,菜园的长为8m ,宽为4m 时,可使菜园面积最大,最大值为32.18.解:(1)当时,,函数是偶函数,当时,,.(2)由(1)可画出函数在上的图像,如图所示,则的单调递增区间为和,单调递减区间为和.(3)由函数的定义域为,由(2)中所作函数图象可知,当或时,取得最小值,当或时,取得最大值,故函数的值域.19.(1)解:取,则,,取,则,216x y +=S xy =2112232222x y S xy x y +⎛⎫==⋅⋅≤⋅= ⎪⎝⎭2x y =8,4x y ==∴x y 0x (2)()23f x x x =+- ()y f x =0x >20,()()23x f x f x x x -<∴=-=--22230()230x x x f x x x x ⎧+-∴=⎨-->⎩…()y f x =R ()f x (1,0)-(1,)+∞(,1)-∞-(0,1)()y f x =[4,4]-1x =1x =-(1)(1)4f f =-=-4x =4x =-(4)(4)5f f =-=()f x [4,5]-0x y ==(00)2(0)f f +=(0)0f ∴=y x =-()()()f x x f x f x -=+-对任意恒成立,为奇函数.(2)证明:任取且,则,,又为奇函数,.故为上的减函数;为上的减函数,在区间上的最大值为,,故在上的最大值为6.(3)解:为奇函数,且,整理原式得,即可得,而在上是减函数,所以即恒成立,①当时不成立,②当时,有且,即,解得.故的取值范围为.()()f x f x ∴-=-x R ∈()f x ∴12,(,)x x ∈-∞+∞12x x <()()()2121210,0x x f x f x f x x ->+-=-<()()21f x f x ∴<--()f x ()()12f x f x ∴>()f x R ()f x R ()f x ∴[3,3]-(3)f -(3)3(1)236,(3)(3)6f f f f ==-⨯=-∴-=-=()f x [3,3]-()f x (2)(2)2(1)4f f f -=-=-=()22()()(2)f ax f x f x f +-<+-()2(2)()(2)f axf x f x f +-<+-()22(2)f ax x f x -<-()f x R 222ax x x ->-2320ax x -+>0a =0a ≠0a >0< 0980a a >⎧⎨-<⎩98a >a 9,8⎛⎫+∞ ⎪⎝⎭。

吉林省白城市第一中学2024-2025学年高一上学期10月期中考数学试题(含答案)

吉林省白城市第一中学2024-2025学年高一上学期10月期中考数学试题(含答案)

白城市第一中学2024-2025学年度高一上学期期中考试数学试卷一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x >--,则实数x 的取值范围是()A.()1,-+∞ B.()1-∞-,C.()14-,D.()1-∞,2.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 应为()A.10mB.15mC.20mD.25m3.若()f x 是定义在R 上的单调递增函数,则下列四个命题中正确的有(1)若00()>f x x ,则[]00()>f f x x ;(2)若[]00()>ff x x ,则00()>f x x ;(3)若()f x 是奇函数,则[()]f f x 也是奇函数;(4)若()f x 是奇函数,则1212()()00+=⇔+=f x f x x x .A.4个B.3个C.2个D.1个4.已知实数,x y 满足24460x xy y +++=,则y 的取值范围是()A.{}|32y y -≤≤B.{}|23y y -≤≤C.{}{}|2|3y y y y ≤-≥ D.{}{}|3|2y y y y ≤-≥ 5.设,x y 是两个实数,命题“,x y 中至少有一个数大于1”的充分条件是()A.2x y += B.2x y +> C.222x y +> D.1xy >6.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是()A.1a ≤ B.0a ≤ C.a<0 D.0a >7.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A .a b c>> B.c a b >> C.c b a >> D.b c a>>8.若定义在()(),00,-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2422f x f x x --<+的解集为()A.(),1∞--B.()3,2-C.()(),31,2-∞-- D.()(),32,-∞-⋃+∞二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.若给定函数()221f x x x =--,2p =,则下列结论正确的是()A.()()()()00p p f f f f = B.()()()()11p p f f f f =C.()()()()22ppff f f = D.()()()()33ppff f f =10.以数学家约翰·卡尔·弗里德里希·高斯的名字命名的“高斯函数”为[]y x =,其中x ⎡⎤⎣⎦表示不超过x 的最大整数,例如[]3.23=,[]1.52-=-,则()A.R x ∀∈,[][]11x x --=B.不等式[][]22x x -≤的解集为{}13x x -≤<C.当1x ≥,3x x ⎡⎤+⎣⎦⎡⎤⎣⎦的最小值为D.方程[]243x x =+的解集为11.若存在常数k 和b 使得函数()F x 和()G x 分别对其定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()223R f x x x x =-∈,()()10g x x x=<,若使直线4y x b =-+为函数()f x 和()g x 之间的隔离直线,则实数b 的取值可以为()A.0B.-1C.-3D.-5(2023·浙江省余姚中学期中)12.