已用模拟题:士兵考军校数学模拟试题
武警士兵考军校军考模拟题:数学部分(四)
武警士兵考军校军考模拟题:数学部分(四)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1(2010-11)已知向量(3,2),(1,0)a b =-=- ,向量ka b + 与2a b - 垂直,则k=2(2012-16)(10分)在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ----.(1)求已线段AB ,AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足()0AB tOC OC -⋅= ,求t 的值.3(2013-17)(7分)已知12,e e 是夹角为23π的两个单位向量,122a e e =-,12b ke e =+,若a b ⊥,求实数k 的值.4(2014-19)(10分)已知a 、b 、c 是同一平面内的三个向量,其中a=(1,2).(1)若c =c//a ,求向量c 的坐标;(2)若2b =,且a+2b 与2a-b 垂直,求向量a 与b 的夹角. 5.(2007-13)若复数Z 满足(1)Z i +=2,则Z 的实部是6.(2009-9)若复数1a i z i-=+是纯虚数,则a= 7.(2010-10)复数3(1)(2)i i i --+的共轭复数是 8.(2012-1)若复数2(1)a i -是纯虚数,则实数a 的值 ( ) A.1± B.-1 C.0 D.19.(2014-2)在复平面内,复数52i i-的对应点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(2008-9)已知复数1121,1z i z z i =-=+ ,则复数2z =11.(2010-2)复数z 满足1(1)z z i -=+,则z 的值是 ( )A.1i +B.1i -C.iD.i -12(2011-2)设复数122z =-+,则2z z +的值为 ( )A.iB.i -C.1D.-113(2013-4)复数23201...i i i i +++++的值等于 ( )A.1B.-1C.iD.-i14(2014-8)两个圆锥有等长的母线,而他们的侧面展开图恰好拼成一个圆,若它们的侧面积之比为1:2,则它们的高之比为 ( )A .2:1B C.1:215(2007-15)球O 的截面把垂直于截面的直径分为1:3球O 的表面积为16.(2009-13)在北纬60︒圈上有A 、B 两地,它们在此纬度圈上的弧长为2R π(R 是地球的半径),则AB 两地的球面距离是17(2010-15)用平面α截半径R 的球,如果球心到平面α的距离是2R ,那么截得的小圆的面积与球的表面积的比值是18(2011-9)已知球与正方体的表面积相等,则球与正方体的体积之比为 ( )π D.π19.(2013-12)如果球的直径,圆锥的底面直径和圆锥的高三者相等,那么球与圆锥的体积之比是=20(2009-6)设,,m n l 是三条不同的直线,,,αβγ是三阿哥不同平面,则下列命题是真命题的是( )A.若m,n 与l 所成的角相等,则m//nB.若γ与,αβ所成的角相等,则//αβC.若//αβ,m α⊂,则//m βD.若m,n 与α所成的角相等,则m//n21.(2010-7)设,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中真命题是( )A.若//,,l n αβαβ⊂⊂,则//l nB.若,,l αβα⊥⊂则l β⊥C.若,l n m n ⊥⊥,则//l mD.若//,l l βα⊥,则αβ⊥22(2011-8)设有不同的直线a ,b 和不同的平面,,αβγ,给出下列三个命题: ( ) ①若//,,l n αβαβ⊂⊂,则//l n②若,,l αβα⊥⊂则l β⊥③若,l n m n ⊥⊥,则//l m④若//,l l βα⊥,则αβ⊥A.0个B.1个C.2个D.3个23.(2012-15)已知,l m 是两条不同的直线,,αβ是两个不同的平面,下列命题: ①若,,//,l m l ααβ⊂⊂则//αβ②若,//,l l m αβαβ⊂⋂=,则//l m③若,//,l l m αβαβ⊂⋂=,则//l m④若,//,//l m l ααβ⊥,则m β⊥其中真命题是24.(2013-5)设有不同的直线a 、b 和不同的平面,,αβγ,给出下列三个命题: ①若//a α,//b α,则//a b ②若//a α,//a β,则//αβ③若若a γ⊥,βγ⊥,则//αβ其中正确的个数是 () A.0 B.1 C.2 D.325.(2014-9)平面α//β的一个充分条件是( )A.存在一条直线a ,a//α,a//βB.存在一条直线a,a α⊂,//a βC.存在两条平行直线a,b ,,,//,//a b a b αββα⊂⊂D.存在两条异面直线a,b ,,.//,//a b a b αββα⊂⊂26.(2007-19)(14分)在正方体中,M ,N 分别是正方体1111ABCD A B C D -的面对角线1CD 与AB 的中点.(1)求证:MN//平面11ADD A ;(2)求异面直线MN 和AC 所成角的余弦值.27.(2009-22)(13分)如图,在三棱锥P-ABC 中,,,30PA PB PA PB AB BC BAC ==⊥⊥∠=︒,平面PAB ABC ⊥.(1)求证:PA ⊥平面PBC ;(2)求二面角P-AC-B 的平面角的正切值.28(2010-21)(12分)如图,PA ⊥平面ABC ,底面ABC 是以AB 为斜边的直角三角形.(1)求证:平面PBC ⊥平面PAC ;(2)若22PA PB BC ===,求A 点到平面PBC 的距离.29(2011-20)(14分)三棱锥P ABC -中,ABC ∆是正三角形,90PCA ∠=︒,D 为PA的中点,二面角P-AC-B 为120︒,PC=2,AB =(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成角的正弦值. 30(2012-21)(13分)如图,在三棱锥A-BCD 中,AB ⊥平面BCD ,BC=DC=1,90BCD ∠=︒,E ,F 分别为AC ,AD 上的动点,且EF//平面BCD ,二面角B-CD-A 为60︒.(1)求证:EF ⊥平面ABC ;(2)若BE ⊥AC ,求直线BF 和平面ACD 所成角的余弦值.31(2013-21)(12分)如图,在三棱柱111ABC A B C -中,AC=3,BC=4,AB=5, 点D 是AB 的中点.求证:(1)1AC BC ⊥;(2)1AC ⊥平面1CDB .32.(2014-21)(12分)如图,在三棱锥S-ABC 中,平面SAB SBC ⊥,,AB BC AS AB ⊥=,过A 作AF SB ⊥,垂足为F ,点E 、G 分别为棱SA 、SC 的中点.求证:(1)平面EFG ABC ⊥;(2)BC SA ⊥.。
