浙教版八年级数学下册知识点汇总

合集下载

浙教版数学八年级下册各章节知识点汇总

浙教版数学八年级下册各章节知识点汇总

(1)因式分解法:适用于右边为 0 (或可化为 0 ),而左边易分解为两个一次因式积的方程,缺常数项或含有字母 系数的方程用因式分解法较为简便,它是一种最常用的方法.
【注意】应用因式分解法解一元二次方程时,方程的右边必须是零.
(2)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 b2 4ac 的值.
方程有整数根的条件: 如果一元二次方程 ax2 bx c 0 (a 0) 有整数根,那么必然同时满足以下条件: (1) b2 4ac 为完全平方数;(2) b b2 4ac 2ak 或 b b2 4ac 2ak ,其中 k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中 a 、 b 、 c 均为有理数)
对于关于 x 的方程 ax2 bx c 0 ,当 a 0 时,方程是一元二次方程;当 a 0 且 b 0 时,方程是一元一次方程. 二、一元二次方程的解法
1.一元二次方程的解法:直接开平方法、配方法、公式法和因式分解法
2.一元二次方程解法的灵活运用 直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.
第二章 一元二次方程
一、定义 1、只含有一个未知数,并且未知数的最高次数是 2 的方程叫做一元二次方程.
2、一般形式: ax2 bx c 0(a 0) ,其中,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数
项。 3、一元二次方程的根:使一元二次方程左右两边相等的值,叫做一元二次方程的根(解). 【注意】
中的 只能是一个非负数,否则 无意义.
5、简化二次根式的被开方数,主要有两个途径:
(1)因式的内移:因式内移时,若

八年级下册数学知识点归纳(浙教版)

八年级下册数学知识点归纳(浙教版)

函数及其相关概念
1、变量与常量
在某⼀变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

⼀般地,在某⼀变化过程中有两个变量x与y,如果对于x的每⼀个值,y都有确定的值与它对应,那么就说x是⾃变量,y是x的函数。

2、函数解析式
⽤来表⽰函数关系的数学式⼦叫做函数解析式或函数关系式。

使函数有意义的⾃变量的取值的全体,叫做⾃变量的取值范围。

3、函数的三种表⽰法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以⽤⼀个含有这两个变量及数字运算符号的等式表⽰,这种表⽰法叫做解析法。

(2)列表法
把⾃变量x的⼀系列值和函数y的对应值列成⼀个表来表⽰函数关系,这种表⽰法叫做列表法。

(3)图像法
⽤图像表⽰函数关系的⽅法叫做图像法。

4、由函数解析式画其图像的⼀般步骤
(1)列表:列表给出⾃变量与函数的⼀些对应值
(2)描点:以表中每对对应值为坐标,在坐标平⾯内描出相应的点
(3)连线:按照⾃变量由⼩到⼤的顺序,把所描各点⽤平滑的曲线连接起来。

(完整word版)浙教版八下数学知识点,推荐文档

(完整word版)浙教版八下数学知识点,推荐文档

第一章 二次根式1. 二次根式的定义:形如 a (a ≥0)的代数式叫做二次根式。

(被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根)2.取值范围:二次根式被开方数大于等于0分式分母不为02. 二次根式的性质:1.二次根式有双重非负性(0a ≥,0a ≥)2.平方在根号里面(里平方)2(0)(0)a a a a a a ≥⎧==⎨-<⎩ 3平方在根号外面(外平方)2a a =区别:2a 表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根; 相同点:最后的值都是正数3. (0,0)ab a b a b =≥≥0,0)a a a b b b=≥> 根号里面只有乘除才能分开来,加减不能4: 最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母;⑶分母中不含根式。

满足这三个条件的二次根式称为最简二次根式。

5、分母有理化: 1aa 2a b+分子分母同乘以a b 3a b -a b题型:根式的化简和运算(简单题前几题,选择题,填空题)根式的定义、取值范围(选择题,填空题)第二章 一元二次方程1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。

通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。

2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。

浙教版八年级下册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级下册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级下册初中数学全册知识点梳理及重点题型巩固练习二次根式的概念和性质(基础)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简. 【要点梳理】要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1、; 2.;3..要点诠释: 1.二次根式(a ≥0)的值是非负数。

