(新课标1专)高考数学分项解析专题10立体几何文
专题10:立体几何中的体积问题(解析版)
专题10:立体几何中的体积问题(解析版)⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上 球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
1.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)若1CC BC =,求三棱锥1B BCD -的体积.【答案】(1)证明见解析;(2)4【分析】(1)利用勾股定理,可得AC BC ⊥,结合1AC CC ⊥,根据线面垂直的判定定理以及性质定理,可得结果.(2)计算∆BCD S ,1BB ,然后根据三棱锥的体积公式,可得结果.【详解】(1)∵三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∵AC ⊂平面ABC ,∴1CC AC ⊥,∵在ABC ∆中,3AC =,4BC =,5AB =,∴222AC BC AB +=,∴90ACB ∠=︒,∴AC BC ⊥,∵1CC ⊂平面11CC B B ,CB ⊂平面11CC B B ,1CC CB C =,∴AC ⊥平面11CC B B ,∵1BC ⊂平面11CC B B ,∴1AC BC ⊥.(2)∵D 是AB 中点, ∴111343222BCD ABC S S ∆∆==⨯⨯⨯=, ∵1BB ⊥平面ABC ,114BB AA ==,∴111134433B BCD BCD V S BB -∆=⋅=⨯⨯=. 【点睛】本题考查线面垂直的判定定理以及性质定理,还考查了锥体的体积公式,难点在于根据线段长度关系利用勾股定理得出垂直,重点在于对定理的应用,属基础题.2.如图所示:在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且2AC BC ==,,O M 分别为,AB VA 的中点.(1)求证:平面MOC ⊥平面VAB ;(2)求三棱锥V ABC -的体积.【答案】(1)详见解答;(23. 【分析】(1)由已知可得OC AB ⊥,再由面面垂直定理可得OC ⊥平面VAB ,即可证明结论; (2)OC ⊥平面VAB ,用等体积法求三棱锥V ABC -的体积.【详解】(1),AC BC O =为AB 中点,OC AB ∴⊥,平面VAB ⊥平面ABC ,平面VAB 平面ABC AB =,OC ⊂平面ABC ,OC ∴⊥平面,VAB OC ∴⊂平面MOC ,平面MOC ⊥平面VAB ;(2)AC BC ⊥且2AC BC ==,O 分别为AB 的中点,11,2,2332VAB OC AB S ∆∴===⨯⨯=, OC ⊥平面VAB ,133V ABC C VAB VAB V V OC S --∆==⨯⨯=, 3V ABC V -∴=. 【点睛】本题考查面面垂直证明,注意空间垂直间的相互转化,考查椎体体积,意在考查直观想象、逻辑推理能力,属于基础题.3.如图所示,四棱锥的底面ABCD 是一个矩形,AC 与BD 交于点M ,VM 是四棱锥的高.若4VM cm =,4cm AB =,5VC cm =,求四棱锥的体积.【答案】35(cm )3. 【分析】在Rt VMC ∆中求出3(cm),MC =在Rt ABC ∆中求出25(cm)BC =,再根据棱锥的体积公式可得结果.【详解】 VM 是棱锥的高,VM MC ∴⊥.在Rt VMC ∆中,2222543(cm),MC VC VM =-=-=.26cm AC MC ∴==,在Rt ABC ∆中,22226425(cm)BC AC AB =-=-=.242585(cm )S AB BC ∴=⨯=⨯=底,3 11325854(cm )333V S VM ∴=⋅=⨯⨯=四棱锥底. 【点睛】本题考查了求三棱锥的体积,属于基础题.4.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线PB 与平面ABCD 所成的角为45,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(243 【分析】 (1)通过AC ⊥BD 与PD ⊥AC 可得AC ⊥平面PBD ;(2)由题先得出∠PBD 是直线PB 与平面ABCD 所成的角,即∠PBD =45°,则可先求出菱形ABCD 的面积,进而可得四棱锥P - ABCD 的体积.【详解】解:(1)因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC ,又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角,于是∠PBD =45°,因此BD =PD =2.又AB = AD =2,所以菱形ABCD 的面积为sin 6023S AB AD ︒=⋅⋅=,故四棱锥P - ABCD 的体积1433V S PD =⋅=. 【点睛】本题主要考查空间线、面关系等基础知识,同时考查空间想象能力、推理论证能力以及运算求解能力,是基础题.5.如图,在边长为2的菱形ABCD 中,60ADC ∠=︒,现将ADC 沿AC 边折到APC △的位置.(1)求证:PB AC ⊥;(2)求三棱锥P ABC -体积的最大值.【答案】(1)见解析;(2)1【分析】(1)取AC 的中点为O ,连接PO OB 、,由线面垂直的判定定理即可证出.(2)由体积相等转化为P ABC ΔPOB 1V AC S 3-=⋅即可求出. 【详解】(1)如图所示,取AC 的中点为O ,连接PO OB 、,易得AC PO AC OB ⊥⊥,,PO OB O = AC POB ∴⊥平面,又PB ⊆ 面POB AC PB ∴⊥(2)由(1)知AC POB 260? AC 2PO OB ABCD ADC ⊥∠=︒===平面,且在边长为的菱形中,,所以,3 ,P ABC A POB C POB V V V ---=+体积转化为 ΔPOB 1AC S 3=⋅ =11233sin sin 32POB POB ⨯⨯⨯⨯∠=∠ ,当POB 90∠=︒时,P ABC V -的最大值为1. 【点睛】本题考查了线面垂直的判定定理和等体积转化思想,属于基础题.6.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA PD ⊥,1PA PD ==,E 为AD 的中点.(1)求证:PE ⊥平面ABCD ;(2)求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2)23【分析】(1)根据等腰三角形证明PE AD ⊥,得到答案. (2)计算得到2AD =,22PE =,再利用体积公式计算得到答案. 【详解】(1)1PA PD ==,E 为AD 的中点,故PE AD ⊥,平面PAD ⊥平面ABCD , 平面PAD 平面ABCD AD =,故PE ⊥平面ABCD .(2)PA PD ⊥,1PA PD ==,故2AD =,22PE =. 故122223P ABCD V -=⨯⨯⨯=. 【点睛】 本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力. 7.如图所示,在长方体ABCD A B C D ''''-中,求棱锥D A CD ''-的体积与长方体的体积之比.【答案】1:6【解析】【分析】棱锥D A CD ''-可以看成棱锥C A DD ''-,然后结合棱锥与棱柱的体积公式求解即可.【详解】解:已知的长方体可以看成直四棱柱ADD A BCC B '''-,设它的底面ADD A ''面积为S ,高为h ,则长方体的体积为ADD A BCC B V Sh '''-=.因为棱锥D A CD ''-可以看成棱锥C A DD ''-,且A DD ''的面积为12S ,棱锥C A DD ''-的高是h ,所以111326D A CD C A DD V V Sh Sh ''''--==⨯=. 因此所求体积之比为1:6.【点睛】本题考查了棱锥及棱柱的体积公式,重点考查了转换顶点求棱锥的体积,属基础题 8.如图,过圆柱的两条母线1AA 和1BB 的截面11A ABB 的面积为S ,母线1AA 的长为l ,11190AO B ︒∠=,求此圆柱的体积.【答案】22S l π. 【分析】 根据已知易得AOB 是等腰直角三角形,根据截面11A ABB 的面积为S 求出AB 长,进而求得底面圆面积再求体积即可。
高中数学立体几何(解析版)
立体几何立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.【考查题型】选择,填空,解答题【限时检测】(建议用时:90分钟)一、单选题AA是1.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA为底面矩形的一边,则这样的阳正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1马的个数是()A.4 B.8 C.12 D.16【答案】D【分析】根据新定义和正六边形的性质可得答案.【详解】根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选D.【点睛】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.2.(2020·上海虹口区·高三一模)在空间,已知直线l及不在l上两个不重合的点A、B,过直线l做平面α,使得点A、B到平面α的距离相等,则这样的平面α的个数不可能是()A.1个B.2个C.3个D.无数个【答案】C【分析】分情况讨论可得出.【详解】(1)如图,当直线AB与l异面时,则只有一种情况;(2)当直线AB与l平行时,则有无数种情况,平面α可以绕着l转动;(3)如图,当l过线段AB的中垂面时,有两种情况.故选:C.3.(2020·上海高三一模)如图,在正四棱柱1111ABCD A B C D -中,底面边长2AB =,高14A A =,E 为棱1A A 的中点.设BAD ∠=α、BED θ∠=、1B ED γ∠=,则α、β、γ之间的关系正确的是( ).A .αγθ=>B .γαθ>>C .θγα>>D .αθγ>>【答案】B 【分析】求出α、β、γ的大小即可求解. 【详解】由题意可得2BAD πα∠==,连接BD ,则BDE 为等边三角形,所以3BED πθ∠==, 连接1B D ,则222122426B D =++=22222BE DE ==+=取1B D 的中点O ,连接EO ,则16BO 862EO =-=所以16tan 32B EO ∠==, 所以13B EO π∠=,即123B ED πγ∠==,所以γαθ>>.故选:B4.已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是( )A .1AD AB ⋅B .11AD BC ⋅ C .1BD BC ⋅ D .1BD AC ⋅【答案】C【分析】利用正方体几何性质计算出数量积为零的选项,根据长方体的性质证明数量积一定不为零的选项.【详解】当长方体1111ABCD A B C D -为正方体时,根据正方体的性质可知: 1111,,AB AD AD B C BD AC ⊥⊥⊥,所以10AB AD ⋅=、110AD B C ⋅=、10BD AC ⋅=.根据长方体的性质可知:1BC CD ⊥,所以1BD 与BC 不垂直,即1BD BC ⋅一定不为0.故选:C5.(2020·上海高三一模)已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b .对于下列两个命题:①过点P 有且只有一条直线l 与a 、b 都相交;②过点P 有且只有一条直线l 与a 、b 都成45︒角.以下判断正确的是( )A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题【答案】B 【分析】作出过P 与两直线相交的直线l 判断①;通过平移直线a ,b ,结合异面直线所成角的概念判断②.【详解】解:直线AB 与A 1D 1 是两条互相垂直的异面直线,点P 不在这两异面直线中的任何一条上,如图所示:取BB 1的中点Q ,则PQ ∥A 1D 1,且 PQ =A 1D 1,设A 1Q 与AB 交于E ,则点A 1、D 1、Q 、E 、P 共面, 直线EP 必与A 1D 1 相交于某点F ,则过P 点有且只有一条直线EF 与a 、b 都相交,故①为真命题; 分别平移a ,b ,使a 与b 均经过P ,则有两条互相垂直的直线与a ,b 都成45°角,故②为假命题. ∴①为真命题,②为假命题.故选:B .【点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,是中档题.二、填空题6.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π;【分析】根据圆的周长公式易得圆锥底面周长,也就是圆锥侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图扇形的圆心角的大小.【详解】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.【点睛】思路点睛:该题考查的是有关圆锥侧面展开图的问题,解题思路如下:(1)首先根据底面半径求得底面圆的周长;(2)根据圆锥侧面展开图扇形的弧长就是底面圆的周长,结合母线长,利用弧长公式求得圆心角的大小. 7.(2020·上海闵行区·高三一模)如图,已知正四棱柱1111ABCD A B C D -的底面边长为2,高为3,则异面直线1AA 与1BD 所成角的大小是_______.【答案】22;【分析】根据11//AA DD ,得到1DD B ∠异面直线1AA 与1BD 所成的角,然后在1Rt DD B △,利用正切函数求解.【详解】因为11//AA DD ,所以1DD B ∠异面直线1AA 与1BD 所成的角,在正四棱柱1111ABCD A B C D -的底面边长为2,高为3, 所以1122tan 3BD DD B DD ∠==, 因为1(0,)2DD B π∠∈, 所以122arctan3DD B ∠=, 故答案为:22arctan 38.(2019·上海市建平中学高三月考)某几何体由一个半圆锥和一个三棱锥组合而成,其三视图如图所示(单位:厘米),则该几何体的体积(单位:立方厘米)是________.【答案】12π+2,高为3;半圆锥的底面是半径为1的半圆,高为3;据此计算出该几何体的体积.【详解】由三视图可知,三棱锥的体积:1223132V ⎛=⨯⨯= ⎝⎭;半圆锥体积:()11113232V ππ=⨯⨯⨯⨯⨯=,所以总体积为:12π+. 故答案为12π+.【点睛】本题考查空间几何体的体积计算,难度较易.计算组合体的体积时,可将几何体拆分为几个容易求解的常见几何体,然后根据体积公式完成求解.9.(2020·上海高三其他模拟)如图直三棱柱ABB 1-DCC 1中, BB 1⊥AB ,AB=4,BC=2,CC 1=1,DC 上有一动点P ,则△APC 1周长的最小值是 .【答案】521+试题分析:要求周长的最小值,因边为定值,只要求另两边之和的最小值,因两点直线线段最短,所以的最小值为因此△APC 1周长的最小值是521考点:棱柱的相关知识.10.(2020·上海高三一模)已知母线长为6cm 的圆锥的侧面积是底面积的3倍,则该圆锥的底面半径为________cm .【答案】2【分析】设底面半径为r ,由两个面积的关系可得底面半径的值.【详解】解:设底面半径为r ,则由题意,可得213262r r ππ=⨯⨯,解得2r , 故答案为:2.【点睛】本题考查圆锥的侧面积及圆的面积公式,属于基础题.11.(2020·上海高三其他模拟)已知圆锥的母线长为l ,过圆锥顶点的最大截面三角形的面积为212l ,则此圆锥底面半径r 与母线长l 的比r l的取值范围是____________. 【答案】22【分析】先判断两条母线的夹角=90θ时最大截面三角形的面积为212l 22l r ≤和r l <,最后求出r l 的取值范围即可. 【详解】解:过圆锥顶点的截面三角形的面积:1sin 2S l l θ=⋅⋅(θ为两母线的夹角), 因为过圆锥顶点的最大截面三角形的面积为212l ,即两条母线的夹角=90θ时的截面面积,此时底面弦长为2l ,所以22l r ≤,又r l <,所以212r l≤<, 故答案为:2[,1)2【点睛】本题考查空间几何体,是基础题.12.(2020·上海青浦区·高三二模)用一平面去截球所得截面的面积为23cm π,已知球心到该截面的距离为1cm ,则该球的表面积是___________2cm .【答案】16π【分析】由已知求出小圆的半径,然后利用勾股定理求出球的半径,即可求出球的表面积【详解】解:因为用一平面去截球所得截面的面积为23cm π,所以小圆的半径为3cm ,因为球心到该截面的距离为1cm ,所以球的半径为221(3)2+=cm ,所以球的表面积为24216S ππ=⨯=2cm ,故答案为:16π【点睛】此题考查球的截面的半径、球心到截面的距离与球的半径间的关系,属于基础题13.(2020·上海普陀区·高三月考)已知一个半圆柱的高为4,其俯视图如图所示,其左视图的面积为8,则该半圆柱的表面积为______.【答案】1612+π【分析】由圆柱的主视图和左视图知该圆柱的底面直径为4,高为3,由此能求出该几何体的表面积,得到答案.【详解】由题意,其左视图为矩形,其左视图的面积为8,半圆柱的高h 为4,可得半圆的半径r 为2,由于半圆柱的表面积为两个底面半圆面积加侧面展开图形的面积, 即2211222224224161222S r rh rh πππππ=⨯⨯++=⨯⨯⨯+⨯⨯+⨯⨯=+.故答案为:1612+π.【点睛】本题主要考查了空间几何体的三视图的应用,以及圆柱的表面积的计算问题,同时考查了圆柱的结构特征的应用,属于基础题.三、解答题14.(2020·上海虹口区·高三一模)如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小;(2)求三棱锥P BMC -的体积.【答案】(1)5(2)3. 【分析】(1)以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法可求得异面直线BM 和PC 所成的角的大小;(2)计算出PMC △的面积,并推导出AB ⊥平面PMC ,利用锥体的体积公式可求得三棱锥P BMC -的体积.【详解】(1)由于AB 、AC 、AP 两两垂直,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,如下图所示:则()3,0,0B 、()0,0,0A 、()0,3,0C 、()0,0,3P 、()0,0,1M ,()3,0,1BM =-,()0,3,3PC =-,5cos ,101032BM PC BM PC BM PC⋅<>===-⨯⋅,因此,异面直线BM 和PC 所成的角的大小为5arccos 10; (2)AB AC ⊥,AB AP ⊥,AC AP A =,AB ∴⊥平面APC ,AC AP ⊥,1AM =,2PM AP AM ∴=-=,132PMC S PM AC ∴=⋅=△, 1133333B PMC PMC V S AB -=⋅=⨯⨯=△.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.15.(2020·上海青浦区·高三一模)如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面P AC ;(2)求异面直线1BD 与AP 所成角的大小. 【答案】(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点. 连结PO ,又因为P 是1DD 的中点,所以1//PO BD . 又因为PO ⊂平面P AC ,1BD ⊄平面P AC 所以直线1//BD 平面P AC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==,2122AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30. 【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m nα=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.16.(2020·上海长宁区·高三一模)如图,已知圆锥的顶点为P ,底面圆心为O ,高为23,底面半径为2.(1)求该圆锥的侧面积;(2)设OA 、OB 为该圆锥的底面半径,且90AOB ∠=︒,M 为线段AB 的中点,求直线PM 与直线OB 所成的角的正切值.【答案】(1)8π;(213【分析】(1)利用圆锥侧面积公式即可;(2)通过中点作辅助线即可. 【详解】解:(1)OP ⊥底面OAB 由题意高3h =2r ,所以母线4l圆锥的侧面积S =12lr 12242π=⨯⨯⨯8π= (2)取OA 的中点为N ,因为M 为AB 的中点所以//MN OB ,PMN ∠就是直线PM 与直线OB 所成的角. 因为OB OA ⊥,OB OP ⊥,所以OB ⊥平面POA ,MN ⊥平面POA ,MN PN ⊥ 在Rt △PNM 中,22()132rPN h =+=,112MN OB ==.所以PMN ∠的正切值为13.即直线PM 与直线OB 所成的角正切值为13.17.(2020·上海徐汇区·高三一模)如图:在直三棱柱111ABC A B C -中,2AC BC ==,14CC =,90ACB ∠=,E 、F 分别为棱1AA 、AB 的中点.(1)求异面直线1A C 与EF 所成的角的大小(结果用反三角函数值表示); (2)求五棱锥11C EFBB A -的体积11C EFBB A V -. 【答案】(1)5arctan (2)143.【分析】(1)连接1A B ,利用中位线的性质可得出1//A B EF ,由此可得出1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角,利用解三角形的知识求出1BA C ∠的正切值,即可得解;(2)计算出五边形1EFBB A 的面积,并推导出CF ⊥平面11AA B B ,再利用锥体的体积公式可计算出五棱锥11C EFBB A -的体积11C EFBB A V -. 【详解】 (1)连接1A B ,E 、F 分别为1AA 、AB 的中点,所以,1//A B EF ,于是1BA C ∠(或其补角)就是异面直线1A C 与EF 所成的角, 在1A BC 中,2BC =,221125AC AA AC =+=,221126A B AA AB =+=,22211A C BC A B ∴+=,所以1BC A C ⊥,所以,1125tan 525BC BAC AC ∠===. 