已知,0,260x y x y xy >++-=,则()A.xy的最大值为B.2x y +的最小值为4C.x y +的最小值为3-D.22(2)(1)x y +++的最小值为16三、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数0a >,0b >,且111a b+=,则3211a b +--的最小值为___________.14.若关于x 的一元二次方程()22210a x ax a --++=没有实数解,则不等式30ax +>的解集__________.15.若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.16.若定义在区间[]2021,2021-上的函数()f x 满足:对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,且0x >时,有()2023f x >,()f x 的最大值为M ,最小值为N ,则()0f =______,M N +的值为______.四、解答题:写出必要的文字描述、解题过程.共6题.17.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:()2920031600=>++vy v v v .(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?18.(1)若()21,,204b x ax a x b =-∀∈+++≤R ,求a 的取值范围;(2)若22b a =--(a R ∈),求关于x 的不等式()220ax a x b +++≤的解集.19.已知关于x 的不等式20x ax b ++<的解集为()1,2,试求关于x 的不等式210bx ax ++>的解集.20.已知函数()()22323x x x f x -=<-≤+.(1)用分段函数的形式表示函数op ;(2)画出函数op 的图象;(3)写出函数op 的值域.21.已知函数()()01axf x a x =≠+.(1)当0a >时,判断()f x 的单调性;(2)若()f x 在区间[]1,2上的最大值为43.(i )求实数a 的值;(ii )若函数()()0b g x x b x =+>,是否存在正实数b ,使得对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.(2023·四川省攀枝花市第三高级中学月考)22.已知______,且函数()14212x x xa g x b+-⋅+=+.①函数()()0f x ax b a =+>在[]1,2上的值域为[]2,4;②函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数.请你在①②两个条件中选择一个条件,将上面的题目补无完整.(1)求a ,b 的值;(2)求函数()g x 在[]1,2-上的值域;(3)设()()2log 22xh x x m =+-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,求m 的取值范围.白城市第一中学2024-2025学年度高一上学期期中考试数学试卷一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x >--,则实数x 的取值范围是()A.()1,-+∞ B.()1-∞-,C.()14-,D.()1-∞,【答案】C 【解析】【分析】根据函数的解析式,分析函数的单调性,进而可将(4)(23)f x f x ->-转化为:40230x x -<⎧⎨-⎩或4230x x -<- ,解得答案.【详解】 函数21,0()1,0x x f x x ⎧+=⎨>⎩,∴函数在(-∞,0]上为减函数,在(0,+∞)上函数值保持不变,若(4)(23)f x f x ->-,则40230x x -<⎧⎨-⎩或4230x x -<-,解得:(1,4)x ∈-,故选:C .【点睛】本题主要考查的知识点是分段函数的解析式、单调性,函数单调性的应用,难度中档.2.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 应为()A.10mB.15mC.20mD.25m【答案】C 【解析】【分析】设出矩形花园的宽为y m ,根据相似得到方程,求出40y x =-,从而表达出矩形花园的面积,配方求出最大值,并得到相应的x .【详解】设矩形花园的宽为y m ,则404040x y -=,即40y x =-,矩形花园的面积()()22404020400S x x x x x =-=-+=--+,其中()0,40x ∈,故当20x =m 时,面积最大.故选:C3.若()f x 是定义在R 上的单调递增函数,则下列四个命题中正确的有(1)若00()>f x x ,则[]00()>f f x x ;(2)若[]00()>ff x x ,则00()>f x x ;(3)若()f x 是奇函数,则[()]f f x 也是奇函数;(4)若()f x 是奇函数,则1212()()00+=⇔+=f x f x x x .A.4个 B.3个C.2个D.1个【答案】A 【解析】【分析】利用单调性判断①;利用单调性与反证法判断②;利用奇偶性的定义判断③;利用奇偶性以及单调性判断④.【详解】对于①,()f x 是定义在R 上的单调递增函数,若()00f x x >,则()()000f f x f x x >>⎡⎤⎣⎦,故①正确;对于②,当()00f f x x >⎡⎤⎣⎦时,若()00f x x ≤,由()f x 是定义在R 上的单调递增函数得()()000f f x f x x ≤≤⎡⎤⎣⎦与已知矛盾,故②正确;对于③,若()f x 是奇函数,则()()()f f x f f x f f x -=-=-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,()f f x ∴⎡⎤⎣⎦也是奇函数,故③正确;对于④,当()f x 是奇函数,且是定义在R 上的单调递增函数时,若()()120f x f x +=,则()()()12212120f x f x f x x x x x =-=-⇒=-⇒+=,若()()()()()12121221200x x x x f x f x f x f x f x +=⇒=-⇒=-=-⇒+=,故④正确;故选A.【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.4.