中性点接地方式及其影响

合集下载

发电机中性点接地方式及作用

发电机中性点接地方式及作用

发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。

发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。

本文将介绍几种常见的发电机中性点接地方式及其作用。

1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。

这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。

该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。

2.直接接地方式直接接地方式是指发电机中性点直接接地。

这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。

直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。

3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。

这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。

高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。

4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。

这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。

低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。

除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。

每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。

发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。

总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。

各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。

中性点接地方式

中性点接地方式

1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

第二节中性点接地方式对绝缘水平的影响

第二节中性点接地方式对绝缘水平的影响

第二节中性点接地方式对绝缘水平的影响中性点接地方式对绝缘水平的影响主要体现在以下几个方面:电气设备的可靠性、电气设备的安全性、系统的操作性以及电气设备的经济性。

首先,中性点接地方式对电气设备的可靠性具有重要影响。

中性点接地方式是指将电力系统的中性点与地进行连接,一般分为直接接地、阻抗接地和混合接地三种方式。

直接接地方式实际上是短路了中性点和地之间的电流,可以有效地限制故障电流的大小,提高系统的抗电力故障能力,从而提高电气设备的可靠性。

阻抗接地方式通过设置中性点接地电阻,限制中性点接地故障电流的大小,也能起到保护电气设备的作用。

而混合接地方式是直接接地和阻抗接地方式的结合,可以灵活调节中性点接地电阻的大小,使得系统能够适应不同的工作条件,进一步提高电气设备的可靠性。

其次,中性点接地方式对电气设备的安全性具有重要影响。

电力系统中的故障电流会导致电压的不对称和电压的过高等问题,严重时可能导致设备的过电压击穿、烧毁等事故。

中性点接地方式可以限制故障电流的大小,减小电压的不对称,有效地保护电气设备的安全。

与此同时,中性点接地方式能够提前检测电力系统中的接地故障,及时采取措施进行修复,进一步提高电气设备的安全性。

第三,中性点接地方式对系统的操作性具有重要影响。

不同的中性点接地方式对电力系统的工作方式和故障处理方法有不同的要求。

直接接地方式需要快速检测和隔离故障,操作起来相对简单。

而阻抗接地方式需要合理设置中性点接地电阻,保证故障时系统的稳定性,对操作人员的技术要求较高。

混合接地方式的操作性介于直接接地和阻抗接地之间,能够根据具体情况进行调整。

因此,在选择中性点接地方式时需要综合考虑系统的操作技术状况,确保系统能够安全稳定地运行。

最后,中性点接地方式对电气设备的经济性有一定影响。

直接接地方式不需要设置中性点接地设备,因此成本相对较低,但故障电流较大,维护起来相对困难。

阻抗接地方式需要设置中性点接地电阻和监测设备,虽然成本较高,但能够有效地保护电气设备,减少故障损失。

中性点接地方式对配电网可靠性的影响

中性点接地方式对配电网可靠性的影响

中性点接地方式对配电网可靠性的影响中性点接地方式是电力系统中常用的一种接地方式,它能够实现系统中的故障导线和接地之间的电势保持在安全水平,并且与其他接地方式相比,中性点接地方式具有更好的经济性、可靠性和环境友好性等特点,因此得到了广泛的应用。

本文将从中性点接地方式的基本原理出发,重点分析它对配电网可靠性的影响。

中性点接地方式是一种将电力系统中所有的电源中性点直接接地的接地方式,在中性点接地方式中,电力系统中的故障导线和设备外壳与地电位保持在较低的水平,可以有效地防止人身触电事故的发生。

中性点接地方式还有一个重要的特点是能够快速地检测故障,在系统中出现故障时,中性点电流会急剧增加,这就可以通过检测中性点电流来判断系统中是否发生了故障。

1.提高了系统的稳定性中性点接地方式可以有效地提高系统的稳定性,这主要是因为中性点接地方式可以快速地检测到故障,使系统能够快速地运行到故障部位,保证了系统在发生故障时能够迅速地断开故障电路,并且保障了系统的长期运行。