一个非负数可以写成它的算术平方根的形式,即2(0a a a =≥).2a 2()a 要注意区别与联系:1).a 的取值范围不同,2)a 中a ≥02a a 为任意值。

2).a ≥0时,2()a 2a a ;a <0时,2)a 2a a -.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开方数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式 要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面的因式就是这个根式的系数; (2)二次根式的系数是带分数的要变成假分数的形式 【典型例题】类型一、二次根式的概念1.当x 为实数时,下列各式()2223,1,,,,x x x x x --,,,属二次根式的有____ 个. 【答案】 3 【解析】 ()22,,x x x - 这三个式子满足无论x 取何值,被开方数都大于等于零.【总结升华】二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.举一反三:【变式】下列式子中二次根式的个数有( ) (113(23-; (3)21x -+(4)8; (521()3-;(61x -1x >)A .2 B.3 C.4 D.5 【答案】B 【::381279:二次根式及其乘除法(上)经典例题1】2. x 取何值时,下列函数在实数范围内有意义?(1)1y x =-; (2)y=2+x -x 23-;【答案与解析】 (1)1x -≥0,所以x ≥1.(2)2x +≥0,32x -≥0,所以2-≤x ≤32;【总结升华】重点考查二次根式的概念:被开方数是正数或零. 举一反三:【变式】下列格式中,一定是二次根式的是( ) A. 23- B. ()20.3- C. 2- D. x【答案】B.类型二、二次根式的性质3. 计算下列各式:(1)232()4-⨯- (2)2(3.14)π-【答案与解析】(1) 33=-2=-42⨯原式. (2) =3.14-=-3.14ππ原式. 【总结升华】 二次根式性质的运用. 举一反三 【::381279:二次根式及其乘除法(上)经典例题3】 【变式】(1)2)252(-=_____________ (2)2)2(2a a ---=_____________【答案】(1) 10;(2) 0.4. (2015•蓬溪县校级模拟)已知:实数a ,b 在数轴上的位置如图所示,化简:﹣|a ﹣b|.【答案与解析】解:从数轴上a 、b 的位置关系可知:﹣2<a <﹣1,1<b <2,且b >a ,故a+1<0,b ﹣1>0,a ﹣b <0, 原式=|a+1|+2|b ﹣1|﹣|a ﹣b|=﹣(a+1)+2(b ﹣1)+(a ﹣b )=b ﹣3.【总结升华】本题主要考查了利用数轴比较两个数的大小和利用二次根式的性质进行化简,属于基础题. 举一反三【变式】若整数m 满足条件22(1)1,,5m m m +=+<且则m 的值是___________. 【答案】m =0或m =-1.类型三、最简二次根式5.下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).【答案与解析】和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.【总结升华】判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是 最简二次根式. 举一反三【变式】(2015•东莞二模)下列各式中,是最简二次根式的是( ) A .15B .0.1C .15 D.212【答案】C.类型四:同类二次根式6. (20163( )18 B. 13149 1150【答案】 B. 【解析】故选B.【总结升华】同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式. 举一反三:【变式】如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( ) A.a =2,b =1 B.a =1,b =2 C. a =1,b =-1 D. a =1,b =1【答案】 D. 根据题意,得解之,得,故选D.二次根式的概念和性质(基础)巩固练习【巩固练习】一.选择题1. (2016•宁波)使二次根式有意义的x 的取值范围是( )A .x ≠1B .x >1C .x ≤1D .x ≥12. 若1a <,化简2(1)-1=a - ( ).A.2a -B.2a -C.aD.a - 3. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式.C. 与不是同类二次根式D. 同类二次根式是根指数为2的根式4.(2015•蓬溪县校级模拟)下列各式中正确的是( )2a 2a ±a 2a ﹣a 2a 5.下列根式是最简二次根式的是( )A .8B .24x y +C .D .6. 已知,化简二次根式的正确结果为( )A. B. C. D.二. 填空题7.(2016•营山县一模)使式子有意义的x 的取值范围是 .8.=____________. 若,则____________.9.(1)2)53(-=_____________.(2)9622++-a a a (a>0)=__________________________.10.若22x x -+-=0,则2(1)1x x--=_______________. 11.当x ≤0时,化简21-x x -=________________________.12. 计算134893123-+=__________________. 三 综合题13. 当x 为何值时,下列式子有意义?(1)21x + (2)2x -(3)11y x =-; (4)11y x =-;14.(北京市海淀区) 已知实数x ,y 满足,求代数式的值.15.(2015春•江夏区期中)已知实数x ,y 满足y=+﹣65,求.【答案与解析】一、选择题 1.【答案】D.【解析】由题意得,x ﹣1≥0,解得x ≥1. 2.【答案】D.【解析】因为1a < 原式=1111a a a --=--=-. 3.【答案】A. 4.【答案】D.