征兵智力测试题目数学(3篇)
一、选择题1. 下列哪个数不是素数?A. 7B. 14C. 17D. 202. 下列哪个数是3的倍数?A. 8B. 15C. 20D. 253. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 25B. 50C. 100D. 1504. 一个班级有40名学生,其中有男生25名,女生15名,男生和女生的人数比是多少?A. 5:3B. 3:5C. 2:3D. 3:25. 一个正方形的边长是8cm,它的周长是多少厘米?B. 32C. 40D. 486. 下列哪个数是5的倍数?A. 7B. 15C. 22D. 257. 一个梯形的上底是6cm,下底是12cm,高是8cm,它的面积是多少平方厘米?A. 48B. 64C. 96D. 1288. 下列哪个数是9的倍数?A. 16B. 18C. 21D. 249. 一个圆的半径是3cm,它的面积是多少平方厘米?A. 9B. 18C. 2710. 一个长方体的长、宽、高分别是6cm、4cm、3cm,它的体积是多少立方厘米?A. 72B. 96C. 108D. 120二、填空题1. 2的平方加3的平方等于______。
2. 下列数列中,下一个数是______。
2,4,6,8,______。
3. 下列数列中,下一个数是______。
1,3,5,7,______。
4. 下列数列中,下一个数是______。
2,4,8,16,______。
5. 一个正方形的边长是12cm,它的面积是______平方厘米。
6. 一个圆的半径是5cm,它的面积是______平方厘米。
7. 一个长方体的长、宽、高分别是8cm、6cm、4cm,它的体积是______立方厘米。
8. 下列数列中,下一个数是______。
9,27,81,243,______。
9. 下列数列中,下一个数是______。
1,1,2,3,5,______。
10. 下列数列中,下一个数是______。
4,9,16,25,______。
部队士兵考军校数学综合练习测试卷及答案
每题仅 1 人作答,则不同的题目分配方案种数为( )
A.24
B.30
C.36
D.42
第 1页(共 5页)
8.记 Sn 为等差数列{an} 的前 n 项和,已知 a2 0 , a6 8 ,则 S10 (
)
A.66
B.68
C.70
D.80
9.设奇函数
f
(x) 对任意的 x1 ,x2
( ,0)(x1
第 3页(共 5页)
所以 a2 b2 的最小值为 5. 故选: C . 7.【解答】解:根据题意,分 2 步进行分析:
①将 4 道题分为 3 组,有 C42=6 种分组方法,
②将三组题目安排给 3 人作答,有 A33=6 种情况,
则有 6×6=36 种分配方案, 故选:C.
8.【解答】解:等差数列{an} 中, a2 0 , a6 8 ,
)
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 a=20.3,b=0.60.3,c=log0.60.3,则( )
A.a>b函数 y x2 x 6 1 的定义域为 (
)
x 1
A.[2 , 3]
B.[2 ,1) (1 , 3]
f (x) f (x) 0 2 f (x) 0 x f (x) 0 ,
x
x
则有 x (2021 , 0) (0 , 2021) ,
故选: D . 10.【解答】解:将函数 f (x) cos x 图象上所有点的横坐标都缩短到原来的 1 ,可
2
得 y cos 2x 的图象,
再向左平移
x2 ) ,有
f (x2 ) f (x1) x2 x1
武警士兵考军校军考模拟题:数学部分(六)
武警士兵考军校军考模拟题:数学部分(六)武警士兵考军校军考模拟题:数学部分(六)关键词:武警考军校军考模拟题京忠教育军考数学武警考试资料x2y231(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.x2y2??1一个焦点的最短弦长为 2(2021-14)过椭圆43x2y2??1,3(2021-7)已知椭圆E的方程为左焦点为F1,如果椭圆E上的一点P到F1的259距离为2,M是线段PF1的中点,O为坐标原点,则OM= () A.4 B.2 C.223 D.8 24(2021-12)以双曲线x?4y?4的中心为顶点,右焦点为焦点的抛物线方程是 5(2021-14)抛物线的顶点坐标在坐标原点,焦点是椭圆x?2y?8的一个焦点,则此抛物线的焦点到准线的距离为6(2021-13)顶点在原点,准线方程是x=2的抛物线的方程是7(2021-20)(11分)已知双曲线16x?9y?144,F1,F2是两个焦点,点P在双曲线上,且满足PF1PF2的值. 1?PF2?32,求?F2222x2y2?1过点(?32,2),则该双曲线的焦点为 8(2021-15)若双曲线2?a49(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.10(2021-10)已知以原点为中心的双曲线的一条准线方程为x?5,离心率e?5,则5该曲线的标准方程为()x2?y2?1 A.4x?y?1 B.422y2?1 C.x?4y?1D.x?4222x2y2x2y2611(2021-8)已知双曲线2?2?1(a?b?0)的离心率是,则椭圆2?2?1的离abab2心率是() A.1223 B. C. D. 23222x2y212(2021-15)已知抛物线y?8x的准线过双曲线2?2?1(a?0,b?0)的一个焦点,ab且双曲线的离心率为2,则该双曲线的方程为213(2021-22)(12分)抛物线与直线y?4x与直线y?2x?k相交,截得的弦长为35,求k的值.x2y2314(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.15(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.16(2021-21)14分)已知椭圆C经过点A(1,),两焦点坐标分别为(?1,0),(1,0). (1)求椭圆C的方程;(2)E,F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.32x2y25217(2021-22)(13分)已知椭圆2?2?1(a?b?0)点P(a,a)在椭圆上.ab52(1)求椭圆的离心率;(2)设点A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足AQ?AO,求直线OQ的斜率.18(2021-5)百米决赛有6 名运动员A、B、C、D、E、F参赛,每个运动员的速度都不同,则远动员A比运动员F先到终点的比赛结果共() A.360种 B.240种 C.120种 D.48种19(2021-4)用数字1,2,3,4,5组成没有重复数字的数,则可以组成的六位数的个数为() A.720 B.240 