化工原理课程设计说明书换热器的设计
化工原理课程设计换热器说明书
化工原理课程设计换热器说明书换热器是化工工艺中常用的设备之一,用于实现不同流体之间的热量传递。
在化工原理课程设计中,编写换热器的说明书是一个重要的任务。
下面我将从多个角度来回答你关于换热器说明书的问题。
首先,换热器说明书应包含基本信息。
这包括换热器的名称、型号、规格、制造商、使用场景等。
此外,还应包括设计要求,如热量传递效率、工作压力、温度范围等。
其次,说明书应包含换热器的结构和工作原理。
这包括换热器的外观图、内部结构示意图以及热量传递的原理图。
同时,应详细介绍换热器的主要组成部分,如壳体、管束、传热介质等,并解释它们的作用和工作原理。
另外,换热器说明书还应包含换热器的性能参数和技术指标。
这包括换热器的传热面积、传热系数、压降、能耗等。
同时,还应提供换热器的设计计算方法和相关公式,以便使用者能够根据具体工艺要求进行设计和计算。
此外,说明书还应包含换热器的安装和维护指导。
这包括换热器的安装位置、安装方法、连接方式等。
同时,还应提供换热器的维护和保养要点,如清洗方法、防腐措施、定期检查等,以确保换热器的正常运行和延长使用寿命。
最后,说明书还应包含换热器的安全注意事项和故障排除方法。
这包括换热器的安全操作规程、应急处理措施、常见故障及解决方法等,以确保使用者在操作和维护过程中的安全。
综上所述,一份完整的换热器说明书应包含基本信息、结构和工作原理、性能参数和技术指标、安装和维护指导,以及安全注意事项和故障排除方法等内容。
通过这份说明书,使用者可以全面了解和正确操作换热器,确保其正常运行和安全使用。
化工原理课程设计换热器
化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
化工原理课程设计说明书(换热器的设计)
中南大学化工原理课程设计2010年01月22日目录一、设计题目及原始数据(任务书) (3)二、设计要求 (3)三、列环式换热器形式及特点的简述 (3)四、论述列管式换热器形式的选择及流体流动空间的选择 (8)五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等) (10)①物性数据的确定 (14)②总传热系数的计算 (14)③传热面积的计算 (16)④工艺结构尺寸的计算 (16)⑤换热器的核算 (18)六、设计结果概要表(主要设备尺寸、衡算结果等等) (22)七、主体设备计算及其说明 (22)八、主体设备装置图的绘制 (33)九、课程设计的收获及感想 (33)十、附表及设计过程中主要符号说明 (37)十一、参考文献 (40)一、设计题目及原始数据(任务书)1、生产能力:17×104吨/年煤油2、设备形式:列管式换热器3、设计条件:煤油:入口温度140o C,出口温度40 o C冷却介质:自来水,入口温度30o C,出口温度40 o C允许压强降:不大于105Pa每年按330天计,每天24小时连续运行二、设计要求1、选择适宜的列管式换热器并进行核算2、要进行工艺计算3、要进行主体设备的设计(主要设备尺寸、横算结果等)4、编写设计任务书5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。
一剖面图,两个局部放大图。
设备技术要求、主要参数、接管表、部件明细表、标题栏。
)三、列环式换热器形式及特点的简述换热器概述换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。
化工原理课程设计模板-换热器
化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
化工原理 换热器设计说明
|化工原理课程设计任务书专业班级:07过控02 学生姓名:赵凯 学号: 0703020228 一 设计题目:正戊烷冷凝器的设计二 课题条件(文献资料,仪器设备,指导力量) (一)设计任务设计一冷凝器,冷凝正戊烷蒸气; 1) 处理能力:6万吨/年。
2) 正戊烷蒸气压力:0.75kgf/cm2,其饱和温度为52C ︒,蒸发潜热为83kcal/kg 3) 冷却剂:自来软水,进口温度C 251︒=t 出口温度C 40o 2=t (二)操作条件: (1)生产方式:连续操作(2)生产时间:每年以300天计算,每天24小时(3)冷凝器操作压力为常压,管程和壳程的压力均不大于30kpa 三.设计任务1.确定设计方案,绘制工艺流程图。