已知实数,x y 满足24460x xy y +++=,则y 的取值范围是()A.{}|32y y -≤≤B.{}|23y y -≤≤C.{}{}|2|3y y y y ≤-≥ D.{}{}|3|2y y y y ≤-≥ 【答案】C 【解析】【分析】利用一元二次方程有解,可得判别式大于等于零可求解.【详解】由题意知,关于x 的一元二次方程有解,则21616(6)0y y ∆=-+≥,即260y y --≥,解得2y ≤-或3y ≥.所以y 的取值范围是{}{}|2|3y y y y ≤-≥ .故选:C.5.设,x y 是两个实数,命题“,x y 中至少有一个数大于1”的充分条件是()A.2x y += B.2x y +> C.222x y +> D.1xy >【答案】B 【解析】【分析】用赋值法,取不同的x 与y 代入,可排除A 、C 、D.【详解】对于A ,当1,1x y ==时,满足2x y +=,但命题不成立;对于C ,D ,当2,3x y =-=-时,满足222x y +>,1xy >,但命题不成立.故选:B.6.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是()A .1a ≤ B.0a ≤ C.a<0D.0a >【答案】C 【解析】【分析】根据恒成立问题结合二次函数最值分析求解.【详解】记2()2,02f x x x x =-+≤≤,则min )[0,2],(a f x x <∈.而22()2(1)1f x x x x =-+=--+,当02x ≤≤时,min ()(0)(2)0f x f f ===,所以实数a 的取值范围是a<0.故选C .7.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A.a b c >>B.c a b>> C.c b a>> D.b c a>>【答案】A 【解析】【分析】确定数()()f x g x x=在(),0-∞上单调递增,()g x 是()(),00,-∞+∞ 上的偶数,变换得到13a g ⎛⎫=- ⎪⎝⎭,25b g ⎛⎫=- ⎪⎝⎭,()1c g =-,根据单调性得到答案.【详解】()()()211212120,x f x x f x x x x x ->≠-,即()()()121212120,f x f x x x x x x x ->≠-,故函数()()f x g x x=在(),0-∞上单调递增,()f x 是R 上的奇函数,故()g x 是()(),00,-∞+∞ 上的偶数,1113333a f g g ⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,522255b f g ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,()()()111c f g g ===-.12135->->-,故a b c >>.故选:A8.若定义在()(),00,-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2422f x f x x --<+的解集为()A.(),1∞--B.()3,2-C.()(),31,2-∞-- D.()(),32,-∞-⋃+∞【答案】C 【解析】【分析】构造函数()()f x g x x=,由题意可以推出函数()()f x g x x=的奇偶性、单调性,然后对x 进行分类讨论解不等式即可.【详解】因为对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,即对任意两个不相等的正实数12,x x 不妨设120x x <<,都有()()()()21121212121212x f x x f x f x f x x x x x x x x x --=<--,所以有()()1212f x f x x x >,所以函数()()f x g x x=是()0,∞+上的减函数,又因为()f x 为奇函数,即有()(),00,x ∀∈-∞⋃+∞,有()()f x f x -=-,所以有()()()()()f x f x f x g x g x xxx---====--,所以()g x 为偶函数,所以()g x 在(),0-∞上单调递增.当20x ->,即2x >时,有240x ->,由()()2422f x f x x --<+,得()()224224f x f x x x --<--,所以224x x ->-,解得<2x -,此时无解;当20x -<,即2x <时,由()()2422f x f x x --<+,得()()224224f x f x x x -->--,所以224x x -<-,解得3x <-或12x -<<.综上所述,不等式()()2422f x f x x --<+的解集为()(),31,2-∞-- .故选:C.【点睛】关键点点睛:解决本题的关键是由已知条件去构造函数()()f x g x x=,并结合已知导出其函数性质,从而分类讨论解不等式即可.二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.若给定函数()221f x x x =--,2p =,则下列结论正确的是()A.()()()()00p p f f f f = B.()()()()11p p f f f f =C.()()()()22ppff f f = D.()()()()33ppff f f =【答案】ACD 【解析】【分析】结合“p 界函数”的定义可确定函数解析式,再结合分段函数性质可得函数值,进而判断各选项.【详解】因为()221f x x x =--,2p =,令2212x x --≤,即2230x x --≤,解得13x -≤≤,则()2221,132,13x x x f x x x ⎧---≤≤⎪=⎨-⎪⎩或,A 选项:()()()2012p f f f =-=,()()()012pf f f =-=,即()()()()00ppf f f f =,A 选项正确;B 选项:()()()2122p f f f =-=,()()()127pf f f =-=,即()()()()11p pf f f f ≠,B 选项错误;C 选项:()()()212f f f =-=,()()()()()2222212ppf f f f f ==-=即()()()()22ppf f f f =,C选项正确;D 选项:()()()321ff f ==-,()()()()()2223321ppf f f f f ===-,即()()()()33ppf f f f =,D选项正确;故选:ACD.10.