五年级奥数数学共边模型课件最全

合集下载

小学五六年级奥数学竞赛五大模型——共边模型、鸟头模型

小学五六年级奥数学竞赛五大模型——共边模型、鸟头模型

大海传功等积变形五大模型——共边模型、鸟头模型共角模型(鸟头模型)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

1.两个三角形,如果底边相等,高也相等,那么它们的面积相等。

拓展:夹在一组平行线间的同底三角形面积相等。

2.两个三角形,如果底相等,一个的高是另一个的n倍,那么它的面积也是另一个的n倍;两个三角形,如果高相等,一个的底是另一个的n倍,那么它的面积也是另一个的n倍。

DAE D EADD AE EAB C B C B CB如图,S:S (AB AC):(AD AE)△ABC△ADEC【例1】(★★)【例2】(★★★)如图,在梯形ABCD中,三角形ABE的面积为4.6平方厘米,BE=EF=FD,求三角形ABF、CDF、ABD、ACD的面积。

如图,由面积分别为2、3、5、7的四个三角形拼成一个大三角形,已知:S△ADE 2,S△AEC 5,S△BDF 7,S△BCF 3,那么三角形BEF的面积为___________。

1如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且△OAB、△ABC、△ BCD、△CDE、△DEF的面积都等于1,则△DCF的面积等于。

等腰△ABC中,AB=AC=12cm,BD、DE、EF、FG把它的面积5等分,求AF、FD、DC、AG、GE、EB的长。

【例5】(★★★)【例6】(★★★★)已知四边形ABCD、BEFG、CHIJ为正方形,正方形ABCD边长为10,正方形BEFG边长为6,求阴影部分的面积。

E、M分别为直角梯形ABCD两边上的点,且DQ、CP、ME彼此平行,若 AD=5, BC=7,AE=5 , EB=3。

求阴影部分的面积。

2已知△DEF的面积为7 平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC 的面积。

1如图,在△ABC中,延长AB至D,使BD=AB,延长BC至E,使CE BC,2 F是AC的中点,若△ABC的面积是2,则△DEF的面积是多少?大海点睛大海点睛一、本讲重点知识回顾等积变形边比=面积比二、本讲经典例题例2,例3,例5,例7,例8共角模型(鸟头模型)如图, △ABC△ADE3。

五年级奥数.几何.五大模型(C级).学生版

五年级奥数.几何.五大模型(C级).学生版

一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)知识框架五大模型(二)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DCBA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BCDO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCD AB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

小学奥数--几何--五大模型--燕尾模型(共边定理)

小学奥数--几何--五大模型--燕尾模型(共边定理)

三角形中的模型(一)知识点详解1“燕尾模型”:面积比转化为边之比D 是BC 上任意一点,1423:::S S S S BD DC==证明:法一:S 1与S 4共边ED,则S 1与S 4同高,令S 1:S 4=BD:DC=ma:mb ,同理,令S △ABD :S △ADC =BD:DC=na:nb 则S2:S3=(na-ma):(nb-mb)=a:b=BD:DC法二:△BED 与△CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;△ABE 与△EBD 同高,12::S S ED EA =;△ACE 与△CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得1423:::S S S S BD DC ==.2题目类型(1)基础类型可直接利用三角形三条边上的燕尾模型,由“底边之比决定面积之比”来解题。

