华东交大-离散数学试卷一试题与答案

合集下载

华东交大离散数学期中考试试题

华东交大离散数学期中考试试题

华东交大离散数学期中考试试题一、单项选择题1、若一个代数系统是独异点(含幺半群),则以下选项中一定满足的是()。

A. 封闭性,且有零元;B. 结合律,且有幺元;C. 交换性,且有幺元;D. 结合律,且每个元素有逆元.2、下面代数系统中,中()不是群A、G为整数集合, *为加法B、G为偶数集合, *为加法C、G为自然数集合,*为加法D、G为实数集合,*为加法3.下列选项中,()满足交换律。

A.Klein四元群B.半群C.独异点D.群4.三个结点最多可以构成__________个非同构的无向简单图。

A.1 B.2 C.3 D.45. 下列四组数据中,不能成为任何4阶无向简单图的度数序列的为()A. 1,1,1,3B. 3,2,2,3C. 2,2,2,2D. 1,2,3,46.无向图的关联矩阵中,每行的元素之和为()。

A.边数的2倍B.2 C.顶点数D.顶点的度数7、二部图(偶图)K2,3是()。

A.欧拉图 B.哈密顿图 C.非平面图 D.平面图8.3阶无向完全图(K3)不是以下哪种图?()A.欧拉图B.平面图C.二部图D.哈密顿图二、填空题1.设S ={1, 2, 3},S上定义的二元运算*如表所示,S中关于*运算的幺元是_____________。

零元是__________。

2、设Z5={0,1,2,3,4,5},⊕为模6加法,即? x,y∈ Z6 ,x⊕y=(x+y)mod 6,则代数系统中元素2的逆元为_______,代数系统的生成元为__________。

3、一个无向图有4个结点,4条边,其中的3个顶点度数分别为1,2,3,则第4个结点度数一定是_______。

要成为欧拉图至少要添加_____________条边。

4、无向完全图K45.完全二部图K2,3是平面图,它的平面嵌入共有______________个面。

6. 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有_____________片树叶。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

华东交通大学2009-2010第一学期离散数学期末试卷及参考答案

华东交通大学2009-2010第一学期离散数学期末试卷及参考答案

华东交通大学2009—2010学年第一学期考试卷试卷编号: ( A )卷离散数学 课程 课程类别:必修 考试日期: 月 日 开卷(范围:可带含课程内容的手写的不超过A4大小的纸一张) 题号 一 二 三 四 五 六 七 八 九 总分 累分人签名题分100得分注意事项:1、本试卷共 8 页(其中试题4页),总分 100 分,考试时间 120 分钟。

2、所有答案必须填在答题纸上,写在试卷上无效;3、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、单项选择题 (2分×10=20分)1.下列语句是命题的有[ ]。

A. 122>+y x ;B. 2010年的国庆节是晴天;C. 青年学生多么朝气蓬勃呀!D. 学生不准吸烟!2.若一个代数系统是独异点(含幺半群),则以下选项中一定满足的是[ ]。

A. 封闭性,且有零元; B. 结合律,且有幺元; C. 交换性,且有幺元; D. 结合律,且每个元素有逆元. 3.Z 是整数集合,下列函数都是Z →Z 的映射,则[ ]是单射而非满射函数。

A .ϕ (x) =0 B .ϕ (x) =x 2 C .ϕ (x) =2x D .ϕ (x) =x 4. 与命题p ∧ (p ∨q)等值的公式是 [ ]。

A. p ;B. q ;C. p ∨q ;D. p ∧q.承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。

专业 班级 学号 学生签名:5. 设M={a,b,c},M上的等价关系R={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>}确定的集合M的划分是[ ]。

A.{{a},{b},{c}}B.{{a,c},{b,c}}C.{{a,c},{b}}D.{{a},{b,c}}6. 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y ,则命题“每个人都喜欢某种花”的逻辑符号化为[ ]。