C.120 D.60020(2021-6)甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则这三位同学不同的选修方案共有() A.48种 B.36种 C.96种 D.192种21(2021-8)名士兵拍成一排,其中甲乙两个必须排在一起的不同排法有() A.720种 B.360种 C.240种 D.120种22(2021-6)如果把4名干部分配到3个中队,每个中队至少要分配一名干部,那么不同的分配方法有() A.45种 B.36种 C.27种 D.9种23(2021-6)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生的选派方法有() A.108种 B.186种 C.216种 D.270种24(2021-7)在50件产品中有4件次品,从中任意抽取5件,至少有3件事次品的抽法共有()A.5种B.4140种C.96种D.4186种25(2021-7)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备看舰,如果甲,乙二机必须相邻,丙,丁不能相邻,那么不同的着舰方法有() A.24种 B.18种 C.12种 D.48种 26(2021-11)过(a?b)20的展开式中第4r项与第r+2项的系数相等,则r= 27(2021-12)在(x?18)的展开式中,x5的系数为 2x28(2021-12)在(2x?18)的展开式中,常数项为3xn29(2021-13)已知(1?2n)的展开式中,二项式系数和为64,则它的二项展开式的中间项是30(2021-13)(2x?31(2021-13)(x?3110)的展开式中,常数项是 22x13x)18的展开式中含x15的项的系数为 12x32(2021-14)在(x?)8的展开式中常数项为33(2021-14)(x?110)的展开式中,x4的系数为 2x34(2021-21)(10分)已知8支球队中有3支弱队,以抽签的方式将8支球队分为A,B两组,每组4支,求:(1)3支弱队分在同一组的概率; (2)A组中至少有两支弱队的概率.35(2021-22)(13分)甲、乙、丙三位毕业生,同时应聘一个用人单位,其中甲被选中的概率是231,乙被选中的概率是,丙被选中的概率是,各自是否被选中相互独立. 543(1)求三人都被选中的概率;(2)求只有两人被选中的概率.36(2021-17)(10分)已知一个口袋中有大小、质地相同的8个球,其中有4个红球和4个黑球,现在从中任取4个球. (1)求取出的球的颜色相同的概率;(2)若取出的红球数不少于黑球数,则可获得奖品,求获得奖品的概率.37(2021-20)(10分)甲乙两人各射击一次,击中目标的概率分别是击是否击中目标之间相互独立,每人各次射击是否击中相互独立. (1)求甲射击4次,至少有1次击中目标的概率;23和,假设两人射34(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.38(2021-18)(12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知选手甲能正确回答第一、二、三、四轮问题的概率分别为4321,,,,且各轮问题能否正确回答互不影响. 5555(1)求选手甲进入第四轮才被淘汰的概率;(2)求选手甲至多进入第三轮考核的概率.39(2021-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为每次射击击中目标的概率为4,若使用没有校正的枪,51,假设没几是否击中之间相互没有影响. 5(1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率.40(2021-16)(10分)战士小张考政治、语文、数学、外语4门课程,各课程考试成绩之间相互独立,其各门课程合格的概率分别为(1)求小张一门都不合格的概率;(2)求小张恰好有三门课程合格的概率.41(2021-20)(10分)袋中有大小相同的6个球,其中有4个红球,2个白球. (1)若任取3个球,求至少有一个白球的概率;(2)若有放回的取球3次,求恰好有1个白球的概率.4231,,,. 5342感谢您的阅读,祝您生活愉快。
军校考试数学模拟题三及答案
军校考试模拟题(一)一、(36分)本题共有9小题,每个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个结论是正确的。
把正确结论代号写在题后的括号内,选对得4分,不选、错选或选出的代号超过一个(不论是否都写在括号内),一律得0分。
1.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则( )A .U AB =⋃ B .B CuA U ⋃=)(C .)()(CuB CuA U ⋃=D .)(CuB A U ⋃=2.函数x y 2cos 1+=的图象( )A .关于x 轴对称B .对称关于原点对称C .关于直线2π=x 对称 D .关于直线4π=x3.若a 、b 为空间两条不同的直线,α、β为空间两个不同的平面,则a α⊥的一个充分条件是( )A .//a β且αβ⊥B .a β⊂且αβ⊥C .a b ⊥且//b αD .a β⊥且//αβ4.已知命题p :“若|sin |1α=,则2k παπ=+,k Z ∈”;命题q :“若||||1a b +>,则||1a b +>” .则( )A .p 真q 假 B .p 假q 真 C .“p 或q ”假 D .“p 且q ”真 5.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( )A.13B.16C.23D.126.设11, 2OM⎛⎫= ⎪⎝⎭,()0, 1ON =,则满足条件01OP OM ≤⋅≤,01OP ON ≤⋅≤的动点P 的变化范围(图中阴影部分含边界)是( )7.实数满足,sin 1log 3θ+=x 则91-+-x x 的值为( )A .8B .-8C .8或-8D .与θ无关8.在数列{}i a 中,{}20,3,2,1,1,0,1 =-∈i a i ,且820321=++++a a a a ,46)1()1()1(2202221=++++++a a a ,则)20,,2,1( =i a i 中1的个数是( )A .7B .9C .11D .12 9.已知0<a <1,m <n a log <0,则( )A. B.C.D.二、(32分)本题共有8个小题,每个小题4分。
武警部队院校招生统考士兵本科及士官高等职业技术教育《数学》模拟试题及详解(一)
D.63 种
【答案】B
【解析】解法 1:2 人中有 1 名女生的选法有
种;2 人都是女生的选法
有
种,上述两类选法均符合题意,故所有选法种数共有
种;
解法 2:从 10 名学生中选 2 名有
种选法,选出的 2 人都是男生的选法有
种,故所求选法有
种.