【解析】解:A 、当a <0时,=﹣a ,故选项错误;B 、表示算术平方根,故选项错误;C 、当a >0时,=a ,故选项错误;D 、正确.故选D .5.【答案】B.【解析】 根据最简二次根式的性质,A,D 选项都含有能开方的项,C 选项含有分母,所以选B. 6.【答案】D. 【解析】因为,2yx -是被开方数,所以y<0,x<0, 所以原式=x y x-y --.二、填空题7.【答案】x ≥﹣3且x ≠5.【解析】由题意得,x +3≥0,x ﹣5≠0,解得x ≥﹣3且x ≠5. 8 【答案】2;7x m -=± 9.【答案】(1) 45; (2) -3 10.【答案】 -1【解析】因为22x x -+-=0,所以2-x ≥0,x-2≥0,所以x=2;则原式=2(12)112-=--. 11.【答案】1 12.【答案】153【解析】134893121233363(1236)31533-+=-+=-+=. 三.解答题13.【解析】 (1)21x +≥0,即x 为任意实数; (2)2x -≥0,即2x ≤0,即x =0. (3)10,1x x ->∴>(4)0,10,0 1.x x x x ≥-≠∴≥≠且.14.【解析】 因为. ,所以x=5,y=-4.则=2008(54)-=115.【解析】解:∵实数x ,y 满足y=+﹣65,∴x-1≥0,且1-x ≥0, ∴x=1,y=﹣65, ∴==—4.二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,a ≥0,b >0,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号. 2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+- 【答案与解析】(1)+=2232(23)252+=+=31111(2)9332321117(3)326a a a a a a a a a+-=+-=+-= 【总结升华】一定要注意二次根式的加减要做到先化简,再合并. 举一反三:【变式】计算:011(1)()527232π--++-- 【答案】011(1)()527232π--++--125332333352332=++--=+--=-类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);【答案与解析】(1)×=;(2)×==;(3)===2;(4)==×2=2.【总结升华】直接利用计算即可.举一反三【变式】各式是否正确,不正确的请予以改正: (1);(2)×=4××=4×=4=8.【答案】(1)不正确. 改正:==×=2×3=6;(2)不正确. 改正:×=×====4.【:二次根式及其乘除法(下)例9(1),(2)】3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯ 【答案与解析】(1)214=(9)()3483-⨯-⨯原式=6136=1; (2)原式=171123282711⎛⎫⨯-⨯⨯⨯⨯ ⎪⎝⎭=34-.【总结升华】掌握乘除运算的法则,并能灵活运用.类型三、二次根式的混合运算4.(2016•聊城模拟)下列计算正确的是( )A .5﹣2=3B .2×3=6C .=3 D .3=3【思路点拨】根据二次根式的运算法则逐一判断即可. 【答案】D. 【解析】解:A 、﹣2=3,此选项错误;B 、2×3=12,此选项错误;C 、+2=3,此选项错误;D 、3÷=3,此选项正确; 故选D .【总结升华】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键. 【:: 388064巩固练习4-5】5、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________. 【答案】1;10. 【解析】225+26526,5(26)1a b ab ==-∴=-=,10a b +=【总结升华】数学运算包含着很多技巧性的东西,技巧运用得好计算就很简便而且准确. 举一反三:【变式】(2015春•汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .【答案与解析】解:∵x=1﹣,y=1+,∴x 2+y 2﹣xy ﹣2x ﹣2y=(x+y )2﹣2(x+y )+1﹣3xy ﹣1=(x+y ﹣1)2﹣3xy ﹣1 =1﹣3×(1﹣)(1+)﹣1 =1+3﹣1 =3.二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (2016•广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (2015•泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B.a b ab += C.22+a b a b =+ D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(2016•潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (2015春•新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)5232(2)()1212328-⎪⎭⎫⎝⎛+--14.(2014秋•市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(3a +)()3(6)a a a ---,其中152a =+.(2).已知251,251+=-=b a ,求722++b a 的值.【答案与解析】一、选择题 1.【答案】C. 2.【答案】B. 【解析】A 、不能化简,所以此选项错误;B 、3×=6,所以此选项正确;C 、(2)2=4×2=8,所以此选项错误;D 、==,所以此选项错误.3.【答案】A. 【解析】20,=a a a a a a a <∴-⋅=-=--原式.4.【答案】D.【解析】解:A 、2与4不能合并,所以A 选项错误;B 、原式=2,所以B 选项错误;C 、原式=|﹣3|=3,所以C 选项错误;D 、原式==3,所以D 选项正确. 故选D . 5.【答案】C.【解析】先化简再解方程。

