数列与函数的综合
高考数学一轮总复习课件:数列的综合应用
又因为an≤15,所以6×1.2n-1≤15, 所以n-1≤5,所以n≤6. 所以an=611×,1n.2=n-11,,2≤n≤6,
15,n≥7.
(2)由(1)得,2021年全年的投资额是(1)中数列{an}的前12项 和,所以S12=a1+(a2+…+a6)+(a7+…+a12)=11+6×(1.2+… +1.25)+6×15=101+6×1.2×(1.21-.251-1)≈154.64(万元).
(1)证明:an+2-an=λ; (2)是否存在λ,使得{an}为等差数列?并说明理由. 【思路】 (1)已知数列{an}的前n项和Sn与相邻两项an,an+1间 的递推关系式anan+1=λSn-1,要证an+2-an=λ,故考虑利用an+1= Sn+1-Sn消去Sn进行证明. (2)若{an}为等差数列,则有2a2=a1+a3,故可由此求出λ,进 而由an+2-an=4验证{an}是否为等差数列即可.
【解析】 (1)证明:由已知,得bn=2an>0. 当n≥1时,bbn+n 1=2an+1-an=2d. 所以数列{bn}是首项为2a1,公比为2d的等比数列. (2)函数f(x)=2x在(a2,b2)处的切线方程为y-2a2=(2a2ln2)(x -a2),它在x轴上的截距为a2-ln12. 由题意,a2-ln12=2-ln12,解得a2=2. 所以d=a2-a1=1,所以an=n,bn=2n,anbn2=n·4n.
比数列.所以an+1=45+-25190n.
(3)因为an+1>60%,即
4 5
+
-25
9 10
n
>
3 5
,则
9 10
n
<
1 2
,所以
n(lg9-1)<-lg2,n>1-lg22lg3≈6.572 1.
数列的函数性质-2023届高三数学一轮复习专题
2023高考数列专题——数列的函数性质一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; (2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为 跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( )A .2B .-6C .3D .1例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( )A .425B .428C .436D .437跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2三、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn的最小值为( )A .293B .47-1C .485D .274例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第 项. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .63、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 0114、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.四、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( )A .0B .252C .21D .42跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15 2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.3、 (2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.高考数列专题——数列的函数性质(解析版)一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列;(2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( B )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 解: ∵数列{a n }是单调递增数列,∴对任意的n ∈N *,都有a n +1>a n ,∴(n +1)2+b (n +1)>n 2+bn ,即b >-(2n +1)对任意的n ∈N *恒成立,又n =1时,-(2n +1)取得最大值-3,∴b >-3,即实数b 的取值范围为(-3,+∞).例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为(-∞,6).解:解法一:由数列是一个递减数列,得a n +1<a n ,又因为a n =-2n 2+kn -1,所以-2(n +1)2+k (n +1)-1<-2n 2+kn -1,k <4n +2,对n ∈N *,所以k <6.解法二:数列{a n }的通项公式是关于n (n ∈N *)的二次函数,∵数列是递减数列,∴k 4<32,∴k <6.跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列解析:A 由a n =n 3n +1,可得a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,故选A .2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.解析:因为函数a n =2-1n 的定义域为N *,且a n =2-1n 在N *上单调递增,0<2-1n <2,所以满足3个条件的数列的通项公式可以是a n =2-1n.答案:a n =2-1n(答案不唯一)3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.解:(1)∵a 1+2a 2+3a 3+…+na n =n +12a n +1,∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式相减得na n =n +12a n +1-n2a n ,即(n +1)a n +1na n=3(n ≥2),∵a 1=1,∴1=1+12a 2,即a 2=1,∴2·a 21·a 1=2≠3.∴数列{na n }是从第二项开始的等比数列, ∴当n ≥2时,有na n =2×3n -2, ∴a n =⎩⎪⎨⎪⎧1,n =1,2n×3n -2,n ≥2.(2)存在n ∈N *使得a n ≤(n +1)λ成立⇔λ≥a nn +1有解,①当n =1时,a 12=12,则λ≥12,即λmin =12;②当n ≥2时,a nn +1=2×3n -2n (n +1),设f (n )=2×3n -2n (n +1),∴f (n +1)f (n )=3nn +2>1,∴f (n )单调递增,∴f (n )min =f (2)=13,∴实数λ的最小值是13.由①②可知实数λ的最小值是13.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( 3 )A .2B .-6C .3D .1解 因为数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),所以a 2=1+a 11-a 1=1+21-2=-3,同理可得a 3=-12,a 4=13,a 5=2,…所以数列{a n }每四项重复出现,即a n +4=a n ,且a 1·a 2·a 3·a 4=1,而2 023=505×4+3,所以该数列的前2 023项的乘积是a 1·a 2·a 3·a 4·…·a 2 023=1505×a 1×a 2×a 3=3.例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( A )A .425B .428C .436D .437解: 由数列的递推公式可得:a 2=22-a 1=43,a 3=22-a 2=3,a 4=22-a 3=-2,a 5=22-a 4=12=a 1,据此可得数列{a n }是周期为4的周期数列,则:6S 100=6×25×⎝⎛⎭⎫12+43+3-2=425. 跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2解析:B 由a 1=12,a n +1=11-a n得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的周期数列,因此a 2 023=a 3×674+1=a 1=12.五、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn 的最小值为( C )A .293B .47-1C .485D .274解: 由a n +1-a n =2n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=28+2+4+…+2(n -1)=28+n (n -1)=n 2-n +28,∴a n n =n +28n -1,设f (x )=x +28x ,可知f (x )在(0,28 ]上单调递减,在(28,+∞)上单调递增,又n ∈N *,且a 55=485<a 66=293.例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第9、10项.解: 解法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.解法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *,∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.解析:当a n =n -22n -11>0⇒n =1或n ≥6,∴a 2=0,a 3<0,a 4<0,a 5<0,故当S n 取得最小值时n 的值为5.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .6解析:C 因为数列{a n }是递增数列,又t 2-a 2n -3t -3a n =(t -a n -3)(t +a n )≤0,t +a n >0,所以t ≤a n+3恒成立,即t ≤(a n +3)min =a 1+3=3,所以t max =3.3、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 011解析:C 因为S 2 018>0,S 2 019<0,所以a 1+a 2 018=a 1 009+a 1 010>0,a 1+a 2 019=2a 1 010<0,所以a 1 009>0,a 1 010<0,且a 1 009>|a 1 010|,因为对任意正整数n ,都有|a n |≥|a k |,所以k =1 010,故选C .4、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项解析:BCD 当k =12时,a 1=a 2=12,知A 错误;当k =45时,a n +1a n =45·n +1n ,当n <4时,a n +1a n>1,当n >4时,a n +1a n <1,所以可判断{a n }一定有最大项,B 正确;当0<k <12时,a n +1a n =k n +1n <n +12n ≤1,所以数列{a n }为递减数列,C 正确;当k 1-k 为正整数时,1>k ≥12,当k =12时,a 1=a 2>a 3>a 4>…,当1>k >12时,令k 1-k =m ∈N *,解得k =mm +1,则a n +1a n =m (n +1)n (m +1),当n =m 时,a n +1=a n ,结合B ,数列{a n }必有两项相等的最大项,故D 正确.故选B 、C 、D .5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.解析:a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.六、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( C )A .0B .252C .21D .42解: 由函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,可得y =f (x )的图象关于直线x =1对称,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,又{a n }是等差数列,所以a 1+a 21=a 4+a 18=2,可得数列的前21项和S 21=21(a 1+a 21)2=21,则{a n }的前21项之和为21.故选.跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15解析:D f ′(x )=x 2-6x +8,∵a 5,a 6是函数f (x )的极值点,∴a 5,a 6是方程x 2-6x +8=0的两实数根,则a 5·a 6=8,∴log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1·a 2·…·a 10)=log 2(a 5·a 6)5=5log 28=15,故选D .2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列. (1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.[解] (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *). (2)因为数列{a n }是首项为2,公比为3的等比数列,所以1a n +11a n =a n a n +1=13,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34,因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.3、(2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.解析:根据等差数列{a n }的前n 项和S n 满足S n ≤S 8恒成立,可知a 8≥0且a 9≤0,所以1+7d ≥0且1+8d ≤0,解得-17≤d ≤-18.答案:⎣⎡⎦⎤-17,-18。
数列与函数的综合运用练习题
数列与函数的综合运用练习题在数学中,数列和函数是常见且重要的概念。
数列是按照特定的规律排列的一系列数值的集合,而函数是一种对应关系,将一个集合中的元素映射到另一个集合中的元素。
数列和函数的综合运用能够帮助我们更好地理解数学问题,并提供解决问题的方法。
本文将通过一系列练习题来展示数列与函数的综合运用。
1. 已知数列的通项公式为an = 3n + 1,求该数列的前10项。
解析:根据题目中给出的通项公式,我们可以依次计算出数列的前10项:a1 = 3*1 + 1 = 4,a2 = 3*2 + 1 = 7,以此类推,计算出a3到a10的值。
答案:该数列的前10项分别为4,7,10,13,16,19,22,25,28,31。
2. 已知函数f(x) = 2x^2 + 3x - 1,求f(2)的值。
解析:对于函数f(x),要求f(2)的值,只需要将x替换为2,然后计算出f(2)的结果。
答案:f(2) = 2*(2^2) + 3*2 - 1 = 14。
3. 设数列的前n项和为Sn,已知数列的通项公式为an = n^2,求Sn。
解析:由数列的通项公式可知,每一项的值都是n的平方,因此前n项和Sn可以表示为Sn = 1^2 + 2^2 + ... + n^2。
答案:Sn = 1^2 + 2^2 + ... + n^2 = n(n+1)(2n+1)/6。
4. 已知函数g(x) = 3x - 2,求满足g(x) = 10的x的值。
解析:要求满足函数g(x) = 10的x的值,即求解方程3x - 2 = 10。
答案:解方程3x - 2 = 10,可以得到x = 4。
通过以上练习题的解答,我们可以看到数列和函数在数学问题中的应用。
数列可以描述一系列数值的排列规律,而函数则提供了一种映射关系,将一个集合中的元素映射到另一个集合中的元素。
通过运用数列和函数的相关概念和公式,我们可以解决各种数学问题,并获得准确的答案。
需要注意的是,在解决问题时,我们要仔细理解题目中给出的条件和要求,并根据题目类型选择合适的数列或函数的公式进行计算。
7.数列的综合应用之一(数列与函数的综合)
数列的综合应用数列综合应用题型分类:一、数列与函数的综合;二、数列与不等式的综合;三、数列与平面解析几何的综合;四、数列与极限、数学归纳法、导数等知识的综合。
数列与函数的综合应用——数列的综合应用之一一、典例培析1、已知函数2*1()(,,)ax f x a b N c R bx c+=∈∈+是奇函数,在区间(0,)+∞上()(1)f x f ≥恒成立,且(1)1f ≥(1)求函数()f x 的解析式;(2)是否存在这样的区间D :①D 是()f x 定义上的一个子区间;②对任意12,,x x D ∈当 1212120,|()||()|x x x x f x f x ><<且时有,若存在,求出区间D ;若不存在,说明理由。
(3)若数列{}n a ,{}n b 满足关系:111,()12n n n n n b a a f a b ++==-,当13a =时,求数列{}n b 的通项公式,且当{}n b 的前n 项之积1128n T ≥时,求n 的最大值。
2、已知函数()2)f x x =<-(1)求()f x 的反函数1()f x -;(2)设1*1111,()()n n a f a n N a -+==-∈,求n a ; (3)设222121,n n n n n S a a a b S S +=+++=-L 是否存在最小正整数m ,使得对任意*n N ∈,都有25n mb <成立?若存在,求出m 的值;若不存在,说明理由。
3、定义:称12nnp p p +++L 为n 个正数12,,,n p p p L 的“均倒数”。
若已知数列{}n a 的前n 项的“均倒数”为121n +,(1)求{}n a 的通项公式;(2)设21n n a C n =+,试判断并说明*1()n n C C n N +-∈的符号;(3)设函数2()421n a f x x x n =-+-+是否存在最大的实数λ,当x λ≤时,对一切*n N ∈,都有()0f x ≤成立?若存在,求出λ的值;若不存在,说明理由。
数列与函数的关系
数列与函数的关系在数学中,数列和函数是两个常见概念,它们之间存在着紧密的关联。
本文将详细探讨数列与函数之间的关系,并介绍它们的定义、性质和应用。
一、数列的定义和性质1.1 数列的定义数列是由一串按照一定规律排列的数字所组成的序列。
数列中的每个数字称为项,用通项公式来表示。
通常用{an}或者an表示数列,其中n为项的位置,an为第n个项的值。
1.2 数列的分类根据数列的特点,我们可以将数列分为等差数列、等比数列和一般数列。
1.2.1 等差数列等差数列的相邻项之间的差为常数d,通项公式可以表示为an=a1+(n-1)d,其中a1为首项。
1.2.2 等比数列等比数列的相邻项之间的比值为常数q,通项公式可以表示为an=a1q^(n-1),其中a1为首项。
1.2.3 一般数列一般数列没有固定的递增规律,其通项公式可以根据具体情况来确定。