2.热力学计算 2.1热力学数据的获取 2.2估算传热面积 2.3工艺尺寸的计算 2.4面积核算 2.5壁温校核 2.6压降校核3.结构设计3.1冷凝器的安装3.2管设计3.3管心距设计3.4管板设计3.5折流板设计3.6壳体设计3.7接管设计3.8封头设计3.9法兰设计3.10支座设计3.11其他4.设计计算结果汇总表5.设计结果评价6.绘制装配图7.编制设计说明书设计流程图确定物性常数,热负荷、冷却剂用量及平均温差,确定换热器类型及流体流动空间选择传热管参数,并计算管程相应参数估计冷凝给热系数估计传热总数,计算传热面积初值计算计算值与假定值相差较大计算值与假定值相差较大压降大于设计①②③④核算冷凝给热系数总传热系数核算计算管内给热系数壳侧压降和管侧压降计算,并与设计压力比较裕度系数校验考虑夏冬季的温度差异,改变冷流体进口温度折流板计算 计算值与假定值相差不大裕度过大或过小裕度合适确定换热器基本尺寸压降小于设计压力⑤⑥⑦⑧⑨ 计算换热器其余零件⑩工艺流程图热力学计算1.热力学数据的获取正戊烷液体在定性温度(52℃)下的物性数据(查化工原理附录)。
,,kJ/kg 5.347C W/m 13.0C kJ/kg 34.2,s Pa 108.1,kg/m 59643=︒⋅=︒⋅=⋅⨯==-r c p λμρ 循环水的定性温度:入口温度为C 251︒=t ,出口温度为C 40o 2=t 循环水的定性温度为()C 5.322/4025ο=+=m t两流体的温差C 50C 5.195.3252οο<=-=-m m t T ,故选固定管板式换热器 两流体在定性温度下的物性数据如下物性流体温度 ℃ 密度 kg/m3 粘度 mPa ·s 比热容 kJ/(kg ·℃) 导热系数 W/(m ·℃) 正戊烷 52 596 0.18 2.34 0.157 循环水 32.59940.7254.080.6262.估算传热面积 (1)计算热负荷1s m =6710⨯/(300⨯24)=8333.3kg/h=2.31kg/skW 3.8043600/5.3473.83331=⨯==r m Q s (2)冷却水用量2s m =t c p ∆2/Q =804.3/4.08⨯(40-25)=13.1kg/s (3)计算有效平均温度差逆流温差()()()()[]C 5.184052/2552ln 40522552,ο=-----=∆逆m t(4)选取经验传热系数K 值根据管程走循环水,壳程走正戊烷,总传热系数K 现暂取: C W/m 6502︒⋅=K (5)估算换热面积23`m 8.6618.5650103.804K A =⨯⨯=∆=,逆m p t Q 3.工艺尺寸计算(1)管径和管内流速 选用Φ25×2.5mm 较高级冷拔传热管(碳钢),取管内流速 u 1=0.8m/s 。
化工课程设计 换热器设计说明书
换热器设计说明书姓名学号专业2013-9目录1设计任务 (3)2确定设计方案 (3)2.1换热器类型 (3)2.2流动空间及流速 (3)3确定物性数据 (3)4计算总传热系数 (4)4.1热负荷 (4)4.2冷却水用量 (4)4.3对数平均温度 (4)4.4总传热系数 (5)5计算传热面积 (5)6主要工艺结构基本参数的计算与确定 (6)6.1管程数,换热管数量及长度 (6)6.2平均传热温差校正及壳程数 (6)6.3传热管排列和分程方式 (6)6.4壳体内径 (7)6.5折流板 (7)6.6壳体壁厚 (7)6.7接管 (8)6.8拉杆 (9)6.9定距管 (9)6.10管板 (9)6.11封头与管箱 (9)6.12温度补偿 (10)7换热器核算 (10)7.1热量核算 (10)7.1.1壳程对流传热系数 (10)7.1.2管程对流传热系数 (11)7.1.3总传热系数 (11)7.2传热面积S (11)8换热器内流动阻力计算 (12)8.1管程阻力 (12)8.2壳程阻力 (13)9附表 (15)10参考文献 (17)1设计任务2确定设计方案2.1换热器类型根据设计要求,初步选择固定管板式换热器,换热管选择φ25×2.5mm碳钢。
2.2流动空间及流速由于冷却水较易结垢,为便于水垢清洗,应使循环水走管程,机油走壳程。
管内冷却水的流速取0.5m/s。
3确定物性数据壳程机油的平均温度T=(130+80)/2=105℃管程水的平均温度t=(45+25)/2=35℃根据平均温度,查《化学化工物性数据手册》(刘光启等,化学工业出版社,2013),得到105℃下机油的有关物性数据如下:密度ρO =837kg/m 3定压比热容C pO =2.242kJ/kg.℃导热系数λ0=0.136w/(m.℃) 粘度μ0=14.875mPa.S35℃下水的有关物性数据如下:密度ρi =994kg/m 3定压比热容C pi =4.08kJ/kg.℃导热系数λi=0.626w/(m.