所以,异面直线1A C 与EF 所成角的大小为5arctan5;(2)由于111111822722AEFEFBB A ABB A S S S AB AA AE AF =-=⋅-⋅==五边形矩形 连接CF ,2AC BC ==,F 为AB 的中点,90ACB ∠=,CF AB ∴⊥,且122CF AB == 1AA ⊥平面ABC ,CF ⊂平面ABC ,1CF AA ∴⊥,1AB AA A ⋂=,CF ∴⊥平面11AA B B ,所以11111114722333C EFBB A EFBB A V S CF -=⋅=⨯⨯=五边形. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.18.(2020·上海大学附属中学高三三模)如图,正四棱锥P ABCD -中.(1)求证:BD ⊥平面PAC ; (2)若2AB =,423P ABCD V -=,求二面角A PB C --的余弦值. 【答案】(1)证明见解析;(2)1arccos 3⎛⎫- ⎪⎝⎭【分析】(1)先证明PO BD ⊥,结合,BD AC ⊥利用线面垂直的判定定理可得结论;(2)由423P ABCD V -=求出棱锥的高,可求得侧棱长,判定侧面的形状后可得二面角的平面角,利用余弦定理可得答案. 【详解】(1)因为P ABCD -是正棱锥,P ∴在面ABCD 内射影是AC 与BD 的交点O ,即PO ⊥面ABCD ,PO BD ∴⊥,又,BD AC PO ⊥与AC 在面PAC 内相交,BD ∴⊥面PAC ;(2)2142233P ABCD V PO -=⨯⨯=, 2PO ∴=,222PB =+=,则PAB △与PBC 为边长是2的正三角形,取PB 的中点E ,连,AE CE , 则AE PB ⊥,CE PB ⊥,AEC ∠是二面角的平面角,3381cos 3233AEC +-∠==-⨯⨯,1cos 3AEC arc ⎛⎫∠=- ⎪⎝⎭【点睛】本题主要考查线面垂直的证明以及二面角的求解,考查了正四棱锥的性质,属于中档题.19.(2019·上海市建平中学高三月考)如图:四面体ABCD 的底面ABC 是直角三角形,AC BC ⊥,3AC =,4BC =,DA ⊥平面ABC ,5DA =,E 是BD 上的动点(不包括端点).(1)求证:AE 与BC 不垂直;(2)当AE DC ⊥时,求DEEB的值. 【答案】(1)证明见解析;(2)259.【分析】(1)利用反证法,先假设AE 与BC 垂直,然后根据条件推出与题设矛盾的结论,即可证明出AE与BC 不垂直;(2)先作辅助线//EF BC ,利用AE DC ⊥以及BC ⊥平面DAC 得到DC ⊥平面AEF ,由此得到AF DC ⊥,从而确定出F 点位置,再由DE DFEB FC=得到结果. 【详解】(1)假设AE BC ⊥,因为DA ⊥平面ABC ,所以DA BC ⊥,且DA AE A =,所以BC ⊥平面DAE ,又因为AB平面DAE ,所以BC AB ⊥,又因为由条件可知BC AC ⊥,所以BC AB ⊥不成立, 故假设不成立,所以AE 与BC 不垂直;(2)过E 作//EF BC ,交DC 于F ,连接AF ,因为AC BC ⊥,DA BC ⊥且DA AC A =,所以BC ⊥平面DAC ,因为//EF BC ,所以EF ⊥平面DAC ,所以EF DC ⊥, 又因为AE DC ⊥,EF DC ⊥,EF AE E =,所以DC ⊥平面AEF ,所以DC AF ⊥,又cos 25934AD ADC DC ∠===+,所以cos cos 34DF ADF ADC AD ∠=∠==, 所以34DF =,所以34FC =,所以259DF FC =,所以由相似可知259DE DF EB FC ==. 【点睛】本题考查空间中的垂直关系的判断与证明,难度一般.空间中的不平行、不垂直关系的证明,如果正面证明比较麻烦,可采用反证法去证明.20.(2020·上海市七宝中学高三其他模拟)如图,四边形11ABB A 是圆柱1OO 的轴载面,4AB =,12OO =,以圆柱上底面为底面作高为2的圆锥1PO ,C 、1C 分别在AB 、11A B 上,2AOC π∠=,1113AO C π∠=.(1)求这个几何体的表面积和体积; (2)求二面角111O AC C --的余弦值. 【答案】(1)表面积为(1242π+,体积为323π;(23823-. 【分析】(1)计算出圆锥的母线长,利用圆锥的侧面积公式和圆柱的侧面积、底面积公式可计算出几何体的表面积,结合柱体和锥体的体积公式可求得几何体的体积;(2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,利用空间向量法可求得二面角111O AC C --的余弦值. 【详解】(1)由题意可知,圆柱的底面半径为22ABr ==, 因为1PO 为圆锥的高,且12PO =,所以,圆锥的母线长为221122PA PO r =+=,又12OO =,因此,该几何体的表面积为(22+2222221242S ππππ=⨯⨯⨯+⨯=+.该几何体的体积为22132222233V πππ=⨯⨯+⨯⨯⨯=; (2)以点O 为坐标原点,OA 、OC 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则点()10,0,2O ,()12,0,2A ,()13,2C ,()0,2,0C ,设平面11A CC 的一个法向量为(),,m x y z =,()113,0AC =-,()12,2,2AC =--, 由11100m AC m AC ⎧⋅=⎪⎨⋅=⎪⎩,得302220x x y z ⎧-=⎪⎨-+-=⎪⎩,令3x =1y =,13z =所以,平面11A CC 的一个法向量为(3,1,13m =,易知平面111O AC 的一个法向量为()0,0,1n =,()()22233cos ,82331131m n m n m n⋅<>===⋅-++-⨯,由图象可知,二面角111O AC C --31823--【点睛】本题考查组合体的表面积与体积的计算,同时也考查了利用空间向量法计算二面角的余弦值,考查计算能力,属于中等题.21.(2020·上海高三其他模拟)如图,已知⊙O 的直径AB=3,点C 为⊙O 上异于A ,B 的一点,VC ⊥平面ABC ,且VC=2,点M 为线段VB 的中点.(1)求证:BC ⊥平面VAC ;(2)若直线AM 与平面V AC 所成角为4π.求三棱锥B-ACM 的体积. 【答案】(1))祥见解析;(2)试题分析:(1)由线面垂直得VC ⊥BC ,由直径性质得AC ⊥BC ,由此能证明BC ⊥平面V AC .(2)首先由(1)作出直线AM 与平面V AC 所成的角:取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面VAC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;这样就可求出AC 的长,且而求得体积.试题解析:(1)证明:因为VC ⊥平面ABC ,BC ABC ⊂平面,所以VC ⊥BC ,又因为点C 为圆O 上一点,且AB 为直径,所以AC ⊥BC ,又因为VC ,AC ⊂平面V AC ,VC∩AC=C ,所以BC ⊥平面V AC.(2)如图,取VC 的中点N ,连接MN ,AN ,则MN ∥BC ,由(I )得BC ⊥平面V AC ,所以MN ⊥平面V AC ,则∠MAN 为直线AM 与平面V AC 所成的角.即∠MAN=4π,所以MN=AN ;令AC=a,则29-a ,MN=292a -;因为VC=2,M 为VC 中点,所以21a + 所以,292a -=21a +,解得a=1 因为MN ∥BC,所以考点:1.直线与平面垂直的判定;2. 棱柱、棱锥、棱台的体积;3. 直线与平面所成的角.22.(2020·上海高三其他模拟)已知正方体1111ABCD A B C D -,12AA =,E 为棱1CC 的中点.(1)求异面直线AE 与1DD 所成角的大小(结果用反三角表示);(2)求C 点到平面ABE 的距离,并求出三锥C ADE -的体积.【答案】(1)1arccos 3;(2)C 点到平面ABE 25,三锥C ADE -的体积为23. 【分析】(1)由已知得AEC ∠(或补角)是异面直线AE 与1DD 所成角,求解AEC 可得答案;(2)利用等体积E ABC C ABE V V --=,可求得设C 点到平面ABE 的距离,利用C ADE A CDE V V --=,可求得三锥C ADE -的体积.【详解】解:(1)连接AC ,因为11//CC DD ,所以AEC ∠(或补角)是异面直线AE 与1DD 所成角, 在AEC 中,()22221cos 3221EC AEC AE AC EC ∠====++, 所以异面直线AE 与1DD 所成角是1arccos 3;(2)设C 点到平面ABE 的距离为h ,因为E ABC C ABE V V --=,即1133ABC ABE S EC S h ⋅=⋅△△, 又正方体1111ABCD A B C D -中,AB ⊥面11BB C C ,所以ABE △是Rt ABE △,又2222215BE BC EC =+=+=, 所以1111221253232h ⨯⨯⨯⨯=⨯⨯⨯⋅,解得255h =, 所以C ADE A CDE V V --=111212332DCE S AD ⎛⎫=⋅=⨯⨯⨯⨯ ⎪⎝⎭△23=.【点睛】本题考查空间中异面直线所成的角,运用等体积法求点到面的距离以及三棱锥的体积,属于中档题.。
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
高考数学真题题型分类解析专题专题09 立体几何初步
面上,则该球的表面积为( )
. . . . A 100π B 128π C 144π D 192π
【答案】A
【分析】根据题意可求出正三棱台上下底面所在圆面的半径 r1, r2 ,再根据球心距,圆面半径,以及球的半
径之间的关系,即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径
设正方体棱长为 ,则 , , , 1
C1O =
2 2
BC1 = 2
sin ∠C1BO
=
C1O BC1
=
1 2
6 / 36
所以,直线 BC1与平面 BB1D1D 所成的角为30 ,故 C 错误;
因为C1C ⊥ 平面 ABCD,所以∠C1BC 为直线 BC1 与平面 ABCD所成的角,易得∠C1BC = 45 ,故 D 正确. 故选:ABD .( 5 2023 新高考Ⅰ卷·12)下列物体中,能够被整体放入棱长为 1(单位:m)的正方体容器(容器壁厚度 忽略不计)内的有( )
棱台上底面积 ,下底面积 , S =140.0km2 =140×106m2
S′ = 180.0km2 = 180×106m2
∴ ( ) ( ) V = 1 h S + S′ + SS′ = 1 × 9 × 140×106 +180 ×106 + 140×180×1012
3
3
( ) . = 3× 320 + 60 7 ×106 ≈ (96 +18× 2.65)×107 = 1.437 ×109 ≈ 1.4×109 (m3)
A.直径为0.99m 的球体 B.所有棱长均为1.4m的四面体 C.底面直径为0.01m,高为1.8m 的圆柱体 D.底面直径为1.2m ,高为 0.01m 的圆柱体 【答案】ABD 【分析】根据题意结合正方体的性质逐项分析判断. 【详解】对于选项 A:因为0.99m <1m ,即球体的直径小于正方体的棱长, 所以能够被整体放入正方体内,故 A 正确; 对于选项 B:因为正方体的面对角线长为 2m ,且 , 2 >1.4 所以能够被整体放入正方体内,故 B 正确; 对于选项 C:因为正方体的体对角线长为 3m ,且 , 3 <1.8 所以不能够被整体放入正方体内,故 C 不正确; 对于选项 D:因为1.2m >1m ,可知底面正方形不能包含圆柱的底面圆, 如图,过 AC1的中点O 作OE ⊥ ,设 AC1 OE I , AC = E
专题立体几何(2012-2021)高考数学真题
专题11 立体几何 【2021年】 1.(2021年全国高考乙卷数学(文)试题)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π62.(2021年全国高考甲卷数学(理)试题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-约为(3 1.732≈)( )A .346B .373C .446D .4733.(2021年全国高考甲卷数学(理)试题)已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .212B .312C .24D .344.(2021年全国新高考Ⅰ卷数学试题)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .22C .4D .42二、填空题5.(2021年全国高考甲卷数学(文)试题)已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.三、解答题6.(2021年全国高考乙卷数学(文)试题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.8.(2021年全国高考甲卷数学(文)试题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.10.(2021年全国新高考Ⅰ卷数学试题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514-B .512-C .514+ D .512+ 2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知,,A B C 为球O 的球面上的三个点,Ⅰ1O 为ABC 的外接圆,若Ⅰ1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知ⅠABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A .3B .32C .1D .324.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,ⅠABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,ⅠCEF =90°,则球O 的体积为 A .86π B .46π C .26π D .6π5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设α,β为两个平面,则αⅠβ的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π8.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A .8B .62C .82D .839.(2018年全国普通高等学校招生统一考试理数(全国卷II ))在长方体1111ABCD A B C D -中,1AB BC ==,13AA =1AD 与1DB 所成角的余弦值为A .15B .56C 5D .2210.(2018年全国卷Ⅰ理数高考试题)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为3D ABC -体积的最大值为A .123B .183C .243D .311.(2017年全国普通高等学校招生统一考试)如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( ) A . B . C . D . 12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π413.(2016年全国普通高等学校招生统一考试文科数学(新课标1))平面α过正方体ABCD—A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面,11ABB A n α⋂=平面,则m ,n 所成角的正弦值为 A .32 B .22 C .33 D .1314.(2016年全国普通高等学校招生统一考试文科数学(全国2卷))体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A .12πB .323πC .8πD .4π15.(2016年全国普通高等学校招生统一考试)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则该球体积V 的最大值是A .4πB .92πC .6πD .323π 16.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析))(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛17.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .5003πcm 3B .8663πcm 3C .13723πcm 3D .10003πcm 3 18.(2013年全国普通高等学校招生统一考试))已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A .26 B 3 C .23 D .22二、填空题19.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))如图,在三棱锥P –ABC 的平面展开图中,AC =1,3AB AD ==,AB ⅠAC ,AB ⅠAD ,ⅠCAE =30°,则cosⅠFCB =______________.20.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m Ⅰ平面α,则m Ⅰl .则下述命题中所有真命题的序号是__________.Ⅰ14p p ∧Ⅰ12p p ∧Ⅰ23p p ⌝∨Ⅰ34p p ⌝∨⌝21.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知ⅠACB=90°,P 为平面ABC 外一点,PC =2,点P 到ⅠACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为___________.22.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .23.(2018年全国普通高等学校招生统一考试文数(全国卷II))已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30,若SAB的面积为8,则该圆锥的体积为__________.24.(2018年全国普通高等学校招生统一考试)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为______.25.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,ⅠDBC,ⅠECA,ⅠF AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起ⅠDBC,ⅠECA,ⅠF AB,使得D,E,F重合,得到三棱锥.当ⅠABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.26.(2017年全国普通高等学校招生统一考试)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为__________.27.(2016年全国普通高等学校招生统一考试)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:Ⅰ当直线AB与a成60°角时,AB与b成30°角;Ⅰ当直线AB与a成60°角时,AB与b成60°角;Ⅰ直线AB与a所成角的最小值为45°;Ⅰ直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)28.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷带解析))已知H是球O的直径AB上一点, :1:2AH HB=,AB⊥平面α,H为垂足, α截球O所得截面的面积为π,则球O的表面积为_______.三、双空题29.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.四、解答题30.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC是底面的内接正三角形,P为DO上一点,ⅠAPC=90°.(1)证明:平面P ABⅠ平面P AC;(2)设DO23π,求三棱锥P−ABC的体积.32.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN Ⅰ平面EB 1C 1F ;(2)设O 为ⅠA 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且ⅠMPN =π3,求四棱锥B –EB 1C 1F 的体积.34.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.36.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,ⅠBAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN Ⅰ平面C 1DE ;(2)求点C 到平面C 1DE 的距离.38.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⅠEC 1.(1)证明:BE Ⅰ平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.40.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))图1是由矩形,ADEB Rt ABC ∆和菱形BFGC组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.42.