1.3 数列的性质数列有许多重要的性质,其中包括数列的有界性、单调性、递推关系和求和公式等。
1.3.1 有界性如果数列的所有项都有上界M和下界m,即存在实数M和m,使得对于任意n,都有m≤an≤M,那么称数列是有界的。
1.3.2 单调性如果对于任意n,都有an≤an+1或者an≥an+1,那么称数列是单调的。
1.3.3 递推关系递推关系是用来描述数列中的每一项与前面一项之间的关系。
例如,在等差数列中,相邻项之间的差是常数d,这就是等差数列的递推关系。
1.3.4 求和公式对于一些特定的数列,可以通过求和公式来计算数列的前n项和,例如等差数列和等比数列。
二、函数的定义和性质2.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
数学上常用f(x)来表示函数,其中x称为自变量,f(x)称为函数值。
2.2 函数的分类函数可以根据定义域、值域、增减性以及性质等进行分类。
2.2.1 定义域和值域函数的定义域是自变量取值的范围,值域是函数值的范围。
2.2.2 增减性函数的增减性描述了函数值随自变量增大而增大或减小的趋势。
专题04 数列求和及综合应用(解析版)
专题04 数列求和及综合应用【要点提炼】1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.考点一 数列求和及综合应用考向一 a n 与S n 的关系问题【典例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值.解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【拓展练习1】 (2020·合肥检测)已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2), a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1,∴a 22=2+a 2,a 2>0,∴a 2=2. 因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1. ∴实数a 的取值范围是(-1,+∞). 考向二 数列求和 方法1 分组转化求和【典例2】 (2020·山东五地联考)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【拓展练习2】 (2020·潍坊调研)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎨⎧a 1+d =8,4a 1+6d =40,解得⎩⎨⎧a 1=4,d =4,所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎨⎧4n ,n 为奇数,3·2n -1,n 为偶数,当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数.方法2 裂项相消求和【典例3】 (2020·江南六校调研)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2.(1)证明:{a n }为等比数列; (2)记b n =log 2a n ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围.(1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n , 所以a n +1=2a n (n ≥2).又a 2=2a 1,所以a n +1a n=2(n ∈N *),所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n ,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1,因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n ,因为10(n +1)n =10⎝ ⎛⎭⎪⎫1+1n ≤20, 所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【拓展练习3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.方法3 错位相减法求和【典例4】 (2020·济南统测)在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题. 已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________. (1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎨⎧a 1d =2,2a 1+5d =6d , 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=-1,d =-2(舍去).∴⎩⎨⎧b 1=1,q =2. ∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【拓展练习4】 (2020·潍坊模拟)在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n=5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝ ⎛⎭⎪⎫132+133+…+13n -5n -33n +1 =23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1.所以S n =94-10n +94×3n .选②③时,设数列{b n }的公差为d 2.因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2.因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n 3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n 3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n=32⎝ ⎛⎭⎪⎫1-13n -n 3n =32-2n +32×3n . 所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意.考向三 与数列相关的综合问题【典例5】 (2020·杭州滨江区调研)设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 可化为3n -12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【拓展练习5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式; (2)若数列{c n }满足c n =a nb n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1. (1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8,∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *). ∴2b n =21+22+23+ (2)=2(1-2n )1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1, ∴T n =c 1+c 2+…+c n=121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1,∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.【专题拓展练习】一、单选题1.已知数列{}n a 满足()2*11n n n a a a n N+=-+∈,设12111n nS a a a =+++,且10910231a S a -=-,则数列{}n a 的首项1a 的值为( )A .23 B .1C .32D .2【答案】C 【详解】若存在1n a =,由2111n n n a a a --=-+,则可得11n a -=或0n a =,由12111n nS a a a =+++可得0n a ≠,由10910231a S a -=-可得101a ≠所以{}n a 中恒有1n a ≠由211n n n a a a +=-+,可得()111n n n a a a +-=-所以()11111111n n n n n a a a a a +==----,即111111n n n a a a +=---所以1212231111111111111111n n n n S a a a a a a a a a +⎛⎫⎛⎫⎛⎫=+++=-+-++-⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭111111n a a +=--- 所以110109*********a S a a a -=---=-,即1010101010123222111111a a a a a a =+--=----= 所以1121a =-,则1112a -=,所以132a = 2.已知在数列{}n a 中,14a =,26a =,且当2n ≥时,149n n a a +=-,若n T 为数列{}nb 的前n 项和,19(3)n n n n a b a a +-=⋅,则当175(3)()8n n a T λ+=-⋅-为整数时,n λ=( )A .6B .12C .20D .24 【答案】D 【详解】当2n ≥时,149n n a a +=-,得134(3)n n a a +-=-,又26a =,∴{3}n a -从第二项开始是首项为3,公比为4的等比数列,∴2334n n a --=⨯(2n ≥),∴2413432n n n a n -=⎧=⎨⨯+≥⎩,,, 当1n =时,1138T b ==,217155(3)()82a T Z λ=-⋅-=∉,不符合题意, 当2n ≥时,221213411(41)(41)4141n n n n n n b -----⨯==-++++, ∴12221131171()84141841n n n n T b b b ---=++⋅⋅⋅+=+-=-+++, 则111115534154141n n n λ---=⨯⨯⨯=-++,由λ为整数可知141n -+是15的因数, ∴当且仅当2n =时λ可取整数,12λ=,所以24n λ=,3.设n S 为数列{}n a 的前n 项和,*()(11),2n n n n S a n N -+=∈,则数列{}n S 的前7项和为( ) A .1256-B .85256-C .11024- D .3411024-【答案】B 【详解】 ∵(1)12nn n n S a -+=, ∴1n =时,1112S a +=-,即1112a a +=-,114a =-,由已知1(1)2nn n n S a =--, 2n ≥时,11111111(1)(1)(1)(1)222n n n nn n n n n n n n n na S S a a a a -----=-=----+=-+-+(*), (*)式中n 为偶数时,112n n n na a a -=++,112n n a -=-,此时1n -为奇数, ∴n 为奇数时112n n a +=-(*)式中n 为奇数时,112n n n n a a a -=--+,1122n n na a --=-,即1111112222n n n n a -+-⎛⎫=-⨯-+= ⎪⎝⎭,此时1n -为偶数,∴n 为偶数时,12n na =, ∴11,21,2n n nn a n +⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,由1(1)2nn n nS a =--,得n 为奇数时,11122n n n S +=-,n 为偶数时,11022nn nS =-=, ∴数列{}n S 的前7项和为11111111421686432256128⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11118541664256256=----=-. 4.若()()*12coscoscoscos 5555n n n S n ππππ-=++++∈N ,则1S 、2S、、2020S 中值为0的共有( ) A .202个 B .404个C .606个D .808个【答案】B 【详解】由于4coscos055ππ+=,23cos cos 055ππ+=,5cos 15π=-,69cos cos 055ππ+=,78cos cos 055ππ+=,10cos 15π=,所以234cos coscos cos 05555ππππ+++=, 2310cos cos cos cos 05555ππππ++++=,所以40S =,100S =,()()()101210coscos cos555n n n n n S S πππ++++-=+++()()()()()()1627510cos cos cos cos cos cos 555555n n n n n n ππππππ++++++⎡⎤⎡⎤⎡⎤=++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()()()112255cos cos cos cos cos cos 555555n n n n n n ππππππ++++++⎡⎤⎡⎤⎡⎤=-+-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0=,所以,()10n n S S n N *+=∈,则()44+100n SS n N *==∈,()10100n S S n N *==∈,因此,1S 、2S 、、2020S 中值为0的共有2022404⨯=个.5.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8 B .9 C .10 D .11【答案】A 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.6.已知数列{}n a 满足123232n n a a a na ++++=,设1(1)2nn n a b n -=+,n S 为数列{}n b 的前n 项和.若t n S <对任意n *∈N 恒成立,则实数t 的最小值为( ) A .1 B .2C .32D .52【答案】C 【详解】1n =时,12a =,因为123232n n a a a na ++++=,所以2n ≥时,1123123(1)2n n a a a n a --++++-=,两式相减得到12n n na -=,故12,n n a n-=1n =时不适合此式,所以11,11,2(1)2(1)nn n n a b n n n n -=⎧⎪==⎨≥+⎪+⎩,当1n =时,111S b ==, 当2n ≥时,111111313123341221n S n n n ⎛⎫=+-+-+-=-< ⎪++⎝⎭, 所以32t ≥;所以t 的最小值32; 7.已知数列{}n a 的前n 项和为n S ,满足2n S an bn =+,(,a b 均为常数),且72a π=.设函数2()sin 22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前13项和为( ) A .132πB .7πC .7D .13【答案】D 【详解】因为2()sin 22cos sin 2cos 12xf x x x x =+=++, 由2n S an bn =+,得()()()2211122n n n S S an bn a n b n an a b n a -=-=+----=-+≥,又11a S a b ==+也满足上式,所以2n a an a b =-+, 则12n n a a a --=为常数,所以数列{}n a 为等差数列; 所以11372a a a π+==,()()111131131313sin 2cos 1sin 2cos 1y f a f a a a a y a =+=++++++()()1111sin 2cos 1sin 22cos 12a a a a ππ=+++-+-+=.则数列{}n y 的前13项和为()()()1213...f a f a f a +++,记()()()1213...M f a f a f a =+++,则()()()13121...M f a f a f a =+++,所以()()11321326M f a f a ⎡⎤=+=⎣⎦,因此13M =.8.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用。
2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解
专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。
数列与函数的综合应用练习题
数列与函数的综合应用练习题在数学学科中,数列与函数是非常重要的概念和工具。
它们在各个领域的应用都非常广泛。
本文将通过练习题的形式,探讨数列与函数的综合应用。
练习一:等差数列的求和已知等差数列的首项为a,公差为d。
现要求等差数列的前n项和Sn。
解析:根据等差数列的性质,我们知道第n项的表达式为an = a + (n-1)d。
那么前n项和Sn可以表示为:Sn = a + (a+d) + (a+2d) + … + [a + (n-1)d]= n(a + a + (n-1)d) / 2= n(2a + (n-1)d) / 2= n(a + a + (n-1)d) / 2= n(a + a + (n-1)d) / 2练习二:等比数列的求和已知等比数列的首项为a,公比为q。
现要求等比数列的前n项和Sn。
解析:根据等比数列的性质,我们知道第n项的表达式为an = a * q^(n-1)。
那么前n项和Sn可以表示为:Sn = a + aq + aq^2 + … + aq^(n-1)= a(1 - q^n) / (1 - q)练习三:函数的综合应用已知函数f(x) = ax^2 + bx + c,其中a,b,c为常数。
现要求函数图像的顶点坐标和判别式。
解析:函数的顶点坐标可以通过求导得到。
对函数f(x)求导,得到f'(x) =2ax + b。
令f'(x) = 0,解方程得到x = -b / (2a)。
将x代入函数f(x)得到y坐标,即y = f(-b / (2a)) = a(-b / (2a))^2 + b(-b / (2a)) + c。
函数的判别式可以用来判断函数的图像与x轴的交点情况。
判别式的表达式为D = b^2 - 4ac。
当D > 0时,函数与x轴有两个不同的交点;当D = 0时,函数与x轴有一个重复的交点;当D < 0时,函数与x轴没有交点。
通过以上练习题,我们进一步巩固了数列与函数的综合应用。
数列与函数不等式的综合应用
法二:
a3 a4 a1 a2 4,
解之得 d 1
江苏省启东中学资源库
第八届 “名师之路”大型教科研活 动 暨南通市普通高中高效课堂推进会
(2) a1
5 2
7 ∴数列 an 的通项公式为 an a1 (n 1)d n , 2 1 1 . bn 1 1 7 an n 2 7 7 1 ∵函数 f ( x ) 1 在 (, ) 和 ( , ) 上均是单调递 7 2 2 x 2
次组成数列 an ,则 an3 an .