℃) 粘度μi =0.725mPa.S4计算总传热系数4.1热负荷 Q O =m o C p 0(T 1-T 2) m o =35×10003600=9.722kg/sQ O =9.722×2.242×﹙130-80﹚=3.9235×106kJ/h =1089.86kw 4.2冷却水用量 W i =Q oC pi Δt i =39235004.08×﹙45−25﹚=4.808×104﹙kg/h ﹚=48.08t/h4.3对数平均温度Δt ’m =Δt 1−Δt 2㏑Δt 1Δt 2=﹙130﹣45﹚−﹙80﹣25﹚㏑130−45=68.92℃4.4总传热系数 管程传热系数Re=d i u i ρi μi=0.02×0.5×9940.000725=1.371×104P r =c pi μi/λi =4080×0.0007250.626=4.725αi =0.023×λi d iRe 0.8P r 0.3=0.023×0.6260.02×﹙1.371×104﹚0.8×1.920.4=2734w/﹙m 2℃﹚假设壳程传热系数αo =300w/﹙m 2℃﹚ 污垢热阻R si =0.00035﹙m 2℃﹚/w R s 0=0.00018﹙m 2℃﹚/w 管壁导热系数λ=50w/﹙m ℃﹚ 所以总传热系数 K=1d o αi d i +R si d o d i +b d o λd i+R s 0+1αo=10.0252734×0.02+0.0025×0.02550×0.02+1300+0.00018+0.00038×0.0250.02=223.7w/﹙m 2℃﹚5计算传热面积S ,=Q iK Δt ′m =1089860223.7×68.92=70.69﹙m 2﹚6主要工艺结构基本参数的计算与确定6.1管程数,换热管数量及长度根据传热管内径和流速确定单程传热管数n s=VΠd2u =48080/(994×3600)0.785×0.022×0.5≈86﹙根)按单程管计算所需传热管长度为L=Sπd0 n s =70.693.14×0.025×86=10.47m按单程管计算,传热管过长,宜采用多管程,现取传热管长l=6m,则该换热器的管程数N p=L/l=10.47/6≈2传热管总根数N=86×2=1726.2平均传热温差校正及壳程数平均传热温差校正系数R=130-8045−25=2.5P=45−25130−25=0.19按单壳程双管程结构,温差校正系数查相关图可查的ψ∆t =0.85,ψ∆t>0.8,可见单壳程,两管程是合适的。
换热器化工原理课程设计
换热器化工原理课程设计一、教学目标本课程旨在让学生掌握换热器的基本原理、类型及计算方法,能够运用化工原理分析解决实际工程问题。
通过本课程的学习,学生应达到以下目标:1.知识目标:(1)理解换热器的基本概念及其在化工工艺中的应用;(2)掌握换热器的传热原理,包括对流传热、热传导和热辐射;(3)熟悉不同类型的换热器结构及其特点;(4)学会换热器面积计算、热负荷计算和效率评价。
2.技能目标:(1)能够运用换热器的基本原理分析实际工程问题;(2)熟练运用相关软件进行换热器设计和模拟;(3)具备换热器操作和维护的基本技能。
3.情感态度价值观目标:(1)培养学生的工程意识,提高解决实际问题的能力;(2)培养学生对化工行业的兴趣,树立正确的职业观;(3)培养学生团队协作、创新思维和持续学习的意识。
二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、计算方法和实际应用。
具体安排如下:1.换热器的基本原理:介绍换热器的工作原理,对流传热、热传导和热辐射的基本概念。
2.换热器的类型:讲解不同类型的换热器,如平板式换热器、壳管式换热器、空气冷却器等,及其特点和应用。
3.换热器计算方法:教授换热器面积计算、热负荷计算和效率评价的方法。
4.换热器实际应用:分析换热器在化工工艺中的应用案例,讲解换热器操作和维护的基本知识。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,如讲授法、案例分析法、实验法等。
1.讲授法:通过讲解换热器的基本原理、类型和计算方法,使学生掌握相关理论知识。
2.案例分析法:分析实际工程中的换热器应用案例,提高学生解决实际问题的能力。
3.实验法:学生进行换热器实验,培养学生的动手能力和实验技能。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,为学生提供系统、科学的理论知识。
2.参考书:提供相关的化工原理、热力学等参考书籍,丰富学生的知识体系。
化工原理课程设计__换热器
化⼯原理课程设计__换热器⼀、设计任务书⼆、确定设计⽅案2.1 选择换热器的类型本设计中空⽓压缩机的后冷却器选⽤带有折流挡板的固定管板式换热器,这种换热器适⽤于下列情况:①温差不⼤;②温差较⼤但是壳程压⼒较⼩;③壳程不易结构或能化学清洗。
本次设计条件满⾜第②种情况。
另外,固定管板式换热器具有单位体积传热⾯积⼤,结构紧凑、坚固,传热效果好,⽽且能⽤多种材料制造,适⽤性较强,操作弹性⼤,结构简单,造价低廉,且适⽤于⾼温、⾼压的⼤型装置中。
采⽤折流挡板,可使作为冷却剂的⽔容易形成湍流,可以提⾼对流表⾯传热系数,提⾼传热效率。
本设计中的固定管板式换热器采⽤的材料为钢管(20R 钢)。
2.2 流动⽅向及流速的确定本冷却器的管程⾛压缩后的热空⽓,壳程⾛冷却⽔。
热空⽓和冷却⽔逆向流动换热。