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将ⅠACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.44.(2018年全国普通高等学校招生统一考试文数(全国卷II ))如图,在三棱锥P ABC -中,22AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.46.(2018年全国卷Ⅰ文数高考试题)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.49.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ; (2)若ⅠPCD 面积为7,求四棱锥P ABCD -的体积.51.(2017年全国普通高等学校招生统一考试文科数学(新课标3))如图,四面体ABCD 中,ⅠABC 是正三角形,AD =CD .(1)证明:AC ⅠBD ;(2)已知ⅠACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⅠEC ,求四面体ABCE与四面体ACDE 的体积比.53.(2016年全国普通高等学校招生统一考试)如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA=6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G.(Ⅰ)证明:G 是AB 的中点;(Ⅰ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.55.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))如图,菱形ABCD 的对角线AC 与BD 交于点O ,点,E F 分别在,AD CD 上,,AE CF EF =交BD 于点H ,将DEF ∆沿EF 折起到D EF ∆'的位置.(Ⅰ)证明:AC HD ⊥';(Ⅰ)若55,6,,224AB AC AE OD ==='=D ABCFE '-的体积.57.(2016年全国普通高等学校招生统一考试数学)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ∥,3AB AD AC ===,4PABC ,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN ∥平面PAB ;(II )求四面体N BCM -的体积.59.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ; (II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -6,求该三棱锥的侧面积.61.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))如图,长方体1111ABCD A B C D -中,116,10,8AB BC AA ===,点,E F 分别在1111,A B D C 上,114A E D F ==,过点,E F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.63.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.65.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.(1)证明:; (2)若,,求三棱柱111ABC A B C -的体积.68.(2012年全国普通高等学校招生统一考试文科数学(课标卷))如图,三棱柱111ABC A B C -中,侧棱垂直底面,ⅠACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点.(I) 证明:平面BDC Ⅰ平面1BDC(Ⅰ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.。
专题10 立体几何-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)
连 ,在正方体 中,
M是 的中点,所以 为 中点,
又N是 的中点,所以 ,
平面 平面 ,
所以 平面 .
因为 不垂直 ,所以 不垂直
则 不垂直平面 ,所以选项B,D不正确;
在正方体 中, ,
平面 ,所以 ,
,所以 平面 ,
平面 ,所以 ,
且直线 是异面直线,
所以选项C错误,选项A正确.
故选:A.
本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.
【2021·江苏高考】在正三棱柱 中, ,点P满足 ,其中 , ,则
A.当 时, 的周长为定值
B.当 时,三棱锥 的体积为定值
C.当 时,有且仅有一个点P,使得
而 面BCD, 面BCD, ,
面BCD, 面BCD,
, 是直角三角形,且 ,
设DF与面DBC所成角为 ,则 即为CH与面DBC的夹角,
且 ,
在 中, ,
,
.
【知识点】线面垂直的判定、直线与平面所成的角、面面垂直的性质、线面垂直的性质
【解析】本题主要考查空间直线互相垂直的判定和性质,以及直线与平面所成角的几何计算问题,考查了空间想象能力和思维能力,平面与空间互相转化是能力,几何计算能力,以及逻辑推理能力,本题属综合性较强的题.
D.当 时,有且仅有一个点P,使得 平面
【答案】BD
【知识点】圆柱、圆锥、圆台的侧面积、表面积和体积
【解析】解:对于A,当 时, ,即 ,所以 ,
故点P在线段 上,此时 的周长为 ,
当点P为 的中点时, 的周长为 ,
当点P在点 处时, 的周长为 ,
2020新课标高考数学讲义:立体几何含解析
球
S=4πR2
V= πR3
2.空间线面位置关系的证明方法
(1)线线平行: ⇒a∥b、 ⇒a∥b、
⇒a∥b、 ⇒c∥b.
(2)线面平行: ⇒a∥α、 ⇒a∥α、 ⇒a∥α.
(3)面面平行: ⇒α∥β、 ⇒α∥β、
⇒α∥γ.
(4)线线垂直: ⇒a⊥b.
(5)线面垂直: ⇒l⊥α、 ⇒a⊥β、 ⇒a⊥β、 ⇒b⊥α.
(6)面面垂直: ⇒α⊥β、 ⇒α⊥β.
[提醒]要注意空间线面平行与垂直关系中的判定定理和性质定理中的条件.如由α⊥β、α∩β=l、m⊥l、易误得出m⊥β的结论、就是因为忽视面面垂直的性质定理中m⊂α的限制条件.
3.用空间向量证明平行垂直
设直线l的方向向量为a=(a1、b1、c1)、平面α、β的法向量分别为μ=(a2、b2、c2)、υ=(a3、b3、c3).则有:
若存在某个位置.使得AD⊥BC、又因为AD⊥AB、则AD⊥平面ABC、所以AD⊥AC、而斜边CD小于直角边AD、矛盾、故C错误.
6. 如图、在四棱锥PACBD中、底面ACBD为正方形、PD⊥平面ACBD、BC=AC=a、PA=PB= a、PC= a、则点C到平面PAB的距离为________.
解析:
解析:选B.若存在某个位置、使得AC⊥BD、作AE⊥BD于E、则BD⊥平面AEC、所以BD⊥EC、在△ABD中、AB2=BE·BD、BE= 、而在△BCD中、BC2=BE·BD、BE= 、两者矛盾.故A错误.
若存在某个位置、使得AB⊥CD、又因为AB⊥AD、则AB⊥平面ACD、所以AB⊥AC、故AC=1、故B正确、D错误.
4.用向量求空间角
(1)直线l1、l2的夹角θ有cosθ=|cos〈l1、l2〉|(其中l1、l2分别是直线l1、l2的方向向量).
高考数学最新真题专题解析—立体几何综合(新高考卷)
高考数学最新真题专题解析—立体几何综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知正方体ABCD−A1B1C1D1,则()A. 直线BC1与DA1所成的角为90∘B. 直线BC1与CA1所成的角为90∘C. 直线BC1与平面BB1D1D所成的角为45∘D. 直线BC1与平面ABCD所成的角为45∘【答案】ABD【分析】本题主要考查直线与直线所成角及直线与平面所成角,属于中档题.【解答】解:如图,因为BC1⊥B1C,B1C//DA1,所以BC1⊥DA1,故A正确;对于选项B:因为直线BC1⊥平面CDA1B1,且CA1⊂平面CDA1B1,所以直线BC1⊥CA1,故B正确;对于选项C:连接A1C1与B1D1交于点O1,则∠O1BC1即为直线BC1与平面BB1D1D所成的角,sin∠O1BC1=O1C1BC1=12,所以∠O1BC1=30∘,故C错误;对于选项D:直线BC1与平面ABCD所成的角即为∠C1BC=45∘,所以D 正确.【母题来源】2022年新高考I卷【母题题文】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求二面角A−BD−C的正弦值.【答案】解:(1)设A到平面A1BC的距离为d,因为直三棱柱ABC−A1B1C1的体积为4,即可得S△ABC·AA1=4,故V A1−ABC =13S△ABC·AA1=43,又V A1−ABC =V A−A1BC=13S△A1BC·d=13×2√2×d=43,解得d =√2,所以A 到平面A 1BC 的距离为√2;(2)连接AB 1,因为直三棱柱ABC −A 1B 1C 1中,AA 1=AB , 故AA 1B 1B 为正方形,即AB 1⊥A 1B ,又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AB 1⊂平面ABB 1A 1, 故AB 1⊥平面A 1BC ,所以AB 1⊥BC ,又因为AA 1⊥BC ,AB 1,AA 1⊂平面ABB 1A 1,且AB 1∩AB 1=A , 故BC ⊥平面ABB 1A 1,则BC ⊥AB , 所以BB 1,AB,BC 三条直线两两垂直, 故如图可以以B 为原点建立空间直角坐标系,设AA 1=AB =a ,BC =b ,则A 1B =√2a ,由条件可得{12a ×b ×a =412×√2a ×b =2√2,解得{a =2b =2, 则B(0,0,0),C(2,0,0),A(0,2,0),A 1(0,2,2),A 1C 的中点D(1,1,1), 所以BA ⃗⃗⃗⃗⃗ =(0,2,0),BD ⃗⃗⃗⃗⃗⃗ =(1,1,1),BC ⃗⃗⃗⃗⃗ =(2,0,0) 设平面ABD 的一个法向量为n 1⃗⃗⃗⃗ =(x,y,z),{n1⃗⃗⃗⃗ ⋅BA⃗⃗⃗⃗⃗ =0n1⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0⇒{2y=0x+y+z=0,取n1⃗⃗⃗⃗ =(1,0,−1),同理可求得平面BCD的一个法向量为n2⃗⃗⃗⃗ =(0,1,−1)所以|cos<n1⃗⃗⃗⃗ ,n2⃗⃗⃗⃗ >|=|n1⃗⃗⃗⃗⃗ ·n2⃗⃗⃗⃗⃗ ||n1⃗⃗⃗⃗⃗ |·|n2⃗⃗⃗⃗⃗ |=12,所以二面角A−BD−C的正弦值为√32.【母题来源】2022年新高考II卷【母题题文】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E−ABC,E−ACF,F−ABC的体积分别为V1,V2,V3,则()A. V3=2V2B. V3=2V1C. V3=V1+V2D. 2V3=3V1【答案】CD【解析】【分析】本题主要考查三棱锥的体积,属于基础题.【解答】解:设AB=ED=2FB=2,则V1=13×2×2=43,V2=13×2×1=23.连结BD交AC于M,连结EM、FM,则FM=√3,EM=√6,EF=3,故S△EMF=1 2⋅√3⋅√6=3√22,V3=13S△EMF×AC=2,V3=V1+V2,2V3=3V1.【母题来源】2022年新高考II卷【母题题文】如图,PO是三棱锥P−ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)证明:OE//平面PAC;(2)若∠ABO=∠CBO=30∘,PO=3,PA=5,求二面角C−AE−B正弦值.【答案】解:(1)法一:连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,作AB中点D,连接OD、DE,则有OD⊥AB,又AB⊥AC,所以OD//AC,又因为OD⊄平面PAC,AC⊂平面PAC,所以OD//平面PAC,又D、E分别为AB、PB的中点,所以,在△BPA中,DE//PA又因为平面PAC,PA⊂平面PAC,所以DE//平面PAC,又OD、DE⊂平面ODE,OD∩DE=D,所以平面ODE//平面PAC,又OE⊂平面ODE,所以OE//平面PAC;法二:(1)连接OA、OB,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,所以PO⊥OA,PO⊥OB,所以∠POA=∠POB=90∘,又PA=PB,PO=PO,所以△POA≌△POB,所以OA=OB,又AB⊥AC,在Rt△ABF,O为BF中点,延长BO,交AC于F,连接PF,所以在△PBF中,O、E分别为BF、PB的中点,所以EO//PF,因为EO⊄平面PAC,PF⊂平面PAC,所以EO//平面PAC;(2)法一:过点D作DF//OP,以DB为x轴,DO为y轴,DF为z轴.建立如图所示的空间直角坐标系.因为PO=3,PA=5,由(1)OA=OB=4,又∠ABO=∠CBO=30∘,所以OD=2,DB=2√3,),所以P(0,2,3),B(2√3,0,0),A(−2√3,0,0),E(√3,1,32设AC=a,则C(−2√3,a,0),平面AEB的法向量设为n1⃗⃗⃗⃗ =(x1,y1,z1),直线AB的方向向量可设为a⃗=(1,0,0),直线DP⊂平面AEB,直线DP的方向向量为b⃗ =(0,2,3){a ⃗ ⋅n 1⃗⃗⃗⃗ =0b ⃗ ⋅n 1⃗⃗⃗⃗ =0,所以{x 1=02y 1+3z 1=0,所以x 1=0,设y 1=3,则z 1=−2,所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x 2,y 2,z 2),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n ⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=13√3=4√313, 二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113法二:(2)过点A 作AF//OP ,以AB 为x 轴,AC 为y 轴,AF 为z 轴 建立所示的空间直角坐标系.因为PO =3,PA =5,由(1)OA =OB =4,又∠ABO =∠CBO =30°,所以,AB =4√3,所以P(2√3,2,3),B(4√3,0,0), A(0,0,0),E(3√3,1,32),设AC =a ,则C(0,a,0),平面AEB 的法向量设为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AB ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{4√3x 1=03√3x 1+y 1+32z 1=0,所以x 1=0设z 1=−2,则y 1=3, 所以n 1⃗⃗⃗⃗ =(0,3,−2);平面AEC 的法向量设为n 2⃗⃗⃗⃗ =(x,y,z),AC ⃗⃗⃗⃗⃗ =(0,a,0),AE ⃗⃗⃗⃗⃗ =(3√3,1,32) {AC ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0AE ⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗ =0,所以{ay 2=03√3x 2+y 2+32z 2=0,所以y 2=0,设x 2=√3,则z 2=−6,所以n 2⃗⃗⃗⃗ =(√3,0,−6);所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ·n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√13×√39=√1213√3=4√313二面角C −AE −B 的平面角为θ,则sinθ=√1−cos 2θ=1113, 所以二面角C −AE −B 的正弦值为1113. 【命题意图】考察棱柱、棱锥棱台、圆柱、圆锥、圆台及其简单组合体的结构特征,能画出简单空间图形并能识别立体图形的模型,考察几何体中的点线面关系,考察线线、线面、面面之间的平行和垂直关系,考察异面直线所成的角,直线和平面所成的角,二面角的平面角等的求解,考察数形结合思想,空间想象力及逻辑推导能力。
高考数学-立体几何(含22年真题讲解)
高考数学-立体几何(含22年真题讲解)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=bB 1D ,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l+2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD . 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1,因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设AB =2,则B 1(2,2,2),E (2,1,0),F (1,2,0),B (2,2,0),A 1(2,0,2),A (2,0,0),C (0,2,0), C 1(0,2,2),则EF ⃑⃑⃑⃑⃑ =(−1,1,0),EB 1⃑⃑⃑⃑⃑⃑⃑ =(0,1,2),DB ⃑⃑⃑⃑⃑⃑ =(2,2,0),DA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),AC ⃑⃑⃑⃑⃑ =(−2,2,0),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−2,2,0),设平面B 1EF 的法向量为m ⃑⃑ =(x 1,y 1,z 1), 则有{m ⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ =−x 1+y 1=0m ⃑⃑ ⋅EB 1⃑⃑⃑⃑⃑⃑⃑ =y 1+2z 1=0 ,可取m ⃑⃑ =(2,2,−1),同理可得平面A 1BD 的法向量为n 1⃑⃑⃑⃑ =(1,−1,−1), 平面A 1AC 的法向量为n 2⃑⃑⃑⃑ =(1,1,0), 平面A 1C 1D 的法向量为n 3⃑⃑⃑⃑ =(1,1,−1), 则m ⃑⃑ ⋅n 1⃑⃑⃑⃑ =2−2+1=1≠0,所以平面B 1EF 与平面A 1BD 不垂直,故B 错误; 因为m ⃑⃑ 与n 2⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1AC 不平行,故C 错误; 因为m ⃑⃑ 与n 3⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1C 1D 不平行,故D 错误, 故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则VO−ABCD =13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3 B .1.2×109m 3 C .1.4×109m 3 D .1.6×109m 3【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为MN =157.5−148.5=9(m),所以增加的水量即为棱台的体积V . 棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2, ∴V =13ℎ(S +S ′+√SS ′)=13×9×(140×106+180×106+√140×180×1012) =3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .7.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径R =3, 设正四棱锥的底面边长为2a ,高为ℎ, 则l 2=2a 2+ℎ2,32=2a 2+(3−ℎ)2, 所以6ℎ=l 2,2a 2=l 2−ℎ2所以正四棱锥的体积V =13Sℎ=13×4a 2×ℎ=23×(l 2−l 436)×l 26=19(l 4−l 636), 所以V ′=19(4l 3−l 56)=19l 3(24−l 26),当3≤l ≤2√6时,V ′>0,当2√6<l ≤3√3时,V ′<0, 所以当l =2√6时,正四棱锥的体积V 取最大值,最大值为643, 又l =3时,V =274,l =3√3时,V =814,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是[274,643]. 故选:C.8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径r 1,r 2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径r 1,r 2,所以2r 1=3√3sin60∘,2r 2=4√3sin60∘,即r 1=3,r 2=4,设球心到上下底面的距离分别为d 1,d 2,球的半径为R ,所以d 1=√R 2−9,d 2=√R 2−16,故|d 1−d 2|=1或d 1+d 2=1,即|√R 2−9−√R 2−16|=1或√R 2−9+√R 2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.9.【2022年北京】已知正三棱锥P−ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3π4B.πC.2πD.3π【答案】B【解析】【分析】求出以P为球心,5为半径的球与底面ABC的截面圆的半径后可求区域的面积.【详解】设顶点P在底面上的投影为O,连接BO,则O为三角形ABC的中心,且BO=23×6×√32=2√3,故PO=√36−12=2√6.因为PQ=5,故OQ=1,故S的轨迹为以O为圆心,1为半径的圆,而三角形ABC内切圆的圆心为O,半径为2×√34×363×6=√3>1,故S的轨迹圆在三角形ABC内部,故其面积为π故选:B10.