36
江苏省启东中学资源库
第八届 “名师之路”大型教科研活 动 暨南通市普通高中高效课堂推进会
互动
例1
提升
已知 an 是公差为 d 的等差数列,它的前
1 an n 项和为 Sn ,且 S4 2S2 4, bn . an (1)求公差 d 的值; 5 (2) 若 a1 , 求数列 bn 中的最大项和最小项 2
21 2
a 则数列 n 的前 n 项和为 n 1
2.
n 1
2
3. 设 M cos x cos x,sin x sin 3 4 3 4
2
x , x R 为 坐 标 平 面 上 一 点 , 记
f x OM 2, 且 f x 的图像与射线 y 0 x 0 交点的横坐标从小到大依
的值;
* n N (3)若对任意的 , 都有 bn b8 成立, 求 a1 的
取值范围.
江苏省启东中学资源库
第八届 “名师之路”大型教科研活 动 暨南通市普通高中高效课堂推进会
解:(1)法一:
S4 2S2 4, 4a1 6d 2(2a1 d ) 4, 解之得 d 1 S4 2S2 4,
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
数列综合应用教案
数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。
教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。
检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。
二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。
三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。
等差数列的前n项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
最新数列专题:数列与函数综合问题(含答案)超经典
数列专题:数列与函数综合问题一.选择题(共30小题)1.已知函数f (x )=x e1+x e (e 是自然对数的底数),设a n ={f(n),n ≤2019f(14039−n ),n >2019,数列{a n }的前n 项和为S n ,则S 4037的值是( ) A .2018B .2019C .40372D .403922.已知函数f (x )={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n )(n ∈N +),则a 2019=( )A .73B .43C .56D .133.已知定义在R 上的奇函数f (x )满足f (x −32)=f (x ),f (﹣2)=﹣3,数列{a n }是等差数列,若a 2=3,a 7=13,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=( ) A .﹣2B .﹣3C .2D .34.定义:F (x ,y )=y x (x >0,y >0),已知数列{a n }满足:a n =F(n ,2)F(2,n)(n ∈N *),若对任意正整数n ,都有a n ≥a k (k ∈N *)成立,则a k 的值为( ) A .12B .2C .98D .895.对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2020等于( )x 1 2 3 4 5 f (x ) 5 43 12A .2B .3C .4D .56.已知定义在R 上的函数f (x )是奇函数,且满足f (32−x )=f (x ),f (﹣2)=﹣2,数列{a n }满足a 1=﹣1,且S n n=2a n n+1(S n 为{a n }的前n 项和),则f (a 5)=( ) A .﹣3B .﹣2C .3D .27.已知{a n }满足a n +1=a n +2n ,且a 1=32,则a nn的最小值为( )A .8√2−1B .525C .373D .108.在数列{a n }中,a 1=2,其前n 项和为S n .若点(S n n,S n+1n+1)在直线y =2x ﹣1上,则a 9等于( )A .1290B .1280C .1281D .18219.已知函数y =f (x )为定义域R 上的奇函数,且在R 上时单调递增函数,函数g (x )=f (x ﹣3)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=27,则a 1+a 2+…+a 9=( ) A .18B .9C .27D .8110.已知f (x )是定义在R 上的奇函数,且满足f (2﹣x )=f (x ),f (﹣1)=1,数列{a n }满足a 1=﹣1,S n n=2a n n+1(n ∈N +),其中S n 是数列{a n }的前n 项和,则f (a 5)+f (a 6)=( )A .﹣2B .﹣1C .0D .111.已知定义域为正整数集的函数f (x )满足f (x +y )=f (x )+f (y )+1,f (1)=1,则数列{(﹣1)n f (n )f (n +1)}(n ∈N *)的前99项和为( ) A .﹣19799B .﹣19797C .﹣19795D .﹣1979312.已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,f (x )f (y )=f (x +y )恒成立,若数列{a n }满足f (a n +1)f (11+a n)=l (n ∈N *)且a 1=f (0),则下列结论成立的是( )A .f (a 2015)>f (a 2018)B .f (a 2018)>f (a 2019)C .f (a 2017)>f (a 2018)D .f (a 2015)>f (a 2017)13.已知函数f(n)=n 2sin(2n−32π),且a n =f (n ),则a 1+a 2+a 3+…+a 200=( )A .20100B .20500C .40100D .1005014.已知函数f (x )=4x2x−1,M =f (1n)+f (2n)+…+f (n n)(n ∈N *,且n 为奇数),则M 等于( ) A .2n ﹣1B .n −12C .2n +2D .2n +1215.已知各项都为正数的等比数列{a n },满足a 3=2a 1+a 2,若存在两项a m ,a n ,使得√a m a n =4a 1,则1m+4n的最小值为( ) A .2B .32C .13D .116.已知数列{a n }中,a 1=2,n •a n +1﹣(n +1)•a n =1,n ∈N *.若对于任意的n ∈N *,不等式a n+1n+1<a 恒成立,则实数a 的取值范围为( ) A .(3,+∞)B .(﹣∞,3)C .[3,+∞)D .(﹣∞,3]17.已知F (x )=f (x +12)﹣1是R 上的奇函数,a n =f (0)+f (1n)+f (2n)+…+f (n−1n)+f (1)(n ∈N *),则数列{a n } 的通项公式为( ) A .a n =n ﹣1B .a n =nC .a n =n +1D .a n =n 231.已知定义在R 上的函数f (x )是奇函数,且满足f (3﹣x )=f (x ),f (﹣1)=3,数列{a n }满足a 1=1,且a n =n (a n +1﹣a n )(n ∈N *),则f (a 36)+f (a 37)=32.对于函数f (x )和实数M ,若存在m ,n ∈N +,使f (m )+f (m +1)+f (m +2)+…+f (m +n )=M 成立,则称(m ,n )为函数f (x )关于M 的一个“生长点”.若(1,2)为函数f (x )=cos (π2x +π3)关于M的一个“生长点”,则M = ;若f (x )=2x +1,M =105,则函数f (x )关于M 的“生长点”共有 个.33.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f(2)f(1)+f(3)f(2)+f(4)f(3)+⋯+f(2018)f(2017)=参考答案与试题解析一.选择题(共30小题)1.已知函数f (x )=x e1+x e (e 是自然对数的底数),设a n ={f(n),n ≤2019f(14039−n ),n >2019,数列{a n }的前n 项和为S n ,则S 4037的值是( ) A .2018B .2019C .40372D .40392【解答】解:根据题意,函数f (x )=x e 1+x e ,则f (1x )=(1x )e1+(1x)e =11+x e ,且f (1)=11+1=12,则有f (x )+f (1x)=x e 1+x e +11+x e=1, 又由a n ={f(n),n ≤2019f(14039−n ),n >2019, 则S 4037=f (1)+f (2)+……+f (2019)+f (12019)+f (12018)+……+f (12)=f (1)+[f (2)+f (12)]+[f (3)+f (13)]+……+f (2019)+f (12019)=12+2018=40372; 故选:C .2.已知函数f (x )={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n )(n ∈N +),则a 2019=( )A .73B .43C .56D .13【解答】解:根据题意,函数f (x )={x +12,x ≤122x −1,12<x <1x −1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n ),则a 2=a 1﹣1=43, a 3=a 2﹣1=13, a 4=a 3+12=56, a 5=2a 4﹣1=23,a 6=2a 5﹣1=13, a 7=a 6+12=56,则数列{a n }满足a n +3=a n ,(n ≥3),即数列{a n }从第三项开始,组成周期为3的数列, 则a 2019=a 3+2016=a 3=13, 故选:D .3.已知定义在R 上的奇函数f (x )满足f (x −32)=f (x ),f (﹣2)=﹣3,数列{a n }是等差数列,若a 2=3,a 7=13,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=( ) A .﹣2B .﹣3C .2D .3【解答】解:根据题意,f (x )为奇函数,则f (x )=﹣f (﹣x ), 又由f (x )满足f (32−x )=f (x ),则f (32−x )=﹣f (﹣x ),则有f (3﹣x )=﹣f (32−x )=f (x ),即函数f (x )是周期为3的周期函数,数列{a n }是等差数列,若a 2=3,a 7=13,则d =a 7−a27−2=2,则a n =2n ﹣1, 则a 1=1,a 3=5,则f (a 1)=f (1)=f (﹣2)=﹣3, f (a 2)=f (3)=f (0)=0,f (a 3)=f (5)=f (﹣1)=﹣f (1)=3,则有f (a 1)+f (a 2)+f (a 3)=(﹣3)+0+(3)=0, f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=f (1)+f (3)+f (5)+f (7)+f (8)+f (9)+……+f (2016)+f (2017)+f (2018) =672×[f (a 1)+f (a 2)+f (a 3)]+f (2017)+f (2018)=﹣3; 故选:B .4.定义:F (x ,y )=y x (x >0,y >0),已知数列{a n }满足:a n =F(n ,2)F(2,n)(n ∈N *),若对任意正整数n ,都有a n ≥a k (k ∈N *)成立,则a k 的值为( ) A .12B .2C .98D .89【解答】解:∵F (x ,y )=y x (x >0,y >0),∴a n =F(n ,2)F(2,n)=2nn2∴a n+1a n=2n+1(n+1)22n n 2=2⋅n 2(n+1)2,∵2n 2﹣(n +1)2=(n ﹣1)2﹣2,当n ≥3时,(n ﹣1)2﹣2>0, ∴当n ≥3时a n +1>a n ;当,n <3时,(n ﹣1)2﹣2<O ,所以当n <3时a n +1<a n . ∴当n =3时a n 取到最小值为f (3)=89 故选:D .5.对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2020等于( )x 1 2 3 4 5 f (x ) 5 43 12A .2B .3C .4D .5【解答】解:数列{a n },a 1=4,a n +1=f (a n ),n =1,2…,其中f (x )如表所示x 1 2 3 4 5 f (x )54312则a 2=f (4)=1,a 3=f (1)=5,a 4=f (5)=2,a 5=f (2)=4,…,数列是周期数列,周期为4, ∴a 2020=a 504×4+4=a 4=2. 故选:A .6.已知定义在R 上的函数f (x )是奇函数,且满足f (32−x )=f (x ),f (﹣2)=﹣2,数列{a n }满足a 1=﹣1,且S n n=2a n n+1(S n 为{a n }的前n 项和),则f (a 5)=( ) A .﹣3B .﹣2C .3D .2【解答】解:∵函数f (x )是奇函数 ∴f (﹣x )=﹣f (x ) ∵f (32−x )=f (x ),∴f (32−x )=﹣f (﹣x )∴f (3+x )=f [32−(−32−x )]=﹣f (32+x )=﹣f [32−(﹣x )]=﹣f (﹣x )=f (x )∴f (x )是以3为周期的周期函数.∵数列{a n }满足a 1=﹣1,且S n n=2a n n+1,∴a 1=﹣1,且S n =2a n +n , ∴a 5=﹣31,∴f (a 5)=f (﹣31)=f (2)=f (2)=﹣f (﹣2)=3 故选:C .7.