最新离散数学2014-2015第一学期期末试卷及参考答案

最新离散数学2014-2015第一学期期末试卷及参考答案

华东交通大学2014—2015学年第一学期考试卷试卷编号: ( A )卷离散数学 课程 课程类别:必修 考试日期: 月 日 开卷(范围:可带含课程内容的手写的不超过A4大小的纸一张)注意事项:1、本试卷共 8 页(其中试题4页),总分 100 分,考试时间 120 分钟。

2、所有答案必须填在答题纸上,写在试卷上无效;3、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、单项选择题(2分×10=20分)1.下列语句是命题的有[ ]。

A. 122>+y x ;B. 2010年的国庆节是晴天;C. 青年学生多么朝气蓬勃呀!D. 学生不准吸烟!2.若一个代数系统是独异点(含幺半群),则以下选项中一定满足的是[ ]。

A. 封闭性,且有零元;B. 结合律,且有幺元;C. 交换性,且有幺元;D. 结合律,且每个元素有逆元.3.Z是整数集合,下列函数都是Z→Z的映射,则[ ]是单射而非满射函数。

A.ϕ (x) =0B.ϕ (x) =x2C.ϕ (x) =2x D.ϕ (x) =x4. 与命题p ∧ (p∨q)等值的公式是[ ]。

A. p;B. q;C. p∨q;D. p∧q.5. 设M={a,b,c},M上的等价关系R={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>}确定的集合M的划分是[ ]。

A.{{a},{b},{c}}B.{{a,c},{b,c}}C.{{a,c},{b}}D.{{a},{b,c}}6. 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y ,则命题“每个人都喜欢某种花”的逻辑符号化为[ ]。

A. ))xFMy∃y∀;∧x→(y()(()x,(HB. ))yFyHM→∃x→∀;x)(,(((y()xC. ))yFyxH→∃x∧∀;M)(,(((y()xD. ))xyFMy→∀x∧∃.()(,()xH(y(7. 下列图中,不是哈密顿图的为[ ]。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学(一)练习题与答案

离散数学(一)练习题与答案

1-5 题:× × × ×√6-10 题:× ×√√√11-15题:× ×√ ×√16-17题:√ ×二、单项选择题1 A C2 C3 C 4. B 5 A6 B7 B8 C9 B 10 B11 D 12 A 13 C 14 C三、填空题1 ┐Q→P 或┐P→Q,Q→P2 A B={{a,b}, {a},{b},{c}},A B={{c}},A B-={{a,b}},A B⊕={{a,b},{a},{b}}。

3.{}ΦΦ=Φ,{,{}}ΦΦ-Φ={Φ,{ Φ}},ΦΦ={Φ}。

{,{}}{}ΦΦ-Φ={{Φ}},{}4.A={1,2,3,……,12},R是A上的整除关系,子集B={2,4,6}。

则B的最大元是:无,最小元是:2,极大元是:4,6,极小元是:2,上界是:12,下界是:2,上确界是:12,下确界是:2。

5. g g g6 R, T7. 略8.极大元:{a,b}, {b,c},最大元:无,上界:{a,b,c},下确界:Φ。

( )1.设A ,B ,C 为任意的命题公式,若A C B C ∨⇔∨,则A B ⇔。

( )2.公式P Q ∧是合取范式,不是析取范式。

( )3.公式()()P Q P Q ⌝∨∧→与公式()P Q R →∧等价。

( )4.()(()())()()()()x A x B x x A x x B x ∀∨⇔∀∨∀。

( )5.谓词公式()()((,)(,))x y P x y Q y z ∀∀∨中,x,y 是约束变元,z 是自由变元。

( )6.对谓词公式()(()(,))(,)x P y Q x y R x y ∀→∧中的自由变元进行代入后得到公式()(()(,))(,)x P z Q x z R x y ∀→∧。

( )7.对谓词公式()(()(,))(,)x P x Q x y R x y ∀→∧中的约束变元进行换名后得到公式()(()(,))(,)y P y Q y y R x y ∀→∧。