7.已知 a.b、c 为三条丌重合的直线,下面有三个结论:①若 a⊥b,a⊥c,则 b∥c; ②若 a⊥b,a⊥c,则 b⊥c;③若 a∥b,b⊥c,则 a⊥c.其中正确的个数为( ).
3
.
已
知
0
<
a
<
1
,
,则( ).
【答案】C
【解析】由对数运算法则
函数
是减函数,
,而 0<a<1, .
4.关亍 x 的丌等式 A.{x∣5a<x<-a}
的解集是( ).
B.{x∣-a<x<5a}
C.{x∣x>-a 或 x<5a}
D.{x∣x>5a 或 x<-a}
【答案】C 【解析】原丌等式化简为(x+a)(x-5a)>0,又 a<0,则 5a<-a,所以丌等式 的解为:x>-a 或 x<5a.
圣才电子书 十万种考研考证电子书、题库视频学习平台
即第一象限中双曲线的渐近线不椭圆 C 的交点坐标为
.所以四边形的面
积为
所以 b2=5.所以椭圆方程为
.
二、填空题(本大题包括 5 小题,每小题 5 分,共 】[3,+∞)
9.经过点 P(1,4)且不两条坐标轴围成的三角形面积等亍1的直线方程是( ). A.2x-y+2=0 B.8x-y-4=0 C.3x-y+1=0或2x-y+2=0 D.2x-y+2=0或8x-y-4=0 【答案】D
2022年军考数学模拟测试卷及答案
则“ x 1 ”是“ log3 (x 1) 0 ”的必要不充分条件,
故选: B .
10.【解答】解:对于 A ,直线的斜率为 k tan ,当 [0 , ) 时直线的倾斜角是
但条件中没有 [0 , ) ,故 A 不正确;
对于
B
,若
A(x1 ,y1) 、B(x2
,y2 ) ,当直线
AB
C. y x (x0)
D. y x (x0)
9.“ x 1 ”是“ log3 (x 1) 0 ”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
10.下列说法正确的是 ( )
A.一条直线的斜率为 k tan ,则这条直线的倾斜角是
B.过点
A(x1 ,
f
(x)
x2 3, x 0 x3 , x 0
,则
f
(
f
(1))
.
15.若直线 l : y ax 2 经过点 P(1, 6) ,则圆锥曲线 C : x2 y2 1的离心率为 . a 16
16.若
n
Z
,且 3n6
,则
(x
1 x3
)n
的展开式中的常数项为
.
17.若数列 {an} 满足 an1 2an 1, a1 1 ,则 a3
故选: A . 2.【解答】解:与 20 终边相同的角一定可以写成 k 360 20 的形式, k Z , 令 k 1 可得, 20 与 340 终边相同, 故选: D .
2x 1 0 3.【解答】解:要使函数有意义,则 lg(2x 1) 0 ,
得
x
1 2
,
x 1
得 x 1 且 x 1, 2
部队高中士兵军考数学模拟试题(二)
高中学历士兵考军校数学科目测试题关键词:士兵考军校试题军考数学试卷军考教材士兵考军校教材军考复习资料解答题(18、19题,每题11分;20-24题,每题12分;共82分)18.已知函数f(x)=2|x+1|+|x-2|,求f(x)的最小值m.19.已知函数f(x)=2cos x(sin x+cos x).(1)求f5π4⎛⎫⎪⎝⎭的值;(2)求函数f(x)的最小正周期及单调递增区间.20.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).21.某市公租房的房源位于A 、B 、C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数ξ的分布列与期望.22.已知a ,b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e)=2(e =2.71828…是自然对数的底数).(1)求实数b 的值;(2)求函数f (x )的单调区间.23.如下图所示,在三棱柱ABC -111A B C 中,1CC 平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =,AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B-CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.24.已知椭圆C :x 2a 2+y 2b 2=1过A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.。
2021年军考解放军武警(高中学历)士兵考军校数学仿真试卷及答案
故答案为:2+2 .
16.【详解】令 t=f(a), 则 f(t)≤0, 当 t≤1 时,有 2t2﹣2≤0, 解得﹣1≤t≤1; 当 t>1 时,lgt≤0, 解得 0<t≤1,不成立. 即有﹣1≤f(a)≤1, 当 a≤1 时,﹣1≤2a2﹣2≤1,
解得 a 或
a
,
则有 a≤1 或
a
;
当 a>1 时,有﹣1≤lga≤1,
∵NC1=2NB1,∴CP⊥BN,
又 DC⊥平面 BCC1B1,∴DC⊥BN,则 BN⊥平面 DCP, 则 M 点的轨迹为平面 DCP 与球 O 的截面圆周. 建立如图所示的坐标系,则 D(0,0,0),C(0,6,0),P(6,6,2),O(3,3, 3), 设平面 DOP 的法向量为 (x,y,z),
7.已知 6 个高尔夫球中有 2 个不合格,每次任取 1 个,不放回地取两次,在第一次取
第 1页(共 11页)
到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为( )
A.
B.
C.
D. t
8.在△AnBn∁n 中,记角 An、Bn、∁n 所对的边分别为 an、bn、cn,且这三角形的三边长
是公差为 1 的等差数列,若最小边 an=n+1,则
()
A.
B.
C.
D.
9.点 M 是棱长为 6 的正方体 ABCD﹣A1B1C1D1 的内切球 O 球面上的动点,点 N 为 B1C1
上一点,2NB1=NC1,DM⊥BN,则动点 M 运动路线的长度为( )
A.