【2022年浙江】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.22πB.8πC.223πD.163π【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm,圆台的下底面半径为2cm,所以该几何体的体积V=12×43π×13+π×12×2+13×2×(π×22+π×12+√π×22×π×12)=22π3cm3.故选:C.11.【2022年浙江】如图,已知正三棱柱ABC−A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F−BC−A的平面角为γ,则()A.α≤β≤γB.β≤α≤γC.β≤γ≤αD.α≤γ≤β【答案】A【解析】【分析】先用几何法表示出α,β,γ,再根据边长关系即可比较大小.【详解】如图所示,过点F作FP⊥AC于P,过P作PM⊥BC于M,连接PE,则α=∠EFP,β=∠FEP,γ=FMP,tanα=PEFP =PEAB≤1,tanβ=FPPE=ABPE≥1,tanγ=FPPM≥FPPE=tanβ,所以α≤β≤γ,故选:A.12.【2022年新高考1卷】(多选)已知正方体ABCD−A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接B 1C 、BC 1,因为DA 1//B 1C ,所以直线BC 1与B 1C 所成的角即为直线BC 1与DA 1所成的角,因为四边形BB 1C 1C 为正方形,则B 1C ⊥ BC 1,故直线BC 1与DA 1所成的角为90°,A 正确;连接A 1C ,因为A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,则A 1B 1⊥BC 1, 因为B 1C ⊥ BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1C , 又A 1C ⊂平面A 1B 1C ,所以BC 1⊥CA 1,故B 正确; 连接A 1C 1,设A 1C 1∩B 1D 1=O ,连接BO ,因为BB 1⊥平面A 1B 1C 1D 1,C 1O ⊂平面A 1B 1C 1D 1,则C 1O ⊥B 1B , 因为C 1O ⊥B 1D 1,B 1D 1∩B 1B =B 1,所以C 1O ⊥平面BB 1D 1D , 所以∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,设正方体棱长为1,则C 1O =√22,BC 1=√2,sin∠C 1BO =C 1O BC 1=12,所以,直线BC 1与平面BB 1D 1D 所成的角为30∘,故C 错误;因为C 1C ⊥平面ABCD ,所以∠C 1BC 为直线BC 1与平面ABCD 所成的角,易得∠C 1BC =45∘,故D 正确. 故选:ABD13.【2022年新高考2卷】(多选)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1【答案】CD【解析】【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.【详解】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2)6403√3.【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.15.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=√32,BD=√DE2+BE2=√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD ⊥平面PAD , 又因PA ⊂平面PAD , 所以BD ⊥PA ;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃑⃑⃑⃑⃑ =(−1,0,√3),BP ⃑⃑⃑⃑⃑ =(0,−√3,√3),DP ⃑⃑⃑⃑⃑ =(0,0,√3), 设平面PAB 的法向量n⃑ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃑ =(√3,1,1), 则cos〈n ⃑ ,DP ⃑⃑⃑⃑⃑ 〉=n ⃑ ⋅DP ⃑⃑⃑⃑⃑⃑|n ⃑ ||DP ⃑⃑⃑⃑⃑⃑ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.16.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CDBD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB ≅△CDB ,所以∠FBA =∠FBC , 由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH //DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.17.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE .以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃑⃑⃑⃑⃑ =(−1,0,1),AB ⃑⃑⃑⃑⃑ =(−1,√3,0), 设平面ABD 的一个法向量为n⃑ =(x,y,z ), 则{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =−x +z =0n ⃑ ⋅AB⃑⃑⃑⃑⃑ =−x +√3y =0,取y =√3,则n ⃑ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃑⃑⃑⃑⃑ =(1,√34,34), 所以cos⟨n ⃑ ,CF ⃑⃑⃑⃑⃑ ⟩=n ⃑ ⋅CF⃑⃑⃑⃑⃑|n ⃑ ||CF⃑⃑⃑⃑⃑ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃑ ,CF⃑⃑⃑⃑⃑ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.18.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值. 【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃑⃑⃑⃑⃑⃑ =(1,1,1),BA ⃑⃑⃑⃑⃑ =(0,2,0),BC ⃑⃑⃑⃑⃑ =(2,0,0), 设平面ABD 的一个法向量m ⃑⃑ =(x,y,z),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =x +y +z =0m ⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =2y =0,可取m⃑⃑ =(1,0,−1),设平面BDC 的一个法向量n ⃑ =(a,b,c),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =a +b +c =0m ⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =2a =0, 可取n⃑ =(0,1,−1), 则cos〈m ⃑⃑ ,n ⃑ 〉=m⃑⃑⃑ ⋅n ⃑ |m ⃑⃑⃑ |⋅|n ⃑ |=√2×√2=12, 所以二面角A −BD −C 的正弦值为√1−(12)2=√32.19.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE //PD ,即可得证; (2)过点A 作Az //OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE //PD ,又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE //平面PAC(2)解:过点A 作Az //OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃑⃑⃑⃑⃑ =(3√3,1,32),AB ⃑⃑⃑⃑⃑ =(4√3,0,0),AC ⃑⃑⃑⃑⃑ =(0,12,0), 设平面AEB 的法向量为n ⃑ =(x,y,z ),则{n ⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3x +y +32z =0n ⃑ ⋅AB ⃑⃑⃑⃑⃑ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃑ =(0,−3,2);设平面AEC 的法向量为m⃑⃑ =(a,b,c ),则{m ⃑⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3a +b +32c =0m ⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃑⃑ =(√3,0,−6);所以cos⟨n⃑ ,m⃑⃑ ⟩=n⃑ ⋅m⃑⃑⃑|n⃑ ||m⃑⃑⃑ |=√13×√39=−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为1113;20.【2022年北京】如图,在三棱柱ABC−A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取AB的中点为K,连接MK,NK,可证平面MKN//平面CBB1C1,从而可证MN//平面CB B1C1.(2)选①②均可证明BB1⊥平面ABC,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.(1)取AB的中点为K,连接MK,NK,由三棱柱ABC −A 1B 1C 1可得四边形ABB 1A 1为平行四边形, 而B 1M =MA 1,BK =KA ,则MK //BB 1,而MK ⊄平面CBB 1C 1,BB 1⊂平面CBB 1C 1,故MK //平面CBB 1C 1, 而CN =NA,BK =KA ,则NK //BC ,同理可得NK //平面CBB 1C 1, 而NK ∩MK =K,NK,MK ⊂平面MKN ,故平面MKN //平面CBB 1C 1,而MN ⊂平面MKN ,故MN //平面CBB 1C 1, (2)因为侧面CBB 1C 1为正方形,故CB ⊥BB 1, 而CB ⊂平面CBB 1C 1,平面CBB 1C 1⊥平面ABB 1A 1, 平面CBB 1C 1∩平面ABB 1A 1=BB 1,故CB ⊥平面ABB 1A 1, 因为NK //BC ,故NK ⊥平面ABB 1A 1, 因为AB ⊂平面ABB 1A 1,故NK ⊥AB ,若选①,则AB ⊥MN ,而NK ⊥AB ,NK ∩MN =N , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB ⊥MK ,所以AB ⊥BB 1,而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA ⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z), 则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB ⃑⃑⃑⃑⃑ 〉|=42×3=23. 若选②,因为NK //BC ,故NK ⊥平面ABB 1A 1,而KM ⊂平面MKN , 故NK ⊥KM ,而B 1M =BK =1,NK =1,故B 1M =NK , 而B 1B =MK =2,MB =MN ,故△BB 1M ≅△MKN , 所以∠BB 1M =∠MKN =90°,故A 1B 1⊥BB 1, 而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z),则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n ⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB⃑⃑⃑⃑⃑ 〉|=42×3=23.21.【2022年浙江】如图,已知ABCD 和CDEF 都是直角梯形,AB//DC ,DC//EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,二面角F −DC −B 的平面角为60°.设M ,N 分别为AE,BC 的中点.(1)证明:FN ⊥AD ;(2)求直线BM 与平面ADE 所成角的正弦值. 【答案】(1)证明见解析; (2)5√714.【解析】 【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC =BC ,再根据二面角的定义可知,∠BCF =60∘,由此可知,FN ⊥BC ,FN ⊥CD ,从而可证得FN ⊥平面ABCD ,即得FN ⊥AD ;(2)由(1)可知FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,求出平面ADE 的一个法向量,以及BM ⃑⃑⃑⃑⃑⃑ ,即可利用线面角的向量公式解出. (1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,AB//DC,CD//EF,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,由平面几何知识易知,DG =AH =2,∠EFC =∠DCF =∠DCB =∠ABC =90°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt △EGD 和Rt △DHA ,EG =DH =2√3, ∵DC ⊥CF,DC ⊥CB ,且CF ∩CB =C ,∴DC ⊥平面BCF,∠BCF 是二面角F −DC −B 的平面角,则∠BCF =60∘, ∴△BCF 是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴ FN ⊥BC ,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD ,而BC ∩CD =C ,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD ∴FN ⊥AD . (2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,设A(5,√3,0),B(0,√3,0),D(3,−√3,0),E(1,0,3),则M (3,√32,32),∴BM ⃑⃑⃑⃑⃑⃑ =(3,−√32,32),AD ⃑⃑⃑⃑⃑ =(−2,−2√3,0),DE⃑⃑⃑⃑⃑ =(−2,√3,3) 设平面ADE 的法向量为n⃑ =(x,y,z) 由{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =0n ⃑ ⋅DE ⃑⃑⃑⃑⃑ =0 ,得{−2x −2√3y =0−2x +√3y +3z =0 ,取n ⃑ =(√3,−1,√3),设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n⃑ ,BM ⃑⃑⃑⃑⃑⃑ 〉|=|n⃑ ⋅BM ⃑⃑⃑⃑⃑⃑⃑ ||n⃑ |⋅BM ⃑⃑⃑⃑⃑⃑⃑ |=|3√3+√32+3√32|√3+1+3⋅√9+34+94=√3√7⋅2√3=5√714.1.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( )A B C D 【答案】C 【解析】 【分析】根据异面直线所成角的定义,取AB 的中点F ,则∠ECF (或其补角)为直线1A G 与CE 所成角,再解三角形即可得解. 【详解】如图所示:,取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则∠ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cosECF ∠==,即直线1A G 与CE 故选:C .2.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】将棱台补全为棱锥,利用等体积法求A 到面11BCC B 的距离,结合线面角的定义求AC 与平面11BCC B 所成角的大小. 【详解】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC = 由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A3.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒ D .四面体PBCD 【答案】C 【解析】 【分析】对于A ,取BD 的中点M ,即可得到BD ⊥面PMC ,A 选项可判断对于B ,采用反证法,假设DP BC ⊥,则BC ⊥面PCD ,再根据题目所给的长度即可判断;对于C ,当面PBD ⊥面BCD 时,此时直线DP 与平面BCD 所成角有最大值,判断即可;对于D ,当面PBD ⊥面BCD 时,此时四面体PBCD 的体积有最大值,计算最大体积判断即可 【详解】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确 对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角 此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCDV S PM ==⨯=,故D 正确 故选:C4.(2022·河南安阳·模拟预测(理))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A .2BCD .【答案】C 【解析】 【分析】根据给定条件,求出球O 半径,平面α截球O 所得截面小圆半径,圆锥底面圆半径,再求出平面α截圆锥所得的截面等腰三角形底边长及高即可计算作答. 【详解】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得1r =因此,球心O 到平面α的距离1d r ===,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2r =,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,依题意,145CPO ∠=,111CO PO ==,PC =AB ==所以212AB S PC =⋅=. 故选:C 【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.5.(2022·浙江·模拟预测)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2,1BD DE ==,点P 在线段EF 上,给出下列命题:①存在点P ,使得直线//DP 平面ACF ②存在点P ,使得直线DP ⊥平面ACF③直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦④三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π 其中所有真命题的序号是( ) A .①③ B .①④C .②④D .①③④ 【答案】D 【解析】 【分析】取EF 中点推理判断①;假定DP ⊥平面ACF ,分析判断②;确定直线DP 与平面ABCD 所成角,求出临界值判断③;求出ACF 外接圆面积判断④作答.令AC BD O =,连接,FO DF ,令EF 中点为G ,连DG ,如图,依题意,O 是,BD AC 的中点,对于①,在矩形BDEF 中,//DO FG ,DO FG =,四边形DOFG 是平行四边形,直线//DG OF ,OF ⊂平面ACF ,DG ⊄平面ACF ,则//DG 平面ACF ,当P 是线段EF 中点G 时,直线//DP 平面ACF ,①正确;对于②,假定直线DP ⊥平面ACF ,由①知,DP OF ⊥,DP DG ⊥,当点P 在线段EF 上任意位置(除点G 外),PDG ∠均为锐角,即DP 不垂直于DG ,也不垂直于OF ,因此,不存在点P ,使得直线DP ⊥平面ACF ,②不正确;对于③,平面BDEF ⊥平面ABCD ,DP 在平面ABCD 内射影在直线BD 上,直线DP 与平面ABCD 所成角为PDB ∠,当点P 由点E 运动到点F 的过程中,PDB ∠逐渐减小,当P 与E 重合时,PDB ∠最大,为90EDB ∠=,max (sin )1PDB ∠=,当P 与F 重合时,PDB ∠最小,为FDB ∠,min (sin )BF PDB DF ∠==所以直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦,③正确;对于④,在ACF 中,2AC =,|AF CF ==FO sin OF FAC AF ∠==由正弦定理得ACF 外接圆直径2sin FC r FAC ==∠半径r =圆面积为298S r ππ==,三棱锥A CDE -的外接球被平面ACF 所截取的截面是ACF 外接圆, 因此三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π,④正确, 所以所有真命题的序号是①③④. 故选:D6.(2022·四川省泸县第二中学模拟预测(文))已知1O 是正方体1111ABCD A B C D -的中心O 关于平面1111D C B A 的对称点,则下列说法中正确的是( )A .11O C 与1A C 是异面直线B .11OC ∥平面11A BCD C .11O C AD ⊥ D .11O C ⊥平面11BDD B【答案】B 【解析】 【分析】根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断. 【详解】连接1A C 、1AC ,交于点O ,连接11A C 、11B D ,交于点P . 连接AC 、BD 、1A B 、1D C 、1O O .由题可知,1O 在平面11A C CA 上,所以11O C 与1A C 共面,故A 错误;在四边形11OO C C 中,11//O O C C 且11O O C C =,所以四边形11OO C C 为平行四边形. 11//O C OC ∴.OC ⊂平面11A BCD ,11O C ⊄平面11A BCD ,11O C ∴∥平面11A BCD ,故B 正确;由正方体的性质可得1111AC B D ⊥,因为1111O B O D =,所以111O P B D ⊥,又111O P AC P =,11B D ∴⊥平面111O AC , 1111B D O C ∴⊥,又11//B D BD , 11BD O C ∴⊥,而AD 与BD 所成角为45︒,所以显然11O C 与AD 不垂直,故C 错误;显然11O C 与11O B 不垂直,而11O B ⊂平面11BDD B ,所以11O C 与平面11BDD B 不垂直,故D 错误. 故选:B.7.(2022·北京·北大附中三模)已知平面,,αβγ,直线m 和n ,则下列命题中正确的是( ) A .若,m m αβ⊥⊥,则αβ∥ B .若,αγβγ⊥⊥,则αβ∥ C .若,m n m α⊥⊥,则n α∥ D .若,m n αα∥∥,则m n ∥ 【答案】A 【解析】 【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行; 对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面. 【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行; 选项B 错误,平面α和β也可以相交; 选项C 错误,直线n 可能在平面α内; 选项D 错误,直线m 和n 还可能相交或者异面. 故选:A.8.(2022·云南师大附中模拟预测(理))已知正方形ABCD 的边长为ABC 沿对角线AC 折起,使得二面角B AC D --的大小为90°.若三棱锥B ACD -的四个顶点都在球O 的球面上,G 为AC 边的中点,E ,F 分别为线段BG ,DC 上的动点(不包括端点),且BE ,当三棱锥E ACF -的体积最大时,过点F 作球O 的截面,则截面面积的最小值为( )A .B .2πC .32πD .89π【答案】D 【解析】 【分析】根据面面垂直的判定定理得BG ⊥平面ACD ,继而表示出三棱锥E ACF -的体积,求出x =V 取得最大值,在∠GCF 中,由余弦定理,得GF =当GF 垂直于截面时,截面圆的面积最小,继而得解. 【详解】因为正方形ABCD 的边长为4AC =.如图,由于平面ABC ⊥平面ACD ,平面ABC 平面ACD AC =,又G 为AC 边的中点,则有BG AC ⊥,所以BG ⊥平面ACD .设CF x =(0x <<,则BE =,所以三棱锥E ACF -的体积13ACF V S EG ==△2111122sin 4(22))323223AC CF ACF EG x x x ⨯∠=⨯⨯-=-,当x =时,V 取得最大值.由于GA GB GC GD ===,则球O 的球心即为G ,且球O 的半径2R =.又在△GCF中,由余弦定理,得cos GF GC CF ACF =∠=。