大学试卷《离散数学》及答案.docx

大学试卷《离散数学》及答案.docx

离散数学一、填空题(本大题共48分,共16小题,每小题3分)1.--公式为之充分必要条件是其合取范式之每一合取项中均必同时包含一命题变元及其否定2.无向图G具有是生成树,当且仅当的,若G为(n,m)连通图,要确定G的一棵生成树必删掉G的条边。

3.一个无向图的欧拉回路要求经过图中一次且仅一次,汉密顿图要求经过图中一次且仅一次。

4.设P:我生病,Q:我去学校(1)命题“我虽然生病但我仍去学校”符号化为o (2)命题“只有生病的时候,我才不去学校”符号化为o (3)命题"如果我生病,那么我不去学校”符号化为o5.设有33盏灯,拟公用一个电源,则至少需要5个插头的接线板数6.若HlAH2A-AHn是 ,则称Hl, H2, -Hn是相容的,若HlAH2A-AHn是 ,则称H1.H2, -Hn是不相容的7.设f,g,h 是N 到N上的函数(N 为自然数集合),f(n)=n+l;g(n)=2n;h(n)=0;贝lj(fdg)oh=8.K5的点连通度为 ,边连通度为o9.A={1, 2, 3, 4, 5, 6, 8, 10, 24, 36}, R 是A 上的整除关系。

子B={1, 2, 3, 4},那么B的上界是; B的下界是;:6的上确界是; B的下确界为10.命题公式P-*QAR的对偶式为11.设入={1, {2}, <t>},则A的幕集有元素个。

12.设A={0, 1,2, 3}, B={4,6, 7}, C={8, 9, 12, 14}, R1 是由A 到B 的关系,R2 是由B到C原关系,分别定义为Rl={<2, 6>, <3, 4>, <0, 7>} ;R2={<4, 8>, <4, 12>, <6, 12>,〈7, 14〉},则复合关系RloR2 为:13.设A= {<i)}, B={<t>, (<!>}},贝i]P(A) nP(B)= 。

大学离散数学试卷一及答案

大学离散数学试卷一及答案

大学离散数学试卷一及答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是[ C ]。

A.7能被3整除.B.5是素数当且仅当太阳从西边升起.C.x加7小于0.D.华东交通大学位于南昌北区.2. 设p:王平努力学习,q:王平取得好成绩,命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为[ D ]。

A. p→qB. ⌝p→qC. ⌝q→pD. q→p3. 下面4个推理定律中,不正确的为[ D ]。

A.A=>(A∨B) (附加律)B. (A∨B)∧⌝A=>B (析取三段论)C. (A→B)∧A=>B (假言推理)D. (A→B)∧⌝B=>A (拒取式)4. 设解释I如下,个体域D={1,2},F(1,1)=(2,2)=0,F(1,2)=F(2,1)=1,在解释I下,下列公式中真值为1的是[ A ]。

A.∀x ∃yF(x,y)B. ∃x∀yF(x,y)C. ∀x∀yF(x,y)D. ⌝∃x∃yF(x,y)5. 下列四个命题中哪一个为真?[ D ]。

A. ∅∈∅B. ∅∈{a}C. ∅∈{{∅}}D. ∅⊆∅6. 设S={a,b,c,d},R={<a,a>,<b,b>,<d,d>},则R的性质是[ B ]。

A.自反、对称、传递的B. 对称、反对称、传递的C.自反、对称、反对称的D. 只有对称性7.设A={a,b,c},则下列是集合A的划分的是[ D ]。

A.{{b,c},{c}}B.{{a,b},{a,c}}C.{{a,b},c}D.{{a},{b,c}}8. 设集合})关于普通数的乘法,不正确的有[ C ]。

ab+=aQ∈2,{)2(QbA. 结合律成立B. 有幺元C. 任意元素有逆元D. 交换律成立9.设A是非空集合,P(A)是A的幂集,∩是集合交运算,则代数系统〈P(A),∩〉的幺元是[ C ]。