B.
t
C.
D.
二.填空题(共 8 小题)
10.lg 2lg2﹣( )﹣1=
.
11.已知 sin(α ) ,α∈(0,π),则 cos(2α )=
武警士兵考军校军考模拟题:数学部分(二)
武警士兵考军校军考模拟题:数学部分(二)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1.(2009-10)cos 600︒=2.(2011-4)在三角形ABC 中,若cos cos 0A B ⋅=,则ABC ∆的形状一定是 ( ) A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形3.(2010-9)44cossin 88ππ-=4.(2011-12)已知sin cos )2πααα-=<<,则sin cos αα+= 5.(2007-5)已知(,)42x ππ∈,下列式子中成立的是 ( ).sin cos tan A x x x >>.cos tan sin B x x x >> .cos sin tan C x x x >>.tan sin cos D x x x >>6.(2008-16)(10分)已知函数21()cos ()32f x x π=+-,12()sin(2)23g x x π=+,求()()()h x f x g x =-的极大值及取得极大值时x 的值.7.(2009-16)(10分)已知函数()cos cos )1()f x x x x x R =-+∈. (1)求5()12f π的值; (2)求函数()f x 在区间[,]62ππ上的最大值和最小值.8.(2009-16)(10分)已知函数()cos cos )1()f x x x x x R =-+∈.、 (1)求5()12f π的值; (2)求函数()f x 在区间[,]62ππ上的最大值和最小值. 9.(2010-18)(10分)设向量(cos23,cos67),(cos68,cos22),()a b u a tb t R =︒︒=︒︒=+∈.(1)求a b ⋅的值; (2)求u的模的最小值.10.(2007-10)函数22cos 21y x x =+的最小正周期11.(2010-9)44cossin 88ππ-=12.(2012-18)(10分)求证:(cossin)(cossin)(1tan tan)122222αααααα+-+⋅=.13.(2013-11)已知40,sin ,25παα<<=求22sin sin 2cos cos 2αααα++= 14.(2007-16)(8分)求证:32sin tan tan 22cos cos 2x x xx x-=+. 15.(2008-16)(10分)已知函数21()cos ()32f x x π=+-,12()sin(2)23g x x π=+,求的极大值及取得极大值时x 的值.16.(2011-17)(12分)已知向量(sin ,cos ),,cos )a x x b x x ==,且0b ≠ ,函数()21f x a b =⋅-.(1)求函数()f x 的最小正周期及单调递增区间;(2)若//a b ,分别求tan x 及cos 2()1xf x +.17.(2014-6)在锐角ABC 中,角A 、B 所对的边长分别为a 、b ,若2sin a B =,则角A 等于( ).6A π.4B π.3C π.12D π18.(2010-16)(10分)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知222b c a +=, (1)求A 的值;(2)2sin sin sin()B C B C --. 19.(2012-2)在ABC ∆中,若2cos22A a cc+=,则ABC ∆一定是 ( ) A.等边三角形 B.直角三角形 C.等腰直角三角形 D.无法确定20.(2013-18)(10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,点(a,b )在直线(sin sin )sin sin x A B y B c C -+=上. (1)求角C 的度数;(2)若3a b ==,求三角形面积.21.(2014-18)(10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且s i n b A B=.(1)求角B 的度数;(2)若b =ac 的最大值.22.(2008-10)在ABC ∆中,120A ∠=︒,AB=5,BC=7,则ABC ∆的面积S=23.(2013-18)(10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,点(a,b )在直线(sin sin )sin sin x A B y B c C -+=上. (1)求角C 的度数;(2)若3a b ==,求三角形面积.24.(2007-12)设等差数列{}n a 的前n 项和为n S ,若28515a a a +=-,则9S =25.(2008-4)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =则789a a a ++= ( ) A.63 B.45 C.36 D.2725.(2009-5)已知,,a b c 成等差数列,则二次函数22y ax bx c =++的图像与x 轴的交点个数为 ( ) A.0 B.1 C.2 D.1或226.(2012-4)在等差数列{}n a 中,14736939,27a a a a a a ++=++=,则{}n a 的前9项之和为 ( ) A.66 B.99 C.144 D.29727.(2013-2){}n a 为等差数列,若34567450a a a a a ++++=,则28a a +的值为 ( )B.45 B.90C.180D.36028.(2009-18)(10分)在数列{}n a 中,13a =-,*1223(2,)n n n a a n n N -=++≥∈. (1)求23,a a 的值; (2)设*3()2n n na b n N +=∈,证明:{}n b 是等差数列. 29(2010-20)(10分)甲乙两人各射击一次,击中目标的概率分别是23和34,假设两人射击是否击中目标之间相互独立,每人各次射击是否击中相互独立. (1)求甲射击4次,至少有1次击中目标的概率;(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.30(2012-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为45,若使用没有校正的枪,每次射击击中目标的概率为15,假设没几是否击中之间相互没有影响. (1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率. 31(2009-11)21lim(12...)n n n →∞+++=32(2012-10)223323232323(...)6666lim n nn →∞++++++++=。
士兵军考试题:军队院校招生文化科目统一考试——士兵高中数学模拟试题
阶段性检测试题一、选择题(共9小题,每题4分)1、已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( D )A .∅B .(0,13]C .[13,1] D .(-∞,1](1)由题意知,A =(0,1],B =(-∞,13],∴A ∪B =(-∞,1].故选D.2.已知等比数列{an}的公比为正数,且a 3a 9=2a 52,a 2=2,则a 1=( C )D .2解析:选C.由等比数列的性质得 , ∵q>0,∴a6=2a5,q =a6a5=2,a1=a2q=2,故选C.3.已知f(x)=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f(x)<0,则( D )A .p 是假命题,⌝p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x)≥0B .p 是假命题,⌝p :∃x0∈⎝ ⎛⎭⎪⎫0,π2,f(x0)≥0C .p 是真命题,⌝p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f(x)>0D .p 是真命题,⌝p :∃x0∈⎝⎛⎭⎪⎫0,π2,f(x0)≥0解析:选D.因为f′(x)=3cos x -π,所以当x∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x)<0,函数f(x)单调递减,所以∀x ∈⎝⎛⎭⎪⎫0,π2,f(x)<f(0)=0,所以p 是真命题,又全称命题的否定是特称命题,所以答案选D.4.