2.减少了人身触电事故的发生在中性点接地方式下,系统的电位可以有效地控制在安全水平,使得人们在接触工作时不易触电,减少了人身触电事故的发生,提高了人员安全性。

3.提高了设备的可靠性中性点接地方式可以提高设备的可靠性,主要是因为中性点接地可以减少电气设备的绝缘损坏,并减少设备的维护次数,这对于提高设备的可靠性和延长设备的使用寿命具有十分重要的意义。

4.降低了运行成本中性点接地方式可以降低电气设备的能耗,减少配电系统的维护成本,包括设备损坏和维护费用等,从而降低了电气设备配电系统运行成本,提高了经济效益。

总之,中性点接地方式在配电系统中具有较大的应用前景和发展潜力。

它具有良好的经济性、可靠性和环保等特点,适用于大多数具有较高电气负荷的场合。

因此,在配电系统的运行中,选用中性点接地方式,不仅可以提高配电系统的可靠性和经济效益,同时也保证了系统的安全运行。

中性点接地方式对配电网可靠性的影响

中性点接地方式对配电网可靠性的影响

中性点接地方式对配电网可靠性的影响随着工业化和城市化的快速发展,电力系统作为现代社会不可或缺的基础设施,承担着供电和能源转换传输的重要任务。

配电网作为电力系统中最后一级的供电系统,直接关系到用户的用电质量和供电可靠性。

而中性点接地方式作为配电网的重要组成部分,对配电网的可靠性影响尤为重要。

在配电网中,中性点接地方式主要包括直接接地和接地通过电阻两种方式。

不同的接地方式对配电网的系统架构、运行模式和故障处理等方面都会产生不同程度的影响,从而影响了配电网的可靠性。

中性点接地方式对配电网的系统架构产生影响。

直接接地方式是指将中性点直接接地,而接地通过电阻方式则是通过接入电阻来接地。

这两种接地方式在系统架构上有所不同,直接接地方式通常使得系统结构更加简单,但也容易导致接地故障时电流过大,对设备和系统造成严重影响。

而接地通过电阻方式则可以有效地降低接地故障时的电流,减少对设备的损害,但同时也增加了系统结构的复杂度。

选择合适的中性点接地方式对于保证配电网的系统架构合理、简单、稳定具有重要意义。

中性点接地方式对配电网的运行模式产生影响。

在配电网的运行过程中,中性点接地方式对电流的分布和传输具有重要影响。

直接接地方式通常使得中性点电流变化较大,容易导致配电系统的不平衡运行,而接地通过电阻方式可以有效地改善中性点电流分布,减少系统的不平衡现象。

合理选择中性点接地方式可以有效地提高配电网的运行稳定性和可靠性。

中性点接地方式对配电网的可靠性影响是多方面的,在系统架构、运行模式和故障处理等方面都有所体现。

合理选择中性点接地方式,可以有效地提高配电网的可靠性,保证用户的用电质量和供电可靠性。

在配电网的规划、设计和运行过程中,需要综合考虑各种因素,选择合适的中性点接地方式,以提高配电网的可靠性和安全性。

配电网中性点接地方式分析及选择

配电网中性点接地方式分析及选择

配电网中性点接地方式分析及选择前言在配电系统中,中性点接地方式的选择对电力系统的安全稳定运行具有重要意义。

因此,在设计和运行中选择恰当的中性点接地方式十分关键。

本文将会介绍中性点接地方式的类型及适用范围,以及不同中性点接地方式的优缺点分析,期望能够帮助电力系统工程师更好地了解中性点接地方式的选择和使用。

中性点接地方式类型在电力系统中,中性点接地方式有以下几种类型:1.无中性点接地(Ungrounded)2.单点接地(Solidly Grounded)3.零序电抗接地(Reactance Grounded)4.零序电阻接地(Resistance Grounded)不同中性点接地方式的优缺点分析1. 无中性点接地(Ungrounded)无中性点接地或称为孤立中性点接地,是一种没有与地相连的中性点接地方式。