往往题目会只给出两条由定点出发的分先,需自己添加第三条分线为辅助线,即形成“”形状。

(2)拓展类型利用“多于两条分先围成的面积不可直接求”先判断哪些部分可利用燕尾模型直接求解,然后制定求解策略、逐一求解。

例题详解例1分析:份为令△1BDF S 53231:1::62:1::31:1::22:1:+⇒==⇒==⇒==⇒=份均为、份为份为份为△△△△△△△△△△△S S EC AE S S S DC BD S S S EC AE S S S DC BD EFC AEF EFC AEF AFC AFC ABF ABF BFC ABF DFC例2分析:1:8:1:8:8)31(21:2::33:1:1=∴==+×⇒==⇒=OE BO S S S DC BD S S S EC AE S AOE ABO AOB AOC AOB EOC AEO △△△△△△△∵份为份为份为令例3分析:16:27::16:124:3::27:129:4::==∴======FB AF S S EC EA S S DC BD S SBOC AOC BOC AOB AOC AOB△△△△△△例5分析:2296321232222112221121:1::21:1::11:1::1cm S ABCD AGCD S EB AE S S S FB CF S S S EB AE S S SAGCD GCB GCB AGC AGC AGB AGC GEB GEB AGE AEG=×==×+++++++∴∴==∴==∴==)(的占正方形四边形份为,∵份为,∵份为,∵份为令△△△△△△△△△△例6分析:135144135144648381262)216(45120)45(80)216(40408021645::408045216::==∴⎩⎨⎧==⎩⎨⎧=−=−⎩⎨⎧+=+=+++=⇒==++⇒===AOE BOF BOC ABO COE AOE AOC ABO ODC OBD AOE BOF S S y x x y x y x y y x xy S S S S y x S S S S yS x S △△△△△△△△△△△△,解得整理得即∵∵,例4分析:△GHI 是由3条等分线围成的不可直接求,制定间接求解策略△AGC 是由两条等分线围成的可用燕尾直接求解,其求解过程与△AHB 、△BIC 完全一样,即AGCABC GHI S S S △△△3−=求解AGC S △:设BGC S △看成1份,则AGC S △=1×2=2份,AGB S △=2×2=4份713721724212=×−==++=∴GHI AGC S S S S △△,则家庭作业1分析:72216,218,722142,21186421182443121:2::12262:1::62)21(1:2::22:1::33:2:,1====+==++++=∴=×==÷=⇒===×⇒===×+⇒==⇒==⇒=ABF BFD EFDC AE FDC FDC FDC BFD BFC BFC ABF ABF AFC ABF EFC EFC AEF DFC AEF S S S S S S DC BD S S S EC AE S S S DC BD S S S EC AE S S S DC BD S △△△△△△△△△△△△△△△△△△份份,份为份为份为份为份为令2分析:731733311733734:3:::11:3::31:1::31:3:,1 ,CE =∴==++++⇒===⇒==⇒==⇒=阴影△△△△△△△△△△△△△△∵面积的阴影部分占△份为份为份为份为份为令S S ABC S FC AF S S S S S DC BD S S S DE AE S S S DC BD S ABC AEF BEC ABE EFC AEF AEC AEC ABE BED BED ABE BDECED 3分析:2:56:15::6:103:5::15:103:2::===∴======FB AF S S EC EA S S DC BD S S BGC AGC BGC ABC AGC ABG △△△△△△4分析:△GHI 是由3条等分线围成的不可直接求,制定间接求解策略△AGC 是由两条等分线围成的可用燕尾直接求解,其求解过程与△AHB 、△BIC 完全一样,即AGCABC GHI S S S △△△3−=求解AGC S △:设BGC S △看成9份,则AGC S △为9÷3×4=12份,AGB S △为12÷3×4=16份23717437133712137129161212=×=∴=×−==++=∴GHI ABC GHI ABC AGC S S S S S △△△△△,则5分析:2DFE 5522452)21333(2332:1::31:1::3211:1:::22:1:: 1 S cm S ABCD S S EC DE S S S FC BF S S S FG DF S S S S S EC DE S S BFG BDF GHD BGH BHD BFC DFB FGC BFG DFB CFG DFC EFC EFC DEF =×=∴=×+++++∴==∴===+∴===∴==阴影△△△△△△△△△△△△△△△△面积的阴影部分占长方形份为、,∵份为,∵份为,∵份为,∵E D B6分析:设yS x S EOC AOF ==△△,24646422*********262::4262::=+++++=∴⎩⎨⎧==⎩⎨⎧=−=−++=⇒==++⇒=ABC BOC AOC BOF AOF AOC ABO ODC OBD S y x y x y x yx S S S S y x S S S S △△△△△△△△△解得整理得∵∵超常挑战N M GA BCD EF分析:若知道△AMN 占ABC △的面积的比即可只ABC △的面积,△AMN 是由3条等分线围成的不可直接用燕尾求面积。

小学奥数之共边模型

小学奥数之共边模型

共边模型
本讲主线
1、等积变形中的共边
2、一半模型中的共边
课前小练习
将下面的两个三角形各自分成面积相等的4个小三角形
知识要点:
1、等底等高的两个三角形面积相等
2、夹在平行线间的一组同底三角形面积相等如下图:
3、三角形等分面积:等分底边,即可等分面积
4、一半模型
板块一:等积变形
例1、正方形ABCD和正方形CEFG,且正方形ABCD边长为20厘米,则图中阴影面积为多少平方厘米?
例2、四边形ABCD是一个直角梯形。

以上底AD为边向外作正方形ADEF,面积为9平方厘米。

连接BE交AD于P,再连接PC。

试求图中阴影部分的面积
例3、如图,E 、F 、G 、H 分别是四边形ABCD 各边的中点,4321S S S S 、、、分别表示四个小四边形的面积。

试比较 的大小与4231S S S S ++
例4、如图,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO 的面积为多少?
例5、如图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它内部阴影部分的面积是多少?
例6、如图,P为长方形ABCD内的一点,△PAB的面积为5,△PBC面积为13,请问:△PBD的面积是多少?
例7、超常大挑战
图中正方形面积为1,把每条边都3等分,然后将这8个等分点与正方形内部的某一点相连,形成4个阴影的四边形和4个空白的三角形,那么,阴影部分的总面积是多少?。

数学共边模型课件(五年级)奥数

数学共边模型课件(五年级)奥数

点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
01 点击此处添加标题 02 点击此处添加标题 03 点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
S2+S4=O+☆+△+? 相等
知识链接
面积等分三角形 三角形平分底边,那么,将会平分 三角形的面积
例题四(★ ★ ★ )
如图所示,长方形ABCD内的阴影部分的面积之和为70,AB
=8,AD=15,四边形EFGO的面积为