已知向量a ,b 满足|a|=3,|b|=23,且a⊥(a+b),则a 与b 的夹角为(D )解析:选⊥(a+b)⇒a·(a+b)=a2+a·b=|a|2+|a||b|cos 〈a ,b 〉=0,故cos 〈a ,b 〉=-32,故所求夹角为5π6.5.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( A ) A .f(x)=21xB .f(x)=x 2+1 C .f(x)=x 3 D .f(x)=2-x解析:选中f(x)=1x2是偶函数,且在(-∞,0)上是增函数,故A 满足题意.B 中f(x)=x2+1是偶函数,但在(-∞,0)上是减函数.C 中f(x)=x3是奇函数.D 中f(x)=2-x 是非奇非偶函数.故B ,C ,D 都不满足题意.6.已知lg a +lg b =0,则函数f(x)=a x 与函数g(x)=-log b x 的图象可能是( B)解析:选B.∵lg a +lg b =0,∴ab =1,∵g(x)=-logbx 的定义域是(0,+∞),故排除A. 若a >1,则0<b <1, 此时f(x)=ax 是增函数, g(x)=-logbx 是增函数, 结合图象知选B.7、已知数列{an}的前n 项和为Sn ,a 1=1,S n =2a n +1,则S n =( B ) A .2n -1 n -1n -1[解析] (1)由已知Sn =2an +1,得Sn =2(Sn +1-Sn),即2Sn +1=3Sn ,Sn +1Sn =32,而S1=a1=1,所以Sn =⎝ ⎛⎭⎪⎫32n -1.[答案] B8.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z的最大值为( B )A .0B .1 D .3 解析:选=x 2-3xy +4y 2(x >0,y >0,z >0),∴xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1. 当且仅当x y =4yx,即x =2y 时等号成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴2x +1y -2z =22y +1y -22y 2=-1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1,∴当y =1时,2x +1y -2z 的最大值为1.9.已知{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( C )A .40B .200C .400D .20解析:选-2S10=20(a 1+a 20)2-2×10(a 1+a 10)2=10(a 20-a 10)=100d . 又a 10=a 2+8d , ∴33=1+8d , ∴d =4.∴S 20-2S 10=400.二、填空题(共8小题,每题4分)1、函数f (x )=10+9x -x 2lg (x -1)的定义域为( )解析:要使函数有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得-1≤x ≤10.所以不等式组的解集为(1,2)∪(2,10]. 2、函数y =)24cos(x -π的单调减区间为________.(3)由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4,得2k π≤2x -π4≤2k π+π(k∈Z),故k π+π8≤x ≤k π+5π8(k∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k∈Z).3、函数f(x)=43323--+x x x 在[0,2]上的最小值是( ) A .-173B .-103C .-4D .-643解析:选′(x)=x2+2x -3,令f′(x)=0,得x =1(x =-3舍去), 又f(0)=-4,f(1)=-173,f(2)=-103,故f(x)在[0,2]上的最小值是f(1)=-173.4、某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析:根据三视图还原几何体,得如图所示的三棱锥PABC.由三视图的形状特征及数据,可推知PA⊥平面ABC ,且PA =2.底面为等腰三角形,AB =BC ,设D 为AC 中点,AC =2,则AD =DC =1,且BD =1,易得AB =BC =2,所以最长的棱为PC ,PC =PA2+AC2=2 2. 答案:225、若数列{a n }满足a 1=15,且3a n +1=3a n -4,则a n =________.解析:由3a n +1=3a n -4,得a n +1-a n =-43,所以{a n }是等差数列,首项a 1=15,公差d =-43,所以a n =15-43(n -1)=49-4n3.答案:49-4n36、若命题“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________.因为“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.7、若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则 f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________. ∵f (x )是以4为周期的奇函数,∴f ⎝ ⎛⎭⎪⎫294=f ⎝ ⎛⎭⎪⎫8-34=f ⎝ ⎛⎭⎪⎫-34,f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫8-76=f ⎝ ⎛⎭⎪⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ),∴f ⎝ ⎛⎭⎪⎫34=34×⎝⎛⎭⎪⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝ ⎛⎭⎪⎫76=sin 7π6=-12.又∵f (x )是奇函数,∴f ⎝ ⎛⎭⎪⎫-34=-f ⎝ ⎛⎭⎪⎫34=-316,f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫76=12.∴f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=12-316=516.8.设函数f(x)=ax 3-3x +1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a 的值为________.解析:(构造法)若x =0,则不论a 取何值,f (x)≥0显然成立; 当x>0时,即x∈(0,1]时,f(x)=ax3-3x +1≥0可化为a≥3x2-1x3.设g(x)=3x2-1x3,则g′(x)=3(1-2x )x4,所以g(x)在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎣⎢⎡⎦⎥⎤12,1上单调递减,因此g(x)max =g ⎝ ⎛⎭⎪⎫12=4,从而a≥4.当x<0时,即x∈[-1,0)时,同理a≤3x2-1x3.g(x)在区间[-1,0)上单调递增, ∴g(x)min =g(-1)=4, 从而a≤4,综上可知a =4. 答案:4三.计算下列各题:(18分)(1)12lg 3249-43lg 8+lg 245; 解:(1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg (2×5)=12.(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.求角A 的大小; [解] (1)由题意知,根据正弦定理得2a2=(2b +c)b +(2c +b)c , 即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bccos A , 故cos A =-12,A =120°.四、(12分)已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若q p ⌝⌝是的必要不充分条件,求实数m 的取值范围。
2021年军考教材 高中士兵考军校数学试题