浙教版八下数学知识整理

浙教版八下数学知识整理

第一章二次根式1.二次根式:一般地,式子)0(≥a a 叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(如不存在√−3)(2)a 是一个重要的非负数,即a ≥0.(如√4=2)2.重要公式:(1))0()(2≥=a a a ,)0()(2≥=-a a a(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;(3))0a ()a (a 2≥=. 3.二次根式的性质:)0b ,0a (b a ab ≥≥⋅=;)0b ,0a (b a b a >≥=4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式的除法法则:(1))0,0(>≥=b a ba b a; (2))0,0(>≥÷=÷b a b a b a ; (3)分母有理化公式:)0,0(>≥b a①√a √b =√a×√b√b×√b =√ab(√b)2=√ab b (如:√2√5=√2×√5√5×√5=√105) ②√a +√b=√a √b)(√a +√b)×(√a −√b)=√a −√b (√a)2−(√b)2=√a −√b a −b 1√a −√b =1×(√a +√b)(√a −√b)×(√a +√b)=√a +√b (√a)2−(√b)2=√a +√b a −b 6.最简二次根式:(1)最简二次根式:①根号里不含能开的尽的因数或因式,如4、9等;② 根号内不含分数、小数;③分母中不含有根号。

(结果必须是最简的二次根式)7. 利用“”外的因数化简“” ①a aa a a ==1)0(≥a ; ②)0,0(2≥≥=b a b a b a 8.二次根式比较大小的方法:(1)利用近似值比大小; √2≈1.414;√3≈1.732∴√2<√3(2)把二次根式的系数移入二次根号内,然后比大小; 2√3=√22×3=√12,3√2=√32×2=√18∴12<18∴√12<√18(3)分别平方,然后比大小.(√3+√5)2=3+2√15+5=8+2√15=8+√60(√3×√5)2=3×5=15=8+7=8+√49∴√3+√5>√3×√59.同类二次根式:几个二次根式化成最简二次根式后,如果根号里面的数字或字幕相同,这几个二次根式叫做同类二次根式.如√3与2√3。

浙教版八下数学知识点(完整版)

浙教版八下数学知识点(完整版)

浙教版八年级数学下册知识点汇总八年级(下册)第1章二次根式1.1二次根式1.2二次根式的性质1.3二次根式的运算第2章一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用2.4一元二次方程根与系数的关系第3章数据分析初步3.1平均数3.2中位数和众数3.3方差和标准差第4章平行四边形4.1多边形4.2平行四边形及其性质4.3中心对称4.4平行四边形的判定定理4.5三角形的中位线4.6反证法第5章特殊平行四边形5.1矩形5.2菱形5.3正方形第6章反比例函数6.1反比例函数6.2反比例函数的图像和性质第一章 二次根式1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。

1.2. 二次根式的性质()()0a 2≥=a a ()()⎩⎨⎧<-≥==00a 2a a a a a ()0,0a ab ≥≥⨯=b a b()0,0a >≥=b a ba b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。

1.3. 二次根式的运算()0,0ab a ≥≥=⨯b a b()0,0a >≥=b a b ba第二章一元二次方程2.1一元二次方程像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。