长方形面积:15×8=120 △AFC和△DFB的面积之和为 120÷2=60而空白部分的面积: 120-70=50所以四边形EFGO的面 积是60-50=10
阴=4.5(cm2 )
△AED=4.5
知识链接
3、三角形等分面积;得分底边,即可等分面积
例题【三】(★ ★ ★ )
如图,E、F、G、H分别是四边形ABCD各边四边形ABC各边的中点 ,S1、S2、S3及S4分别表示四个小四边形的面积. 试比较S1+S3与S2+S4的大小。

五年级奥数_一半模型_学生版

五年级奥数_一半模型_学生版

三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。

在等高模型中,(图1)当BD=CD时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED,DF=FC,阴影部分面积,SΔAEF=SΔABC÷2在等底模型中(图3),当AE=DE时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:知识结构一半模型【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。

是打“√”,不是打“×”。

()()()()()()梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。

如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。

四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】】【巩固练习【例1】如图,已知长方形ABCD的面积为24平方厘米,且线段EF,GH把它分成四个小长方形,求阴影部分的面积。

【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。

【例2】如图所示,平行四边形的面积是50 平方厘米,阴影部分面积是()平方厘米.【例3】如图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它内部阴影部分的面积是多少4A BF ED C【巩固】如图,正方形ABCD的边长为4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米EA BFD G C【例4】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是1 3,3 5,4 9.那么图中阴影部分的面积是多少A D3549E13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是11,32,57.那么图中阴影部分的面积是多少A D325711B C【例5】如图所示,长方形ABCD内的阴影面积之和为65,AB=8,AD=15,四边形EFGD的面积是【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。

完整五年级奥数一半模型教师版 1

完整五年级奥数一半模型教师版 1

一半模型知识结构一、 三角形当中的一半模型由于三角形的面积公式 S=底x 高+2,决定于底和高的长度,所以我们有了等高模型和等底模型。

在等高模型中,(图 1 )当BD=CD 寸,阴影部分,S A ABD=2 ABO 2特别地如图2,当BE=ED , DF=FC ,阴影部分面积, S A AEF=A ABO 2在等底模型中(图 3),当AE=DE 时,阴影部分,S A EBC=A ABO 2二、平行四边形中的一半模型由于三角形的面积公式 S=Bx 高十2,平行四边行的面积公式 s=Bx 高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积 是四边形面积的一半:匡】梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一 半。

如图5,是它的变形,注意其中 AF=DF BE=CE【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的,不是打“XS AADE=SABCD 2四、任意四边形中的一半模型女口图 6,在四边形 ABCD 中,AE=EB DF=CF 贝U SEBFD=SAB &DS 如CD - “bS £BCE ■ S A BCF N S A BCD = S A BCPS|..ABCD = axb百f ADEr 打 xbly S^BCE - ixa xb2阴影-比ADE * S A BCE - - A xbl t —> I w bi - —ox(bl t b2)- i a x b【巩固练习】a【能力提升】不规则图形左因’阴影=E BFE二丄x ?乂1> =丄a b、 2 2 41q 1 a右图;S A Ata = -x^xbl; SA B11<J = - x-xbz2 2 2 2阴影=5AFG丰S.BEG = —x-xbl + -x-xb2 = —a x(bl + b2) = — a xb也也22224 A辰例题精讲【例1】如图,已知长方形ABCD勺面积为24平方厘米,且线段EF,GHS它分成四个小长方形,求阴影部分的面积。

最新暑期五年级奥数 竞赛班第5讲共角模型汇编

最新暑期五年级奥数 竞赛班第5讲共角模型汇编

【温故】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?【知新】共角模型(鸟头模型)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图, :():()ABC ADE S S AB AC AD AE =⨯⨯【例1】(★★)如图, △ABC 中,AD :AB =2:3,AE :AC =4:5,求: △AED 的面积是△ABC 面积的几分之几?【例2】(★★★)如图在△ABC 中,D 、E 分别是AB 、AC 上的点,且AD ∶AB =2∶5,AE ∶AC =4∶7, S △ADE =16平方厘米,求△ABC 的面积。

共角模型【例3】(★★★)如图在△ABC中,D在BA的延长线上,E在AC上,且AB∶AD=5∶2,AE∶EC=3∶2,S△ADE=12平方厘米,求△ABC的面积【例4】(★★★★)如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

【例5】(★★★★)已知,AC∶AE=5∶1,BC∶CD=4∶1,BA∶BF=6∶1 ,那么,△DEF的面积是△ABC的几分之几?【例6】(★★★★★) (走进美妙数学花园六年级初赛)如图,三角形ABC中,延长BA到D,使DA=AB,延长CA到E,使EA=2AC,延长CB到F,使FB=3BC。

如果三角形ABC的面积是1,那么三角形DEF的面积是____。

一、本讲重点知识回顾共角模型(鸟头模型)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比如图, :():()ABC ADE S S AB AC AD AE =⨯⨯二、本讲经典例题例2,例3,例5,例6。

小学奥数--几何--五大模型--燕尾模型(共边定理)

小学奥数--几何--五大模型--燕尾模型(共边定理)