已知{a n }满足a n +1=a n +2n ,且a 1=32,则a n n的最小值为( )A .8√2−1B .525C .373D .10【解答】解:∵a 1=32,a n +1﹣a n =2n ,∴n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+……+(a 2﹣a 1)+a 1 =2(n ﹣1)+2(n ﹣2)+……+2×1+32 =2×(n−1)(n−1+1)2+32=n 2﹣n +32, 则a nn=n +32n +1. 令f (x )=x +32x+1,(x ≥1). f ′(x )=1−32x 2=(x+4√2)(x−4)x 2. 可得:函数f (x )在[1,4 √2)内单调递减;在(4√2,+∞)上单调递增. 又f (5)=6+325=625=12+25,f (6)=7+326=373=12+13. ∴n =6时,则a n n 取得最小值373.故选:C .8.在数列{a n }中,a 1=2,其前n 项和为S n .若点(S n n,S n+1n+1)在直线y =2x ﹣1上,则a 9等于( )A .1290B .1280C .1281D .1821【解答】解:点(S n n,S n+1n+1)在直线y =2x ﹣1上,可得S n+1n+1−1=2(S n n−1),又S 11−1=a 1−1=1,所以数列{S n n−1}是首项为1公比为2的等比数列,所以S n n−1=2n ﹣1,得S n =n (1+2n ﹣1),当n ≥2时,a n =S n ﹣S n ﹣1=(n +1)2n ﹣2+1,故 a 9=10×128+1=1281. 故选:C .9.已知函数y =f (x )为定义域R 上的奇函数,且在R 上时单调递增函数,函数g (x )=f (x ﹣3)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=27,则a 1+a 2+…+a 9=( ) A .18B .9C .27D .81【解答】解:根据题意,函数y =f (x )为定义域R 上的奇函数, 则有f (﹣x )+f (x )=0, ∵g (x )=f (x ﹣3)+x ,∴若g (a 1)+g (a 2)+…+g (a 9)=27,即f (a 1﹣3)+a 1+f (a 2﹣3)+a 2+…+f (a 9﹣3)+a 9=27, 即f (a 1﹣3)+f (a 2﹣3)+…+f (a 9﹣3)+(a 1+a 2+…+a 9)=27, f (a 1﹣3)+f (a 2﹣3)+…+f (a 9﹣3))+(a 1﹣3+a 2﹣3+…+a 9﹣3)=0, 又由y =f (x )+x 为定义域R 上的奇函数,且在R 上是单调函数, 且(a 1﹣3)+(a 9﹣3)=(a 2﹣3)+(a 8﹣3)=…=2(a 5﹣3), a 5﹣3=0,即a 1+a 9=a 2+a 8=…=2a 5=6, 则a 1+a 2+…+a 9=9a 5=27; 故选:C .10.已知f (x )是定义在R 上的奇函数,且满足f (2﹣x )=f (x ),f (﹣1)=1,数列{a n }满足a 1=﹣1,S n n=2a n n+1(n ∈N +),其中S n 是数列{a n }的前n 项和,则f (a 5)+f (a 6)=( )A .﹣2B .﹣1C .0D .1【解答】解:∵数列{a n }满足a 1=﹣1,S n n=2a n n+1(n ∈N +),其中S n 是数列{a n }的前n 项和,∴S n =2a n +n ,a n =S n ﹣S n ﹣1=2a n +n ﹣2a n ﹣1﹣(n ﹣1), 整理,得a n −1a n−1−1=2,∵a 1﹣1=﹣2,∴{a n ﹣1}是首项为﹣2,公差为2的等比数列, ∴a n ﹣1=﹣2×2n ﹣1,∴a n =1﹣2×2n ﹣1.∴a 5=1﹣2×24=﹣31,a 6=1−2×25=−63,∵f (2﹣x )=f (x ),f (﹣1)=1, ∴f (x )关于直线x =1对称,又∵函数f (x )是定义在R 上的奇函数 ∴函数f (x )是一个周期函数,且T =4, ∴f (a 5)+f (a 6)=f (﹣31)+f (﹣63)=f (32﹣31)+f (64﹣63)=f (1)+f (1)=﹣f (﹣1)﹣f (﹣1)=﹣1﹣1=﹣2. 故选:A .11.已知定义域为正整数集的函数f (x )满足f (x +y )=f (x )+f (y )+1,f (1)=1,则数列{(﹣1)n f (n )f (n +1)}(n ∈N *)的前99项和为( ) A .﹣19799B .﹣19797C .﹣19795D .﹣19793【解答】解:令x =n ,y =1,可得f (n +1)=f (n )+f (1)+1, 则f (n +1)﹣f (n )=f (1)+1=2,则数列{f (n )}的首项为1,公差为2的等差数列, 从而f (n )=2n ﹣1,则(﹣1)n f (n )f (n +1)=(﹣1)n (4n 2﹣1)=4(﹣1)n n 2﹣(﹣1)n , 则{(﹣1)n f (n )f (n +1)}(n ∈N *)的前99项和为 4(﹣12+22﹣32+42+…﹣972+982﹣992)﹣(﹣1), =4[(1+2)+(3+4)+…+(97+98)﹣992]+1, =4[(1+98)×982−992]+1,=4×99×(49﹣99)+1, =﹣19799, 故选:A .12.已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,f (x )f (y )=f (x +y )恒成立,若数列{a n }满足f (a n +1)f (11+a n)=l (n ∈N *)且a 1=f (0),则下列结论成立的是( )A .f (a 2015)>f (a 2018)B .f (a 2018)>f (a 2019)C .f (a 2017)>f (a 2018)D .f (a 2015)>f (a 2017)【解答】解:对任意的实数x ,y ∈R ,f (x )f (y )=f (x +y )恒成立, 取x =y =0,则f (0)f (0)=f (0),解得f (0)=0,或f (0)=1. 取f (0)=1.取y=﹣x<0,则f(x)f(﹣x)=1,∴f(x)=1f(−x)<1,设x1<x2,则f(x1﹣x2)=f(x1)•f(﹣x2)=f(x1)f(x2)>1,∴f(x1)>f(x2).∴函数f(x)在R上单调递减.∵数列{a n}满足f(a n+1)f(11+a n)=l=f(0).∴a n+1+11+a n=0,∵a1=f(0)=1,∴a2=−12,a3=﹣2,a4=1,a5=−12,…….∴a n+3=a n.∴a2015=a3×671+2=a2=−12,a2017=a3×672+1=a1=1.a2018=a3×672+2=a2=−12,a2019=a3×672+3=a3=﹣2.∴f(a2015)=f(−12)>1,f(a2017)=f(1)<1.∴f(a2015)>f(a2017).而f(a2015)=f(a2018),f(a2017)<1<f(a2018),f(a2018)=f(−12)<f(a2019)=f(﹣2),因此只有:D正确.故选:D.13.已知函数f(n)=n2sin(2n−32π),且a n=f(n),则a1+a2+a3+…+a200=()A.20100B.20500C.40100D.10050【解答】解:可得f(2k)=4k2sin(−32π)=4k2,f(2k﹣1)=(2k﹣1)2sin(−5π2)=﹣(2k﹣1)2.k∈N*,∴且a n=f(n)={n2,(n为偶数)−n2,(n为奇数),∴a1+a2+a3+…+a200=(22﹣12)+(32﹣22)+(42﹣32)+…+(2002﹣1992)=1+2+3+…+200=20100.故选:A.14.已知函数f(x)=4x2x−1,M=f(1n)+f(2n)+…+f(nn)(n∈N*,且n为奇数),则M等于()A.2n﹣1B.n−12C.2n+2D.2n+12【解答】解:∵f (x )=4x2x−1, ∴f (x )+f (1﹣x )=4x2x−1+4(1−x)2(1−x)−1 =4x 2x−1+4−4x 1−2x =4x 2x−1−4−4x 2x−1=4(2x−1)2x−1=4. ∴M =f (1n )+f (2n )+…+f (nn )=4×n−12+f (1)=2n ﹣2+4=2n +2. 故选:C .15.已知各项都为正数的等比数列{a n },满足a 3=2a 1+a 2,若存在两项a m ,a n ,使得√a m a n =4a 1,则1m+4n的最小值为( ) A .2B .32C .13D .1【解答】解:各项都为正数且公比为q 的等比数列{a n }, ∵a 3=2a 1+a 2,∴a 1⋅q 2=2a 1+a 1⋅q 即q 2=2+q ,解得q =2或﹣1(舍去﹣1). ∵存在两项a m ,a n ,使得√a m a n =4a 1, ∴得a 21•2m +n ﹣2=16a 21,∴m +n =6. 则1m+4n=16(m +n )(1m +4n)=16(1+4m n +n m +4)≥16(2√4m n ⋅n m +5)=32. 当且仅当m =1,n =2时,等号成立. 则1m+4n的最小值为32.故选:B .16.已知数列{a n }中,a 1=2,n •a n +1﹣(n +1)•a n =1,n ∈N *.若对于任意的n ∈N *,不等式a n+1n+1<a 恒成立,则实数a 的取值范围为( ) A .(3,+∞)B .(﹣∞,3)C .[3,+∞)D .(﹣∞,3]【解答】解:数列{a n }中,a 1=2,n •a n +1﹣(n +1)•a n =1,n ∈N *. 可得a n+1n+1−a n n=1n(n+1)=1n−1n+1,由a 22−a 11=1−12,a 33−a 22=12−13,a 44−a 33=13−14,…,a n+1n+1−a n n=1n(n+1)=1n−1n+1,上面各式相加可得, 得a n+1n+1−a 11=1−1n+1, 则a n+1n+1=3−1n+1<3,由对于任意的n ∈N *,不等式a n+1n+1<a 恒成立,可得a ≥3,即有a 的取值范围是[3,+∞). 故选:C .17.已知F (x )=f (x +12)﹣1是R 上的奇函数,a n =f (0)+f (1n)+f (2n)+…+f (n−1n)+f (1)(n ∈N *),则数列{a n } 的通项公式为( ) A .a n =n ﹣1B .a n =nC .a n =n +1D .a n =n 2【解答】解:F (x )=f (x +12)﹣1在R 上为奇函数 故F (﹣x )=﹣F (x ),代入得:f (12−x )+f (12+x )=2,(x ∈R )当x =0时,f (12)=1.令t =12−x ,则12+x =1﹣t , 上式即为:f (t )+f (1﹣t )=2. 当n 为偶数时:a n =f (0)+f (1n)+f (2n )+…+f (n−1n)+f (1)(n ∈N *)=[f (0)+f (1)]+[f (1n)+f (n−1n)]+…+[f (12n−12)+f (12n+12)]+f (12)=2×n 2+1 =n +1. 当n 为奇数时:a n =f (0)+f (1n)+f (2n )+…+f (n−1n)+f (1)(n ∈N *)=[f (0)+f (1)]+[f (1n)+f (n−1n)]+…+[f (n−12n)+f (n+12n)]=2×n+12=n +1.综上所述,a n =n +1. 故选:C .填空题31.已知定义在R 上的函数f (x )是奇函数,且满足f (3﹣x )=f (x ),f (﹣1)=3,数列{a n }满足a 1=1,且a n =n (a n +1﹣a n )(n ∈N *),则f (a 36)+f (a 37)= ﹣3【解答】解:∵函数f (x )是奇函数,且满足f (3﹣x )=f (x ),f (﹣1)=3, ∴f (x )=f (3﹣x )=﹣f (x ﹣3),即f (x +3)=﹣f (x ),则f (x +6)=﹣f (x +3)=f (x ), 即函数f (x )是周期为6的周期函数,由数列{a n }满足a 1=1且a n =n (a n +1﹣a n ) (n ∈N *), 则a n =na n +1﹣na n , 即(1+n )a n =na n +1, 则a n+1a n =1+n n , 则a 2a 1=21,a 3a 2=32,⋯a nan−1=nn−1,等式两边同时相乘得a n a 1=n ,即a n =na 1=n ,即数列{a n }的通项公式为a n =n ,则f (a 36)+f (a 37)=f (36)+f (37)=f (0)+f (1), ∵f (x )是奇函数,∴f (0)=0, ∵f (﹣1)=3,∴﹣f (1)=3, 即f (1)=﹣3,则f (a 36)+f (a 37)=f (36)+f (37)=f (0)+f (1)=0﹣3=﹣3, 故答案为:﹣3.32.对于函数f (x )和实数M ,若存在m ,n ∈N +,使f (m )+f (m +1)+f (m +2)+…+f (m +n )=M 成立,则称(m ,n )为函数f (x )关于M 的一个“生长点”.若(1,2)为函数f (x )=cos (π2x +π3)关于M的一个“生长点”,则M = −12 ;若f (x )=2x +1,M =105,则函数f (x )关于M 的“生长点”共有3 个.【解答】解:若(1,2)为函数f (x )=cos (π2x +π3)关于M 的一个“生长点”,则M =f (1)+f (2)+f (3)=cos (π2+π3)+cos (π2×2+π3)+cos (π2×3+π3)=﹣sin π3−cos π3+cos (−π6)=−√32−12+√32=−12,若f (x )=2x +1,M =105, 则f (m )是公差为2的等差数列,则由f (m )+f (m +1)+f (m +2)+…+f (m +n )=105 得(n +1)(2m +1)+(n+1)⋅n2×2=105 即(n +1)(2m +1)+n (n +1)=105, 即(n +1)(2m +n +1)=105,∵105=1×105=3×35=5×21=7×15,∴由{n +1=32m +n +1=35得{n =2m =16,此时“生长点”为(2,16),由{n +1=52m +n +1=21得{n =4m =8,此时“生长点”为(4,8), 由{n +1=72m +n +1=15得{n =6m =4,此时“生长点”为(6,4), 故函数f (x )关于M 的“生长点”共有3个, 故答案为:−12,333.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f(2)f(1)+f(3)f(2)+f(4)f(3)+⋯+f(2018)f(2017)= 2017【解答】解:∵f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )•f (b ),且f (1)=2, ∴f (a +1)=f (a )•f (1)=f (a ), ∴f(a+1)f(a)=1,∴f(2)f(1)+f(3)f(2)+f(4)f(3)+⋯+f(2018)f(2017)=1×2017=2017.故答案为:2017.。