高中士兵考军校 军考数学科目必刷卷关键词:冠明军考 军考教材 军考复习资料 军考模拟试卷 2021军考教材一、选择题(每小题4分,共36分)1.设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A.[1,2) B.[1,2] C.(2,3] D.[2,3]2.设实数a ,b ,c 分别满足323log 1,log 1,22a a b b c c ==+=,则a ,b ,c 的大小关系为( ) A.a >b >cB.b >a >cC.c >b >aD.a >c >b3.若a ,b 为实数,则“0<ab <1”是“a <1b或b >1a”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知数列{}n a 是公差为2的等差数列,且125a a a 、、成等比数列,则前8项和8S 等于( )A.44 B.64C.8D.2555.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B.4C.92D.5 6.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( ) A.24个 B.30个 C.40个 D.60个7.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军。
若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12B.35C.23D.348.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.489.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱 锥S -ABC 的体积为( ) A.33B.233C.433D.533二、填空题(每小题4分,共32分)10.已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 12.设复数z 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________. 13.函数f (x )=5log (2x +1)的单调增区间是________.14.18x ⎛ ⎝的展开式中含x 15的项的系数为________.(结果用数值表示) 15.已知sin α=12+cos α,且α∈π0,2⎛⎫⎪⎝⎭,则cos 2πsin 4αα-⎛⎫ ⎪⎝⎭的值为________.16.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。
军考(大专考试)数学模拟试卷及答案
+ ������ ������ ������ = ������ (������ )的通解是。
三、 计算题.(每小题 10 分,共 30 分) 1.求不定积分
x+sin ������ 1+cos ������
������������ .
2.求下列微分方程满足所给初始条件的特解. ������ ′′ − 4������ ′ + 3������ = 0 , ������ 0 = 6 , ������ ′ 0 = 10 3.求极限lim������→0
大专模拟试卷(数学)
一、 单项选择题(每小题 6 分,共 30 分) 1.设x → 0时,������ tan ������ − ������ ������ 与������ ������ 是同阶无穷小,则 n 为() A:1B:2C:3 2.
������ ������ ������
D:4 ,则������ ′
4.-3 5.y = ������ −
������ (������ )������������
������ ������ ������
������ (������ )������������
������������ + ������
三、1.P485 四、P486
2.P485
3.P481
1 2
������
1
1 ������ 2 2
=
1 ������
=()
A: C:
B:-1
2 D:-4 )
3.若 f(x)的导函数是sin ������ ,则 f(x)有一个原函数为( A:1+ sin ������ B:1- sin ������ C:1- cos ������ D:1+ cos ������
2020军队院校统一考试数学模拟试卷一
2020年军队院校招生文化科目统一考试数学模拟试题第一套卷一 选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号内。
)1 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(B ∩A={9},则A=( )A . {1,3}B . {3,7,9} C. {3,5,9} D . {3,9}2已知不等式()()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-56<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )A. c b a >>B. c a b >>C. b a c >>D. a c b >>4设0>ω,函数2)3sin(++=πωx y 的图像向右平移34π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 23 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f( )A 3B 2C -1D -36 ()()3411x x --的展开式2x 的系数是 ( ) A -6 B -3 C 0 D 37 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为 ( )A 3B 4C 5D 68 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( )A m ∥β且1l ∥αB m ∥1l 且n ∥2lC m ∥β且n ∥βD m ∥β且n ∥2l二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。
2021年(高中士兵)军考数学专项练习测试卷及答案
2021年军考-高中学历士兵考军校-数学专项测试卷基础练习(二项式与概率)1.在62()x x-的二项式展开式中,常数项为()A .160B .160-C .60D .60-2.在6(2)x -展开式中,2x 的系数为()A .240B .240-C .160-D .1603.82(x x+的展开式中4x 的系数是()A .28B .56C .112D .2564.在61(2)x x+的展开式中常数项是()A .60B .120C .160D .9605.若26246810120123456(2)x a a x a x a x a x a x a x +=++++++,则05(a a +=)A .88B .86C .76D .666.某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是()A .35B .40C .45D .607.某单位共有职工300名,其中高级职称90人,中级职称180人,初级职称30人.现采用分层抽样方法从中抽取一个容量为60的样本,则从高级职称中抽取的人数为()A .6B .9C .18D .368.袋子中有5个大小质地完全相同的球,其中3个红球和2个白球,从中不放回地依次随机摸出两个球,则摸出的两个球颜色相同的概率为()A.15B.25C.35D.459.现从甲、乙等6人中随机抽取2人到幸福社区参加义务劳动,则甲、乙仅有1人被抽到的概率为()A.25B.715C.815D.3510.从A,B,C三个同学中选2名代表学校到省里参加全国高中数学联赛,A 被选中的概率是()A.1B.23C.12D.1311.某生物实验室有20颗开紫花的豌豆种和25颗开白花的豌豆种,若从这些豌豆种中随机选取1颗,则这颗种子是开紫花的豌豆种的概率为()A.49B.59C.13D.2312.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是()A.13B.12C.23D.113.将甲、乙等4名交警随机分配到两个不同路口疏导交通,每个路口两人,则甲和乙不在同一路口的概率为()A.12B.13C.23D.1414.某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为()A.18B.38C.78D.8915.甲乙俩人投篮相互独立,且各投篮一次命中的概率分别是0.4和0.3,则甲乙俩人各投篮一次,至少有一人命中的概率为()A.0.7B.0.58C.0.12D.0.4616.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为()A.0.24B.0.36C.0.6D.0.84 17.2019年10月1日,在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学学院的甲、乙、丙三名同学被选上的概率分别为13,14,16,这三名同学中至少有一名同学被选上的概率为()A.13B.512C.712D.23参考答案与详解1.【解答】解:展开式的常数项为333333662(()2(1)208(1)160C x C x-=⨯⨯-=⨯⨯-=-,故选:B .2.