最新高考数学分类汇编 立体几何 完整版强力推荐 (10)
立体几何G1 空间几何体的结构8.G1,G6[北京卷] 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP=33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33, 联结AP ,PC ,PB 1,则有△ABP≌△CBP≌△B 1BP , ∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.18.G1,G4,G5[广东卷] 如图1-4(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图1-4(2)所示的三棱锥A -BCF ,其中BC =22.图1-4(1)证明:DE∥平面BCF ; (2)证明:CF⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.18.解:G2 空间几何体的三视图和直观图10.G2,G7[北京卷] 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.18.G2,G4[福建卷] 如图1-3,在四棱锥P -ABCD 中,PD⊥平面ABCD ,AB∥DC,AB⊥AD,BC =5,DC =3,AD =4,∠PAD=60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM∥平面PBC ; (3)求三棱锥D -PBC 的体积.图1-318.解:(1)在梯形ABCD 中,过点C 作CE⊥AB,垂足为E. 由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6. 又由PD⊥平面ABCD 得,PD⊥AD.从而在Rt △PDA 中,由AD =4,∠PAD=60°,得PD =4 3. 正视图如图所示.(2)方法一:取PB 中点N ,联结MN ,CN.在△PAB 中,∵M 是PA 中点,∴MN∥AB,MN =12AB=3.又CD∥AB,CD =3,∴MN∥CD,MN =CD , ∴四边形MNCD 为平行四边形,∴DM∥CN. 又DM 平面PBC ,CN 平面PBC , ∴DM ∥平面PBC.方法二:取AB 的中点E ,联结ME ,DE. 在梯形ABCD 中,BE∥CD,且BE =CD , ∴四边形BCDE 为平行四边形,∴DE ∥BC.又DE 平面PBC ,BC 平面PBC , ∴DE ∥平面PBC.又在△PAB 中,ME∥PB,ME 平面PBC ,PB 平面PBC ,∴ME∥平面PBC. 又DE∩ME=E ,∴平面DME∥平面PBC. 又DM 平面DME ,∴DM∥平面PBC.(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =4 3,所以V D -PBC =8 3.6.G2[广东卷] 某三棱锥的三视图如图1-2所示,则该三棱锥的体积是( )图1-2A.16B.13C.23D .1 6.B [解析] 由三视图得三棱锥的高是2,底面是一个腰为1的等腰直角三角形,故体积是13×12×1×1×2=13,选B.5.G2[广东卷] 执行如图1-1所示的程序框图,若输入n 的值为3,则输出s 的值是( )图1-1A .1B .2C .4D .7 5.C [解析] 1≤3,s =1+0=1,i =2;2≤3,s =1+1=2,i =3;s =2+2=4,i =4;4>3,故输出s =4,选C.7.G2[湖南卷] 已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B .1 C.2+12D. 2 7.D [解析] 由题可知,其俯视图恰好是正方形,而侧视图和正视图则应该都是正方体的对角面,故面积为2,选D.8.G2[江西卷] 一几何体的三视图如图1-2所示,则该几何体的体积为( )图1-2A .200+9πB .200+18πC .140+9πD .140+18π8.A [解析] 该几何体上面是半圆柱,下面是长方体,半圆柱体积为12π·32·2=9π,长方体体积为10×5×4=200.故选A.13.G2[辽宁卷] 某几何体的三视图如图1-3所示,则该几何体的体积是________.图1-313.16π-16 [解析] 由三视图可知该几何体是一个圆柱里面挖去了一个长方体,所以该几何体的体积为V =4π×4-16=16π-16.9.G2[新课标全国卷Ⅱ] 一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )图1-39.A [解析] 在空间直角坐标系O -xyz 中画出三棱锥,由已知可知三棱锥O -ABC 为题中所描叙的四面体,而其在zOx 平面上的投影为正方形EBDO ,故选A.图1-44.G2[山东卷] 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图1-1所示,则该四棱锥侧面积和体积分别是( )图1-1A .4 5,8B .4 5,83C .4(5+1),83D .8,84.B [解析] 由正视图知该几何体的高为2,底面边长为2,斜高为22+1=5,∴侧面积=4×12×2×5=4 5,体积为13×2×2×2=83.12.G2[陕西卷] 某几何体的三视图如图1-2所示,则其表.面积为________.图1-212.3π [解析] 由三视图得该几何体为半径为1的半个球,则表面积为半球面+底面圆,代入数据计算为S =12×4π×12+π×12=3π.11.G2[新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为( )图1-3A .16+8πB .8+8πC .16+16πD .8+16π11.A [解析] 该空间几何体的下半部分是一个底面半径为2,母线长为4的半圆柱,上半部分是一个底面边长为2、高为4的正四棱柱.这个空间几何体的体积是12×π×4×4+2×2×4=16+8π.5.G2[浙江卷] 已知某几何体的三视图(单位: cm)如图1-1所示,则该几何体的体积是( )图1-1A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 35.B [解析] 此直观图是由一个长方体挖去一个三棱锥而得,如图所示其体积为3×6×6-13×12×3×4×4=108-8=100(cm 3).所以选择B. 19.G2和G5[重庆卷] 如图1-4所示,四棱锥P -ABCD 中,PA⊥底面ABCD ,PA =2 3,BC =CD =2,∠ACB=∠ACD=π3.(1)求证:BD⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.图1-419.解:(1)证明:因为BC =CD ,即△BCD 为等腰三角形,又∠ACB=∠ACD,故BD⊥AC. 因为PA⊥底面ABCD ,所以PA⊥BD,从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD⊥平面PAC.(2)三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由PA⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =13×3×2 3=2.由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =13×3×18×2 3=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.8.G2和G7[重庆卷] 某几何体的三视图如图1-3所示,则该几何体的表面积为( )图1-3A.180 B.200 C.220 D.2408.D [解析] 该几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,其腰为5的等腰梯形,所以底面面积和为12(2+8)×4×2=40.四个侧面的面积和为(2+8+5×2)×10=200,所以该直四棱柱的表面积为S=40+200=240,故选D.G3平面的基本性质、空间两条直线G4空间中的平行关系17.G4,G5,G7[北京卷] 如图1-5,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE,所以ABED为平行四边形,所以BE∥AD.又因为BE 平面PAD,AD 平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED 为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD , 所以PA⊥CD.又因为AD∩PA=A ,所以CD⊥平面PAD , 所以CD⊥PD.因为E 和F 分别是CD 和PC 的中点, 所以PD∥EF, 所以CD⊥EF,所以CD⊥平面BEF , 所以平面BEF⊥平面PCD.18.G2,G4[福建卷] 如图1-3,在四棱锥P -ABCD 中,PD⊥平面ABCD ,AB∥DC,AB⊥AD,BC =5,DC =3,AD =4,∠PAD=60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM∥平面PBC ; (3)求三棱锥D -PBC 的体积.图1-318.解:(1)在梯形ABCD 中,过点C 作CE⊥AB,垂足为E. 由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6. 又由PD⊥平面ABCD 得,PD⊥AD.从而在Rt △PDA 中,由AD =4,∠PAD=60°,得PD =4 3. 正视图如图所示.(2)方法一:取PB 中点N ,联结MN ,CN.在△PAB 中,∵M 是PA 中点,∴MN∥AB,MN =12AB=3.又CD∥AB,CD =3,∴MN∥CD,MN =CD , ∴四边形MNCD 为平行四边形,∴DM∥CN. 又DM 平面PBC ,CN 平面PBC , ∴DM ∥平面PBC.方法二:取AB 的中点E ,联结ME ,DE. 在梯形ABCD 中,BE∥CD,且BE =CD , ∴四边形BCDE 为平行四边形,∴DE ∥BC.又DE 平面PBC ,BC 平面PBC , ∴DE ∥平面PBC.又在△PAB 中,ME∥PB,ME 平面PBC ,PB 平面PBC ,∴ME∥平面PBC. 又DE∩ME=E ,∴平面DME∥平面PBC. 又DM 平面DME ,∴DM∥平面PBC.(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =4 3,所以V D -PBC =8 3.18.G1,G4,G5[广东卷] 如图1-4(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图1-4(2)所示的三棱锥A -BCF ,其中BC =22.图1-4(1)证明:DE∥平面BCF ; (2)证明:CF⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.18.解:8.G4、G5[广东卷] 设l 为直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若l∥α,l∥β,则α∥β B .若l⊥α,l⊥β,则α∥β C .若l⊥α,l∥β,则α∥β D .若α⊥β,l∥α,则l⊥β8.B [解析] 根据空间平行、垂直关系的判定和性质,易知选B.16.G4,G5[江苏卷] 如图1-2,在三棱锥S -ABC 中,平面SAB⊥平面SBC ,AB⊥BC,AS =AB.过A 作AF⊥SB,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∥平面ABC ; (2)BC⊥SA.图1-216.证明:(1)因为AS =AB ,AF⊥SB,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF∥AB.因为EF 平面ABC ,AB 平面ABC , 所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E , 所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC ,且交线为SB , 又AF 平面SAB ,AF⊥SB, 所以AF⊥平面SBC.因为BC 平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB 平面SAB,所以BC⊥平面SAB.因为SA 平面SAB,所以BC⊥SA.15.G4[江西卷] 如图1-5所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.图1-515.4 [解析] 直线EF与正方体左右两个面平行,与其他四个面相交.图1-418.G4,G5[辽宁卷] 如图1-4,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.18.证明:(1)由AB是圆O的直径,得AC⊥BC.由PA⊥平面ABC,BC 平面ABC,得PA⊥BC.又PA∩AC=A,PA 平面PAC,AC 平面PAC,所以BC⊥平面PAC.(2)联结OG并延长交AC于M,联结QM,QO,由G为△AOC的重心,得M为AC中点,由Q为PA中点,得QM∥PC.又O为AB中点,得OM∥BC.因为QM∩MO=M,QM 平面QMO.MO 平面QMO,BC∩PC=C,BC 平面PBC,PC 平面PBC,所以平面QMO∥平面PBC.因为QG 平面QMO,所以QG∥平面PBC.18.G4,G7,G11[新课标全国卷Ⅱ] 如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.图1-718.解:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF.因为DF 平面A 1CD ,BC 1 平面A 1CD ,所以BC 1∥平面A 1CD.图1-8(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD⊥AB.又AA 1∩AB =A ,于是CD⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =2 2得∠ACB=90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D.所以VC -A 1DE =13×12×6×3×2=1.19.G4,G5[山东卷] 如图1-5,四棱锥P —ABCD 中,AB⊥AC,AB⊥PA,AB∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE∥平面PAD ;(2)求证:平面EFG⊥平面EMN.图1-619.证明:(1)证法一:取PA 的中点H ,联结EH ,DH. 因为E 为PB 的中点,所以EH∥AB,EH =12AB.又AB∥CD,CD =12AB ,所以EH∥CD,EH =CD.因此四边形DCEH 是平行四边形. 所以CE∥DH.又DH 平面PAD ,CE 平面PAD , 因此CE∥平面PAD.证法二:联结CF. 因为F 为AB 的中点, 所以AF =12AB.又CD =12AB ,所以AF =CD. 又AF∥CD,所以四边形AFCD 为平行四边形. 因此CF∥AD.又CF 平面PAD , 所以CF∥平面PAD.因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA.又EF 平面PAD , 所以EF∥平面PAD. 因为CF∩EF=F ,故平面CEF∥平面PAD. 又CE 平面CEF , 所以CE∥平面PAD.(2)因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA. 又AB⊥PA, 所以AB⊥EF. 同理可证AB⊥FG.又EF∩FG=F ,EF 平面EFG ,FG 平面EFG , 因此AB⊥平面EFG.又M ,N 分别为PD ,PC 的中点, 所以MN∥CD. 又AB∥CD,所以MN∥AB,因此MN⊥平面EFG.又MN 平面EMN,所以平面EFG⊥平面EMN.18.G4,G11[陕西卷] 如图1-5,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.图1-5(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.18.解:(1)证明:由题设知,BB1瘙綊DD 1,∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1.又BD 平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C.又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又∵AO=12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1,又∵S △ABD =12×2×2=1,∴VABD -A 1B 1D 1=S △ABD ·A 1O =1. 19.G4,G5,G7,G11[四川卷]如图1-8,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC=120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)19.解:(1)如图,在平面ABC 内,过点P 作直线l∥BC,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点,所以,BC⊥AD,则直线l⊥AD.因此AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l⊥平面ADD 1A 1.(2)过D 作DE⊥AC 于E.因为AA 1⊥平面ABC ,所以DE⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE⊥平面AA 1C 1C.由AB =AC =2,∠BAC=120°,有AD =1,∠DAC=60°, 所以在△ACD 中,DE =32AD =32. 又S △A 1QC 1=12A 1C 1·AA 1=1,所以VA 1-QC 1D =VD -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36. 17.G4,G5、G11[天津卷] 如图1-3所示,三棱柱ABC -A 1B 1C 1中,侧棱A 1A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明EF∥平面A 1CD ;(2)证明平面A 1CD ⊥平面A 1ABB 1;(3)求直线BC 与平面A 1CD 所成角的正弦值.图1-317.解:(1)证明:如图,在三棱柱ABC -A 1B 1C 1中,AC∥A 1C 1,且AC =A 1C 1,联结ED ,在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE =12AC 且DE∥AC,又因为F 为A 1C 1的中点,可得A 1F =DE ,且A 1F ∥DE ,即四边形A 1DEF 为平行四边形,所以EF∥DA 1.