= 122
×
2 3
= 96cm2
例6
分析: S△BOF = x,S△AOE = y
∵ S△OBD
: S△ODC
= S△ABO
: S△AOC

216 + x y + 45
=
80 40
∵ S△AOE
: S△COE
=
S △ ABO
: S△BOC

y 45
=
216 + x 80 + 40
即⎩⎨⎧14200(2y1=6
∵ S△AGC : S△AGB = CF : FB = 1 : 1,∴ S△AGC为2份
∵ S△AGC : S△GCB = AE : EB = 1 : 1,∴ S△GCB为2份
∴四边形AGCD占正方形ABCD的 1 + 1 + 2 + 2 + 2
2 =
(1 + 1 + 2 + 2)× 2 3
S AGCD

2 在 ∆ABC 中, BD : DC = 3 : 2 , AE : EC = 3 :1,求 OB : OE = ? A
3 如右图,三角形 ABC 中, BD : DC = 2 : 3 , EA : CE = 5 : 4 ,求 AF : FB .
O
E
B
D
C
A
FO
E
4 如图在 △ABC 中, DC = EA = FB = 1 ,求 △GHI的面积 的值.
2011 年 秋季 五年级
第十三讲 三角形中的模型(一)
三角形中的模型(一)
知识点详解
1 “燕尾模型”:面积比转化为边之比 D 是 BC 上任意一点, S1 : S4 = S2 : S3 = BD : DC

五年级奥数_一半模型_学生版

五年级奥数_一半模型_学生版

一、 三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。

在等高模型中,(图1)当BD=CD 时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED ,DF=FC ,阴影部分面积,SΔAEF=SΔABC÷2在等底模型中(图3),当AE=DE 时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:知识结构一半模型【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。

是打“√”,不是打“×”。

()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。

如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。

四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】【例1】如图,已知长方形ABCD 的面积为24平方厘米,且线段EF,GH 把它分成四个小长方形,求阴影部分的面积。

【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。

【例2】如图所示,平行四边形的面积是 50 平方厘米,阴影部分面积是( )平方厘米.例题精讲4【例3】A BF ED C【巩固】如图,正方形ABCD的边长为 4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米?EA BFD G C【例4】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是1 3,3 5,4 9.那么图中阴影部分的面积是多少A D3549E13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是 11,32,57.那么图中阴影部分的面积是多少?A D325711B C【例5】如图所示,长方形ABCD内的阴影面积之和为 65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。

五年级奥数之共边模型

五年级奥数之共边模型

1等积变形中的共边
本讲主线
1.等积变形中的共边。

2.一半模型中的共边。

1.等底等高的两个三角形面积相等
夹在行线间的2.夹在平行线间的一组同底三角形面积相等如下图,△E P
D
C
3. 三角形等分面积:等分底边,即可等分面积.
【例3】(★★★)(2008年”希望杯”二试六年级)(2008年希望杯二试六年级)如图,E 、F 、G 、H 分别是四边形中点S 1、S 2、S 及S 4分别表示四个小四边形的中点,面积. 试比较S 1+与S 2+S 4的大小。

板块二:一半模型
4. 一半模型
长方形中,
平行四边形中,
【例5】(★★)
如下图长方形
如下图,长方形AFEB和长方形FDCE拼成了长
方形ABCD,长方形ABCD的长是20,宽是12,
则它内部阴影部分的面积是
则它内部阴影部分的面积是______。

知识大总结
1三角形面积底×高÷2A
1.三角形面积=底×高÷2
平行线性质:夹在平行线间的一
组同底三角形面积相等
组同底三角形面积相等.
面积等分三角形:
C
4.一半模型:
例1,例4,超常大挑战
______________________________________________。

_______________________________________________。

五年级奥数一半模型教师版-

五年级奥数一半模型教师版-

一、 三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。

在等高模型中,(图1)当BD=CD 时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED ,DF=FC ,阴影部分面积,S ΔAEF=S ΔABC ÷2在等底模型中(图3),当AE=DE 时,阴影部分,S ΔEBC=S ΔABC ÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2, 平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:知识结构一半模型【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。

是打“√”,不是打“×”。

()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。

如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。

四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】【例1】如图,已知长方形ABCD 的面积为24平方厘米,且线段EF,GH 把它分成四个小长方形,求阴影部分的面积。

24÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。

【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。

6×4÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。

例题精讲4【例2】如图所示,平行四边形的面积是 50 平方厘米,阴影部分面积是()平方厘米.【例3】A BF ED C【巩固】如图,正方形ABCD的边长为 4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米?EA BFD G C【例3】A D3549E13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是 11,32,57.那么图中阴影部分的面积是多少?A D325711B C【例4】如图所示,长方形ABCD内的阴影面积之和为 65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。

小学奥数平面几何五种面积模型 (2)

小学奥数平面几何五种面积模型 (2)