电源和负载之间不存在任何的地电流,因此可以将其视为同电压级两端的电压源。

但它也存在很多问题,比如电压冲击,无法及时有效的跳闸,等等。

1.不存在与地相连的中性点,防止电源因地电流而被破坏缺点:1.电容负载的介入导致的零序电流通过电容负载可以被无限放大,给继电保护带来思考不便;2.单个相线电压突变引发的问题以及局部地质介质缺陷等情况都不能及时被发现,但会给电气设备带来隐患;3.系统中出现第一次单相接地故障时,残余电压若满足第二次接地故障判别标准时,系统将不能及时地进行跳闸或投入备用电源;2. 单点接地(Solidly Grounded)单点接地是一种常用的中性点接地方式,也就是将中性点与地相连接,构成一个参考电平,一旦系统中发生一次单相接地故障,将会使系统的继电保护中止电源供应和跳闸故障线路,从而达到保护的作用。

优点:1.系统中出现单相接地故障时,继电保护能够发现并停电,电气设备受到的损害最小;2.在不影响系统情况,若再接入电容补偿,可以消除外界的干扰,减小电压谐波;3.系统跳闸后,抢修工作较为方便;1.中性点与地相连接,会出现地电流,地电压测量有一定难度;2.系统瞬时故障时(如单相接地、短路),电容负载过程中通过谐振形成的高幅度的干扰电压能够被放大,从而引入过电压、过电流以及过热等问题;3.长期电流过大会使绝缘劣化变差;3. 零序电抗接地(Reactance Grounded)零序电抗接地和零序电阻接地都是相对于单点接地的改进。

中性点接地方式

中性点接地方式

中性点接地方式介绍一、基本概念电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。

三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。

中性点接地方式涉及电网的安全可靠性、经济性,同时直接影响系统设备绝缘水平的选择、过电压水平、继电保护方式及通讯干扰等。

二、基本接地方式我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。

1.中性点不接地当中性点不接地系统发生单相接地故障时,故障相电压为零。

非故障相相电压上升为线电压,为原来的1.732倍。

但线电压不变,对电力用户没有影响,系统还可以继续供电,一般可允许继续运行两个小时,此期间应发出信号,由工作人员尽快查清原因并解除故障,使系统正常运行。

故当线路不长、电压不高时,接地电流较小,电弧一般能自动熄灭,特别是35kV及以下的系统中,绝缘方面的投资增加不多,而供电可靠性较高的优点突出,所以中性点宜采用不接地的运行方式。

当电压高、线路长时才妾地电流较大。

可能产生稳定电弧或间歇性电弧,而且电压等级较高时,整个系统绝缘方面的投资大为增加,上述优点便不存在了。

2、中性点经消弧线圈接地单相接地时,当接地电流大于IOA而小于30A时,有可能产生不稳定的间歇性电弧,随着间歇性电弧的产生将引起幅值较高的弧光接地过电压。

该方式就是在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流补偿线路接地的电容电流,使流过接地点的电流减小到能自行熄灭的范围。