数列与函数的相互关系与应用举例
数列与函数的相互关系与应用举例数列和函数是数学中两个重要的概念,它们之间存在着密切的相互关系。
数列是按照一定规律排列的一组数,而函数则是将一个自变量映射到一个因变量的规则。
在数学的研究和实际应用中,数列和函数经常会相互转化和应用。
一、数列与函数的转化数列可以看作是函数的一种特殊形式,即自变量为自然数集合。
例如,一个数列{an}可以表示为函数f(n),其中f(n) = an。
这样的转化可以让我们更方便地研究数列的性质和规律。
相反地,函数也可以转化为数列。
例如,给定一个函数f(x),我们可以通过取不同的自变量值,如x=1,x=2,x=3,来得到一组数列{f(1),f(2),f(3)}。
这样的转化可以使我们更好地理解函数的变化趋势和性质。
二、数列与函数的应用举例1. 斐波那契数列与黄金分割斐波那契数列是一个非常有趣的数列,它的定义是:第一项和第二项都为1,从第三项开始,每一项都等于前两项之和。
即数列{1,1,2,3,5,8,13,...}。
斐波那契数列与函数的关系可以通过递归函数来表示:f(n) = f(n-1) + f(n-2),其中f(1)=1,f(2)=1。
这样,我们就可以通过函数的方式来计算斐波那契数列的任意项。
斐波那契数列在自然界中有着广泛的应用,例如在植物的叶子排列、螺旋形状和分支结构中都能看到斐波那契数列的规律。
而斐波那契数列与黄金分割的关系更是引人注目。
黄金分割是指一条线段分为两部分,较长部分与整条线段的比值等于较短部分与较长部分的比值。
而斐波那契数列的相邻两项的比值逐渐接近黄金分割比例1.618。
2. 等差数列与直线函数等差数列是指数列中的相邻两项之差都相等的数列。
例如数列{2,4,6,8,10,...}就是一个等差数列,其中公差为2。
等差数列与直线函数之间有着密切的关系。
如果我们将等差数列的第n项表示为an,公差表示为d,那么可以得到等差数列的通项公式:an = a1 + (n-1)d。
数列与函数的综合应用
数列与函数在科研项目中的应用
案例分析:数 列与函数在科 研项目中的应
用
案例背景:介 绍科研项目的
背景和目的
案例过程:详 细描述数列与 函数在科研项 目中的应用过
程
案例结论:总 结数列与函数 在科研项目中 的应用效果和
意义
数列与函数在实际工程中的应用
案例分析:数列与函数在桥梁 设计中的应用
案例分析:数列与函数在建筑 结构分析中的应用
函数的表示方法:函数可以用解析式、表格、图象等多种方式表示,这些表示方法各有优缺点, 可以根据具体情况选择使用。
函数的实际应用:函数在实际生活中有着广泛的应用,如物理学、工程学、经济学等领域都需 要用到函数的概念和性质。
数列与函数的关联
数列是一种特殊的函数,具有离散的特点 数列的项数无限时,可以转化为连续函数 函数的概念可以推广到数列,如等差数列、等比数列等 数列与函数在数学中有着广泛的应用,如求和、积分等
数列与函数的运算规则
数列的加减法
定义:数列的加减 法是指将两个数列 对应项相加或相减, 得到一个新的数列
规则:对应项相加 或相减,得到新的 数列
运算步骤:先确定 两个数列的项数, 然后对应项相加或 相减,得到新的数 列
注意事项:在进行 数列的加减法时,ຫໍສະໝຸດ 需要注意数列的项 数和对应项的符号
函数的加减法
案例分析:数列与函数在机械 工程中的应用
案例分析:数列与函数在电子 工程中的应用
如何提高数列与函数的综合应 用能力
掌握数列与函数的基本概念和性质
理解数列与函数的定义和性质 掌握数列与函数的极限和连续性 熟悉数列与函数的导数和积分 掌握数列与函数的图象和几何意义
理解数列与函数的运算规则
与三角函数有关的数列求和
与三角函数有关的数列求和三角函数是数学中非常重要的概念,它们在数学和物理学中的应用广泛。
而与三角函数有关的数列求和则是一类特殊的数列求和问题,它们通常涉及到三角函数的性质和特点。
本文将介绍一些与三角函数有关的数列求和问题,并探讨它们的解法和应用。
一、正弦数列求和正弦函数是三角函数中最常见的一种函数,它在数学和物理学中有着重要的应用。
正弦数列求和即是将一系列正弦函数的值相加,得到一个数列的和。
例如,求和数列sin(1)+sin(2)+sin(3)+...+sin(n),其中n为正整数。
这个求和问题在数学和物理学中有着重要的应用,比如在波动问题、信号处理等领域。
正弦数列求和的解法有多种,其中一种常用的方法是利用正弦函数的周期性质进行化简。
由于正弦函数的周期为2π,可以将求和数列进行分组,每个分组内的正弦函数值相等。
例如,sin(1)+sin(2)+sin(3)+...+sin(n)可以分为n/2个分组,每个分组内的正弦函数值相等。
然后利用正弦函数的性质,将每个分组内的正弦函数值相加,得到最终的求和结果。
二、余弦数列求和余弦函数是三角函数中另一个常见的函数,它也在数学和物理学中有着重要的应用。
余弦数列求和即是将一系列余弦函数的值相加,得到一个数列的和。
例如,求和数列cos(1)+cos(2)+cos(3)+...+cos(n),其中n为正整数。
余弦数列求和同样在波动问题、信号处理等领域有着广泛的应用。
余弦数列求和的解法与正弦数列求和类似,同样可以利用余弦函数的周期性质进行化简。
由于余弦函数的周期为2π,可以将求和数列进行分组,每个分组内的余弦函数值相等。
然后利用余弦函数的性质,将每个分组内的余弦函数值相加,得到最终的求和结果。
三、正切数列求和正切函数是三角函数中另一个重要的函数,它在数学和物理学中也有着广泛的应用。
正切数列求和即是将一系列正切函数的值相加,得到一个数列的和。
例如,求和数列tan(1)+tan(2)+tan(3)+...+tan(n),其中n为正整数。
数列综合题型
(一)数列和函数综合1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n 项和S n.2.已知:f n(x)=a1x+a2x2+…+a n x n,且数列{a n}成等差数列.(1)当n为正偶数时,f n(﹣1)=n,且a1=1,求数列{a n}的通项;(2)试比较与3的大小.3.已知f(x)在(﹣1,1)上有定义,,且满足x,y∈(﹣1,1)有.对数列{x n}有(1)证明:f(x)在(﹣1,1)上为奇函数.(2)求f(x n)的表达式.(3)是否存在自然数m,使得对于任意n∈N*且<成立?若存在,求出m的最小值.(二)数列与不等式综合4.(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.5.如图:假设三角形数表中的第n行的第二个数为a n(n≥2,n∈N*)(1)归纳出a n+1与a n的关系式并求出a n的通项公式;(2)设a n b n=1求证:b2+b3+…+b n<2.6.已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m、a k、a h都是数列{a n}中满足a h﹣a k=a k﹣a m的任意项.(Ⅰ)证明:m+h=2k;(Ⅱ)证明:S m•S h≤S k2;(III)若也成等差数列,且a 1=2,求数列的前n项和.(三)数列和向量综合7.已知点集,其中=(2x﹣b,1),=(1,b+1),点列P n(a n,b n)在L中,P1为L与y轴的交点,等差数列{a n}的公差为1,n∈N*.(I)求数列{b n}的通项公式;(Ⅱ)若,令S n=f(1)+f(2)+f(3)+…+f(n);试写出S n关于n的函数解析式;8.已知一列非零向量,n∈N*,满足:=(10,﹣5),,(n32 ).,其中k是非零常数.(1)求数列{||}是的通项公式;(2)求向量与的夹角;(n≥2);(3)当k=时,把,,…,,…中所有与共线的向量按原来的顺序排成一列,记为,,…,,…,令,O为坐标原点,求点列{B n}的极限点B的坐标.(注:若点坐标为(t n,s n),且,,则称点B(t,s)为点列的极限点.)9.我们把一系列向量(i=1,2,…,n)按次序排成一列,称之为向量列,记作{}.已知向量列{}满足:,=(n≥2).(1)证明数列{||}是等比数列;(2)设θn表示向量,间的夹角,若b n=2nθn﹣1,S n=b1+b2+…+b n,求S n;(3)设||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.10.从原点出发的某质点M,按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,设可达到点(0,n)的概率为P n,求:(1)求P1和P2的值.(2)求证:P n+2=P n+P n+1.(3)求P n的表达式.(四)数列和三角函数综合11.已知点列B1(1,y1)、B2(2,y2)、…、B n(n,y n)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、A n(x n,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点A n、B n、A n+1构成一个顶角的顶点为B n的等腰三角形.(1)求数列{y n}2的通项公式,并证明{y n}3是等差数列;(2)证明x n+2﹣x n5为常数,并求出数列{x n}6的通项公式;(3)问上述等腰三角形A n8B n9A n+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.12.设数列{a n}是首项为0的递增数列,(n∈N),,x∈[a n,a n+1]满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根.(1)试写出y=f1(x),并求出a2;(2)求a n+1﹣a n,并求出{a n}的通项公式;(3)设S n=a1﹣a2+a3﹣a4+…+(﹣1)n﹣1a n,求S n.13.(理)已知复数,其中A,B,C是△ABC的内角,若.(1)求证:;(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求的最大值.(五)数列和解析几何综合14.在xoy平面上有一系列点P1(x1,y1),P2(x2,y2)…,P n(x n,y n),…,(n∈N*),点P n在函数y=x2(x≥0)的图象上,以点P n为圆心的圆P n与x轴都相切,且圆P n与圆P n+1又彼此外切.若x1=1,且x n+1<x n x1=1.(I)求数列{x n}的通项公式;(II)设圆P n的面积为S n,,求证:.15.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式,并求的最小值(其中O为坐标原点,n∈N*).16.如图,在直角坐标系xOy中,有一组底边长为a n的等腰直角三角形A n B n C n(n=1,2,3,…),底边B n C n依次放置在y轴上(相邻顶点重合),点B1的坐标为(0,b),b>0.(1)若A1,A2,A2,…,A n在同一条直线上,求证:数列{a n}是等比数列;(2)若a1是正整数,A1,A2,A2,…,A n依次在函数y=x2的图象上,且前三个等腰直角三角形面积之和不大于,求数列{a n}的通项公式.17.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式(n∈N*).答案与评分标准1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n项和S n.考点:数列与函数的综合;等比数列的通项公式;数列的求和;数列递推式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲 数列与函数的综合 一、重点公式1.等差数列的有关定义(1)一般地,如果一个数列从第 项起,每一项与它的前一项的 等于同一个常数,那么这 个数列就叫做等差数列.符号表示为 (*N n ∈,d 为常数).(2)数列b A a ,,成等差数列的充要条件是 ,其中A 叫做b a ,的 . 2.等差数列的有关公式(1)通项公式:n a = ,+=m n a a (*,N n m ∈).(2)前n 项和公式:n S = = . 3.等差数列的前n 项和公式与函数的关系:n S = . 数列{}n a 是等差数列的充要条件是其前n 项和公式n S = . 4.等差数列的性质(1)若q p n m +=+(*,,,N q p n m ∈),则有 ,特别地,当p n m 2=+时, .(2)等差数列中,n S ,n n S S -2,n n S S 23-成等差数列.(3)等差数列的单调性:若公差0>d ,则数列为 ;若0<d ,则数列为 ; 若0=d ,则数列为 . 5.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的 ,通常用字母 表示(0≠q ). 6.