小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCBA图⑴ 图⑵ 三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造b a S 2S 1DC BA S 4S 3S 2S 1O DCBA模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝶形定理”):①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为A BCD O ba S 3S 2S 1S 4O FED C BA三角形中的三角形面积对应底边之间提供互相联系的途径. 典型例题【例 1】如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【解析】 连接DE ,DF ,则长方形EFGH 的面积是三角形DEF 面积的二倍.三角形DEF 的面积等于正方形的面积减去三个三角形的面积,66 1.562262 4.54216.5DEF S =⨯-⨯÷-⨯÷-⨯÷=△,所以长方形EFGH面积为33.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【解析】 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半. 证明:连接AG .(我们通过ABG △把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G 12AB S AB AB =⨯⨯△边上的高,∴12ABG ABCD S S =W △(三角形面积等于与它等底等高的平行四边形面积的一半)同理,12ABG EFGB S S =△.∴正方形ABCD 与长方形EFGB面积相等. 长方形的宽8810 6.4=⨯÷=(厘米)._H_G_ F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ D【例 2】长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?E【解析】 解法一:寻找可利用的条件,连接BH 、HC ,如下图:E可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=即11()361822EHB BHF DHG AHB CHB CHD S S S S S S ∆∆∆∆∆∆++=++=⨯=; 而EHB BHF DHG EBFS S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影解法二:特殊点法.找H 的特殊点,把H 点与D 点重合,那么图形就可变成右图:GE (H )这样阴影部分的面积就是DEF ∆的面积,根据鸟头定理,则有:11111113636363613.52222222ABCD AED BEF CFD S S S S S ∆∆∆=---=-⨯⨯-⨯⨯⨯-⨯⨯=阴影.【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米.(法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【例 3】如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .B【解析】 利用图形中的包含关系可以先求出三角形AOE 、DOG 和四边形EFGO 的面积之和,以及三角形AOE 和DOG 的面积之和,进而求出四边形EFGO的面积.由于长方形ABCD 的面积为158120⨯=,所以三角形BOC 的面积为1120304⨯=,所以三角形AOE 和DOG 的面积之和为312070204⨯-=; 又三角形AOE 、DOG 和四边形EFGO 的面积之和为111203024⎛⎫⨯-= ⎪⎝⎭,所以四边形EFGO 的面积为302010-=.另解:从整体上来看,四边形EFGO 的面积=三角形AFC 面积+三角形BFD 面积-白色部分的面积,而三角形AFC 面积+三角形BFD 面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即1207050-=,所以四边形的面积为605010-=.【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .BB【解析】 如图,连接OE .根据蝶形定理,1:::1:12COE CDE CAE CDE ON ND S S S S ∆∆∆∆===,所以12OEN OED S S ∆∆=; 1:::1:42BOE BAE BDE BAE OM MA S S S S ∆∆∆∆===,所以15OEM OEA S S ∆∆=.又11334OED ABCD S S ∆=⨯=矩形,26OEA OED S S ∆∆==,所以阴影部分面积为:1136 2.725⨯+⨯=.【例 4】已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【解析】 因为D 、E 、F 分别为三边的中点,所以DE 、DF 、EF 是三角形ABC 的中位线,也就与对应的边平行,根据面积比例模型,三角形ABN 和三角形AMC 的面积都等于三角形ABC 的一半,即为200.根据图形的容斥关系,有ABC ABN AMC AMHN S S S S S ∆∆∆-=+-丙,即400 200200AMHN S S -=+-丙,所以AMHN S S =丙. 又ADF AMHN S S S S S ∆+=++乙甲阴影,所以1143400434ADF S S S S S ∆=++-=-⨯=乙甲丙阴影.【例 5】如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BAABC DE FG【解析】 连接AF ,BD .根据题意可知,571527CF =++=;715628DG =++=;所以,1527BE CBF F S S ∆∆=,1227BE CBF C S S ∆∆=,2128AEG ADG S S ∆∆=,728AED ADG S S ∆∆=, 于是:2115652827ADG CBFS S ∆∆+=;712382827ADG CBF S S ∆∆+=; 可得40ADG S ∆=.故三角形ADG 的面积是40.【例 6】如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBAABCDE【解析】 连接BE .∵3EC AE =∴3ABC ABE S S =V V 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷V V V ,∴1515ABC ADE S S ==V V .【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAABCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S =V V 又∵4BD DC ==,∴2ABC ABD S S =V V ,∴6ABC BDE S S =V V ,5S S =乙甲.【例 7】如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBAEDCB A【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 8】如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGAB CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABCFBES AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△. 所以213618ABCDEFGHS S ==.【例 9】如图所示的四边形的面积等于多少?DB13131212【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【例 11】 如图,以正方形的边AB为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==, 所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ). 又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ).那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ), 所以1 2.52OBE BDE S S ∆∆==(2cm ).