根据的原则有:(1)因为热空⽓的操作压⼒达到1.1Mpa ,⽽冷却⽔的操作压⼒取0.3Mpa ,如果热空⽓⾛管内可以避免壳体受压,可节省壳程⾦属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较⼤,对流传热系数较⼤者宜⾛管间,因壁⾯温度与对流表⾯传热系数⼤的流体温度相近,可以减少热应⼒,防⽌把管⼦压弯或把管⼦从管板处拉脱。
(3)热空⽓⾛管内,可以提⾼热空⽓流速增⼤其对流传热系数,因为管内截⾯积通常⽐管间⼩,⽽且管束易于采⽤多管程以增⼤流速。
查阅《化⼯原理(上)》P201表4-9 可得到,热空⽓的流速范围为5~30 m ·s -1;冷却⽔的流速范围为0.2~1.5 m ·s -1。
本设计中,假设热空⽓的流速为8 m ·s -1,然后进⾏计算校核。
2.3 安装⽅式冷却器是⼩型冷却器,采⽤卧式较适宜。
空⽓⽔⽔空⽓三、设计条件及主要物性参数3.1设计条件注:要求设计的冷却器在规定压⼒下操作安全,必须使设计压⼒⽐最⼤操作压⼒略⼤,本设计的设计压⼒⽐最⼤操作压⼒⼤0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出⼝温度的平均值。
化工原理课程设计说明书
化工原理课程设计任务书一、设计题目设计一台换热器二、操作条件①油:入口温度130℃,出口温度70℃②冷却介质:循环水,入口温度30℃,出口温度40℃③允许压强降:管侧允许压力损失为5MPa,壳侧允许压力损失为10MPa④生产任务:油的流速为10000kg/h三、设备类型列管式换热器四、设计要求(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作、和维修;(4)经济上合理。
化工原理课程设计说明书1.设计概述换热是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
在化工装置中换热设备占设备数量的40%左右,占总投资的35%~46%。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
在三类换热器中,间壁式换热器应用最多。
目前,在换热设备中,使用量最大的是管壳(列管)式换热器,尤其在高温、高压和大型换热设备中占有绝对优势。
一般来讲,管壳式换热器具有易于加工制造、成本低、可靠性高,且能适应高温高压的特点。
数据显示2010年中国换热器产业市场规模在500亿元左右,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。
其中,石油化工领域仍然是换热器产业最大的市场,其市场规模为150亿元;电力冶金领域换热器市场规模在80亿元左右;船舶工业换热器市场规模在40亿元以上;机械工业换热器市场规模约为40亿元;集中供暖行业换热器市场规模超过30亿元,食品工业也有近30亿元的市场。
化工原理课程设计——换热器的设计
化工原理课程设计——换热器的设计1000字
该课程设计的目标是设计一个换热器,用于从一种热流体中传递热量到另一种热流体。
设计过程中需要考虑到热传递的效率和换热器的成本。
设计要求:
1.设定两种热流体的流量和进出口温度。
2.根据流量和温差计算出所需的传热量。
3.选择一种合适的换热器类型并计算出尺寸和效率。
4.根据选择的换热器类型确定换热管的材料,并计算出所需的管道长度。
5.确定换热器外壳材料和绝缘材料,并计算出所需的壁厚度。
在设计过程中,需要进行以下计算:
1.计算热传递量:
热传递量 = 流量 x 热容 x 温差
流量:两种热流体的流量
热容:热流体的比热容
温差:两种热流体的进出口温度差
2.选择换热器类型:
常见的换热器类型包括:管式热交换器、板式热交换器和壳管式热交换器。
在选择时需要考虑到传热效率、材料成本以及维护难度等因素。
3.计算换热管尺寸:
换热管的长度和直径需要根据流量和传热效率来计算,同时需要考虑到管壁的热传递系数和管壁的厚度。
4.确定换热器外壳材料和绝缘材料:
外壳的材料需要考虑到其耐腐蚀性和强度,同时需要计算出所需的壁厚度。
绝缘材料需要选用热传导系数较小的材料,以提高传热效率。
5.总体设计方案:
根据上述计算和选择,得到符合要求的换热器总体设计方案,并进行设计图纸和工艺流程图的绘制。
结论:
在设计过程中,需要考虑到换热器的热传递效率、成本、材料选用和维护难度等因素,从而得出符合要求的总体设计方案。
化工原理课程设计换热器
化工原理课程设计换热器
本文设计一个换热器,实现化工过程中的能量传递。
换热器是一种常见的设备,用于将热量从一个介质传递到另一个介质。
首先,我们确定了换热器的工作原理和基本要求。
换热器采用了壳程和管程的设计,分别由外壳和管束组成。
热量通过管道中的热媒体流经管程,然后从外壳中的流体中吸收或释放热量。
接下来,我们选择了适用于该化工过程的换热介质。
在这个设计中,我们选择了水作为热媒体,因为水具有良好的热传导性能和可用性。
基于化工过程的热量需求,我们确定了换热器的热负荷。
热负荷是指单位时间内所需传递的热量。