能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。

任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。

ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。

2.2一元二次方程的解法1、因式分解法:利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程,常见ax 2+bx=0(无常数项)、及类似3x(x -1)=x -1等也可以使用因式分解法。

浙教版八下数学知识整理

浙教版八下数学知识整理

浙教版八下数学知识整理在八年级下册的数学学习中,我们接触到了丰富多样且重要的知识。

接下来,让我们一起对这些知识进行系统的整理。

一、二次根式二次根式是数学中的一个重要概念。

形如√a(a≥0)的式子叫做二次根式。

二次根式有几个关键的性质。

比如,√a² =|a|,还有√ab =√a ×√b(a≥0,b≥0),以及√a /√b =√(a / b)(a≥0,b>0)。

在进行二次根式的运算时,要先将根式化为最简二次根式,然后再进行加减乘除等运算。

化简的关键是把被开方数分解因数,把含有开得尽方的因数或因式开出来。

二、一元二次方程一元二次方程是形如 ax²+ bx + c = 0(a≠0)的方程。

解一元二次方程的方法有直接开平方法、配方法、公式法和因式分解法。

直接开平方法适用于形如(x + m)²= n(n≥0)的方程。

配方法是通过在方程两边加上一次项系数一半的平方,将方程化为完全平方式来求解。

公式法中,方程的解为 x =b ± √(b² 4ac) /(2a),其中判别式△= b² 4ac 决定了方程根的情况,当△>0 时,方程有两个不相等的实数根;当△= 0 时,方程有两个相等的实数根;当△<0 时,方程没有实数根。

因式分解法是将方程化为两个因式相乘等于 0 的形式,从而求解。

三、频数及其分布频数是指某个对象出现的次数。

我们通过频数分布表和频数直方图来展示数据的分布情况。

绘制频数直方图时,首先要确定组距和组数,然后列出频数分布表,再根据表画出直方图。

四、命题与证明命题是可以判断真假的陈述句。

命题由题设和结论两部分组成。

如果题设成立,那么结论一定成立的命题叫做真命题;如果题设成立时,不能保证结论一定成立的命题叫做假命题。

证明一个命题是真命题,需要通过推理的方法,从已知条件出发,依据定义、基本事实、定理等,逐步推导出结论。

五、平行四边形平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质。

(完整版)最新浙教版初中数学八年级下册知识点总结

(完整版)最新浙教版初中数学八年级下册知识点总结

平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①;②平行四边形的对角线将四边形分成4个面积相等的三底高ah=⨯S=角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形第五章特殊的平行四边形1.几种特殊的平行四边形(1)矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形性质:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)性质:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:四条边都相等,四个角都是直角的四边形是正方形。

性质:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).2.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;3.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.i n g s i n t h e i r b e i n g a re go od fo rs o 所示.。

浙教版八年级数学下册知识点汇总

浙教版八年级数学下册知识点汇总

浙教版八年级数学下册知识点汇总1.二次根式二次根式是指像a²+4,b+3这样表示算术平方根的代数式。

其中,二次根号内字母的取值范围必须满足被开方数大于或等于零。

二次根式的性质包括:a² = a(a≥0)a² = a 或 -a(a<0)ab = a×b(a≥0,b≥0)a/b = √(a²/b²)(a≥0,b>0)最简二次根式是指在根号内不含字母,不含开得尽方的因数或因式的二次根式,例如7,5.2.一元二次方程一元二次方程是指方程x²+3x=4这样的方程,其两边都是整式,只含有一个未知数,并且未知数的最高次数是2次。

能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。

任何一个关于x的一元二次方程都可以化为ax²+bx+c=0的形式。

ax²+bx+c=0(a,b,c为已知数,a≠0)称为一元二次方程的一般形式,其中ax,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数。

一元二次方程的解法包括:因式分解法:把解一个一元二次方程转化为解两个一元一次方程。

开平方法:对于形如x²=a(a≥0)的方程,可得x₁=√a,x₂=-√a。

配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负数,然后用开方法求解。

一元二次方程的根的情况由代数式b²-4ac的值来决定,因此b²-4ac叫做一元二次方程的根的判别式,它的值与一元二次方程的根的关系是:b²-4ac>0,有两个不相等的实数根;b²-4ac=0,有两个相等的实数根;b²-4ac<0,没有实数根。