中性点经消弧线圈接地,保留了中性点不接地方式的全部优点。

由于消弧线圈的电感电流补偿了电网接地电容电流,使得接地点残流减少到5A及以下,降低了故障相接地电弧恢复电压的上升速度,以致电弧能够自行熄灭,从而提高供电可靠性。

i3、中性点直接接地对于高压系统,如I1OkV及以上的供电系统,电压高,考虑成本的条件下,设备绝缘不会设计得很大。

中性点接地系统分类及其优缺点

中性点接地系统分类及其优缺点

中性点接地系统分类及其优缺点中性点接地系统是电力系统中常见的一种保护措施,用于减少电力系统的短路故障时对设备和人员的损害。

中性点接地系统可以分为直接接地系统、小电阻接地系统和不对称接地系统三种类型。

不同类型的中性点接地系统具有不同的特点和优缺点。

1.直接接地系统:直接接地系统是指将电力系统的中性点与大地直接连通,并与大地形成有一定电阻的接地通路。

直接接地系统的优点包括:-设备简单:直接接地系统不需要添加额外的设备或装置,设备布置和维护较为简单。

-成本低廉:直接接地系统不需要大量的设备投资和维护费用,成本相对较低。

-适用性广泛:直接接地系统适用于大多数低电压电力系统。

直接接地系统的缺点包括:-地电压过高:直接接地系统存在着地电压过高的问题,在系统发生故障时,会导致接地电流增大,增加设备损坏的风险。

-故障隐患:直接接地系统一旦出现了接地故障,可能会导致电力系统的停运,对生产和生活造成不便。

2.小电阻接地系统:小电阻接地系统是指在中性点接地通路中添加一个小电阻,将接地电流限制在较低水平的接地系统。

小电阻接地系统的优点包括:-地电压低:相比于直接接地系统,小电阻接地系统的地电压较低,减少了设备损坏的风险。

-故障性能改善:小电阻接地系统能够提供较高的故障电流,使故障点更易于检测和定位,有利于故障的快速修复。

小电阻接地系统的缺点包括:-投资成本高:相比直接接地系统,小电阻接地系统需要添加电阻器等设备,投资成本较高。

-维护困难:小电阻接地系统的设备较多,维护和检修较为复杂,需要专业技术支持。

3.不对称接地系统:不对称接地系统是指将电力系统中性点的一相与大地直接接地,而其余相则通常通过电感、电容等器件接地。

不对称接地系统的优点包括:-地电压低:不对称接地系统能够通过合理设置接地电感和电容,将地电压限制在较低水平。

-故障定位准确:不对称接地系统能够通过检测故障电流和相位差,准确地确定故障点。

不对称接地系统的缺点包括:-技术较复杂:不对称接地系统需要精确地设置接地电感和电容,需要较高的技术水平。

主变压器和发电机的中性点接地方式

主变压器和发电机的中性点接地方式
优缺点
系统过电压水平较低,但单相接地 故障电流大,需要装设自动选线装 置。
经消弧线圈接地系统
系统特点
中性点经消弧线圈接地,系统发 生单相接地故障时,消弧线圈产 生的感性电流补偿接地点的容性
电流。
适用范围
适用于35kV及以下电网,特别 是对接地故障电流有严格限制的
场所。
优缺点
减小了接地故障电流,降低了弧 光接地过电压的概率,但需要装
系统特点
优缺点
中性点不接地或经高阻抗接地,系统 发生单相接地故障时,故障电流很小。
系统结构简单,供电连续性好,但系 统过电压水平较高,需要装设绝缘监 测装置。
适用范围
适用于3~10kV电网,特别是供电连 续性要求较高、接地故障对设备影响 不大的场所。Leabharlann 03 发电机中性点接地方式
发电机中性点直接接地
考虑当地供电条件及环境因素
当地供电条件包括电网电压、频率、谐波等,这 些因素会影响中性点接地方式的选择。
环境因素如气候、海拔、地质等也会对中性点接 地方式产生影响,需进行综合考虑。
在选择接地方式时,应充分了解当地供电条件和 环境因素,并进行必要的现场测试和评估。
遵循相关标准规范,确保安全可靠
中性点接地方式的选择应遵循国家和行业相关标准规范,如《电力变压 器 第1部分:总则》、《旋转电机 定额和性能》等。
主变压器和发电机的中性点接地方 式
contents
目录
• 中性点接地基本概念与重要性 • 主变压器中性点接地方式 • 发电机中性点接地方式 • 中性点接地方式对系统运行影响 • 选择合适中性点接地方式原则与建议
01 中性点接地基本概念与重 要性
中性点定义及作用
中性点定义