我们计算了化工过程中的热负荷,并据此确定了设计换热器所需的换热面积。
为了提高换热效率,我们设计了合理的流体流动方式。
流体在外壳和管道中的流动方式可以影响换热器的传热性能。
我们通过合理设计管程和外壳的结构,以及选择合适的流道形式,来确保流体在换热器中的流动均匀且高效。
此外,我们还考虑了换热器的传热方式。
换热器可以通过对流、传导和辐射等方式进行传热。
根据化工过程的要求,我们选择了对流传热作为主要的传热方式。
最后,我们综合考虑了换热器的选材、工艺要求和安全性能。
我们选择了具有良好耐腐蚀性和导热性能的材料,并按照化工
过程的要求进行工艺设计。
在设计过程中,我们还充分考虑了换热器的安全性能,包括压力、温度和材料的选择等因素。
综上所述,本文设计了一个换热器,包括工作原理、基本要求、换热介质、热负荷、流体流动方式、传热方式、材料选材和安全性能等内容。
该设计旨在满足化工过程中的能量传递需求,并提高传热效率和安全性能。
换热器课程设计说明书
化工原理换热器课程设计说明书设计题目煤油冷却器的设计专业班级应化0806学生姓名xxxxx学号xxxxxx指导教师xxxxx日期2010.9.4一、化工原理课程设计任务书(换热器的设计)(一)设计题目:煤油冷却器的设计(二)设计任务及操作条件:1.处理能力:15万吨/年煤油2.设备型式:列管式换热器3.操作条件:(1)煤油入口温度125℃,出口温度40℃;(2)冷却介质循环水,入口温度25℃,出口温度45℃;(3)允许压强降不大于105Pa;(4)煤油定性温度下的物性数据:密度为825kg/m3;粘度为:7.15×10-4Pa.S;比热容为:2.22kJ/(kg. ℃);导热系数为:0.14W/(m. ℃)(5)每年按330天计,每天24小时连续运行。
(三)设计项目1传热计算2管、壳程数的确定及管、壳程流体阻力计算3管板厚度计算4 U形膨胀节计算(浮头式换热器除外)5管壳式换热器零部件结构(四)绘制换热器装配图(A2图纸)二、换热器的选用换热器的选用(即选型) 的过程大体如下, 具体计算可参看列管式换热器设计中有关内容。
①根据设计任务要求计算换热器的热负荷Q。
②按所选定的流动方式, 计算出平均温度差( 推动力)Δtm 及查出温差校正系数ψ。
若ψ< 0 . 8 , 应考虑采用多壳程结构的换热器或用多台换热器串联。
③依所处理流体介质的性质, 凭经验初选一总传热系数K0 (估) , 并由总传热速率方程计算传热面积S'0 :S'0 =Q/K0 估Δtm式中Q———热负荷,W; K0 (估) ———凭经验选取的总传热系数,W /(m2·K) ; Δtm ———平均温度差, ℃。
④根根据计算出的S’0 值, 查有关换热器系列标准, 确定型号规格并列出各结构主要基本参数。
⑤利用总传热系数关联式计算K0 ( 计) , 再由总传热速率方程式求出S0 ( 计) 。
考虑到所用传热计算式的准确程度及其他未可预料的因素, 应使得所选用换热器具有的传热面积S0留有的裕度10%~25% , 即[ ( S0 - S0 ( 计) ) /S0 ( 计) ] = ( 10% ~25% )。
化工原理课程设计换热器 [《化工原理课程设计》报告换热器的设计]
化工原理课程设计换热器[《化工原理课程设计》报告换热器的设计]《化工原理课程设计》报告换热器的设计目录概述1.1.换热器设计任务书-4-1.2换热器的结构形式-7-2.蛇管式换热器-7-3.套管式换热器-7-1.3换热器材质的选择-8-1.4管板式换热器的优点-9-1.5列管式换热器的结构-10-1.6管板式换热器的类型及工作原理-11-1.7确定设计方案-12-2.1设计参数-12-2.2计算总传热系数-13-2.3工艺结构尺寸-14-2.4换热器核算-15-2.4.1.热流量核算-16-2.4.2.壁温计算-18-2.4.3.换热器内流体的流动阻力-19-概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
35%~40%。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。
其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。
表2-1传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合完善的换热器在设计或选型时应满足以下各项基本要求。
化工原理课程设计--列管式换热器设计说明书(完整版)