A. P(A)B. φC. AD. E10.下列四组数据中,不能成为任何4阶无向简单图的度数序列的为[ C ]。

离散数学本试题及答案

离散数学本试题及答案

离散数学本试题及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3,4}中,元素3的补集是()。

A. {1,2,4}B. {1,2,3,4}C. {1,2,3}D. {2,4}答案:A2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤1,则x≤0B. 若x≤1,则x<0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:A3. 函数f(x)=x^2在区间[0,1]上是()。

A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:A4. 逻辑运算符“与”的符号是()。

A. ∧B. ∨C. →D. ¬答案:A5. 集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2,3}B. {2,3}C. {1,2,4}D. {1,3,4}答案:B6. 命题“若x>0,则x>1”的否定是()。

A. 若x≤0,则x≤1B. 若x≤0,则x>1C. 若x>0,则x≤1D. 若x≤0,则x≤1答案:C7. 函数f(x)=x^2在区间[-1,1]上是()。

A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:D8. 逻辑运算符“或”的符号是()。

A. ∧B. ∨C. →D. ¬答案:B9. 集合A={1,2,3},B={2,3,4},则A∪B=()。

A. {1,2,3}B. {2,3}C. {1,2,4}D. {1,2,3,4}答案:D10. 命题“若x>0,则x>1”的逆命题是()。

A. 若x≤1,则x≤0B. 若x>1,则x>0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:B二、填空题(每题3分,共30分)11. 集合{1,2,3}的子集个数为______。

答案:812. 命题“若x>0,则x>1”的逆命题是“若x>1,则x>0”,其真假性为______。

华东交大离散数学试卷一试题与答案

华东交大离散数学试卷一试题与答案

华东交⼤离散数学试卷⼀试题与答案华东交⼤离散数学试题⼀与答案、填空20% (每⼩题2分)1.设A={x|(x^ N)且(x<5)}, B={x|xw E 4且x < 7} (N:⾃然数集,E+正偶数)则A ⼀B = {0 , 1,2, 3, 4, 6} 。

2 . A , B , C表⽰三个集合,⽂图中阴影部分的集合表达式为(B ⼆C) -A 。

3. 设P, Q的真值为0, R, S的真值为1,则—(P (Q > (R -P))) > (R "S)的真值=14. 公式(P R)(S R)⼀P的主合取范式为(—P S R)(⼀⼙ S R)5. 若解释I的论域D仅包含⼀个元素,则XP(X)' ⼀XP(X)在|下真6. 设A={1 , 2, 3, 4} , A上关系图为贝U R2 = {<1,1>, <1,3>, <2,2>, <2,4> }。

7. 设A={a , b, c, d},其上偏序关系R的哈斯图为L AR={va.b>..va,d>.vb.d>.vc.d>} 19.设A={a , b , c , d} , A 上⼆元运算如下:* abc d a a b c d b b c d a cc d a b ddabc那么代数系统<A , *>的⼳元是 a ,有逆元的元素为 a , b , c ,d ,它们的逆元分别为 a , d , c , d 010.下图所⽰的偏序集中,是格的为c o⼆、选择20% (每⼩题2分)1、下列是真命题的有(C 、 D )2、下列集合中相等的有(B 、C )C. {4 ,:」,3, 3} ; D . {3, 4}3、设A={1 , 2, 3},则A 上的⼆元关系有(C )个4、设R , S 是集合A 上的关系,则下列说法正确的是(A )A . a}};C .B .{{「}} {「"}};D .{「} {{「}} oA . {4 , 3} ⼀:J ; B. { :' , 3, 4};3 2A . 23; B . 3223 3;322A .若R , S 是⾃反的,则R S 是⾃反的;B .若R , S 是反⾃反的,则R S 是反⾃反的;C .若R , S 是对称的,则R S 是对称的;D .若R , S 是传递的,则R S 是传递的。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