3.数据分析初步平均数是一组数据的总和除以数据的个数。

例如,对于n个数x₁、x₂、x₃……xₙ,它们的平均数为(x₁+x₂+x₃+…+xₙ)/n。

在数据分析中,还有中位数、众数等概念。

浙教版八年级数学下册知识点汇总

浙教版八年级数学下册知识点汇总

浙教版八年级数学下册知识点汇总一、知识点梳理1、代数式(1)代数式的概念:把运算或表示数的一些字母用数字填空,从而形成一个明确的式子,这就是代数式。

(2)代数式的书写格式:在一个代数式里,书写数字和字母时要注意以下几点:①数字写在字母的前面;②除号写成分数线;③乘号写成点乘或省略不写;④带分数要写成假分数;⑤有括号的要先算括号里面的。

(3)代数式的求值:求代数式的值一般要按以下步骤进行:①把已知数代入代数式;②化简;③求出所求代数式的值。

2、因式分解因式分解的概念:因式分解是指将一个多项式写成几个整式乘积的形式。

因式分解的方法:常用的方法有提公因式法和公式法。

3、分式分式的概念:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

其中A叫做分式的分子,B叫做分式的分母。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

分式的约分:把一个分式的分子和分母的公因式约去,叫做分式的约分。

最简分式:一个分式的分子和分母没有公因式时,叫最简分式。

4、实数平方根、算术平方根的概念及性质。

立方根的概念及性质。

二、知识点精讲1、代数式求值的方法:整体代入法、化简求值、一般求法。

2、因式分解的作用:应用因式分解解决一些实际问题,如计算某些数的平方等;用来证明一些定理和题目;应用因式分解进行大数计算。

3、分式的约分作用:化简分式,使分式的运算简便。

4、实数中的算术平方根与立方根的作用:进行开平方运算与开立方运算,解决实际问题中计算平方数与立方数的问题。

5、平方根与立方根的区别与:从定义上看,平方根和立方根的区别在于一个根数是另一个数的平方,立方根是另一个数的立方;从表示符号看,平方根用“±”表示,立方根用“±3√”表示;从运算上看,平方根与立方根的是都可以进行化简运算。

6、实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的反而小。

(完整版)浙教版八下数学各章节知识点及重难点整理(最新版),推荐文档

(完整版)浙教版八下数学各章节知识点及重难点整理(最新版),推荐文档

浙教版八下数学各章节知识点及重难点第一章二次根式(徐旺红老师整理)知识点一:二次根式的概念二次根式的定义:形如a(a≥0)的代数式叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0 时,没有意义。

知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。

1注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

2注:1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即;若a 是负数,则等于a 的相反数-a,即;2、中的a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下册)
1. 二次根式
1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。

1.2. 二次根式的性质
()()0a 2≥=a a
()()⎩⎨⎧<-≥==00a 2a a a a a
()0,0a ab ≥≥⨯=b a b
()0,0a >≥=b a b a b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。

1.3. 二次根式的运算
()0,0ab a ≥≥=⨯b a b
()0,0a >≥=b a b b a
2. 一元二次方程
2.1. 一元二次方程
像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。

能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。

任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。

ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。

2.2. 一元二次方程的解法 利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程。

形如x 2=a(a ≥0)的方程,根据平方根的定义,可得x 1=a ,x 2=-a ,这种解一元二次方程的方法叫做开平方法。

把一元二次方程的左边配成一个完全平方式,右边为一个非负数,然后用开方法求解,这种解一元二次方程的方法叫做配方法。

一元二次方程ax 2+bx+c=0(a ≠0)的根的情况由代数式b 2-4ac 的值来决定,因此b 2-4ac 叫做一元二次方程的根的判别式,它的值与一元二次方程的根的关系是:
()()()没有实数根;有两个相等的实数根;