中性点接地方式对配电系统可靠性影响的分析

中性点接地方式对配电系统可靠性影响的分析

中性点接地方式对配电系统可靠性影响的分析摘要:配电网中性点接地方式的选择是具有综合性的技术问题。

目前国内常用的中性点接地方式是经小电阻接地和消弧线圈接地。

每种接地方式都有优缺点,中性点经小电阻接地主要是为了限制弧光过电压,而中性点经消弧线圈接地是因为当发生单相瞬时接地故障时,消弧线圈可以补偿电容电流,电弧可以自熄。

关键词:中性点接地小电阻消弧线圈故障模式后果分析配电网的供电可靠性与中性点接地方式有很大的关系。

它直接影响到了配电线路的故障跳闸率。

它不影响配电线路发生相间短路、两相接地短路和三相短路故障时配电线路的跳闸率(发生这些故障时继电保护装置将直接切除故障线路);但它直接影响了配电线路发生单相接地短路时线路的跳闸情况。

本文运用故障模式后果分析的方法来分析中性点经小电阻接地和经消弧线圈接地对负荷可靠性的影响。

故障模式后果分析法(FMEA)是传统的配电网可靠性评估方法。

在进行可靠性分析的过程中,FMEA方法通过对系统中各元件状态的搜索,列出全部可能的系统状态,然后根据所规定的可靠性判据对系统的所有状态进行检验分析,找出系统的故障模式集合,并在此集合的基础上,求得系统的可靠性指标。

1 中性点接地方式对线路可靠性影响模型简化的条件在对配电网可靠性进行综合计算时,为简化理论分析过程,对所分析的配电系统进行了如下假定。

2 中性点接地方式对线路可靠性影响分析不同中性点接地方式在电网正常运行时,几乎不对中性点的接地方式做出任何反映。

然而当电网发生异常情况时,尤其是发生单相接地故障时,在故障相和非故障相上出现异常电流、电压,不同的中性点接地方式所反映的也不同。

本文主要是针对中性点经小电阻接地和消弧线圈系统进行分析的。

2.1 中性点经小电阻接地系统分析设中性点经小电阻接地网络中,小电阻无成功使继电保护发出跳闸信号。

如发生单相高阻接地短路故障时,小电阻能成功与继电保护配合切除故障线路。

图1是中性点经小电阻接地线路故障跳闸率。

发电机中性点接地方式及作用

发电机中性点接地方式及作用

发电机中性点接地方式及作用
发电机中性点接地一般有以下几类:
1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。