《离散数学》期末练习题考试卷和答案

《离散数学》期末练习题考试卷和答案

a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5


D. x x是有理数, x 5

6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

离散数学(华东交通大学)智慧树知到答案章节测试2023年

离散数学(华东交通大学)智慧树知到答案章节测试2023年

绪论单元测试1.本课程主要介绍哪些内容?A:代数系统B:图论C:数理逻辑D:二元关系答案:ABCD第一章测试1.这个命题公式:为重言式。

A:对B:错答案:A2.下列4个推理定律中,正确的是()A:B:C:D:答案:BC3.设p:他学习刻苦,q:他优秀,命题“他不仅学习刻苦且优秀”的符号化正确的是()A:B:C:D:答案:B4.命题为假命题的是()A:如果2是奇数,那么一个公式的析取范式惟一。

B:如果2是偶数,那么一个公式的析取范式惟一。

C:如果2是奇数,那么一个公式的析取范式不惟一。

D:如果2是偶数,那么一个公式的析取范式不惟一。

答案:B5.语句中不是命题的只有( )A:学生都刻苦读书。

B:人要在锻炼中成长。

C:多么优秀的大学生活呀!D:如果心情好,那么胃口就好。

答案:C第二章测试1.谓词公式的前束范式是唯一的。

A:错B:对答案:A2.的前束范式是()A:B:C:D:答案:BC3.设个体域A={a,b},公式”在A中消去量词后应为()A:P(a)P(b)B:P(a)P(b)C:P(a)D:P(b)答案:B4.令F(x):x是金属,G(y):y是液体,H(x,y):x可以溶解在y中,则命题“任何金属可以溶解在某种液体中”可符号化为( )A:B:C:D:答案:C5.设M(x):x是人,F(x):x犯错误,命题“所有的人都会犯错误。

”符号化为()A:B:C:D:答案:B第三章测试1.设A-B=,则有()A:B:C:D:答案:D2.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包s(R)是( )A:B:RC:D:答案:C3.设关系R={<a,a>,<a,b>,<a,c>},则R满足性质()A:对称性、传递性B:反对称性、传递性C:反自反性、反对称性D:自反性、反对称性答案:B4.设A={1,2,3,4},下列哪些是A上的划分()A:{{1,3},{2,4}}B:{{1},{2},{3},{4}}C:{{1,2},{2,3},{4}}D:{{1,2},{3,4}}答案:ABD5.集合A={2,3,4,5,6,7}上的整除关系是偏序关系,A上的极小元是2、3、5、7。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东交大离散数学试题一与答案一、填空 20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则=⋃B A{0,1,2,3,4,6} 。

2.A,B,C表示三个集合,文图中阴影部分的集合表达式为A CB -⊕)( 。

3.设P ,Q 的真值为0,R,S的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 1 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为)()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。

6.设A={1,2,3,4},A上关系图为则 R 2 = {<1,1>, <1,3>, <2,2>, <2,4> } 。

7.设A={a,b ,c ,d},其上偏序关系R 的哈斯图为R ={<a.b>,<a ,c>,<a ,d >,<b,d>,<c,d>} I A 。

8.图的补图为A BC。

9.设A ={a,b,c,d} ,A上二元运算如下:*ab c d a b c da b c db c d ac d a b d a b c那么代数系统<A ,* a ,有逆元的元素为 a , b , c ,d ,它们的逆元分别为 a , d , c , d 。

10.下图所示的偏序集中,是格的为 c 。

二、选择 20% (每小题 2分)1、下列是真命题的有(C 、 D )A. }}{{}{a a ⊆; ﻩﻩB .}}{,{}}{{ΦΦ∈Φ; C. }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。

2、下列集合中相等的有(B、C)⋃;B.{Φ,3,4};A.{4,3}ΦC.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有( C)个。

A. 23 ;B.32 ; C. 332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是(A)R 是自反的;A.若R,S 是自反的,则SR 是反自反的;B.若R,S是反自反的,则SR 是对称的;C.若R,S 是对称的,则SR 是传递的。