以数学家约翰·卡尔·弗里德里希·高斯的名字命名的“高斯函数”为[]y x =,其中x ⎡⎤⎣⎦表示不超过x 的最大整数,例如[]3.23=,[]1.52-=-,则()A.R x ∀∈,[][]11x x --=B.不等式[][]22x x -≤的解集为{}13x x -≤<C.当1x ≥,3xx ⎡⎤+⎣⎦⎡⎤⎣⎦的最小值为D.方程[]243x x =+的解集为【答案】AB 【解析】【分析】设x 的整数部分为a ,小数部分为b ,则[]x a =,则[]11x a -=-得到A 正确,解不等式得到[]12x -≤≤,计算B 正确,均值不等式等号条件不成立,C 错误,举反例得到D 错误,得到答案.【详解】对选项A :设x 的整数部分为a ,小数部分为b ,则[]x a =,1x -的整数部分为1a -,[]11x a -=-,故[][]11x x --=,正确;对选项B :[][]22x x -≤,则[]12x -≤≤,故13x -≤<,正确;对选项C :3x x ⎡⎤+≥=⎣⎦⎡⎤⎣⎦,当且仅当3x x ⎡⎤=⎣⎦⎡⎤⎣⎦,即x ⎡⎤=⎣⎦时成立,x ⎡⎤=⎣⎦不成立,故等号不成立,错误;对选项D :取x =,则[]4x =,代入验证成立,错误;故选:AB11.若存在常数k 和b 使得函数()F x 和()G x 分别对其定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()223R f x x x x =-∈,()()10g x x x=<,若使直线4y x b =-+为函数()f x 和()g x 之间的隔离直线,则实数b 的取值可以为()A.0B.-1C.-3D.-5【答案】BC 【解析】【分析】根据题意得到2234x x x b -≥-+,计算180b ∆=+≤得到一个范围,再根据双勾函数的单调性得到函数()14K x x x=+的最大值,综合得到答案.【详解】2234x x x b -≥-+,即220x x b +-≥恒成立,故180b ∆=+≤,解得18b ≤-;14x b x ≤-+,即14x b x+≤,函数()14K x x x =+在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,在1,02⎡⎫-⎪⎢⎣⎭上单调递减,故()max 142K x K ⎛⎫=-=- ⎪⎝⎭,故b 4≥-.综上所述:14,8b ⎡⎤∈--⎢⎣⎦.故选:BC.(2023·浙江省余姚中学期中)12.已知,0,260x y x y xy >++-=,则()A.xy的最大值为B.2x y +的最小值为4C.x y +的最小值为3-D.22(2)(1)x y +++的最小值为16【答案】BCD 【解析】【分析】A 选项,对不等式变形为26x y xy +=-,利用基本不等式得到6xy -≥,求出xy 的最大值;B 选项,将不等式变形为()62xy x y =-+,利用基本不等式得到()()22628x y x y +-+≤,求出2x y +的最小值;C 选项,对不等式变形为()()16y x x y +=-+,利用()()2114y x y x +++≤求解x y +的最小值;D 选项,不等式变形为()()218x y ++=,利用基本不等式求出和的最小值.【详解】由260x y xy ++-=得:26x y xy +=-,因为,0x y >,所以260x y xy +=->,所以06xy <<,由基本不等式可得:2x y +≥当且仅当2x y =时,等号成立,此时6xy -≥,解得:18xy ≥或2xy ≤,因为6xy <,所以18xy ≥舍去,故xy 的最大值为2,A 错误;由260x y xy ++-=得:()62xy x y =-+,因为,0x y >,所以()620x y -+>,所以026x y <+<,由基本不等式可得:()2224x y xy +≤,当且仅当2x y =时等号成立,即()()22628x y x y +-+≤,解得:24x y +≥或212x y +≤-,因为026x y <+<,所以212x y +≤-舍去,故2x y +的最小值为4,B 正确;由260x y xy ++-=变形为()16x y y x +++=,则()()16y x x y +=-+,由基本不等式得:()()2114y x y x +++≤,当且仅当1y x =+时等号成立,此时()()2164y x x y ++-+≤,令()0x y t t +=>,则由()2164t t +-≤,解得:3t -≥或3t -≤(舍去)所以x y +的最小值为3-,C 正确;由260x y xy ++-=可得:()()218x y ++=,从而22(2)(1)2(2)(1)2816x y x y +++≥++=⨯=当且仅当21x y +=+时,即2x =-,1y =-等号成立,故22(2)(1)x y +++最小值为16.故选:BCD ,三、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数0a >,0b >,且111a b +=,则3211a b +--的最小值为___________.【答案】【解析】【分析】利用111a b +=可得3211a b +--325b a =+-,根据()113232325b a b a b a a b a b ⎛⎫+=++=++ ⎪⎝⎭和基本不等式求出32b a +的最小值,从而可得解.【详解】根据题意得到111a b+=,变形为()()111ab a b a b =+⇒--=,则3211a b +--()()32532511b a b a a b +-==+---,因为111a b +=,故得到()1132323255b a b a b a a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当32b a ba=时等号成立.故3211a b +--≥故答案为:【点睛】本题考查了利用基本不等式求最值,属于基础题14.若关于x 的一元二次方程()22210a x ax a --++=没有实数解,则不等式30ax +>的解集__________.