有两个不相等的实数根0004b 0004b 0004b 222222≠=++⇔<-≠=++⇔=-≠=++⇔>-a c bx ax ac a c bx ax ac a c bx ax ac
2.3. 一元二次方程的应用
2.4. 一元二次方程根与系数的关系(选学)
一元两次方程的根与系数有如下关系:(韦达定理)
如果x 1,x 2是ax 2+bx+c=0(a,b,c 为已知数,a ≠0)的两个根,那
a c x x a
b x =⋅-=+2121;x 3. 数据分析初步
3.1. 平均数
有n 个数x 1、x 2、x 3 ...... x n ,我们把()n x x x x ++++.......n 1321叫做这n 个数的算术平均数,简称平均数,记做x (读作“x 拔”) 像n n n a a a a x a x a x +++⋅++⋅+⋅=
............x 212211这种形式的平均数叫做加权平均数,其中分母a 1、a 2......a n 表示各相同数据的个数,称为权。

权越大,对平均数的影响就越大,加权平均数的分母恰好为各权的和。

3.2. 中位数和众数
众数:一组数据中出现次数最多的那个数据叫做这组数据的众数。

中位数:将一组数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数据(当数据个数为奇数时)或最中间两个数的平均数(当数据个数为偶数时)叫做这组数据的中位数。

平均数、中位数和众数都是数据的代表,它们从不同侧面反映了数据的集中程度,但也存在各自的局限。

如平均数容易受极端值得影响;众数、中位数不能充分利用全部数据信息。

3.3. 方差和标准差
在评价数据的稳定性时,我们通常将各数据偏离平均数的波动程度作为指标。

各数据与平均数的差的平方的平均数()()()[]222......1s 212x x x x x x n n -++-+-=叫做这组数据的方差。

方差越大,说明数据的波动越大,越不稳定。

一组数据的方差的算术平方根()()()[]2
22......1s 21x x x x x x n n -++-+-=称为这组数据的标准差。

4.平行四边形
4.1.多边形
在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。

组成多边形的各条线段叫做多边形的边。

边数为n的多边形叫n边形(n为正整数,且n≥3)。

多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。

多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。

四边形的内角和等于360o。

n边形的内角和为(n-2)×180o(n≥3)。

任何多边形的外角和为360o。

4.2.平行四边形及其性质
两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“”表示,平行四边形ABCD可记做“ABCD”。

平行四边形的对角相等,平行四边形的对边相等。

夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。

两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。

平行四边形的对角线互相平分。

4.3.中心对称
如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。

对称中心平分连结两个对称点的线段。

在直角坐标系中,点A(x,y)与点B(-x,-y)关于原点成中心对称。

4.4.平行四边形的判定定理
一组对边平行且相等的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

4.5.三角形的中位线
连结三角形两边中点的线段叫做三角形的中位线。

三角形的中位线平行于第三边,并且等于第三边的一半。

4.6.反证法
在证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义、基本事实、定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确。

这种证明方法叫做反证法。

例如:用反证法求证四边形中至少有一个角是直角或钝角
在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

5.特殊平行四边形
5.1.矩形
矩形:有一个角是直角的平行四边形。

矩形的四个角都是直角,矩形的对角线相等。

有三个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

5.2.菱形
菱形:有一组邻边相等的平行四边形叫做菱形。

菱形的四条边都相等。

菱形的对角线互相垂直,并且每条对角线平方一组对角。

四条边相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

5.3.正方形
正方形:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

有一组邻边相等的矩形是正方形。

有一个角是直角的菱形是正方形。

正方形的四个角都是直角,四条边相等。

正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角。

6.反比例函数
6.1.反比例函数
函数
()0
,0
k
y≠

=x
k
x
k
为常数,
叫做反比例函数,这里的x是自变量,y是关于x的函数,k叫做比例系
数。

6.2.反比例函数的图象和性质
反比例函数
()0
k
y≠
=
x
k
的图象是由两个分支组成的曲线。

当k>0时,图象在一、三象限;当k<0时,图
象在二、四象限。

反比例函数
()0
k
y≠
=
x
k
的图象关于直角坐标系的原点成中心对称。

当k>0时,在图象所在的第一、三象限内,函数值y随自变量x的增大而减小;当k<0时,在图象所在的第二、四象限内,函数值y随自变量x的增大而增大。

6.3.反比例函数的应用
建立数学模型的过程,具体内容可概括为:
由实验获取数据----用描点法画出图象----根据图象和数据判断或估计函数的类别----用待定系数法求出函数关系式----用实验数据验证函数关系式----应用函数关系式解决问题。

相关文档
最新文档