又EF 平面A 1CD ,DA 1 平面A 1CD ,所以,EF∥平面A 1CD.(2)证明:由于底面ABC 是正三角形,D 为AB 的中点,故CD⊥AB,又由于侧棱AA 1⊥底面ABC ,CD 平面ABC ,所以A 1A ⊥CD ,又A 1A ∩AB =A ,因此CD⊥平面A 1ABB 1,而CD 平面A 1CD ,所以平面A 1CD ⊥平面A 1ABB 1.(3)在平面A 1ABB 1内,过点B 作BG⊥A 1D 交直线A 1D 于点G ,联结CG ,由于平面A 1CD ⊥平面A 1ABB 1,而直线A 1D 是平面A 1CD 与平面A 1ABB 1的交线,故BG⊥平面A 1CD ,由此得∠BCG 为直线BC 与平面A 1CD 所成的角.设三棱柱各棱长为a ,可得A 1D =5a 2,由△A 1AD ∽△BGD ,易得BG =5a 5.在Rt △BGC 中,sin ∠BCG =BG BC =55.所以直线BC 与平面A 1CD 所成角的正弦值为55. 4.G4,G5[浙江卷] 设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n⊥α D .若m∥α,α⊥β,则m⊥β4.C [解析] 对于选项C ,若m∥n,m⊥α,易得n⊥α.所以选择C.G5 空间中的垂直关系图1-518.G5[安徽卷] 如图1-5,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD=60°,已知PB =PD =2,PA = 6. (1)证明:PC⊥BD;(2)若E 为PA 的中点,求三棱锥P -BCE 的体积. 18.解:(1)证明:联结AC ,交BD 于O 点,联结PO. 因为底面ABCD 是菱形,所以AC⊥BD,BO =DO.由PB =PD 知,PO⊥BD.再由P O∩AC=O 知,BD⊥面APC ,又PC 平面APC ,因此BD⊥PC. (2)因为E 是PA 的中点,所以V P -BCE =V C -PEB =12V C -PAB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD≌△PBD. 因为∠BAD=60°,所以PO =AO =3,AC =23,BO =1.又PA =6,故PO 2+AO 2=PA 2,即PO⊥AC.故S △APC =12PO ·AC =3.由(1)知,BO⊥面APC ,因此V P -BCE =12V B -APC =13·12·S △APC ·BO =12.17.G4,G5,G7[北京卷] 如图1-5,在四棱锥P -ABCD 中,AB∥CD,AB⊥AD,CD =2AB ,平面PAD⊥底面ABCD ,PA⊥AD,E 和F 分别是CD 和PC 的中点.求证:(1)PA⊥底面ABCD ;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE,所以ABED为平行四边形,所以BE∥AD.又因为BE 平面PAD,AD 平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又因为AD∩PA=A,所以CD⊥平面PAD,所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF,所以CD⊥平面BEF,所以平面BEF⊥平面PCD.19.G5、G11[全国卷] 如图1-3所示,四棱锥P—ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是边长为2的等边三角形.图1-3(1)证明:PB⊥CD;(2)求点A到平面PCD的距离.19.解:(1)证明:取BC的中点E,联结DE,则四边形ABED为正方形.过P作PO⊥平面ABCD,垂足为O.联结OA,OB,OD,OE.由△PAB和△PAD都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点.故OE⊥BD,从而PB⊥OE.因为O 是BD的中点,E是BC的中点,所以OE∥CD.因此PB⊥CD.(2)取PD 的中点F ,联结OF ,则OF∥PB. 由(1)知,PB⊥CD,故OF⊥CD.又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF⊥PD. 又PD∩CD=D ,所以OF⊥平面PCD.因为AE∥CD,CD 平面PCD ,AE 平面PCD ,所以AE∥平面PCD. 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1,所以点A 到平面PCD 的距离为1.18.G1,G4,G5[广东卷] 如图1-4(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图1-4(2)所示的三棱锥A -BCF ,其中BC =22.图1-4(1)证明:DE∥平面BCF ; (2)证明:CF⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.18.解:8.G4、G5[广东卷] 设l 为直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若l∥α,l∥β,则α∥β B .若l⊥α,l⊥β,则α∥β C .若l ⊥α,l∥β,则α∥β D .若α⊥β,l∥α,则l⊥β8.B [解析] 根据空间平行、垂直关系的判定和性质,易知选B.16.G4,G5[江苏卷] 如图1-2,在三棱锥S -ABC 中,平面SAB⊥平面SBC ,AB⊥BC,AS =AB.过A 作AF⊥SB,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∥平面ABC ; (2)BC⊥SA.图1-216.证明:(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF 平面ABC,AB 平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF 平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC 平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB 平面SAB,所以BC⊥平面SAB.因为SA 平面SAB,所以BC⊥SA.19.G5,G7[江西卷] 如图1-7所示,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB =2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离.图1-719.解:(1)证明:过B作CD的垂线交CD于F,则BF=AD=2,EF=AB-DE=1,FC=2.在Rt△BEF中,BE= 3.在Rt△CFB中,BC= 6.在△BEC中,因为BE2+BC2=9=EC2,故BE⊥BC.由BB1⊥平面ABCD得BE⊥BB1.所以BE⊥平面BB 1C 1C.(2)三棱锥E -A 1B 1C 1的体积V =13·AA 1·S △A 1B 1C 1= 2.在Rt △A 1D 1C 1中,A 1C 1=A 1D 21+D 1C 21=3 2.同理,EC 1=EC 2+CC 21=3 2,A 1E =A 1A 2+AD 2+DE 2=2 3. 故S △A 1C 1E =3 5.设点B 1到平面EA 1C 1的距离为d ,则三棱锥B 1-A 1C 1E 的体积 V =13·d ·S △A 1C 1E =5d , 从而5d =2,d =105.图1-418.G4,G5[辽宁卷] 如图1-4,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC⊥平面PAC ;(2)设Q 为PA 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC. 18.证明:(1)由AB 是圆O 的直径,得AC⊥BC. 由PA⊥平面ABC ,BC 平面ABC ,得PA⊥BC. 又PA∩AC=A ,PA 平面PAC ,AC 平面PAC , 所以BC⊥平面PAC.(2)联结OG 并延长交AC 于M ,联结QM ,QO , 由G 为△AOC 的重心,得M 为AC 中点, 由Q 为PA 中点,得QM∥PC. 又O 为AB 中点,得OM∥BC. 因为QM∩MO=M ,QM 平面QMO. MO 平面QMO ,BC ∩PC =C ,BC 平面PBC ,PC 平面PBC , 所以平面QMO∥平面PBC. 因为QG 平面QMO , 所以QG∥平面PBC.19.G4,G5[山东卷] 如图1-5,四棱锥P —ABCD 中,AB⊥AC,AB⊥PA,AB∥CD,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE∥平面PAD ;(2)求证:平面EFG⊥平面EMN.图1-619.证明:(1)证法一:取PA 的中点H ,联结EH ,DH. 因为E 为PB 的中点, 所以EH∥AB,EH =12AB.又AB∥CD,CD =12AB ,所以EH∥CD,EH =CD.因此四边形DCEH 是平行四边形. 所以CE∥DH.又DH 平面PAD ,CE 平面PAD , 因此CE ∥平面PAD.证法二:联结CF. 因为F 为AB 的中点, 所以AF =12AB.又CD =12AB ,所以AF =CD. 又AF∥CD,所以四边形AFCD 为平行四边形. 因此CF∥AD.又CF 平面PAD , 所以CF∥平面PAD.因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA.又EF 平面PAD ,所以EF∥平面PAD. 因为CF∩EF=F ,故平面CEF∥平面PAD. 又CE 平面CEF , 所以CE∥平面PAD.(2)因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA. 又AB⊥PA, 所以AB⊥EF. 同理可证AB⊥FG.又EF∩FG=F ,EF 平面EFG ,FG 平面EFG , 因此AB⊥平面EFG.又M ,N 分别为PD ,PC 的中点, 所以MN∥CD. 又AB∥CD, 所以MN∥AB,因此MN⊥平面EFG. 又MN 平面EMN ,所以平面EFG⊥平面EMN.19.G4,G5,G7,G11[四川卷]如图1-8,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC=120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)19.解:(1)如图,在平面ABC 内,过点P 作直线l∥BC,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点,所以,BC⊥AD,则直线l⊥AD.因此AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l⊥平面ADD 1A 1. (2)过D 作DE⊥AC 于E.因为AA 1⊥平面ABC ,所以DE⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE⊥平面AA 1C 1C.由AB =AC =2,∠BAC=120°,有AD =1,∠DAC=60°, 所以在△ACD 中,DE =32AD =32. 又S △A 1QC 1=12A 1C 1·AA 1=1,所以VA 1-QC 1D =VD -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36. 17.G4,G5、G11[天津卷] 如图1-3所示,三棱柱ABC -A 1B 1C 1中,侧棱A 1A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明EF∥平面A 1CD ;(2)证明平面A 1CD ⊥平面A 1ABB 1;(3)求直线BC 与平面A 1CD 所成角的正弦值.图1-317.解:(1)证明:如图,在三棱柱ABC -A 1B 1C 1中,AC∥A 1C 1,且AC =A 1C 1,联结ED ,在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE =12AC 且DE∥AC,又因为F 为A 1C 1的中点,可得A 1F =DE ,且A 1F ∥DE ,即四边形A 1DEF 为平行四边形,所以EF∥DA 1.又EF 平面A 1CD ,DA 1 平面A 1CD ,所以,EF∥平面A 1CD.(2)证明:由于底面ABC 是正三角形,D 为AB 的中点,故CD⊥AB,又由于侧棱AA 1⊥底面ABC ,CD 平面ABC ,所以A 1A ⊥CD ,又A 1A ∩AB =A ,因此CD⊥平面A 1ABB 1,而CD 平面A 1CD ,所以平面A 1CD ⊥平面A 1ABB 1.(3)在平面A 1ABB 1内,过点B 作BG⊥A 1D 交直线A 1D 于点G ,联结CG ,由于平面A 1CD ⊥平面A 1ABB 1,而直线A 1D 是平面A 1CD 与平面A 1ABB 1的交线,故BG⊥平面A 1CD ,由此得∠BCG 为直线BC 与平面A 1CD 所成的角.设三棱柱各棱长为a ,可得A 1D =5a 2,由△A 1AD ∽△BGD ,易得BG =5a 5.在Rt △BGC 中,sin ∠BCG =BG BC =55.所以直线BC与平面A1CD所成角的正弦值为5 5.19.G5[新课标全国卷Ⅰ] 如图1-5所示,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积.图1-519.解:(1)取AB的中点O,联结OC,OA1,A1B,因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C 平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1= 3.又A1C=6,则A1C2=OC2+OA21,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△A BC的面积S△ABC=3,故三棱柱ABC-A1B1C1的体积V=S△ABC·OA1=3.4.G4,G5[浙江卷] 设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β4.C [解析] 对于选项C,若m∥n,m⊥α,易得n⊥α.所以选择C.19.G2和G5[重庆卷] 如图1-4所示,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2 3,BC=CD=2,∠ACB=∠ACD=π3.(1)求证:BD⊥平面PAC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.图1-419.解:(1)证明:因为BC =CD ,即△BCD 为等腰三角形,又∠ACB=∠ACD,故BD⊥AC. 因为PA⊥底面ABCD ,所以PA⊥BD,从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD⊥平面PAC.(2)三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由PA⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =13×3×2 3=2.由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =13×3×18×2 3=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.G6 三垂线定理8.G1,G6[北京卷] 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )图1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP=33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33, 联结AP ,PC ,PB 1,则有△ABP≌△CBP≌△B 1BP , ∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.G7 棱柱与棱锥17.G4,G5,G7[北京卷] 如图1-5,在四棱锥P -ABCD 中,AB∥CD,AB⊥AD,CD =2AB ,平面PAD⊥底面ABCD ,PA⊥AD,E 和F 分别是CD 和PC 的中点.求证:(1)PA⊥底面ABCD ; (2)BE∥平面PAD ;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面PAD⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA⊥底面ABCD.(2)因为AB∥CD,CD =2AB ,E 为CD 的中点, 所以AB∥DE,且AB =DE , 所以ABED 为平行四边形, 所以BE∥AD.又因为BE 平面PAD ,AD 平面PAD , 所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED 为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD , 所以PA⊥CD.又因为AD∩PA=A ,所以CD⊥平面PAD , 所以CD⊥PD.因为E 和F 分别是CD 和PC 的中点, 所以PD∥EF, 所以CD⊥EF,所以CD⊥平面BEF , 所以平面BEF⊥平面PCD.10.G2,G7[北京卷] 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.8.G7[江苏卷] 如图1-1,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.图1-18.1∶24 [解析] 设三棱柱的底面积为S ,高为h ,则V 2=Sh ,又D ,E ,F 分别为AB ,AC ,AA 1的中点,所以S △AED =14S ,且三棱锥F -ADE 的高为12h ,故V 1=13S △AED ·12h =13·14S ·12h=124Sh ,所以V 1∶V 2=1∶24. 19.G5,G7[江西卷] 如图1-7所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB∥CD,AD⊥AB,AB =2,AD =2,AA 1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE⊥平面BB 1C 1C ; (2)求点B 1到平面EA 1C 1的距离.图1-719.解:(1)证明:过B 作CD 的垂线交CD 于F ,则BF =AD =2,EF =AB -DE =1,FC =2.在Rt △BEF 中,BE = 3. 在Rt △CFB 中,BC = 6.在△BEC 中,因为BE 2+BC 2=9=EC 2,故BE⊥BC. 由BB 1⊥平面ABCD 得BE⊥BB 1. 所以BE⊥平面BB 1C 1C.(2)三棱锥E -A 1B 1C 1的体积V =13·AA 1·S △A 1B 1C 1= 2.在Rt △A 1D 1C 1中,A 1C 1=A 1D 21+D 1C 21=3 2.同理,EC 1=EC 2+CC 21=3 2,A 1E =A 1A 2+AD 2+DE 2=2 3. 故S △A 1C 1E =3 5.设点B 1到平面EA 1C 1的距离为d ,则三棱锥B 1-A 1C 1E 的体积 V =13·d ·S △A 1C 1E =5d , 从而5d =2,d =105.18.G4,G7,G11[新课标全国卷Ⅱ] 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.图1-718.解:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF.因为DF 平面A 1CD ,BC 1 平面A 1CD ,所以BC 1∥平面A 1CD.图1-8(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD⊥AB.又AA 1∩AB =A ,于是CD⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =2 2得∠ACB=90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D.所以VC -A 1DE =13×12×6×3×2=1.19.G4,G5,G7,G11[四川卷]如图1-8,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC=120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)19.解:(1)如图,在平面ABC 内,过点P 作直线l∥BC,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点,所以,BC⊥AD,则直线l⊥AD.因此AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l⊥平面ADD 1A 1. (2)过D 作DE⊥AC 于E.因为AA 1⊥平面ABC ,所以DE⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE⊥平面AA 1C 1C.由AB =AC =2,∠BAC=120°,有AD =1,∠DAC=60°, 所以在△ACD 中,DE =32AD =32. 又S △A 1QC 1=12A 1C 1·AA 1=1,所以VA 1-QC 1D =VD -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36. 8.G2和G7[重庆卷] 某几何体的三视图如图1-3所示,则该几何体的表面积为( )图1-3A .180B .200C .220D .2408.D [解析] 该几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,其腰为5的等腰梯形,所以底面面积和为12(2+8)×4×2=40.四个侧面的面积和为(2+8+5×2)×10=200,所以该直四棱柱的表面积为S =40+200=240,故选D.G8 多面体与球10.G8[天津卷] 已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.10. 