【答案】3|x x a ⎧⎫<-⎨⎬⎩⎭【解析】【详解】试题分析:因为关于x 的一元二次方程()22210a x ax a --++=没有实数解,所以()()2=44210a a a ∆--+<,可得320,3,a ax x a <--∴<- ,故答案为3x|x a ⎧⎫<-⎨⎬⎩⎭.考点:1、一元二次方程根与系数的关系;2、不等式的性质.15.若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】【详解】44224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号).【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.16.若定义在区间[]2021,2021-上的函数()f x 满足:对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,且0x >时,有()2023f x >,()f x 的最大值为M ,最小值为N ,则()0f =______,M N +的值为______.【答案】①.2023②.4046【解析】【分析】根据题意,取特殊点,结合单调性的定义,可得答案.【详解】∵对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,∴令120x x ==,得()02023f =,再令120x x +=,将()02023f =代入可得()()4046f x f x +-=,设12x x <,[]12,2021,2021x x ∈-则210x x ->,()()()21212023f x x f x f x -=+--∴()()2120232023f x f x +-->,又()()114046f x f x -=-,∴可得()()21f x f x >,即函数()f x 是严格增函数,∴()()max 2021f x f =,()()min 2021f x f =-,又∵()()202120214046f f +-=,∴M N +的值为4046.故答案为:2023;4046四、解答题:写出必要的文字描述、解题过程.共6题.17.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:()2920031600=>++vy v v v .(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?【答案】(1)当40v =(千米/小时)时,车流量最大,最大值约为11.08千辆/小时;(2)汽车的平均速度应控制在[]25,64这个范围内(单位:千米/小时).【解析】【分析】(1)利用基本不等式可求得y 的最大值,及其对应的v 值,即可得出结论;(2)解不等式29201031600vv v ≥++即可得解.【小问1详解】解:0v >,292092092011.08160031600833v y v v v v ==≤≈++++(千辆/小时),当且仅当1600v v=时,即当40v =(千米/小时)时,车流量最大,最大值约为11.08千辆/小时.【小问2详解】解:据题意有29201031600vv v ≥++,即28916000v v -+≤,即()()25640v v --≤,解得2564v ≤≤,所以汽车的平均速度应控制在[]25,64这个范围内(单位:千米/小时).18.(1)若()21,,204b x ax a x b =-∀∈+++≤R ,求a 的取值范围;(2)若22b a =--(a R ∈),求关于x 的不等式()220ax a x b +++≤的解集.【答案】(1)[]4,1--;(2)见解析【解析】【分析】(1)对a 分两种情况讨论,结合二次函数的图像和性质求出a 的取值范围;(2)原不等式等价于()()2210ax a x ++-≤.再对a 分类讨论解不等式得解.【详解】(1)当0a =时,不等式可化为1204x -≤,显然在R 上不恒成立,所以0a ≠.当0a ≠时,则有()20,20,a a a <⎧⎪⎨∆=++≤⎪⎩解得41a -≤≤-.故a 的取值范围为[]4,1--.(2)()22220ax a x a ++--≤等价于()()2210ax a x ++-≤.①当0a =时,()210x -≤,原不等式的解集为−∞,1.②当0a >时,220a a +-<,原不等式的解集为22,1a a +⎡⎤-⎢⎥⎣⎦.③当0a <时,22321a a aa ++--=-.若()222,1033a x =---≤,原不等式的解集为R;若23222,0,3a a a a a ++<--<-<1,原不等式的解集为[)22,1,a a +⎛⎤-∞-+∞ ⎥⎝⎦ ;若232220,0,13a a a a a ++-<<->->,原不等式的解集为(]22,1,a a +⎡⎫-∞-+∞⎪⎢⎣⎭ .【点睛】本题主要考查二次型不等式的恒成立问题,考查解二次型的不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知关于x 的不等式20x ax b ++<的解集为()1,2,试求关于x 的不等式210bx ax ++>的解集.【答案】12x x ⎧<⎨⎩或>1.【解析】【分析】由题意可知,关于x 的方程20x ax b ++=的两个根为1、2,利用韦达定理可求得a 、b 的值,进而可求得不等式210bx ax ++>的解集.【详解】由题意可知,关于x 的方程20x ax b ++=的两个根为1、2,由韦达定理得1212a b -=+⎧⎨=⨯⎩,即32a b =-⎧⎨=⎩,所以,不等式210bx ax ++>为22310x x -+>,即()()2110x x -->,解得12x <或1x >.因此,不等式210bx ax ++>的解集为12x x ⎧<⎨⎩或>1.【点睛】本题考查一元二次不等式的求解,同时也考查了利用一元二次不等式的解集求参数,考查计算能力,属于基础题.20.已知函数()()22323x x x f x -=<-≤+.(1)用分段函数的形式表示函数op ;(2)画出函数op 的图象;(3)写出函数op 的值域.【答案】(1)()2,2012,033x x f x x x +-<≤⎧⎪=⎨-+<≤⎪⎩;(2)图象答案见解析;(3)(]0,2.