发电机中性点不接地方式,一般适用于小容量的发电机。

2.中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。

这种接地方式能实现无死区的定子接地保护。

3.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。

大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。

注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。

4.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。

这种方式也可以实现高灵敏度既无死区的定子接地保护。

5.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。

第二节 中性点接地方式对绝缘水平的影响

第二节 中性点接地方式对绝缘水平的影响

小 结
在110kV及以上的系统中,采用有效接地方式以降低 系统绝缘水平在经济上好处很大;在66kV及以下的系 统中,供电可靠性上升为首要考虑因素,一般均采用 中性点非有效接地方式。 随着6~35kV配电网的迅速发展,以电缆网络为主的 6~10kV大城市或大型企业配电网有一部分改用了中 性点经低值或中值电阻接地的方式,它们属于有效接 地系统。
(本节完)
6~35kV配电网往往发展很快,采用电缆的比重 也不断增加,且运行方式经常变化,给消弧线圈的调 谐带来困难,并易引发多相短路。 近年来有些以电缆网络为主的6~10kV大城市或 大型企业配电网不再象过去那样一律采用中性点非有 效接地的方式,有一部分改用了中性点经低值或中值 电阻接地的方式,它们属于有效接地系统,发生单相 接地故障时立即跳闸。
n
2、 避雷器的保护水平。由于阀式避雷器的灭弧电压是按 最大长期工作电压选定的,因而有效接地系统中所用 避雷器的灭弧电压约比同一电压等级、中性点为非有 效接地系统中的避雷器低20%左右。 3、内部过电压 在有效接地系统中,内部过电压是在相电压的基 础上产生和发展的,而在非有效接地系统中,则有可 能在线电压的基础上发生和发展,因而前者要比后者 低20%~30%左右。
结论:中性点有效接地系统的绝缘水平可比非有效接 地系统低20%左右。 但降低绝缘水平的经济效益大小与系统的电压等级 有很大的关系: 在110kV及以上的系统中,绝缘费用在总建设费用 中所占比重较大,因而采用有效接地方式以降低系 统绝缘水平在经济上好处很大。 在66kV及以下的系统中,绝缘费用所占比重不大, 降低绝缘水平在经济上的好处不明显,因而供电可 靠性上升为首要考虑因素,所以一般均采用中性点 非有效接地方式。
第二节 中性点接地方式对绝缘水平的影响

中性点接地方式6

中性点接地方式6

应选择下列哪项数值?
(A)22kVA
(B)25kVA
(C)30kVA (D)28kVA
答案:[ C ] 2006年考题
解答过程:
根据电气工程电气设计手册(1)80页(3-1)公式
又根据《导体和电器选择设计技术规定》 DL/T5222-2005 第 18.1.4,式
18.1.4 消弧线圈的补偿容量,
b)装在电网的变压器中性点的消弧线圈,以及具有直配线的发电机 中性点的消弧线圈应采用过补偿方式。对于采用单元连接的发电机中 性点的消弧线圈,宜采用欠补偿方式。 C)系统中消弧线圈装设地点应符合下列要求:
应保证系统在任何运行方式下,大部分电网不得失去消弧线圈的 补偿。不应将多台消弧线圈集中安装在一处,并因避免电网仅装一台 消弧线圈。
18.1.4 消弧线圈的补偿容量,可按下式计算
Q
KIC
UN 3
= 1.35 × 22.2 ×35/1.732= 605.6KVA
其中 k 为补偿系数,过补偿取 1.35。k 的取值可根据DL/T5222-2005 第
18.1.6 条:装在电网变压器中性点的消弧线圈,以及具有直配线的发电机
中性点的消弧线圈应采用过补偿方式。 故选 D。
1 发电机及变压器中性点的接地方式
1.1 电力系统中性点接地方式
电力系统中性点的接地方式主要分两大类:中性点非直接接地和 中性点直接接地。
1.1.1 中性点非直接接地。
中性点非直接接地可分为三种形式: (1)中性点不接地。中性点不接地方式最简单,单相接地时允
许带故障运行两小时,供电连续性好,接地电流仅为线路及设备 的电容电流。但由于过电压水平高,要求有较高的绝缘水平,不 宜用于110kV及以上电网。在6-63kV电网中,则采用中性点不接地 方式,但电容电流不能超过允许值,否则接地电弧不易自熄,易 产生较高弧光间歇接地过电压,波及整个电网。

中性点接地方式及其影响

中性点接地方式及其影响

中性点接地方式及其影响1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

变压器中性点接地方式优缺点的分析

变压器中性点接地方式优缺点的分析

接地变压器的作用我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式.电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。

当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。

但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果;1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。

2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路;3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行.为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。

为了解决这样的办法。

接地变压器(简称接地变)就在这样的情况下产生了。

接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。

另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流.由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。

也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。

该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。

接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。

电网中性点接地方式

电网中性点接地方式

电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平、系统过电压水平、过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

我国的110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4运行相电压;暂态过电压水平也相对较低;继电保护装置能迅速断开故障线路,设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