东莞理工学院《化工原理》课程设计说明书题目:列管式换热器的设计学院:班级:学号:姓名:指导教师:时间:目录一.化工原理课程设计任务书 (4)1.1 设计题目:列管式换热器的设计 (4)1.2 前言 (4)1.3 合成氨工业概述 (5)1.3.1 合成氨工业重要性 (5)1.3.2 合成氨的原料及原则流程 (5)1.4 世界合成氨生产技术及进展 (6)1.4.1 国外合成氨技术现状及发展 (6)1.4.2 我国合成氨技术的基本状况 (6)1.5 概述 (7)1.5.1 换热器概述 (7)1.5.2 固定管板式 (8)1.5.3 列管换热器主要部件 (8)1.5.4 设计背景及设计要求 (10)二.热量设计 (11)2.1 设计条件: (11)2.2 初选换热器的类型 (11)2.3 管程安排(流动空间的选择)及流速确定 (12)2.4 初算换热器的传热面积SO (12)三.机械结构设计 (14)3.1 管径和管内流速 (14)3.2 管程数和传热管数 (14)3.3 换热器筒体尺寸与接管尺寸确定 (16)3.4换热器封头选择 (17)3.4.1 封头选型及尺寸确定 (17)3.4.2 封头厚度选取 (18)3.5 管板的确定 (19)3.5.1 管板尺寸 (19)3.5.2 管板与壳体的连接 (19)3.5.3 管板厚度 (20)3.6换热器支座及法兰选定 (20)3.7 换热器核算 (21)3.7.1管、壳程压强降计及校验 (21)3.7.2 总传热系数计算及校验 (23)四.设计结果表汇 (25)五.参考文献 (26)附:化工原理课程设计之心得体会 (26)一.化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名:学号:指导老师姓名:任务起止日期:1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。
化工原理课程设计说明书——列管式换热器设计
操作
情况
操作压力
p/MPa
合理的压力降
△p/MPa
操作
情况
操作压力
p/MPa
合理的压力降
△p/MPa
减压
0~0.1(绝压)
P/10
中压
1~3(表压)
0.035~0.18
低
压
0~0.07
0.07~1
P/2
0.035较高压3~8来自表压)0.07~0.25
3.
流速(3-1)
式中 为管内体积流量;
3.
多管程列管式换热器,管程压力降
(3-2)
式中: 为直管中摩擦阻力引起的压力降,Pa;
为回弯管中因摩擦阻力引起的压力降,Pa;可由经验公式 估算
为结垢校正系数,无因次, 的换热管取1.4; 的换热管取1.5;
为串联的壳程数;
为管程数。
管内阻力损失
(3-3)
回弯阻力损失
(3-4)
管程总损失
(3-5)
为单程管长,m。
可以求得单程管长(2-10)
若选用6m长的管,4管程,则一台该换热器的总管数为 根。从谭天恩主编的化工原理第三版上册附录十九可查得浮头式换热器的主要参数,整理得表2-3
表2-3初选浮头式换热器的主要参数
项目
数据
项目
数据
壳径D(DN)
600mm
管尺寸
管程数Np(N)
4
管长l(L )
6m
表2-2列管式换热器中K值的大致范围
进行换热的流体
传热系数K
W·m-2·K-1
进行换热的流体
传热系数K
W·m-2·K-1
由气体到气体
化工原理课程设计换热器设计
化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1。
流体流动途径的确定 (6)2. 物性参数及其选型 (6)3。
计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5。
初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件: 1、苯:入口温度80℃,出口温度40℃。
2、冷却介质:循环水,入口温度32。
5℃。
3、允许压强降:不大于50kPa 。
4、每年按300天计,每天24小时连续运行。
三、设备型式: 管壳式换热器四、处理能力: 109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计.3、设计结果概要或设计结果一览表.4、设备简图。
(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。
六、附表:1。
设计概述 1。
1热量传递 出口温度 40。
5℃壳体内部空间利用率 70%选定管程流速u (m/s ) 1壳程流体进出口接管流体流速u1(m/s ) 1的概念与意义1。
1。
1热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热.由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。