【解析】【分析】(1)分20x -<≤和03x <≤两种情况去掉绝对值可求出函数的解析式;(2)根据(1)的解析式画出函数的图像;(3)根据函数图像可求出函数的值域【详解】(1)()2,2012,033x x f x x x +-<≤⎧⎪=⎨-+<≤⎪⎩.(2)函数op 的图象如下图所示.(3)由图得函数op 的值域为(]0,2.【点睛】此题考查分段函数,考查由函数解析式画函数图像,根据图像求出函数的值域,属于基础题21.已知函数()()01axf x a x =≠+.(1)当0a >时,判断()f x 的单调性;(2)若()f x 在区间[]1,2上的最大值为43.(i )求实数a 的值;(ii )若函数()()0b g x x b x =+>,是否存在正实数b ,使得对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)在(),1∞--和()1,-+∞上单调递增(2)(i )2a =;(ii )存在,15153b b ⎧⎫<<⎨⎬⎩⎭【解析】【分析】(1)根据单调性的定义判断单调性;(2)(i )根据题意,分别对a<0和0a >两种情况讨论单调性,即可得出结果;(ii )由题意()()0bg x x b x=+>,可证得()g x 在(为减函数,在)+∞为增函数,设()m f x =,1,13m ⎡⎤∈⎢⎥⎣⎦,则()()0b b g m m m =+>,从而把问题转化为1,13m ⎡⎤∈⎢⎥⎣⎦,()()min max 2g m g m >时,求实数b 的取值范围.结合()()0b b g m m m=+>的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意得(),111ax a f x a x x x ==-≠-++.设12,(,1)x x ∀∈-∞-且12x x <,则()()()()()11212212=1111a x x a a a a x x x x x f x f -⎛⎫--- ⎪=+⎭-+++⎝,因为121x x <<-,所以120x x -<,()()12110x x ++>,当0a >时,()()120f x f x -<,即()()12f x f x <.所以()1a f x a x =-+在(),1∞--上单调递增;同理可得,()1a f x a x =-+在()1,-+∞上单调递增.故()f x 在(),1∞--和()1,-+∞上单调递增.【小问2详解】(i )()f x 在区间[]1,2上的最大值为43.①当a<0时,同理(1)可知,函数()1a f x a x =-+在区间[]1,2上单调递减,∴()()max 41223a a f x f a ==-==,解得823a =>(舍去);②当0a >时,函数()1a f x a x =-+在区间[]1,2上单调递增,∴()()max 242333a a f x f a ==-==,解得[]1,22a =∈.综上所述,2a =.(ii )由(i )知,()221f x x =-+,且()f x 在区间1,15⎡⎤⎢⎥⎣⎦上单调递增.∴()()115f f x f ⎛⎫ ⎪⎝⎭≤≤,即()113f x ≤≤,∴()f x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.讨论函数()()0b g x x b x=+>:令120x x <<,则()()()12121212121b b b g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,当(12,x x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12g x g x >,()g x 为减函数;当)12,x x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12g x g x <,()g x 为增函数;∴()g x 在(为减函数,在)+∞为增函数,令()m f x =,则1,13m ⎡⎤∈⎢⎥⎣⎦,∴()()()()0b g f x g m m b m==+>.在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形,等价于1,13m ⎡⎤∈⎢⎥⎣⎦,()()min max 2g m g m >.①当103<≤,即109b <≤时,()b g m m m =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()()min max 13,13g m b g m b =+=+,由()()minmax 2g m g m >,即2613b b +>+,得115b >,∴11159b <≤;②当1193b <≤时,()b g m m m =+在13⎡⎫⎢⎣⎭上单调递减,在⎤⎦上单调递增,∴()()ma min x 1g m g m b ==+,由()()min max 2g m g m >,即1b >+,得21410b b -+<,解得77b -<<+1193b <≤;③当113b <<时,()b g m m m =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()()m x min a 133g m g m b ==+,由()()min max 2g m g m >,即133b >+,得2191409b b -+<,解得74374399b -+<<,∴113b <<;④当1b ≥时,()b g m m m =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()()min max 11,33g m b g m b =+=+,由()()min max 2g m g m >,即12233b b +>+,解得53b <,∴513b ≤<.综上所述,实数b 的取值范围为15153b b ⎧⎫<<⎨⎩⎭.【点睛】关键点睛:本题第二问的关键是结合对勾函数的图象与性质,通过对b 的分类讨论从而得到不等式,解出即可.(2023·四川省攀枝花市第三高级中学月考)22.已知______,且函数()14212x x x a g x b+-⋅+=+.