3 [解析] 设正方体的棱长为a ,则43π⎝ ⎛⎭⎪⎫3a 23=92π,解之得a = 3.15.G8[新课标全国卷Ⅱ] 已知正四棱锥O -ABCD 的体积为3 22,底面边长为3,则以O为球心,OA 为半径的球的表面积为________.15.24π [解析] 设O 到底面的距离为h ,则13×3×h =3 22 h =3 22,OA =h 2+⎝ ⎛⎭⎪⎫622=6,故球的表面积为4π×(6)2=24π.16.G8[湖北卷] 我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)16.3 [解析] 积水深度为盆深的一半,故此时积水部分的圆台上底面直径为二尺,圆台的高为九寸,故此时积水的体积是13π(102+62+10×6)×9=196×3π(立方寸),盆口的面积是π×142=196π,所以平均降雨量是196×3π196π=3寸.15.G8[新课标全国卷Ⅰ] 已知H 是球O 的直径AB 上一点,AH∶HB=1∶2,AB⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.15.9π2 [解析] 截面为圆,由已知得该圆的半径为1.设球的半径为r ,则AH =23r ,所以OH =13r ,所以13r 2+12=r 2,r 2=98,所以球的表面积是4πr 2=9π2.G9 空间向量及运算G10 空间向量解决线面位置关系G11 空间有与距离的求法19.G5、G11[全国卷] 如图1-3所示,四棱锥P —ABCD 中,∠ABC=∠BAD=90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.图1-3(1)证明:PB⊥CD;(2)求点A 到平面PCD 的距离.19.解:(1)证明:取BC 的中点E ,联结DE ,则四边形ABED 为正方形.过P 作PO⊥平面ABCD ,垂足为O.联结OA ,OB ,OD ,OE.由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点.故OE⊥BD,从而PB⊥OE.因为O 是BD 的中点,E 是BC 的中点,所以OE∥CD.因此PB⊥CD.(2)取PD 的中点F ,联结OF ,则OF∥PB. 由(1)知,PB⊥CD,故OF⊥CD.又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF⊥PD. 又PD∩CD=D ,所以OF⊥平面PCD.因为AE∥CD,CD 平面PCD ,AE 平面PCD ,所以AE∥平面PCD. 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1,所以点A 到平面PCD 的距离为1.11.G11[全国卷] 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23 D.1311.A [解析] 如图,联结AC ,交BD 于点O.由于BO⊥OC,BO⊥CC 1,可得BO⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=32,所以CE =CC 1·OC OC 1=4 23 2=43,所以sin ∠CDE =CE CD =23.22.G11[江苏卷] 如图1-2所示,在直三棱柱A 1B 1C 1-ABC 中,AB⊥AC,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.图1-222.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 18.G4,G7,G11[新课标全国卷Ⅱ] 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;。
三年高考高考数学真题分项汇编专题立体几何解答题文含解析.doc
专题06立体几何(解答题)1.[2019年高考全国I卷文数】如图,直四棱柱ABCD-A^C^的底面是菱形,』4=4, AB=2, ZBAD=60° ,E, M,"分别是成;BBi, 4〃的中点.(1)证明:刎〃平面GDE;(2)求点。
到平面G庞的距离.【答案】(1)见解析;(2) .【解析】(1)连结.因为〃,盼别为的中点,所以,且.又因为伪的中点,所以.由题设知,可得,故,因此四边形姗为平行四边形,.又平面,所以沥V〃平面.(2)过。
乍G碰垂线,垂足为H由己知可得,,所以班_L平面,故DELCH.从而世上平面,故囹的长即为徐(J平面的距离,由已知可得上1, G&4,所以,故.从而点6®!平面的距离为.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.[2019年高考全国II卷文数】如图,长方体ABCD- ABGB的底面敬刀是正方形,点E在棱如i上,BE LEQ.(1)证明:班」平面EB&(2)若A^AxE, AB=3,求四棱锥的体积.【答案】(1)见详解;(2) 18.【解析】(1)由已知得平面ABB^Ax,政平面ABRA,故.又,所以血工平面.(2)由(1)知ZBE&=90° .由题设知Rt△,母竺RtZ\43E,所以,故』庆舟3,.作,垂足为尸,则时平面,且.所以,四棱锥的体积.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.[2019年高考全国III卷文数】图1是由矩形血陟,政和菱形阴Z组成的一个平面图形,其中AB=\,BE=BF^2,ZFB(=60° .将其沿43 折起使得庞与欧重合,连结〃G,如图2.(1)证明:图2中的瓦C, G,〃四点共面,且平面』3GL平面冏%S';(2)求图2中的四边形成%〃的面积.【答案】(1)见解析;(2) 4.【解析】(1)由已知得地陋,CGBE,所以ADCG,故时 CG确定一个平面,从而』,C, G,〃四点共面. 由已知得』姗,ABBC,故/疗平面成洗又因为/砰面/3G所以平面/及砰面及石(2)取做]中点泌连结敬DM.因为AB//DE, /砰面冏:依所以班平面此窿,故DECG.由已知,四边形及派是菱形,且ZEBG60。
(新课标2专版)高考数学分项版解析 专题10 立体几何 理-人教版高三全册数学试题
【十年高考】(新课标2专版)高考数学分项版解析专题10 立体几何理一.基础题组1.【2013课标全国Ⅱ,理4】已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】:D【解析】因为m⊥α,l⊥m,lα,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.2.【2012全国,理4】已知正四棱柱ABCD-A1B1C1D1中,AB=2,122CC E为CC1的中点,则直线AC1与平面BED的距离为( )A.2 B32 D.1【答案】 D又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.3.【2011新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【答案】D【解析】4. 【2006全国2,理4】过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为 A.163B.169 C.83 D.329【答案】:A5. 【2006全国2,理7】如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为4π和6π.过A ,B 分别作两平面交线的垂线,垂足为A ′,B ′,则AB ∶A ′B ′等于 A.2∶1B.3∶1C.3∶2D.4∶3【答案】:A6. 【2005全国3,理4】设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为() A .16VB .14VC .13VD .12V【答案】C【解析】连接11,BA BC ,在侧面平行四边形11AAC C 中,∵1PA QC =,∴ 四边形APQC 的面积1S =四边形11PQA C 的面积2S , 记B 到面11AAC C 的距离为h ,∴113B APQC V S h -=,11213B PQAC V S h -=,∴11B APQC B PQA C V V --=,∵11113B A BC V V -=,∴11233B APQC B PQA C V V V V V --+=-=,∴3B APQC V V -=.7. 【2005全国2,理2】正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )(A) 三角形 (B) 四边形(C) 五边形(D) 六边形【答案】D8. 【2014新课标,理18】(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.【答案】见解析【解析】(Ⅰ)证明:设O为AC与BD交点,连结OE,则由矩形ABCD知:O为BD的中点,因为E是BD的中点,所以OE∥PB,因为OE⊂面AEC,PB⊄面AEC,所以PB∥平面AEC。
高考数学专题10立体几何-高考数学试题分项版解析(原卷版)
专题10立体几何1.【2014高考安徽卷文第8题】一个多面体的三视图如图所示,则多面体的体积是()A.233B.476C.6D.72.【2014高考北京卷文第11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .3.【2014高考大纲卷文第4题】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为() A.16B.36 C.13D.334.【2014高考大纲卷文第10题】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是() A.814πB.16πC.9πD.274π 5.【2014高考福建卷文第3题】以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于().2..2.1A B C D ππ6.【2014高考广东卷文第9题】若空间中四条直线两两不同的直线1l 、2l 、3l 、4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是()A.14l l ⊥B.14//l lC.1l 、4l 既不平行也不垂直D.1l 、4l 的位置关系不确定7.【2014高考湖北卷文第7题】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②8.【2014高考湖南卷文第8题】一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.49.【2014高考江苏卷第8题】设甲,乙两个圆柱的底面面积分别为12,S S ,体积为12,V V ,若它们的侧面积相等且1294S S =,则12VV 的值是 . 10.【2014高考辽宁卷文第4题】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是() A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥11.【2014高考辽宁卷文第7题】某几何体三视图如图所示,则该几何体的体积为() A .82π-B .8π-C .82π-D .84π-1122212112.【2014高考全国1卷文第8题】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱13.【2014高考全国2卷文第6题】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为() A.2717B.95C.2710D.3114.【2014高考全国2卷文第7题】正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为()(A )3(B )32(C )1(D )315.【2014高考山东卷文第13题】一个六棱锥的体积为32,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 .16.【2014高考陕西卷文第5题】将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为().4A π.3B π.2C π.D π17.【2014高考四川卷文第4题】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)学科网 A 、3B 、2C 3D 、118.【2014高考天津卷卷文第10题】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .19.【2014高考浙江卷文第3题】某几何体的三视图(单位:cm )若图所示,则该几何体的体积是()A.372cm B.390cm C.3108cm D.3138cm20.【2014高考浙江卷文第6题】设m 、n 是两条不同的直线,α、β是两个不同的平面,则() A.若n m ⊥,α//n ,则α⊥m B.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 21.【2014高考重庆卷文第7题】某几何体的三视图如图所示,则该几何体的体积为()A.12B.18C.24D.3022.【2014高考上海卷文第7题】若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).23.【2014高考上海卷文第8题】在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .24.【2014高考安徽卷文第19题】如图,四棱锥ABCD P -的底面边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,//BC 平面GEFH . (1)证明:;//EF GH(2)若2=EB ,求四边形GEFH 的面积.25.【2014高考北京卷文第17题】如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.26.【2014高考大纲卷文第19题】如图,三棱柱ABC-A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB=90︒,BC=1,AC=CC 1=2. (1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 13A 1-AB-C 的大小.27.【2014高考福建卷文第19题】如图,三棱锥A BCD -中,AB ⊥平面,BCD CD BD ⊥. (1)求证:CD ⊥平面ABD ;(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.28.【2014高考广东卷文第18题】如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==,作如图3折叠,折痕//EF DC .其中点E 、F 分别在线段PD 、PC 上,沿EF 折叠后点P在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.29.【2014高考湖北卷文第20题】如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点.求证:(1)直线1BC ∥平面EFPQ ; (2)直线1AC ⊥平面PQMN .30.【2014高考湖南卷文第18题】如图3,已知二面角MN αβ--的大小为60,菱形ABCD 在面β内,,A B 两点在棱MN 上,60BAD ∠=,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.31.【2014高考江苏第16题】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===,求证(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .32.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥.(1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值。
立体几何考点梳理讲解总结,高考数学立体几何题及解析
考点24立体几何初步及空间几何体的表面积和体积【命题解读】立体几何的考察是高考必考知识点,对于几何体的体积和表面积的考察往往在空间线面位置关系问题中出现,依托于某一个几何体,因而要熟练掌握多面体与旋转体的概念、性质以及求解公式,在求解中要学会等价转化思想,等体积转化问题,以及立体问题转化为平面问题等等。
【命题预测】预计2021年的高考对于立体几何表面积和体积考察,还是以多面体和旋转体的面积和体积为主,注意公式的运用。
【复习建议】1.掌握空间几何体特征,多面体与旋转体的有关知识;2.会运用公式求解旋转体或多面体的体积和表面积。
考向一空间几何体的结构特征1.多面体的结构特征名称棱柱棱锥棱台图形结构特征有两个面互相平行且全等,其余各个面都是平行四边形;每相邻两个四边形的公共边都互相平行有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分2.旋转体的结构特征圆柱圆锥圆台球互相平行且相等,垂直于底面相交于一点延长线交于一点全等的矩形全等的等腰三角形全等的等腰梯形圆矩形扇形扇环1. 一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )【答案】B【解析】由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离. 2. 【2019山东济宁检测】一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可能是( )A .等腰三角形B .等腰梯形C .五边形D .正六边形【答案】D【解析】如图1,由图可知,截面ABC 为等腰三角形,选项A 可能.截面ABEF 为等腰梯形,选项B 可能.如图2,截面AMDEN 为五边形,选项C 可能.图1 图2因为侧面是正方形,只有平行于底面的截面才可能是正六边形,故过两底的顶点不可能得到正六边形.选项D 不可能.考向二 空间几何体的表面积与体积空间几何体的表面积与体积公式表面积体积 S 表面积=S 侧+2S 底 V= S 底h S 表面积=S 侧+S 底 V=13S 底hS 表面积=S 侧+S 上+S 下V=13(S 上+S 下+√S 上S 下)hS=4πR 2V= 43πR 31. 【2020届河南省郑州市高三第二次质量预测文科数学试题】在正方体ABCD -A 1B 1C 1D 1中,三棱锥A 1-BC 1D 内切球表面积为4π,则正方体外接球的体积为A .B .36π C . 3D . 6【答案】B【解析】设正方体的棱长为a ,则BD =,因为三棱锥11A BC D -内切球的表面积为4π, 所以三棱锥11A BC D -内切球的半径为1,设11A BC D -内切球的球心为O , 1A 到平面1BC D 的距离为h ,则1114A BC D O BC D V V --=,11114133BC D BC D S h S ∆∆⨯=⨯⨯⨯,4h ∴=, 又()223622233h aa a ⎛⎫=-⨯=⨯ ⎪ ⎪⎝⎭, 624,233a a ∴⨯==, 又因为正方体外接球直接就是正方体对角线长,∴正方体外接球的半径为()()()22223232332++=,其体积为343363ππ⨯=,故选B . 2.【2019山东东营模拟】表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是( ) A .12π B .8π C .32π3D .4π【答案】A【解析】设正方体的棱长为a ,因为表面积为24,即6a 2=24,得a = 2,正方体的体对角线长度为22+22+22=23, 所以正方体的外接球半径为r =232=3, 所以球的表面积为S =4πr 2=12π.3. 在△ABC 中,AB =2,BC =1.5,∠ABC =120°(如图所示),若将△ABC 绕直线BC 旋转一周,则形成的旋转体的体积是( )A .9π2B .7π2C .5π2D .3π2【答案】D【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,如图所示,OA =AB ·cos 30°=2×32=3,所以旋转体的体积为13π·(3)2·(OC -OB )=3π2.题组一(真题在线)1. 【2020年高考全国Ⅰ卷文数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A B C D2. 【2020年高考全国Ⅰ卷文数】已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 3. 【2020年高考全国Ⅰ卷文数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π4. 【2020年高考天津】若棱长为 A .12πB .24πC .36πD .144π5. 【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D6. 【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.7. 【2019年高考天津卷理数】若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.8. 【2019年高考江苏卷】如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 .9. 【2018全国卷Ⅰ】在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .62C .82D .8310. 【2018全国卷Ⅰ】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.题组二1. 