1.1.2化学工业与热传递的关系化学工业与传热的关系密切.这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计说明书换热器的设计计中南大学化工原理课程设计2010年01月22日目录一、设计题目及原始数据(任务书) (3)二、设计要求 (3)三、列环式换热器形式及特点的简述 (3)四、论述列管式换热器形式的选择及流体流动空间的选择 (8)五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等) (10)①物性数据的确定 (14)②总传热系数的计算 (14)③传热面积的计算 (16)④工艺结构尺寸的计算 (16)⑤换热器的核算 (18)六、设计结果概要表(主要设备尺寸、衡算结果等等) (22)七、主体设备计算及其说明 (22)八、主体设备装置图的绘制 (33)九、课程设计的收获及感想 (33)十、附表及设计过程中主要符号说明 (37)十一、参考文献 (40)一、设计题目及原始数据(任务书)1、生产能力:17×104吨/年煤油2、设备形式:列管式换热器3、设计条件:煤油:入口温度140o C,出口温度40 o C冷却介质:自来水,入口温度30o C,出口温度40 o C允许压强降:不大于105Pa每年按330天计,每天24小时连续运行二、设计要求1、选择适宜的列管式换热器并进行核算2、要进行工艺计算3、要进行主体设备的设计(主要设备尺寸、横算结果等)4、编写设计任务书5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。
一剖面图,两个局部放大图。
设备技术要求、主要参数、接管表、部件明细表、标题栏。
)三、列环式换热器形式及特点的简述换热器概述换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。
在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。
换热器按照换热介质不同可分为水-水换热器和汽-水患热器;按照工作原理不同可分为间壁式、直接接触式、蓄热式和热管式换热器。
1.表面式换热器又称间壁式换热器。
是指通过传热表面间接加热的换热器。
由于表面式换热器冷热流体传热时被固体壁面所隔开,热流体和冷流体通过壁面进行热量传递,所以与直接接触式换热器相比,换热效率较低,常用在两种流体不容渗混的场合。
主要有管式、容积式、板式、螺旋板式等形式。
2.管式换热器是指由圆筒形壳体和装配在壳体内的带有管板的管束所组成的管式换热器。
结构简单、造价低、流通截面较宽、易于清洗水垢;但传热系数低、占地面积大。
管壳式换热器有固定管板式汽-水换热器、带膨胀节管壳式汽-水换热器、浮头式汽-水换热器、u彩管壳式汽-水换热器、波节型管壳式汽-水换热器、分段式水-水换热器等儿种类型。
3.套管式换热器是指由管子制成管套管等构件组成的管式换热器。
4.板式换热器是指不同温度的流体交错在多层紧密排列的薄壁金属板间流动换热的表面式换热器。
主要由传热板片、固定盖板、活动盖板、定位螺栓及压紧螺栓组成,板片之间用垫片进行密封。
由于板片表面的特殊结构,能使流体在低流速下发生强烈湍动,从而强化了传热过程。
板式换热器结构紧凑,拆洗方便,传热系数高,适应性大,节省材料,但板片间流通截面狭窄,易形成水垢和沉积物,造成堵塞,密封垫片耐热性差时易渗漏。
此种换热器常用于供暖系统。
板式换热器计算时应考虑换热便面污垢的影响,传热系数计算时应考虑污垢修正系数。
其中列管式换热器的应用已经有很悠久的历史。
现在,它作为一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。
同时,管板式换热器已成为高效、近臭的换热设备,大龄的应用于工业中。
列管式换热器的资料较为完善,已有系列化标准。
列管式换热器有三种类型,分别为固定管板式换热器、浮头式换热器、U形管式换热器和填料函式换热器。
1.固定管板式:固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。
固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。
这种换热器管程可以用隔板分成任何程数。
固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。
壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。
当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。
图1 固定管板式换热器固定管板式换热器的特点是:旁路渗流较小;造价低;无内漏。
在相同的壳体直径内,排管较多,比较紧凑;壳侧层清洗困难,加上膨胀节的方法不能照到管子的相对移动。
比较适合温差不大或温差大而壳层压力不高的场合。
固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。
2.浮头式换热器:其两端管板只有一端与壳体完全固定,另一端课相对于壳体作某些移动,该端称之为浮头。
此种换热器的管束不受壳体的约束,壳体与管束之间不会因为膨胀量的不同而产生热应力。
而且在清洗和检修时,仅将管束从壳体中抽出即可。