①函数()()0f x ax b a =+>在[]1,2上的值域为[]2,4;②函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数.请你在①②两个条件中选择一个条件,将上面的题目补无完整.(1)求a ,b 的值;(2)求函数()g x 在[]1,2-上的值域;(3)设()()2log 22x h x x m =+-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,求m 的取值范围.【答案】(1)选①根据单调性及值域列方程组求解;选②利用奇偶性列方程组求解(2)12,4⎡⎤-⎢⎥⎣⎦(3)12m >【解析】【分析】(1)选①,根据根据单调性及值域列方程组求解;选②根据函数为偶函数列方程组求解;(2)直接根据函数单调性求值域;(3)将1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立转化为()()2min 1g x h x <,先利用函数单调性求出()in 1m 2g x =-,即得则[]22,2x ∃∈-使得()()22222log 22x h x x m =+->-成立,继续转化为22min 112242x x m ⎛⎫>+⋅ ⎪⎝⎭,利用基本不等式最小值即可.【小问1详解】选①,函数()()0f x ax b a =+>在[]1,2上单调递增,故()()12224f a b f a b ⎧=+=⎪⎨=+=⎪⎩,解得2,0a b ==;选②,函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数故202110a b b -⎧=⎪⎨⎪-++=⎩,解得2,0a b ==;【小问2详解】由(1)得()1422112422x x x x x g x +-⋅+==+-,令12,42x t ⎡⎤=∈⎢⎥⎣⎦,[]1,2x ∈-,则()14g x t t =+-,1,42t ⎡⎤=⎢⎥⎣⎦,由对勾函数的性质可得1y x x =+在()0,1上递减,()1,+∞上递增,故()min 11421g x =+-=-,又()()131124,44224412g g =+-==+-=--,所以函数()g x 在[]1,2-上的值域为12,4⎡⎤-⎢⎣⎦;【小问3详解】由(2)得,当x ∈R 时,20x >,()min 2g x =-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,则[]22,2x ∃∈-使得()()22222log 22x h x x m =+->-成立,整理得22112242x x m >+⋅在[]22,2x ∈-上能成立,所以22min112242x x m ⎛⎫>+⋅ ⎪⎝⎭,又22112142x x +⋅≥=,当且仅当2211242x x =⋅,即21x =-时等号成立,所以21m >,即12m >.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)若 D 是母线 SA 上靠近点 A 的三等分点,E 是母线 SB 的中点. 现要在 D,E 两处悬挂重物.
需要在底面直径 AB 上一点 P 处,分别按两根直钢管 PD 和 PE. 试确定点 P 距 A 多远时,使得钢
管总长度最小.
【答案】(1) 6 13 ;
(2)P 距 A 点 24 dm 时,使得钢管总长度最小,最小为 249dm 5
C. 9
D. 8
【答案】C
【解析】1 的代换,基本不等式。
10.如图,一条河的两岸平行,河的宽度 d=0.8km,一艘客船从码头 A 出发匀速驶往河对岸的码
头 B.已知 AB=1 km,水的流速为 2 km/h,若客船从码头 A 驶到码头 B 所用的时间为 6 min,则
客船在静水中的速度为(
)
即: m2 m 2 0 ,解方程可得: m 1或 m 2 ,再检验。
9.设 x R ,对于使 2x x2 M 恒成立的所有常数 M 中,我们把 M 的最小值 1 叫
做 2x x2 的上确界.若正实数 a, b 满足 a b 1,则 1 4 的上确界为( ) ab
A. 16
B. 10
3
8.若直线 l1 : x m 1 y m 2 0 , l2 : mx 2 y 8 0 是两条重合的直线,则 m 的值是
()
A.
D. m 的值不存在
【答案】C
【解析】结合两直线平行或重合的充要条件可得关于实数 m 的方程:
mm 1 1 2 0 ,
A. A B
B. A B
C. A B
【答案】A
) D.不确定
【解析】
在△ABC 中,若 sinA<sinB,由正弦定理可得:a<b,可得 A<B.
4.已知直线 l1 的方程为 3x+4y﹣5=0,直线 l2 的方程为 6x+8y+1=0,则直线 l1 与 l2 的距离为( )
6
A.
5
B.6
11

米, AN
百米,可以使得所需的总费用最少.
3
【答案】 ,3
2
【解析】
设 AM x , AN y ,则 0 x 4 , 0 y 4
由题意得 SAMN SAMP SANP ,
故 1 AM ANsinMAN 1 AM APsinMAP 1 AN APsinNAP ,
2
2
2
即 1 xysin120 1 ysin60 1 xsin60 ,
6.若1 < 1 <0,则下列不等式:(1)|a|>|b|,(2)c2 < c2,(3)a+c>b+c,(4)a+b<0
ab
ab
中正确的是( )
A.(1)(2) B.(1)(3) C.(2)(3) D.(3)(4)
【答案】D
【解析】
解:由题意得:∵ 1 < 1 <0,
ab
∴ b<a<0,
∴a+b<0,|a|<|b|,a+c>b+c,
两个平面的公共点必在其交线上,故 D 正确.
故选:AD.
14.已知函数
f
(x)
x4
2x2 x2 2
a
(x R) 的值域为[m,) ,则实数 a 与实数 m
的取值可能为
()
A. a 0, m 0
B. a 1, m 1
C. a 2, m 2 2 2 D. a 4, m 2
【答案】AD
7.若点 P(3, a) 到直线 x 3y 4 0 的距离为 1,则 a 的值为( )
A. 3
【答案】C 【解析】
B. 3 3
C. 3 或 3 3
D. 3 或 3 3
第1页共6页
3 3a 4
由题意得
3a 1 1 ,即
3a 1 2 ,
1 3
2
解得 a 3 或 a 3 .选 C.