在三相交流电力系统中,作为供电电源的发电机和变压器的中性点,有三种运行方式:一种是电源中性点不接地;一种是电源中性点经消弧线圈接地;一种是电源中性点直接接地。

前两种合称为中性点非有效接地,或小电流接地系统,后一种中性点直接接地称为中性点有效接地,或大电流接地。

1 电源中性点不接地电力系统(3-63 kV系统大多数采用电源中性点不接地运行方式)。

电源中性点不接地系统发生单相接地时,如C相单相接地,那么完好的A、B 两相对地电压都由原来的相电压升高到线电压,即升高为原对地电压的√3倍,C相接地的电容电流为正常运行时每相对地电容电流的3倍。

当发生单相接地时,三相用电设备的正常工作未受到影响,因为线路的线电压无论相位和量值均未发生变化,因此三相用电设备仍然照常运行。

但电力部门只允许运行2小时,因为一旦另一相又发生接地故障时,就形成两相接地短路,产生很大的短路电流,可能损坏线路设备。

2 电源中性点经消弧线圈接地的电力系统。

在中性点不接地的电力系统中,有一种情况比较危险,即在单相接地时,如果接地电流较大,将出现断续电弧,这可使线路发生电压谐振现象,在线路上形成一个R-L-C的串联谐振电路,从而使线路上出现危险的过电压(可达相电压的2.5-3倍),导致线路上绝缘薄弱地点的绝缘击穿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编订:__________________
审核:__________________
单位:__________________
中性点接地方式及其影响
Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.
Word格式 / 完整 / 可编辑
文件编号:KG-AO-7559-45 中性点接地方式及其影响
使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。

下载后就可自由编辑。

摘要:中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

关键词:中性点接地方式
1 中性点直接接地
中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地
中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便
及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。

对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压
互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过热而损坏。

3 中性点经消弧线圈接地
中性点经消弧线圈接地方式,即是在中性点和大地之间接入一个电感消弧线圈。

当电网发生单相接地故障时,其接地电流大于30A,产生的电弧往往不能自熄,造成弧光接地过电压概率增大,不利于电网安全运行。

为此,利用消弧线圈的电感电流对接地电容电流进行补偿,使通过故障点的电流减小到能自行熄弧范围。

通过对消弧线圈无载分接开关的操作,使之能在一定范围内达到过补偿运行,从而达到减小接地电流。

这可使电网持续运行一段时间,相对地提高了供电可靠性。

该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找发现故障点比较难。

消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。

消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振
过电压。

消弧线圈能使单相接地电流得到补偿而变小,这对实现继电保护比较困难。

4 中性点经电阻接地
中性点经电阻接地方式,即是中性点与大地之间接入一定电阻值的电阻。

该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。

中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。

这三种电阻接地方式各有优缺点,要根据具体情况选定。

5 结束语
随着社会经济的发展和科学技术现代化对电力依赖和消费程度越来越高,对用户供电的可靠性,也不再是靠带单相接地故障运行2h来保证,而是靠电网结构和电力调度控制来保证。

随着电网规模扩大,单相接地电流也随之增大,而威胁到设备的安全。

为此,10kV单电源辐射形或树
状形供电,必须向环网双电源供电改造。

此外,由于现代化城镇建设对市容的要求,10kV 架空线路应改造为以电缆供电为主,架空线路为辅,这也成必然趋势。

所以10kV电网中性点不接地或经消弧线圈接地方式,将随用电负荷逐年递增与电网结构的变化而变化。

为满足今后电力发展的需要,必须根据电力负荷、电网结构、电缆回数、过电压保护、跳闸方式,以及继电保护构成和电力系统稳定性等因素,对10kV电网中性点接地方式进行选择确定,从而达到中性点接地方式的优化。

请在这里输入公司或组织的名字
Enter The Name Of The Company Or Organization Here。

相关文档
最新文档