【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDCGFEABDC【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FEDCBA33321F EDC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△,111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A 【解析】 设1DEFS =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝶形定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝶形定理的优势,从而主观上愿意掌握并使用蝶形定理解决问题. 解法一:∵::1:3ABD BDC AO OC S S ∆∆==,∴236OC =⨯=,∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G .∵13ABDBCD S S ∆∆=,∴13AH CG =,∴13AODDOC S S ∆∆=, ∴13AO CO =,∴236OC =⨯=,∴:6:32:1OC OD ==.【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?B【解析】 ⑴根据蝶形定理,123BGCS ⨯=⨯V ,那么6BGC S =V ;⑵根据蝶形定理,()():12:361:3AG GC =++=.【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE△的面积.OGF EDCBA【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=,根据蝶形定理,::2:41:2COE COF EG FG S S ∆∆===,所以::1:2GCE GCF S S EG FG ∆∆==,那么11221233GCE CEF S S ∆∆==⨯=+.【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF GABCD EF G【解析】 连接AE ,FE .因为:2:3BE EC =,:1:2DF FC =,所以3111()53210DEF ABCD ABCD S S S =⨯⨯=V 长方形长方形.因为12AEDABCD S S =V 长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==V V 平方厘米,所以12AFD S =V 平方厘米.因为16AFDABCD S S =V 长方形,所以长方形ABCD 的面积是72平方厘米.【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【解析】 因为M 是AD 边上的中点,所以:1:2AM BC =,根据梯形蝶形定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=△△△△()(),设1AGM S =△份,则123MCD S =+=△ 份,所以正方形的面积为1224312++++=份,224S =+=阴影份,所以:1:3S S =阴影正方形,所以1S =阴影平方厘米.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【解析】 连接DE ,根据题意可知:1:2BE AD =,根据蝶形定理得2129S =+=梯形()(平方厘米),3ECD S =△(平方厘米),那么12ABCD S =W (平方厘米).【例 18】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是 平方厘米.BB【解析】 连接AC .由于ABCD 是平行四边形,:3:2BC CE =,所以:2:3CE AD =,根据梯形蝶形定理,22:::2:23:23:34:6:6:9COE AOC DOE AOD S S S S =⨯⨯=V V V V ,所以6AOC S =V (平方厘米),9AOD S =V (平方厘米),又6915ABC ACD S S ==+=V V (平方厘米),阴影部分面积为61521+=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【分析】 连接AE.由于AD 与BC是平行的,所以AECD也是梯形,那么OCDOAE S S ∆∆=.根据蝶形定理,4936OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故236OCD S ∆=, 所以6OCD S ∆=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【解析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,2816OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故216OCD S ∆=,所以4OCD S ∆=(平方厘米).另解:在平行四边形ABED 中,()111681222ADE ABED S S ∆==⨯+=Y (平方厘米), 所以1284AOE ADE AOD S S S ∆∆∆=-=-=(平方厘米),根据蝶形定理,阴影部分的面积为8244⨯÷=(平方厘米).【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCDEF?852O A BC DEF【解析】 连接DE 、CF .四边形EDCF 为梯形,所以EOD FOC S S ∆=V ,又根据蝶形定理,EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅,所以2816EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅=⨯=,所以4EOD S ∆=(平方厘米),4812ECD S ∆=+=(平方厘米).那么长方形ABCD 的面积为12224⨯=平方厘米,四边形OFBC 的面积为245289---=(平方厘米).【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【解析】 由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC 是梯形.在梯形ADBC 中,BDK ∆和ACK ∆的面积是相等的.而:1:3AK KB =,所以ACK ∆的面积是ABC ∆面积的11134=+,那么BDK ∆的面积也是ABC ∆面积的14. 由于ABC ∆是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么M 是BC 的中点,而且AM DE =,可见ABM ∆和ACM ∆的面积都等于正方形DEFG 面积的一半,所以ABC ∆的面积与正方形DEFG 的面积相等,为48.那么BDK ∆的面积为148124⨯=.【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n,那么,()m n +的值等于 .E【解析】 左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积.如下图所示,在左图中连接EG .设AG 与DE 的交点为M .左图中AEGD 为长方形,可知AMD ∆的面积为长方形AEGD 面积的14,所以三角形AMD 的面积为21111248⨯⨯=.又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为111482-⨯=.BEE如上图所示,在右图中连接AC 、EF .设AF 、EC 的交点为N . 可知EF ∥AC 且2AC EF =.那么三角形BEF 的面积为三角形ABC 面积的14,所以三角形BEF 的面积为21111248⨯⨯=,梯形AEFC 的面积为113288-=. 在梯形AEFC 中,由于:1:2EF AC =,根据梯形蝶形定理,其四部分的面积比为:221:12:12:21:2:2:4⨯⨯=,所以三角形EFN 的面积为3118122424⨯=+++,那么四边形BENF 的面积为1118246+=.而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为111463-⨯=.那么左图中阴影部分面积与右图中阴影部分面积之比为11:3:223=,即32m n =, 那么325m n +=+=.【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【解析】 设1ADE S =△份,根据面积比等于相似比的平方,所以22::1:4ADE AFG S S AD AF ==△△,22::1:9ADE ABC S S AD AB ==△△, 因此4AFG S =△份,9ABC S =△份,进而有3DEGF S =四边形份,5FGCB S =四边形份,所以::1:3:5ADE DEGF FGCB S S S =△四边形四边形【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【解析】 由金字塔模型得:::2:5AD AB AE AC DE BC ===,所以42510AC =÷⨯=【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形. 