等比数列的通项公式设等比数列{}n a 的首项为1a ,公比为q ,则它的通项=n a . 7.等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 8.等比数列的常用性质(1)通项公式的推广:⋅=m n a a (*,N m n ∈).(2)若{}n a 为等比数列,且n m l k +=+),,,(*N n m l k ∈,则 .(3)若{}n a ,{}n b (项数相同)是等比数列,则{}n a λ (0≠λ),⎭⎬⎫⎩⎨⎧n a 1,{}2n a ,{}n n b a ⋅,⎭⎬⎫⎩⎨⎧n n b a 仍是等比数列.(4)单调性:⎩⎨⎧>>101q a 或⎩⎨⎧<<<1001q a ⇔{}n a 是 数列;⎩⎨⎧<<>1001q a 或⎩⎨⎧><101q a⇔{}n a 是 数列;1=q ⇔{}n a 是 数列;0<q ⇔{}n a 是 数列. 9.等比数列的前n 项和公式等比数列{}n a 的公比为q (0≠q ),其前n 项和为n S ,当1=q 时,1na S n =; 当1≠q 时,=n S = = . 10.等比数列前n 项和的性质公比不为1-的等比数列{}n a 的前n 项和为n S ,则n S ,n n S S -2,n n S S 23-仍成等比数列,其公比为 . 二、典型例题 知识点1 数列的概念1.下列公式可作为数列{}n a :Λ2,1,2,1,2,1的通项公式的是 ( )A .1=n aB .21)1(+-=n n aC .|2sin |2πn a n -= D .23)1(1+-=-n n a2.数列{}n a 的通项902+=n na n ,则数列{}n a 中的最大值是( )A .103B .19 C.191D.6010 知识点2 前n 项和3.已知数列{}n a 的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项的和为n S ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值31D .有最小值314.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为n a ,数列{}n a 的前n 项和为n S ,则S 100的值为________.5.在数列{}n a 中,若点),(n a n 在经过点)3,5(的定直线l 上,则数列{}n a 的前9项和=9S .知识点3 综合题型6.互不相等的三个正数,123,,x x x 成等比数列且点311122233(log ,log ),(log ,log ),(log ,log )a b a b a b P x y P x y P x y ,(0,1;0,1)a a b b >≠>≠三点共线,则123,,y y y 成( )(A )等差但非等比数列 (B )等比数列(C )既是等差数列又是等比数列 (D )既不是等差数列又不是等比数列7.设数列}{n a 是项数为20的等比数列,公差*N d ∈,且关于x 的方程0422=-+dx x 的两个实数根21,x x 满足211x x <<,则数列}{n a 的偶数项之和减去奇数项之和的结果为( ) (A )15 (B )10 (C )5 (D )20-8.已知定义在)1,0(的函数)(x f ,对任意的),1(,+∞∈n m 且n m <时,都有)1()1()1(mn n m f n f m f --=-。
记*2),551(N n n n f a n ∈++=,则在数列}{n a 中,=+++821...a a a ( ) (A ))21(f (B ))31(f (C ))41(f (D ))51(f9.已知二次函数105)(2+-=x x x f ,当]1,(+∈n n x ,*N n ∈时,把)(x f 在此区间内的整数值的个数表示为n a .(1)求21,a a 的值; (2)求3≥n 时n a 的表达式;(3)令14+=n n n a a b ,求数列{}n b 的前n 项和n S (3≥n ).10.二次函数x x x f +=2)(,当)](1,(*N n n n x ∈+∈时,)(x f 的函数值中所有整数值的个数为)(n g ,)(3223n g n n a n +=(*N n ∈),则=-++-+-=-n n n a a a a a S 14321)1(Λ ( ) A .2)1()1(1+--n n n B .2)1()1(+-n n nC.2)1(+n n D .2)1(+-n n11.已知数列{})1(log 2-n a 为等差数列,且31=a ,52=a . (1)求证:数列{}1-n a 是等比数列; (2)求nn a a a a a a -++-+-+12312111Λ的值.12.已知数列{}n a ,n S 是其前n 项和,且271+=-n n S a (2≥n ),21=a . (1)求数列{}n a 的通项公式; (2)设122log log 1+=n n n a a b ,n T 是数列{}n b 的前n 项和,求使得20m T n <对所有*N n ∈都成立的最小正整数m .三、同步练习1.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 52.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |等于( ).A .1B .43 C .21 D .83 3.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0084.一个五边形的五个内角成等差数列,且最小角为46°,则最大角为_______.5.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的34,若洗n 次后,存在的污垢在1%以下,则n 的最小值为_________.6.已知等差数列lg x 1,lg x 2,…,lg x n 的第r 项为s ,第s 项为r (0<r <s ),则x 1+x 2+…+x n =____ ___.7.数列{}n a 的通项222(cos sin )33nn n a n ππ=-,其前n 项和为n S ,则30S 为( ) A .470 B .490 C .495 D .5108.已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15,求S n =f (1)+f (2)+…+f (n )的表达式.9.设数列{}n a 的前n 项和为n S ,已知n S n na a a a n n 2)1(32321+-=++++Λ,*N n ∈.(1)求32,a a 的值; (2)求证:数列{}2+n S 是等比数列.第九讲 立体几何 立体几何的几种常见分类(线线、线面)立体几何属于高考重点、必考点,也是中低档题目;但是由于从12年开始考查灵 活应用及空间想象感越来越强,所以非规则建立坐标系的题目也越来越多。
对于平行与垂直的位置的证明同学们相对来说基本上都能掌握;但是对于异面直线 所成角、线面角及二面角的要求越来越精细,所以就常见的几种基本题型做个分类。
考点题型1 异面直线所成角: 直接平移法: 1.已知正四棱柱-ABCD 1111A B C D 中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成角的余炫值为( )A. B .15CD .35中位线平移:2.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13BCD .23割补法平移:.3.(09年四川)如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧棱1CC 的中点,则异面直线1AB 和BM所成的角的大小是 .空间角平分线: 4.在正四棱柱1111D C B A ABCD -中,1==BC AB ,21=AA ,过顶点1D 在空间作直线l ,使l 与直线AC 和1BC 所成的角都等于060,这样的直线l 最多可做( )A.1条B.2条C.3条D.4条A 1C 1 B 1ABCM与线面角的定义结合: 5.在正方体1111D C B A ABCD -中,P 为棱1BB 的中点,则在平面11B BCC 内过点P 且与直线AC 成050角的直线有( )A.0条B.1条C.2条D.无数条与二面角定义结合: 6.(06年四川)已知二面角l αβ--的大小为60o ,m n ,为异面直线,且m α⊥,n β⊥,则m n ,所成的角为( ) A.30oB.60oC.90oD.120o7.(全国)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .8.(北京)如图,1111ABCD A B C D -是正四棱柱.(1)求证:BD ⊥平面11ACC A ;(2)若二面角1C BD C --的大小为60︒,求异面直线1BC 与AC 所成角的大小.ABC D 1A1B1C1D9.(福建)如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得⊥ES 平面ANB ?若存在,求线段AS 的长;若不存在,请说明理由.考点题型2 线面角与二面角 定义直接法:10.(07年四川)如图,在正三棱柱111ABC A B C -1,则1BC 与侧面11ACC A 所成的角是 .11.(福建)如图,在长方体1111ABCD A B C D -中,2==BC AB ,11=AA ,则1BC 与平面D D BB 11所成角的正弦值为( ) AB .C .D .MNC EBADABC1C1A1BABCDA 1D 1C 1B 1三余弦法: 12.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .23只“求”不作法:13.(06年四川)在三棱锥O ABC -中,三条棱OAOB OC ,,两两互相垂直,且OA OB OC ==,M 是AB 边的中点,则OM 与平面ABC 所成角的正切值是 .14.(全国)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠,2AB =,BC =SA SB ==(1)证明SA BC ⊥; (2)求直线SD 与平面SAB 所成角的正弦值.DBCS15.(浙江)如图,在平行四边形ABCD 中,BC AB 2=,0120=∠ABC ,E 为线段AB 的中点,将ADE ∆沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.(1)求证://BF 面A DE ';(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.16.(湖南)如图2,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图3.图2图3(1)证明:平面1G AB ⊥平面12G ADG ; (2)当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角.1G2GD F CBAEFBAD E A 'M(浙江)与二面角定义的结合:往往借助与线面垂直找“垂线” 17.(10年四川)如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为030.则AB 与平面β所成的角的正弦值是 .18.(全国)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =. (1)证明:AD CE ⊥;(2)设CE 与平面ABE 所成的角为45o ,求二面角C AD E --的大小.19.(山东)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=o ,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PADE AF C --的余弦值.αβABlPBDF A CDE AB第十讲 直线的倾斜角和斜率一 重点知识讲解1.直线的倾斜角:在直角坐标系下,以x 轴为基准,当直线l 与x 轴相交时,x 轴正向与直线l 向上方向之间所成的最小正角α,叫做直线的倾斜角.3.如图,经过两点),(),,(222111y x P y x P 的直线,设直线21P P的倾斜角是α,斜率是k ,则 2121tan y y k x x α-==-(12x x ≠).二 典型例题(一)知识点1 直线的倾斜角 例1 (1)直线cos 320x y θ+-=的倾斜角的范围是___________________.(2)若直线的倾斜角α3tan 3α<,则α的取值范围是____________.(二)知识点2 直线的斜率例2 (1)若直线l 过(2,3)-和(6,5)两点,则直线l 的斜率为 ,倾斜角为 .(2)设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a ,b 满足( )A.1a b +=B.1a b -=C.0a b +=D.0a b -=(三)知识点3 直线的斜率的计算例3 如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,求直线l 的斜率.(2)设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45︒,得到直线1l ,则直线1l 的倾斜角β为_______,斜率为________.(四)知识点4 斜率的综合运用 例4 已知实数x y ,满足222(11)y x x x =-+-≤≤,试求32y x ++的最大值和最小值.例5 若直线20mx y ++=与线段AB 有交点,其中(23)(32)A B -,,,,求实数m 的取值范围.例6 (高考题赏析)已知0a>,若平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,则a =_______________.三 同步测试 1.