【2020山东省日照五莲县丶潍坊安丘市、潍坊诸城市、临沂兰山区高三模拟】唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为2143R π,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,则12V V =A .2B .32C .1D .342. 【2020河南省郑州市高三第二次质量试题】在正方体ABCD -A 1B 1C 1D 1中,三棱锥A 1-BC 1D 内切球表面积为4π,则正方体外接球的体积为A.B .36 π C. 3 D. 63. 【2019四川省宜宾市高三第三次诊断性考试】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为A .13 B .23C .34D .14. 【2019广东省深圳市高级中学高三适应性考试】在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.5. 【2017全国卷Ⅰ】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B .3π4C .π2D .π46. 【2020湖南省常德市高三上学期期末数学】某圆柱的高为2,体积为2π,其底面圆周均在同一个球面上,则此球的表面积为__________.7. 在三棱锥P ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( ) A .4π3B .4πC .8πD .20π8. 【2019广东茂名模拟】如图,在四棱锥P ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,∠ABC =60°,P A =AB =2,过BD 作平面BDE 与直线P A 平行,交PC 于点E .(1)求证:E 为PC 的中点; (2)求三棱锥E P AB 的体积.题组一1.C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选C .2.C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d ===.故选:C .3. A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A4. C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C . 5. D 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==344π33R V R =∴=π==,故选D .6. 118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A BC D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=, 其质量为0.9132118.8g ⨯=.7.π42.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 8. 10【解析】因为长方体1111ABCD A BC D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 9. C【解析】如图,连接AC 1,BC 1,AC .∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角, ∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中,AC 1=2sin 30°=4, 在Rt △ACC 1中,CC 1=AC 21-AC 2=42-22+22=22,∴V 长方体=AB ×BC ×CC 1 =2×2×22=8 2. 10. 8π【解析】 在Rt △SAB 中,SA =SB ,S △SAB =12·SA 2=8,解得SA =4.设圆锥的底面圆心为O ,底面半径为r ,高为h , 在Rt △SAO 中,∠SAO =30°, 所以r =23,h =2,所以圆锥的体积为13πr 2·h =13π×(23)2×2=8π.题组二1.A【解析】设酒杯上部分(圆柱)的高为h ,球的半径为R ,则酒杯下部分(半球)的表面积为22R π, 酒杯内壁表面积为2143R π,得圆柱侧面积为223214R R ππ-=283R π,酒杯上部分(圆柱)的表面积为2283R h R ππ⨯=,解得43h R =酒杯下部分(半球)的体积332142233V R R ππ=⨯⨯= 酒杯上部分(圆柱)的体积2314433R V R R ππ=⨯=所以133224323R V V R ππ==. 故选A . 2.B【解析】设正方体的棱长为a,则BD =,因为三棱锥11A BC D -内切球的表面积为4π, 所以三棱锥11A BC D -内切球的半径为1,设11A BC D -内切球的球心为O , 1A 到平面1BC D 的距离为h , 则1114A BC D O BC D V V --=,11114133BC D BC D S h S ∆∆⨯=⨯⨯⨯,4h ∴=, 又(2h ==,4,a == 又因为正方体外接球直接就是正方体对角线长,∴3=,其体积为343363ππ⨯=,故选B . 3.B 【解析】如图,由题意可知PA PE PF ,,两两垂直,∴PA ⊥平面PEF , ∴11111123323PEF A PEF V S PA -=⋅=⨯⨯⨯⨯=△, 设P 到平面AEF 的距离为h ,又2111321212112222AEF S =-⨯⨯-⨯⨯-⨯⨯=△, ∴13322P AEF hV h -=⨯⨯=,∴123h =,故23h =, 故选B . 4. 48π【解析】如图,在等边三角形ABC 中,取AB 的中点F ,设等边三角形ABC 的中心为O ,连接PF ,CF ,OP .由6AB =,得23AO BO CO CF OF ===== PAB △是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又平面PAB ⊥平面ABC ,PF ∴⊥平面ABC ,PF OF ∴⊥,OP =则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(24π48π⨯=,故答案为48π. 5.B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知, r ,R 及圆柱的高的一半构成直角三角形. ∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 6. 8π【解析】由题意作出示意图,设圆柱底面半径为r ,球的半径为R ,∵圆柱的高为2,体积为2π, ∴1OO'=,222r ππ=,得1r =,∴R ,∴此球的表面积248S R ππ==, 故答案为:8π. 7. C【解析】由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π. 8. 见解析【解析】(1)证明 如图,连接AC ,设AC ∩BD =O ,连接OE ,则O 为AC 的中点,且平面P AC ∩平面BDE =OE ,∵P A∥平面BDE,∴P A∥OE,∴E为PC的中点.(2)解由(1)知,E为PC的中点,∴V三棱锥P ABC=2V三棱锥E ABC.由底面ABCD为菱形,∠ABC=60°,AB=2,得S△ABC=34×22=3,∴V三棱锥P ABC=13S△ABC·P A=13×3×2=233.又V三棱锥P ABC=V三棱锥EABC+V三棱锥E P AB,∴V三棱锥E P AB=12V三棱锥P ABC=33.考点25空间点、线、面的位置关系【命题解读】空间点、直线、平面的位置关系是高考常考知识点之一,它的出题形式多样,在选择题或者填空或者解答都有可能涉及,这部分以简单和中档题为主,主要是考察空间想象力和空间思维能力。
高考数学分项版解析 专题10 立体几何 文2
第十章立体几何一.基础题组1.【2005天津,文5】设,,αβγ为平面,,,m n l为直线,则mβ⊥的一个充分条件是()(A),,l m lαβαβ⊥=⊥I(B),,mαγαγβγ=⊥⊥I(C),,mαγβγα⊥⊥⊥ (D) ,,n n mαβα⊥⊥⊥【答案】D2.【2005天津,文13】如图,PA ABC⊥平面,90ACB PA AC BC a∠====o且,则异面直线PB与AC所成的角的正切值等于.2【解析】将此多面体补成正方体'''DBCA D B C P-,PB与AC所成的角的大小即此正方体主对角线PB与棱BD所成角的大小。
tan2PDDBADB∠==23.【2006天津,文7】若l为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:PABC①,;αγβγαβ⊥⊥⇒⊥ ②,;αγβγαβ⊥⇒⊥∥ ③//,.l l αβαβ⊥⇒⊥ 其中正确的命题有( )(A )0个 (B )1个 (C )2个 (D )3个【答案】C【解析】若l 为一条直线,α、β、γ为三个互不重合的平面,下面三个命题:①,;αγβγαβ⊥⊥⇒⊥不正确; ②,;αγβγαβ⊥⇒⊥∥正确;③//,.l l αβαβ⊥⇒⊥正确,所以正确的命题有2个,选C.4.【2006天津,文13】如图,在正三棱柱111ABC A B C -中, 1.AB =若二面角1C AB C --的大小为60o,则点C 1到直线AB 的距离为 。
CBAA 1B 1C 1【答案】35.【2007天津,文6】设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a α∥,b β∥, αβ∥,则a b ∥C .若a α⊂,b β⊂,a b ∥,则αβ∥D .若a α⊥,b β⊥,αβ⊥,则a b ⊥【解析】解:A 、直线a ,b 的方向相同时才平行,不正确;B 、用长方体验证.如图,设A 1B 1为a ,平面AC 为α,BC 为b ,平面A 1C 1为β,显然有a ∥α,b ∥β,α∥β,但得不到a ∥b ,不正确;C 、可设A 1B 1为a ,平面AB 1为α,CD 为b ,平面AC 为β,满足选项C 的条件却得不到α∥β,不正确; D 、∵a ⊥α,α⊥β, ∴a ⊂β或a ∥β 又∵b ⊥β ∴a ⊥b 故选D6.【2007天津,文13】一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 . 【答案】14π【解析】解:长方体外接球直径长等于长方体体对角线长, 即由S=4πR 2=14π. 故答案为:14π7.【2008天津,文5】设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A )βαβα⊥⊥,//,b a (B )βαβα//,,⊥⊥b a (C )βαβα//,,⊥⊂b a (D )βαβα⊥⊂,//,b a 【答案】C【解析】选C ,A 、B 、D 的反例如图.8.【2008天津,文13】若一个球的体积为π34,则它的表面积为________________.【解析】由34433R ππ=得3R =,所以2142S R ππ==.9.【2009天津,文12】如图是一个几何体的三视图.若它的体积是33,则a =_____________.【答案】3【解析】由三视图可知几何体是一个三棱柱,其底面三角形的一边长为2,其边上的高为a,依题3333221=⇒=•••=a a V 三棱柱. 10.【2010天津,文12】一个几何体的三视图如图所示,则这个几何体的体积为__________.【答案】311.【2011天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为 3m .【答案】4【解析】由三视图知,该几何体是由上、下两个长方体组合而成的,容易求得体积为4. 12.【2012天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.【答案】3013.【2013天津,文10】已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为__________.3【解析】由题意知349ππ32V R ==球,32R =.设正方体的棱长为a ,则23a =2R ,a =3,所以正方体的棱长为3.14.【2014天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】20.3π考点:三视图【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为【答案】B 【解析】试题分析:由题意得截去的是长方体前右上方的顶点,故选B. 【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何体中的点、线、面之间的位置关系及相关数据. 二.能力题组 1.【2005天津,文19】如图,在斜三棱柱111ABC A B C -中,1111,,A AB A AC AB AC A A A B a ∠=∠===,侧面11B BCC 与底面ABC 所成的二面角为120o ,,E F 分别是棱111,B C A A 的中点 (I )求1A A 与底面ABC 所成的角; (II )证明1//A E 1平面B FC ;(III )求经过1,,,A A B C 四点的球的体积.B 1A 1C 1CEF【答案】(Ⅰ)60︒;(Ⅱ)详见解析;(Ⅲ)343a V π=【解析】PC 1B 1A 1AB CF EG HO(II ) 证明:设EG 与1B G 的交点为P ,则点P 为EG 的中点,连结PF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【十年高考】(新课标1专版)高考数学分项版解析专题10 立体几何文一.基础题组1. 【2011课标,文8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A. B. C. D .【答案】D【解析】由题意可知,该几何体为一个半圆锥与一个三棱锥组合而成,不难分析出,选项D正确.2. 【2011全国1,文8】【答案】C3. 【2010全国1,文6】直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30° B.45° C.60° D.90°【答案】:C4. 【2005全国1,文2】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8 (C )π24 (D )π4 【答案】B【解析】由题知,截面圆半径为1,距离,截面圆半径,球的半径构成直角三角形,即球的半径的平方=距离的平方+截面圆半径的平方,所以,球的半径等于根号2,球的表面积公式4π*半径的平方,所以,答案是8π5. 【2005全国1,文4】如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为( )(A )32 (B )33 (C )34 (D )23【答案】A【解析】6. 【2011全国1,文15】已知正方体1111ABCD A B C D 中,E 为11C D 的中点,则异面直线AE 与BC 所成的角的余弦值为【答案】237. 【2009全国卷Ⅰ,文15】已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M,若圆M 的面积为3π,则球O 的表面积等于____________.【答案】:16π8. 【2014全国1,文19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.【解析】(1)连结1BC ,则O 为1B C 与1BC 的交点.因为侧面11BB C C 为菱形,所以11B C BC ⊥.又AO ⊥平面11BB C C ,所以1B C AO ⊥,9. 【2013课标全国Ⅰ,文19】(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB =AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C6,求三棱柱ABC-A1B1C1的体积.【解析】(1)证明:取AB的中点O,连结OC,OA1,A1B.10. 【2011全国1,文20】(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.【解析】(Ⅰ):连结BD 过D 作,DE AB E BEDC ⊥于则为正方形2,,1BE DE AE AB BE AE ∴===-∴=又,在22125Rt AED DE ∆+=+=2中,AD=AE ,2SAB SA SB AB ∆∴===为等边三角形,,11. 【2008全国1,文18】四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.C D E AB12. 【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式13. 【2016新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π 【答案】A【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.14. 【2016新课标1文数】平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为 (A )32 (B )22 (C )33 (D )13【答案】A【考点】平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.二.能力题组1. 【2014全国1,文8】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】根据三视图的法则:长对正,高平齐,宽相等.可得几何体如下图所示.2.【2012全国1,文8】已知正四棱柱ABCD-A1B1C1D1中,AB=2,122CC E为CC1的中点,则直线AC1与平面BED的距离为( )A.2 B3 C2 D.1【答案】D又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.3. 【2010全国1,文9】正方体ABCD—A1B1C1D1中,BB1与平面ACD1所成角的余弦值为( )A.23B.33C.23D.63【答案】:D4. 【2009全国卷Ⅰ,文9】已知三棱柱ABC —A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 上的射影为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为( ) A.43 B.45 C.47 D.43 【答案】:D【解析】:设棱长为2,BC 的中点为D, 由题意,得3=AD .在Rt△A 1AD 中,1)3(222221=-=-=AD AA AD .在Rt△A 1BD 中,22211=+=BD D A B A .∵AA 1∥CC 1,∴AB 与AA 1所成的角∠A 1AB 即为AB 与CC 1所成的角.在△A 1AB 中,由余弦定理,得cos∠A 1AB=432222442121221=⨯⨯-+=•-+AB AA B A AB AA .5. 【2007全国1,文7】如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )D 1C 1B1DBCAA 1A.15 B.25 C.35 D.45【答案】:D6. 【2013课标全国Ⅰ,文15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.【答案】:9π2【解析】:如图,设球O 的半径为R ,则AH =23R ,OH =3R . 又∵π·EH 2=π,∴EH =1.∵在Rt△OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2. 7. 【2008全国1,文16】已知菱形ABCD 中,2AB =,120A ∠=o,沿对角线BD 将ABD △折起,使二面角A BD C --为120o,则点A 到BCD △所在平面的距离等于 .【答案】328. 【2011新课标,文18】(本小题满分12分)9. 【2010全国1,文20】如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB =AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(1)证明SE=2EB;(2)求二面角ADEC的大小(2)由SA 22SD AD +5AB =1,SE =2EB ,AB ⊥SA ,知AE 2212()()33SA AB +1,又AD =1,故△ADE 为等腰三角形.取ED中点F,连结AF,则AF⊥DE,AF3. 连结FG,则FG∥EC,FG⊥DE.所以∠AFG是二面角A—DE—C的平面角.连结AG,AG,FG3,cos∠AFG=2222AF FG AGAF FG+-⋅=-12.所以二面角ADEC的大小为120°.故SE =2EB .10. 【2009全国卷Ⅰ,文19】如图,四棱锥S —ABCD 中,底面ABCD 为矩形,SD⊥底面ABCD,2 AD ,DC=SD=2,点M 在侧棱SC 上,∠ABM=60°.(1)证明:M 是侧棱SC 的中点; (2)求二面角S-AM-B 的大小. 【解析】 解法一:(1)作ME∥CD 交SD 于点E,则ME∥AB,ME⊥平面SAD.连接AE,则四边形ABME 为直角梯形. 作MF⊥AB,垂足为F,则AFME 为矩形.设ME=x,则SE=x,由此知∠BGH 为二面角S-AM-B 的平面角. 连接BH.在△BGH 中,323==AM BG ,2221==SM GH ,22222=+=AH AB BH , 所以362cos 222-=••-+=∠GH BG BH GH BG BGH .∴二面角S-AM-B 的大小为arccos(36). 解法二:以D 为坐标原点,射线DA 为x 轴正半轴,建立如图所示的直角坐标系D —xyz. 设A(2,0,0),则B(2,2,0),C(0,2,0),S(0,0,2).11. 【2005全国1,文18】(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90ο底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点。