【解析】 设1ADE S =△份,22::1:4ADE AFG S S AD AF ==△△,因此4AFG S =△份,进而有3DEGF S =四边形份,同理有5FGNM S =四边形份,7MNQP S =四边形份,9PQCB S =四边形份.所以有::::1:3:5:7:9ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形【例 23】 如图,已知正方形ABCD 的边长为4,F是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDC BM GFAEDCBGFAEDCB【解析】 方法一:连接AE ,延长AF ,DC 两条线交于点M ,构造出两个沙漏,所以有::1:1AB CM BF FC ==,因此4CM =,根据题意有3CE =,再根据另一个沙漏有::4:7GB GE AB EM ==,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△.方法二:连接,AE EF,分别求4224ABF S =⨯÷=△,4441232247AEFS =⨯-⨯÷-⨯÷-=△,根据蝶形定理::4:7ABF AEF S S BG GE ==△△,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△.【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG ∆的面积.Q E GNMFPA DCBMHGF E DCBAA【解析】 解法一:由题意可得,E 、F 是AB 、AD 的中点,得//EF BD ,而::1:2FD BC FH HC ==,::1:2EB CD BG GD ==所以::2:3CH CF GH EF ==,并得G 、H 是BD 的三等分点,所以BG GH =,所以 ::2:3BG EF BM MF ==,所以25BM BF =,11112224BFD ABD ABCD S S S ∆∆==⨯=Y ; 又因为13BG BD =,所以1212113535430BMG BFD S S ∆∆=⨯⨯=⨯⨯=. 解法二:延长CE 交DA 于I ,如右图,可得,::1:1AI BC AE EB ==,从而可以确定M 的点的位置, ::2:3BM MF BC IF ==,25BM BF =,13BG BD =(鸟头定理),可得2121115353430BMG BDF ABCD S S S ∆∆=⨯=⨯⨯=Y【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?CACA【解析】 (法1)由//AB CD ,有MP PC MNDC=,所以2PC PM =,又MQ MB QC EC =,所以12MQ QC MC ==,所以111236PQ MC MC MC =-=,所以SPQR S 占AMCF S 的16,所以121(112)63SPQR S =⨯⨯++=2(cm ).(法2)如图,连结AE ,则14482ABE S ∆=⨯⨯=(2cm ),而RB ER ABEF=,所以2RB AB EFEF ==,22168333ABR ABE S S ∆∆==⨯=(2cm ).而1134322MBQ ANS S S ∆∆==⨯⨯⨯=(2cm ),因为MN MP DC PC=,所以13MP MC =,则11424233MNP S ∆=⨯⨯⨯=(2cm ),阴影部分面积等于164233333ABR ANS MBQ MNP S S S S ∆∆∆∆--+=--+=(2cm ).【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI H G FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=; 那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI的面积是1,求三角形ABC 的面积.IH G FEDCBA IH G FEDCBA【解析】 连接BG ,AGCS △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△, 同理连接AI 、CH 得619ABHABCS S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCCB【分析】 如图,连接AI.根据燕尾定理,::2:1BCI ACIS S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△,所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPMS =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNEDS =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC边的三等分点,那么四边形JKIH 的面积是多少?K J IHABC D EF GKJI HABCD EFG【解析】 连接CK 、CI 、CJ.根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==. 类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJS =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBMS S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBNS S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGNAFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.C BAGCB【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABMACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC△中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABCS S =△△,所以1111152121105ABP ADN BEPABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC△面积的11105,所以11113133610570S =-⨯-⨯=阴影【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△,同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形课后练习: 练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】:():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形 所以66513.2ABCD S =÷=四边形平方米练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDCBAM H GFEDCBA【解析】 欲求四边形BGHF 的面积须求出EBG ∆和CHF ∆的面积.由题意可得到:::1:2EG GC EB CD ==,所以可得:13EBG BCE S S ∆∆=将AB 、DF 延长交于M 点,可得::::1:1BM DC MF FD BF FC ===,而1::():3:22EH HC EM CD AB AB CD ==+=,得25CH CE =,而12CF BC =,所以121255CHF BCE BCE S S S ∆∆∆=⨯=11112030224BCE S AB BC ∆=⨯⨯=⨯=117730141515EBC EBC EBC EBC BGHF S S S S S ∆∆∆∆=--==⨯=四边形.EF ,确定H 的位置(也就是:FH HD )练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBABCA'C'EDA【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90o,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S ∆∆∆∆∆∆++=++==⨯⨯=W .练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDED【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.。