直线sin 10x y α-+=的倾斜角的变化范围是( )A.(0,)2πB.(0,)πC.[,]44ππ-D.3[0,][,)44πππU2.已知直线经过点(04)A ,和点(12)B ,,则直线AB 的斜率为( ) A.3 B.2- C.2 D.不存在3.过点(2,)P m -和(,4)Q m 的直线的斜率等于1,则m 的值为( ) A.1 B.4 C.1或3 D.1或44.已知三点(2)(37)(29)A a B C a --,,,,,在一条直线上,则实数a =_______5.给出下列命题: ①任何一条直线都有唯一的倾斜角; ②一条直线的倾斜角可以是030-; ③倾斜角为00的直线只有一条,即x 轴; ④按照倾斜角的概念,直线的倾斜角的集合00{|0180}αα≤≤与直线集合建立了一一映射关系.正确的有____________________.6.斜率为2的直线经过(3,5)、(,7)a 、(1,)b -三点,则a 、b 的值是( ) A.4a =,0b = B.4a =-,3b =- C. 4a =,3b =- D.4a =-,3b =7.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A.34k ≥或4k ≤- B.344k -≤≤ C.344k ≤≤ D.344k -≤≤四 解答题 1.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于多少?2.已知实数,x y 满足|1||2|y x x =-++,33x -≤≤,试求14y x -+的最大值和最小值.3.(探究与拓展)证明不等式:a m ab m b+>+(0a b <<且0m >)(至少用两种不同的方法).第十一讲 直线的方程 一 重点知识讲解1.直线在平面直角坐标系中的3种状态:2.在直角坐标系内确定一条直线,有两种方法:①两点确定一条直线; ②一个点和倾斜角.3.直线的方程的几种形式: ①点斜式方程:过点11(,)A x y 且斜率为k 的直线l 为:11()y y k x x -=-.②斜截式方程:与y 轴的截距为b ,且斜率为k 的直线l 为:y kx b =+.③两点式方程:过点1122(,),(,)A x y B x y 的直线l 为:121121()()()()y y x x x x y y --=--.④截距式方程:与,x y 轴的截距分别为,a b 的直线l 为:1x ya b+=. 注意:此处需要花一点时间给学生讲解,每一种方程的适用范围.4.直线的一般式方程:yxOP 0yxOP 0①方程的形式:0Ax By C ++=(220A B +≠)②适用范围:平面直角坐标系中,任何一条直线都可以用一般式表示. ③几何意义:()i 当0B ≠时,则A k B -=(斜率),Cb B-=(y 轴的截距); ()ii 当0B =,0A ≠时,则Ca A-=(x 轴的截距).5.两条直线平行与垂直的判定:(1)平行或重合:(2)垂直: 结论:①若二 典型例题(一)知识点1 两条直线的平行 例1 (1)已知直线1:(3)(4)10,l kx k y -+-+=与2:2(3)230l k x y --+=平行,则k 的值是( )A.1或3B.1或5C.3或5D.1或2(2)已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则m 的值为 ( )A.0B.8-C.2D.10(二)知识点2 两条直线的垂直例2 (1)已知直线1:(1)30,l kx k y +--=与2:(1)(23)20l k x k y --+-=垂直,则k 的值是( )A.1-或3-B.1或3C.1-或1D.1-或3(2)若直线250x y -+=与直线260x my +-=互相垂直,则实数m==_______.(三)知识点3 直线方程的应用例3 已知ABC ∆三边所在直线的方程为:34120AB x y ++=,:43160BC x y -+=, :220CA x y +-=,求(1)求ABC ∠的平分线所在直线的方程; (2)若边AB 的中点为G ,边AC 的中点为F ,求中位线GF 所在直线的方程.例4 已知点(0,3)A -,(1,0)B -,(3,0)C ,求点D 的坐标,使四边形ABCD .(,,,A B C D按逆时针方向排列)例5 (高考题赏析)已知过原点O 的一条直线与函数x y 8log =的图像交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数的x y 2log =的图像交于,C D 两点.(1)证明:点,C D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.三 同步测试1.已知直线1:320l ax y -+=和2:(2)10l x a y a +-+-=.若12l l ⊥,则实数a =_____; 若12//l l ,则实数a =_____.2.过点(1,4)A 且在x 轴、y 轴上的截距的绝对值相等的直线共有( )A.1条B.2条C.3条D.4条3.已知直线(1)10a a x y -+-=与直线210x ay ++=垂直,则实数a 的值等于( )A.12B.32 C.0或12D.0或324.如果直线1:3430l x y --=与直线2l 关于直线1x =对称,则直线2l 的方程为_____ ______________.5.过点(4,3)A -,并且在两坐标轴上的截距的绝对值相等直线l 的方程为_____________.6.若直线(32)(14)80a x a y ++-+=与直线(52)(4)70a x a y -++-=垂直,则a 的值为( ) A.0 B.1 C.0或1- D.0或17.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )A.1133y x =-+B.113y x =-+C.33y x =-D.113y x =+8.已知直线l 过点(2,2)A -且在第二象限与两坐标轴围成的三角形面积最小的直线l 的方程是______________.9.若直线l 过直线1:35130l x y --=和2:10l x y ++=的交点,且平行于3:250l x y +-=,则直线l 的方程是____________________.四 解答题 1.已知点(2,3)A 和直线:34200l x y +-=.求:①过点A 和直线l 平行的直线方程; ②过点A 和直线l 垂直的直线方程.2.已知直线1:220l x y ++=,2:40l mx y n ++=.(1)若12l l ⊥,求m 的值; (2)若12//l l ,求,m n 的值.3.直线1:310l x y -+=,直线2l 过点(1,0),且2l 的倾斜角是1l 的的倾斜角的2倍,求直线2l 的方程.4(探究与拓展).若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为则m 的倾斜角可以是 ①15o②30o③45o④60o ⑤75o其中正确答案的序号是_____________.第十二讲 直线的交点坐标与距离公式 一 重点知识讲解1.两条直线的交点坐标: 已知两直线1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0).一般地,将两条直线的方程联立,得方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩(1)若方程组有唯一解,则两条直线相交,此解就是交点坐标;(2)若方程无解,则两条直线无公共点,此时两条直线平行.反之亦成立2.平面上的两点111(,)P x y ,222(,)P x y 间的距离公式:12||PP = .3.点到直线的距离: 点00(,)P x y 到直线:0l Ax By C ++=的距离:d =(使用点到直线的距离公式时直线方程必须化成一般式0Ax By C ++=的形式)4.两条平行直线间的距离:两条平行线10Ax By C ++=与20Ax By C ++=间的距离:d =.注意:使用两平行线间的距离公式时: ①首先直线的方程化成一般形式; ②还要注意x 、y 的系数必须相同时才能读出1C 、2C 的值.三 典型例题(一)求两直线的交点坐标例1 求经过直线1:3210l x y +-=和2:5210l x y ++=的交点,且垂直于直线3:3560l x y -+=的直线l 的方程.(二)知识点2 点到直线的距离公式 例2 (1)点P 在直线40x y +-=上,O 为原点,则||OP 的最小值是( )A.2B.6C.22D.10(2)一条直线经过(1,2)P ,且与(2,3)A 、(4,5)B -距离相等,则直线l 为( )A.460x y +-= B.460x y +-=C.3270x y +-=和460x y +-=D.2370x y +-= 和460x y +-=(三)知识点3 两平行线间的距离公式 例3 两条互相平行的直线分别过点(6,2)A 和(3,1)B --,并且绕着,A B 旋转,如果两条平行直线间的距离为d ,求:(1)d 的变化范围; (2)当d 取最大值时,两条直线的方程.(四)知识点4 距离公式的综合运用 例4 已知三条直线1:20l x y a -+=(0a >),直线2:4210l x y -++=和直线3:l10x y +-=,且1l 与2l 能否找到一点P ,使得P 点同时满足下列三个条件:(1)P 是第一象限的点; (2)P 点到1l 的距离是P 点到2l 的距离的12;(3)P 点到1l 的距离与P 点到3l 若能,求出P 点坐标;若不能,说明理由.例5(高考题赏析)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A.3B.2C.13-D.12-三 同步测试1.原点到直线052=-+y x 的距离为( )A.1B.3C.2D.52.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程为( ) A.425x y +=B.425x y-=C.25x y +=D.25x y -=3.已知(2,0)A ,(1,1)B ,动点P 在直线10x y ++=上,则||||PA PB +的最小值为__________.4.过点(1,2)P -且到点(2,3)A 和(4,5)B -距离相等的直线l 的方程是_________________.5.若不同两点,P Q 的坐标分别为(,),(3,3)a b b a --,则线段PQ 的垂直平分线l 的斜率为_______,6.已知点(,)P x y 在直线10x y --=上运动,则22(2)(2)x y -+-的最小值为( )A.12C.327.已知实数x 、y 满足01034=-+y x ,则22y x +的最小值为___________.四 解答题1.求在两坐标轴上截距相等,且到点(3,1)A 的距离为2的直线的方程.2.三角形的三个顶点是(4,0)A ,(2,4)B ,(0,3)C .求(1)AB 边的中线所在直线1l 的方程; (2)BC 边的高所在直线2l 的方程; (3)直线1l 与直线2l 的交点坐标.3.过点(2,3)直线l被两平行直线1:2590l x y -+=与2:2570l x y --=所截线段AB的中点恰在直线410x y --=上,求直线l 的方程.4(探究与拓展).已知直线11:0l x y C -+=,1C ,22:0l x y C -+=,33:0l x y C -+=,L,:0n n l x y C -+=(其中12n C C C <<<L ),当2n ≥时,直线1n l -与n l 间的距离为n .(1)求n C ; (2)求0n x y C -+=与x 轴, y 轴围成的图形的面积;(3)求10n x y C --+=与0n x y C -+=及x 轴, y 轴围成图形的面积.第十三讲 直线与方程(学习方法) 一 怎样把几何问题转化为代数问题?几何问题代数化是实现解析几何基本思想的基础和出发点,在学习中要主动的去理解几何对象的本质特征,这是实现几何问题代数化的基础和落脚点,解析几何毕竟是几何,决不能忽视对几何对象的几何特征的认识和理解,解析几何审题的主要目的之一,就是要理解几何对象的几何属性,为准确的代数化打好基础. 二 案例分析案例1 (1)已知直线:l y kx =-2360x y +-=的交点在第一象限,则直线l 的倾斜角的取值范围是( )A.[,)63ππB.(,)62ππC.(,)32ππD.[,]62ππ(2)在ABC ∆中,BC 边上的高所在的直线方程为:410x y -+=,A ∠的平分线所在的直线方程为:210x y -+=,若点B 的坐标为(1,2),则点A ,C 的坐标分别为____________,二 解析几何学习的另一个主要任务,即是提高将“代数结论”向“几何结论”转化的意识和能力,这种转化突出的特征是“数” “方程” 向“形”的转化.(例: ①直线(2)(1)450k x k y k ++---=的几何特征_____.)案例1 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有 ( )A.1条B.2条C.3条D.4条案例2 已知直线221:()(21)120l mm x m y m +-++-=(m R ∈)恒过定点P ,2:1x yl a b+=(0,0)a b >>与1l 相交于点P ,则2a b +的最小值为__________.案例3(探究与拓展)已知点P 到两定点)0,1(-M 、)0,1(N 距离的比为2,点N 到直线PM 的距离为1,求直线PN的方程.案例4 (至少用两种方法解决)过点(2,3)直线l 被两平行直线1:2590l x y -+=与2:2570l x y --=所截线段AB的中点恰在直线410x y --=上,求直线l 的方程.三 强化训练 1.已知ABC ∆中,(3,2)A ,,B C∠∠平分线方程分别为10x y +-=,3250x y -+=,则直线BC的方程为__________________,2.已知直线:210l x y -+=和点(0,0)O 、(0,3)M ,点P 是直线l 上一动点,则||||||PO PM -的最大值是__________,此时点P 的坐标为________.3.