特点:该种换热器结构复杂、笨重,造价比固定管板式要高出约20%,材料的消耗量较大,浮头的端盖在操作中无法检查,所以安装时要特别注意其密封,以免发生内漏,且管束和壳体间隙较大,设计图2. 浮头式换热器时避免短路。
该种换热器比较适合管壳壁间温差较大,或易于腐蚀和易于结垢的场合。
3.U型管式换热器仅有一个管板,管子两端均固定于同一管板上。
这类换热器的特点是:管束可以自由伸缩,不会因为管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能好;承压能力强;管束课从壳体内抽出,便于检修和清洗,造价便宜。
但是管内清洗不变,管束中间分布的管子难以更换,管板中心部分布管不紧凑,管子数目不能太多。
仅适用于管壳壁温相差较大,或壳程截止易于结垢而管程介质不易结垢,高温高压腐蚀性强的情形。
图3.U型管式换热器4.填料函式换热器此类换热器的管板也仅有一端与壳体固定,另一端采用填料函密封。
特点为它的管束也可以自由膨胀,所以管壳间不会产生热应力,且管程与壳程都能清洗。
造价较低、加工制造简便,材料消耗较少。
填料密封处于泄露,故壳程压力不能过高,也不宜用于易挥发、易燃、易爆、有毒的场合。
四、论述列管式换热器形式的选择及流体流动空间的选择①换热器形式的选择本次任务中两流体的温度变化:煤油热流体进口温度为140℃,出口温度为40℃;冷却介质水的进口温度为30℃,出口温度为40℃。
该换热器用自来水作冷却介质,受环境影响,进口温度会降低,由此可知该换热器的管壁温度和壳体壁温之差较大,有上一步骤中对换热器形式及特点的陈述,课选用固定管板式换热器。
②流体流动空间的选择在管壳式换热器的计算中,首先要决定何种流体走管程,何种流体走壳程,这需遵循一些一般原则。
㈠宜于通入管内空间的流体不清洁的流体:因为在管内空间得到较高的流速并不困难,而流速高,悬浮物不易沉积,且管内空间便于清洗;体积小的流体:管内空间的流动截面往往要比管外空间的截面要小,流体易于获得理想的流速,而且也便于做成多程流动。
有压力的流体:管子承压能力强,而且还简化了壳体密封要求。
与外界温差大的流体:可以减少热量的逸散。
㈡宜于通入管间的流体当两流体温度相差较大时,α值大的流体走管间,这样可以减少管壁与壳壁间的温度差,因而也减少了管束与壳体间的相对伸长,故温差应力可以降低。
若两流体给热性能相差较大时,α值霄的流体走管间,此时可以用翅片管来平衡传热面两侧的给热条件,使之相互接近。
黏度大的流体,管间的截面和方向都在不断变化,在低雷诺数下,管外给热系数比管内的大。
泄漏后危险大的流体,可以减少泄露机会,以保安全。
根据所查得的资料,不洁净或易于结垢的物料应流经易于清洗的一侧,对于直管一般走管内;温度较高的物料宜走管内一减少热损失,但要求被冷却的流体走壳程、黏度大的走壳程,且循环水易于结垢,所以使水走管程,煤油走壳程。
③流体流速的选取:换热器常用流速的范围如下表表一换热器常用流速的范围由上表可得管内循环水流速范围为1m/s-2m/s,现取管内流速1.0m/s。
④换热管规格的选取换热管规格及排列形式如下表所示表二换热管规格及排列形式选用φ25×2.5碳钢管。
五、过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等)列管式换热器的设计计算设计步骤目前,我国已经制订了管壳式换热器系列标准,设计中应尽可能选用系列化的标准产品,这样可简化设计和加工。
但是实际生产条件千变万化,当系列化产品不能满足需要时,仍应根据生产的具体要求而自行设计非系列标准的换热器。
两者的设计计算步骤如下:1.非系列标准换热器的一般设计步骤ⅰ了解换热流体的物理化学性质和腐蚀性能。
ⅱ由热平衡计算传热量的大小,并确定第二种换热流体的用量。
ⅲ决定立体通入的空间。
ⅳ计算流体的定性温度,一确定流体的物性数据。
ⅴ初算有效平均温差。
一般先按照逆流计算,然后再校核。
ⅵ选取管径和管内流速。
ⅶ计算传热系数K值,包括管程对流传热系数和壳程对流传热系数的计算。
由于壳程对流传热系数与壳颈、管束等结构有关,因此一般先假定一个壳程对流传热系数,以计算K值,然后再校核。
ⅷ初估传热面积。
考虑安全系数和初估性质,因而常取实际传热面积是计算值的1.15-1.25倍。
ⅸ择管长L。
ⅹ计算管数N并校核管内流速,确定管程数。
Xi校核对流传热系数及有效平均温差;校核传热面积,应有一定安全系数,否则需要重新设计。
Xii计算流体流动阻力。
如果阻力超过允许范围,需要调整设计,直至满意为止。
2.系列标准换热器选用的设计步骤ⅰ至ⅴ与1相同。
ⅱ选取经验的传热系数K值。
ⅲ计算传热面积。
ⅳ由系列标准选取换热器的基本参数。
ⅴ校核传热系数,包括管程、壳程对流传热系数的计算。
假如核算的K值与原选择的经验值相差不大,就不再进行校核;如果相差较大,则需重新假设K值并重复上述ⅱ一下步骤。
ⅵ校核有效平均温差。
ⅶ校核传热面积,使其有一定的安全系数,一般安全系数取1.1-1.25,否则需要重新设计。