D.若R,S 是传递的,则S5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t sR=t sp>=<A∈∧,(||||})({t|,s则P(A)/R=(D)A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为( C )7、下列函数是双射的为( A )A.f :I→E,f(x)=2x;B.f: N→N⨯N, f (n)= <n , n+1>;C.f: R→I, f (x)= [x]; D.f:I→N, f (x)= | x | 。

(注:I—整数集,E—偶数集,N—自然数集,R—实数集)8、图中从v1到v3长度为3 的通路有(D)条。

A. 0; B. 1;C. 2;ﻩD. 3。

9、下图中既不是Eular 图,也不是Hami lton 图的图是(B)10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有( A )个4度结点。

A .1;ﻩB.2; C.3;ﻩD.4 。

三、证明 26%ﻩ1. R是集合X 上的一个自反关系,求证:R 是对称和传递的,当且仅当< a, b> 和<a , c >在R 中有<.b , c>在R 中。

(8分)2. f和g 都是群<G1 ,★>到< G 2, *>的同态映射,证明<C , ★>是<G 1, ★>的一个子群。

其中C=)}()(|{1x g x f G x x =∈且 (8分)3. G=<V , E> (|V | = v,|E |=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则2)2(--≤k v k e , 由此证明彼得森图(Peters on )图是非平面图。

(11分)四、逻辑推演 16%用CP 规则证明下题(每小题 8分)1、F A F E D D C BA →⇒→∨∧→∨,2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀五、计算 18%1、设集合A={a,b,c,d}上的关系R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出R 的传递闭包t (R)。

(9分)2、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。

(9分)三、证明 26%1、证:“⇒” X c b a ∈∀,, 若R >c ,a <,>b ,a <∈由R 对称性知R a ,c <,>a ,b <∈>,由R 传递性得 R >c ,b <∈“⇐” 若R >b ,a <∈,R >c ,a <∈有 R >c ,b <∈ 任意 X b a ∈,,因R >a ,a <∈若R >b ,a <∈R >a ,b < ∈∴ 所以R是对称的。

若R >b ,a <∈,R >c b,<∈ 则 R c b, R >a b,<>∈<∧∈ R >c ,a < ∈∴即R 是传递的。

2、证Cb a ∈∀,,有)()(),()(b g b f a g a f ==,又)()(,)()(1111b g b g b fb f ----==)()()()(1111----===∴b g b g b fb fa f (∴★a gb g a g b f a f b ()(*)()(*)()111===---★)1-ba ∴★Cb ∈-1 ∴< C , ★> 是 < G 1 , ★>的子群。

3、证:①设G 有r 个面,则rkF d e ri i ≥=∑=1)(2,即k er 2≤。

而 2=+-r e v 故k e e v r e v 22+-≤+-=即得 2)2(--≤k v k e 。

(8分)②彼得森图为10,15,5===v e k ,这样2)2(--≤k v k e 不成立,所以彼得森图非平面图。

(3分) 四、 逻辑推演 16%a) 证明: ①AP(附加前提)②B A ∨ﻩT ①I ③D C B A ∧→∨ P ④D C ∧ T ②③I⑤D ﻩT ④I ⑥E D ∨ T ⑤I ⑦F E D →∨ﻩP ⑧F T ⑥⑦I ⑨F A → CP 2、证明①)(x xP ∀ﻩP(附加前提) ②)(c P ﻩU S①③))()((x Q x P x →∀ P④)()(c Q c P →ﻩUS ③ ⑤)(c Q ﻩT ②④I ⑥)(x xQ ∀U G⑤ ⑦)()(x xQ x xP ∀→∀ﻩC P五、计算 18%b) 解:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000000101001012R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M ,⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000001010010134R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴ﻩt (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b ,a > , < b ,b > , < b , c . > ,< b , d > , < c , d > }c) 解: 用P ri m算法求产生的最优树。

算法略。

结果如图:树权C(T)=23+1+4+9+3+17=57即为总造价。

相关文档
最新文档