已知直线:5530l ax y a --+=.若使直线不经过第二象限,则a 的取值范围是_________________.4.不论m 为何实数,直线:(21)(3)(11)0l m x m y m -++--=恒过一定点,则此定点的坐标是_________.5.已知直线(2)(31)1a ya x -=--,若直线不经过第二象限,则实数a 的取值范围__________.6.在平面直角坐标系xOy 内,若过点P 且与原点的距离为d 的直线有两条,则d 的取值范围为__________.四 解答题1.过点(3,0)P 作直线l ,使它被两条相交直线220x y --=和30x y ++=所截得的线段AE 恰好被P 点平分,求直线l 的方程.2.已知直线l 经过直线250x y +-=与20x y -=的交点.(1)若点(5,0)A 到直线l 的距离为3,求直线l 的方程; (2)求点(5,0)A 到直线l 的距离的最大值.3.已知直线l 经过点(2,4)A ,且被平行直线1:10l x y -+=与2:10l x y --=所截得的线段的中点M在直线30x y +-=上,求直线l 的方程.4(高考题赏析).设点(1,0)P -在动直线2()20ax a c y c +++=(,a R c R ∈∈)上的射影为M ,已知点(3,3)N ,则线段MN 长度的最大值是__________.第十四讲 圆的方程 一 重要知识讲解1.确定圆的条件:①圆心和半径; ②不共线的三点确定一个圆.2.圆的定义: 平面内与一定点距离等于定长的点的轨迹称为圆,即||OP R =.3.圆的标准方程:222()()x a y b r -+-=⇔圆心为(,)C a b ,半径为r .特别地,圆心在原点,半径为r 的标准方程为 222x y r +=.4.圆的一般方程: 220x y Dx Ey F ++++=,圆心为(,)22D E C --,半径为r=其中2240DE F +->).注意:圆的标准方程与一般方程互化: ①把圆标准方程的完全平方展开、整理,可化为圆的一般方程. ②把圆的一般方程配方整理,可化为圆的标准方程.5.求解圆的方程中还应注意以下三个基本性质:①圆心在过切点且与切线垂直的直线上; ②圆心在任一条弦的中垂线上; ③两圆内切或外切时,切点与两圆圆心三点共线.二 典型例题(一)知识点1 求圆的标准方程 例 1 (1)已知圆经过(2,3)A -和(2,5)B --两点,若圆心在直线230x y --=上,则圆的方程为__________________________.(2)ABC ∆的三个顶点分别为(1,5),(2,2),(5,5)A B C ---,求其外接圆的方程;(二)知识点2 求圆的一般方程例2 (1)经过(4,2),(1,3)A B -两点,且在两坐标轴上的四个截距之和为4的圆的方程.(2)已知曲线261y x x =-+与坐标轴的交点都在圆C 上,则圆的方程为________________________.(三)知识点3 灵活选择圆的方活 例3 已知圆M 过点(4,1)A -且与圆22:2650C x y x y ++-+=相切于点(1,2)B .(1)求圆M 的方程; (2)求直线AB 被圆C 所截得的弦长.例4(高考题赏析)设平面直角坐标系xOy 中,设二次函数2()2()f x x x b x R =++∈的图象与两坐标轴有三个交点,经过这三个交点的圆记为C .求:(1)求实数b 的取值范围; (2)求圆C 的方程; (3)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.三 同步测试1.已知直线:210l x y k +++=被圆22:4C xy +=所截得的弦长为4,则k 的值为( )A.1-B.2-C.0D.2 2.过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为____________.3.经过两点(1,2)A ,(1,3)B -,且在两坐标轴上的四个截距之和为2的圆的方程为______________________.4.与直线20x y +-=和曲线221212640x y x y +--+=都相切的半径最小的圆的标准方程是________________.5.与直线210x y --=相切于点(5,2),且圆心在直线90x y --=上的圆的方程为____________________.6.圆C 过点(1,2)P 和(2,3)Q -,且圆C 在两坐标轴上截得的弦长相等,则圆C 的方程为 ____________________.7.已知圆C 关于坐标轴都对称,直线:(1)10l a x y a --++=(a R ∈),半径为圆心到直线l 的距离最大值,则圆C 的方程为__________________________.四 解答题1.已知圆O 的圆心在y 轴上,截直线1:3430l x y ++=所得的弦长为8,且与直线2:34370l x y -+=相切,求圆O 的方程.2.已知直线l 过点(1,2)P ,22:430M x y x +-+=e.(1)若圆心M 到直线l 的距离等于M e 的半径,求直线l 的方程;(2)当圆心M 到直线l 的距离最大时,求直线l 与两坐标轴围成的三角形面积.3(探究与拓展)已知二次函数2()4f x x x m =++的图象与两坐标轴有三个交点,记过这三个交点的圆为圆C .(1)求实数m 的取值范围; (3)试证明圆C 过定点(与m 无关)?并求出该定点的坐标.第十五讲 直线与圆的位置关系 一 重要知识讲解1.点与圆的位置关系: 设点00(,)P x y 和圆222:()()C x a y b r -+-=;(1)点00(,)P x y 在圆C 外h r ⇔>;min ||d PA h r ==-, max ||d PB r h ==+;(2)点00(,)P x y 在圆C 上h r ⇔=;则圆在P 处的切线方程为________________________. (3)点00(,)P x y 在圆C 内h r ⇔<,这时点00(,)P x y 到圆的最短距离为min ||d PA r h ==-,最长距离为max ||d PB r h ==+.2.直线与圆的位置关系的判断方法及特点研究:(1)几何方法:利圆心到直线的距离d 与半径长的大小关系(2)代数方法:联立直线与圆的方程,利用判别式∆:若0∆>⇔直线与圆相离;若0∆=⇔直线与圆相切;若0∆<⇔直线与圆相交.二 典型例题(一)知识点1 直线与圆的位置关系例1 (1)已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by+=与圆O 的位置关系是( )A.相切B.相交C.相离D.不确定(2)直线(2)(1)60m x m y ++--=与圆22(2)1x y -+=的位置关系是( )A.相交B.相离C.相切D.以上都有可能 (二)知识点2 直线与圆的综合运用 例2 (1)若直线l 过点(1,1)A 且被22:4O x y +=e 截得弦长为23求直线l 的方程.(2)以点2(,)C t t为圆心的圆C 与直线240x y +-=交于点,M N ,若||||OM ON =,(其中O 为原点),求圆C 的方程.例3 已知圆22:2440C xy x y +-+-=,是否存在斜率为1的直线l ,使得直线l 被圆C 截得的弦AB 为直经的圆过原点?若存在,求出直线l 的方程;若不存在,请说明理由.例4(高考题赏析)在平面直角坐标系xOy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.三 同步测试 1.线20x y m -+=与圆22:5C x y +=相交于,A B 两点,若OA OB ⊥(O 为坐标原点),则实数m 的值为( )A.5±B.52±C.52±D.522±2.若圆221:4C xy +=和圆222:220C x y ay +--=(0a >)15则a 的值为( )A.2B.3C.4D.53.圆221:20C x y x y +-+=关于直线:10l x y -+=对称的圆2C 的方程为_________________.4.若直线3450x y -+=与圆222(0)x y r r +=>相交于,A B 两点,且120AOB ∠=o (O 为坐标原点),则r =___________.5.若直线10x y -+=与圆2)(22=+-y a x 有公共点,则实数a 取值范围是( )A.[3,1]--B.[1,3]-C.[3,1]-D. (,3][1,)-∞-+∞U6.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点,A B ,弦AB 的中点为(0,1),则直线l 的方程为_______.7.已知直线:l y x m =+, m R ∈.若以点(2,0)M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,则该圆的方程为_____________________.8.直线:30l mx y m -+-=与圆22:(1)5C x y +-=位置关系是( )A.有公共点B.相离C.相切D.相交A.1B.2C.4D.10.设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则PQ 的最小值为( )A.6B.4C.3D.2四 解答题 1.已知圆2260xy x y m ++-+=和直线230x y +-=交于P 、Q 两点.(1)求实数m 的取值范围; (2)求以PQ 为直径且过坐标原点的圆的方程.2(拓展).已知圆220xy x +-=与直线10x y +-=交于P 、Q ,动圆C 过P 、Q 两点.(1)若圆C 圆心在直线12y x =上,求圆C 的方程; (2)求动圆C 的面积的最小值; (3)若圆C 与x 轴相交于两点M 、N (点N 横坐标大于1),若过点M 任作的一条与圆22:4O x y +=交于A 、B 两点直线都有ANM BNM ∠=∠,求圆C 的方程.第十六讲 圆与圆的位置关系 一 重要知识讲解1.两圆位置关系的判定方法:设两圆圆心分别为1O ,2O ,半径分别为1r ,2r ,d O O =21.①条公切线外离421⇔⇔+>r r d ; ②条公切线外切321⇔⇔+=r r d ;②条公切线相交22121⇔⇔+<<-r r d r r ;④条公切线内切121⇔⇔-=r r d ;⑤无公切线内含⇔⇔-<<210r r d;外离 外切相交 内切 内含 判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决.2.过圆221111:0C xy D x E y F ++++=和圆222222:0C x y D x E y F ++++=的交点的公共弦所在的直线方程为:121212()()()0D D x E E y F F -+-+-=.二 典型例题(一)知识点1 圆与圆的位置关系 例1 当k 为何实数时,两圆221:46120C x y x y ++-+=,222:2140C x y x y k +--+=相交、相切、相离?(二)知识点2 与两圆相切有关的问题 例2 求与圆2220x y x +-=外切且与直线30x y +=相切于点(3,3)M -的圆的方程.(三) 知识点3 两圆的公共弦 例3 (1)若圆224x y +=与圆22260(0)x y ay a ++-=>的公共弦的长为23,则a =_____.例4 已知两圆22210240xy x y +-+-=和222280x y x y +++-=.(1)试判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.例5(高考题赏析)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.三 同步测试1.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( ) A.内切 B.相交 C.外切 D.相离 2.经过两圆224xy +=和2210160x y x +-+=的公共点且过点(4,2)P 的圆的个数是( )A.1B.2C.多于2的有限个D.无限个 3.已知圆221:230C xy x ay +++-=和圆222:4290C x y x y +---=的公共弦长为26,则实数a 的值为______. 4.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于,A B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .5.与圆22(2)(1)4x y -++=相切于点(4,1)A -且半径为1的圆的方程为_________________. 6.两圆221:2610C x y x y ++-+=与222:42110C x y x y +-+-=的公共弦的长_____.四 解答题1.求经过两圆22230x y x +--=与224230x y x y +-++=的交点,且圆心在直线20x y -=上的圆的方程.2.已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程; (2)当OM OP =时,求l 的方程及POM ∆的面积.3(探究与拓展)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =( )A.4B.C.8D.第十七讲 直线与圆的综合运用有人说,确定一个圆只需要两个条件:圆心与半径.因为圆心确定圆的位置,而半径确定圆的大小.可是圆心是一个点,确定这个点,又需要几个条件?在平面直角坐标系中,点的位置由一对有序实数对确定,相当于与坐标轴平行的两条直线有且只有一个交点. 于是正确答案是:确定一个圆,需要3个独立条件.即“圆不离三,向半径寻根”.案例分析:过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交于y 轴于,M N 两点,则||MN =( )。