奥数几何专题共边模型(基础篇)

奥数几何专题共边模型(基础篇)
A.18
B.24
C.16
D.8
3.★★★
如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是( )平方厘米。
A.30
B.28
C.25
D.23
4.★★★★
如图:梯形ABCD的面积是320平方米,三角形ABC的面积是三角形ABE面积4倍,且三角形ABE的面积是60平方米,三角形ADE的面积是( )平方米?
__________________ __________________
如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点,H为AD边上的任意一点,求阴影部分的面积。
如图,三角形ABC中,DC=2BD,CE=3AE,三角形ADE的面积是20平方厘米,三角形ABC的面积是多少?
A.80
B.200
C.60
D.20
5.★★★★
如图,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍.三角形AEF的面积是18平方厘米,三角形ABC的面积是()平方厘米?
A.144
B.168
C.72
D.100
__________________ __________________
在线测试题温馨提示:请在线作答 Nhomakorabea以便及时反馈孩子的薄弱环节。
1.★★
图中的 、 、 分别是正方形 三条边的三等分点,如果正方形的边长是 ,那么阴影部分的面积是()
A.50
B.48
C.56
D.45
2.★★★
如下图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘米。三角形BDE的面积是( )平方厘米?
如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它内部阴影部分的面积是______。

五年级数学强化专题专讲-[第4讲]共边模型

五年级数学强化专题专讲-[第4讲]共边模型
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠百转
为一见而不远千里
晨起凭栏眺
但见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷
和其中的一字一句
幸遇只因这一次
被你拥抱过,览了
被你默诵过,懂了
被你翻开又合起
被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世
-------------------谢谢喜欢------------------
⑴直线AB平行于CD,可出现三对面积相等的三角形,如图⑴
⑵两个三角形高相等,面积比等于它们的底之比;
两个三角形底相等,面积比等于它们的高之比;
正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?
图中的E、F、G分别是正方形ABCD三条边的三等分点,H是任意点。如果正方形的边长是12,那么阴影部分的面积是______。
如图,正方形ABCD的边长为6,AE=1.5,CF=2。长方形EFGH的面积为。
如图,已知BD=DC,EC=2AE,三角形ABC的面积是30,求阴影部分面积。
请用一条直线把它分成两个三角形,不允许有剩余呦!
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.如下图,甲、乙两图形都是正方形,它们的边长分别为10厘米和12厘米。求阴影部分的面积。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阴=4.5(cm2 )
△AED=4.5
知识链接
3、三角形等分面积;得分底边,即可等分面积
例题【三】(★ ★ ★ )
如图,E、F、G、H分别是四边形ABCD各边四边形ABC各边的中点 ,S1、S2、S3及S4分别表示四个小四边形的面积. 试比较S1+S3与S2+S4的大小。
连接内部点O与四个顶点 S1+S2=△+☆+O+?
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
S2+S4=O+☆+△+? 相等
知识链接
面积等分三角形 三角形平分底边,那么,将会平分 三角形的面积
例题四(★ ★ ★ )
如图所示,长方形ABCD内的阴影部分的面积之和为70,AB
=8,AD=15,四边形EFGO的面积为

长方形面积:15×8=120 △AFC和△DFB的面积之和为 120÷2=60而空白部分的面积: 120-70=50所以四边形EFGO的面 积是60-50=10
点击此处添加标题
您的内容打在这里,或者通过复制您的文本 后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本 后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。
如图,P为长方形ABCD内的一点。△PAB的面积 为5,△PBC的面积为13。请问:△PBD的面积是多少?
13+△APD=一半 5+△PCD=一半 5+△APD+△PBD=一半
13=5+△PBD △PBD=8
例题六(★★ ★★ )
图中的正方形Βιβλιοθήκη 积为1,把每条边都3等分,然后将这8个等分点 与正方形内部的某一点相连,形成4个阴影的四边形和4个 空白 的三角形,那么,阴影部分的总面积是多少
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
01 点击此处添加标题 02 点击此处添加标题 03 点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
连接中间与正方形的四个顶点 阴=空×2
正方形有3份 阴=1×2 = 2
33
知识链接
1. 三角形面积=底×高÷2 2. 平行线性质:夹在平行线间的一 组同底三角形面积相等
4、一半模型
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后。
C
例题【一】(★ ★ )
正方形ABCD和正方形CEFG,且正方形ABCD边长为 20厘米,则图中阴影面积为多少平方厘米?
连接CF,那么CF∥BD △DBF=△DBC △DBF=20×20÷2
知识链接
平行线性质应用 1、三角形的一边在边在平行线 上; 2、三角形的顶点在另一条平行线 上
知识链接
4比例性质:交叉相乘,积相等. a =c Bd 可知,a×d=c×b
共边模型
五年级 第二课
本讲主线
请你将下面的三角形按面积分成三等分,并且 每一个三角形中都有一棵树
本讲主线
将下面的两个三角形各自分成面积相等的4个小三角形。
A A
B
C
B
C
本讲主线
1、等底等高的两个三角形面积相等 2、夹在平行线间的一组同底三角形面积相等
如下图,△ACD=△BCD
A
D
△ABC=△DBC △BAD=△CAD B
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
知识链接
1、一 半 模 型 长方形中,
平行四边形中,
例题五(★ ★ ★ ★ )
如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方
形ABCD的长是20,宽是12,则它内部分的面积是

根据一半模型可知阴影部分 面积等于长方形面积的一半 为:20×12÷2=120
例题六(★ ★ ★ )
例题【二】(★ ★ )
四边形ABCD是一个直角梯形。以上底AD为边向外作正方形ADEF,面 积为9平方厘米。连接BE 交AD于P,再连接PC。试求图中阴影部分
的面积
连接BD,因为PD∥BC
所以,△PDC=△PDB
阴影=△BED
又因为ED∥FD
△BED=△AED=9÷2=4.5(cm2)阴=△BED
相关文档
最新文档