【解析】
令 x2 2 t , t 2 ,则 y t a 2(t 2) ,依次判断每个选项得到答案. t
三、填空题
15.与直线 2x+3y–6=0 关于点(1,–1)对称的直线方程是______.
【答案】2x+3y+8=0
【解析】
在所求直线上取点(x,y),
则关于点(1,–1)对称的点的坐标为(2–x,–2–y),
则u
4x
y
4x
y
1 x
1 y
y x
4x y
5
2
y 4x 5 9 , xy
当且仅当
y
4x
,即
y x
4x , y 解得
x
3 2
,
此时等号成立.
xy
xy y x, y 3,
当 x 3 , y 3 (单位:百米) 时,所需的总费用最少. 2
四、解答题
19.在平面直角坐标系 xOy 中,曲线 y x2 6x 1 与 x 轴交于 A, B 两点,与 y 轴交于 M 点. A, B, M 三点都在圆 C 上. (1)求线段 AB 的垂直平分线方程;
圆 C 的半径为 r 32 t 12 3 ,
故得圆 C 的方程为 x 32 y 12 9 .
20.在 ABC 中,内角 A,B,C 的对边分别为 a,b,c,已知 a sin B b sin B C . 2
(1)求 A;
(2)若 b c 2 ,求 a 取最小值时 ABC 的面积 S.
【答案】B
【解析】转移代入法,求得: Q 点轨迹方程为 (x 2)2 y2 1 BQ 最大值等于 B 到圆心 (2,0) 的距离加半径 1,即 5+1=6。
D. 17 1 2
二、多选题
13.设 P 表示一个点, a, b 表示两条直线, , 表示两个平面,下列说法中正确的是( ) A.若 a / /b , a , P b , P ,则 b B.若 P a , P ,则 a C.若 a b P , b ,则 a D.若 b , P , P ,则 P b
【答案】AD
【解析】
如图: a / /b , P b , P a ,∴由直线 a 与点 P 确定唯一平面 ,又 a / /b ,由 a 与 b 确定唯一平 面 ,但 经过直线 a 与点 P, 与 重合,b ,故 A 正确; 当 a P 时, P a , P ,但 a Ø ,故 B 错; 当 a P 时,C 错;
第4页共6页
(2)求圆 C 的标准方程.
【答案】(1) x 3 ;(2) x 32 y 12 9; .
【解析】
1 x xA xB 3 ,所以线段 AB 的垂直平分线的方程为 x 3 .
2
2 曲线 y x2 6x 1 与 y 轴交点为(0,1) ,
AB xA xB xA xB 2 4xAxB 32 4 2 . 故可设该圆圆心 C 3,t ,则 32 t 12 (2 2)2 t2 ,解得 t 1,
2
22
2
由于
B

ABC
的内角,∴
cos
A 2
0
,所以
sin
A 2
1 2

又因为 A 0, ,所以 A , A ;
26
3
(2)在 ABC 中由余弦定理知:
a2
b2
c2
2bc cos
A
(b
c)2
3bc
b
c2
3
b
2
c
2

所以 a 1 ,等号当仅当 b c 1 时等号成立,此时 S 1 bc sin A 3
【答案】(1) A (2) 3
3
4
【解析】
(1)因为
a sin
B
b sin
B
2
C
,所以
a sin
B
b sin
2
A 2
,即
a sin
B
b cos
A 2

由正弦定理得 sin Asin B sin B cos A , 2
由于 C 为 ABC 的内角,所以 sin B 0 ,所以 sin A cos A ,即 2sin A cos A cos A
C.
10
D.4
【答案】C
【解析】
由题意可得:直线 l1 的方程为 6x+8y﹣10=0, 因为直线 l2 的方程为 6x+8y+1=0,
所以根据两条平行线间的距离公式 d=
11
可得:直线 l1 与 l2 的距离为 .
10
5.设 C 的内角 , , C 的对边分别为 a , b , c .若 a 2 , c 2 3 , cos 3 , 2
准备在两条道路所夹的一侧建两个三角形主题游乐场所,即过位于 BAC 的平分线上且距顶点 A
1 百米处的 P 点,建一条新的直线道路 MN , M , N 在道路 AB 和 AC 上,围出两个三角形区域
AMP 与 ANP .若 AMP 区域每平方米的建造费用是 ANP 区域的 4 倍. 则设计 AM
3
2a
,且 3
2a
0
,即
a
3 2
.
第2页共6页
根据题意点 A a,a 在圆 x2 y2 2ax a2 2a 3 0 外,
即| AP | (a a)2 (a 0)2 r 3 2a ,
即有 a2 3 2a ,整理可得 a2 2a 3 0 ,即 (a 3)(a 1) 0 ,
高一年级数学学科摸底测试一(3.28)解析
一、单选题
1.直线 5x 4 y 20 0 的纵截距是( )
A. 5 C.4
B. 4
D.5
【答案】A
2.不等式 2x x2 0 的解集是(
相关文档
最新文档