【解答】解:展开式的通项公式为661662()(1)2r r r r r r r r T C x C x --+=-=-,令2r =,则展开式中含2x 项的系数为2246(1)21516240C -=⨯=,故选:A .3.【解答】解:82(x x +的展开式的通项公式为8821882(2r r r r r r r T C x C x x--+==,令824r -=,解得2r =,所以82(x x+的展开式中4x 的系数是2282112C =.故选:C .4.【解答】解:在61(2)x x+的展开式的通项公式为26162r r r r T C x -+=⋅⋅,令260r -=,求得3r =,可得展开式的常数项是3362160C ⋅=,故选:C .5.【解答】解:令0x =得60264a ==,5a 为10x 的系数,即556212a C =⋅=,则05641276a a +=+=,故选:C .6.【解答】解:某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是8003508045800-⨯=,故选:C .7.【解答】解:共有教师300人,其中高级职称90人,中级职称180人,初级职称30人,现用分层抽样方法抽取一个容量为60的样本,则高级职称中抽取的人数为:9060189018030⨯=++.故选:C .8.【解答】解:袋子中有5个大小质地完全相同的球,其中3个红球和2个白球,从中不放回地依次随机摸出两个球,基本事件总数5420n =⨯=,摸出的两个球颜色相同包含的基本事件个数32218m =⨯+⨯=,则摸出的两个球颜色相同的概率为:82205m P n ===.故选:B .9.【解答】解:现从甲、乙等6人中随机抽取2人到幸福社区参加义务劳动,基本事件总数2615n C ==,甲、乙仅有1人被抽到包含的基本事件个数11248m C C ==,则甲、乙仅有1人被抽到的概率为815m P n ==.故选:C .10.【解答】解:从A ,B ,C ,三个同学中选2名代表学校到省里参加全国高中数学联赛,共有AB ,AC ,BC ,3个基本事件,A 被选中共有2个基本事件,分别为:AB ,AC ,A ∴被选中的概率是23P =,故选:B .11.【解答】解:由古典概型可知,这颗豌豆种是开紫花的豌豆种的概率为:20420259P ==+.故选:A .12.【解答】解:盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,基本事件总数3n =,取到白球包含的基本事件个数1m =,∴取到白球的概率是13P =.故选:A .13.【解答】解:将甲、乙等4名交警随机分配到两个不同路口疏导交通,每个路口两人,基本事件总数22426n C C ==,甲和乙不在同一路口包含的基本事件个数11224m C C ==,则甲和乙不在同一路口的概率为4263m P n ===.故选:C .14.【解答】解:某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为:2223344444222228()(1)()(1)(333339P C C C =-+-+=.故选:D .15.【解答】解:甲乙俩人投篮相互独立,且各投篮一次命中的概率分别是0.4和0.3,则甲乙俩人各投篮一次,至少有一人命中的概率为:1(10.4)(10.3)0.58P =---=.故选:B .16.【解答】解:某班级举办投篮比赛,每人投篮两次,小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为:1(10.6)(10.6)0.84P =---=.故选:D .17.【解答】解:军事科学学院的甲、乙、丙三名同学被选上的概率分别为13,14,16,∴这三名同学中至少有一名同学被选上的概率为:11171(1)(1)P=----=.34612故选:C.。
2020士兵考军校数学考试模拟试卷 军考资料
部队高中士兵考军校数学模拟试卷关键词:冠明军考 部队考军校试卷 军考教材 军考试卷 考军校复习资料 军考资料 军考模拟试卷解答题(18、19题,每题11分;20-24题,每题12分;共82分)18.解方程:lg(x +1)+lg(x -2)=lg4.19.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos 2cos cos A C B -=2c a b-. (1)求sin sin C A的值; (2)若cos B =14,b =2,求△ABC 的面积S .20.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .21.小李到某地在路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2秒. (1)求小李在路上到第三个路口时首次遇到红灯的概率;(2)小李在路上因遇到红灯停留的总时间至多是4秒的概率.22.已知函数32()10f x x ax =-+,(1)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得()0f x <成立,求实数a 的取值范围.23.如下图所示,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面P AC 所成角的正弦值.24. P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为l的直线交双曲线于A,B两点,O为坐标原点,C 为双曲线上一点,满足OC=λOA+OB,求λ的值.。
高中士兵学历军考数学模拟试卷及答案
高中士兵学历军考数学模拟试卷及答案关键词:冠明军考 军考模拟试卷 军考教材 士兵考军校教材 士兵考军校试卷一、选择题(每小题4分,共36分)1.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b . 其中真命题的个数是( ) A .0 B .1 C .2 D .33.i 是虚数单位,复数7i34i ( )A.1iB.1+i -C.1731+i 2525 D.1725+i 77-4.设U 为全集.A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =φ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A.6+2 3 B.7+2 3 C.6+4 3 D.7+4 36.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC的形状为( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.22+45361x y = B.22+36271x y = C.22+27181xy=D.22+1891xy=8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π9.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A.1 B.2 C.3 D.4二、填空题(每小题4分,共32分)10.数列}{n a 满足11=a ,且11+=-+n a a n n (n *∈N ),则数列}1{na 的前10项和为 .11.i 是虚数单位,复数.12.在极坐标系中,直线4cos()106ρθπ-+=与圆=2sin ρθ的公共点的个数为 .13.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于 .14.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数为 .15.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为 .16.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为 . 17.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b = . 三、解答题(18、19题,每题11分;20-24题,每题12分;共82分) 18.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图像上(*n ∈N ). (1)若12a =-,点87(,4)a b 在函数()f x 的图像上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图像在点22()a b ,处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.在平面直角坐标系xOy 中,已知向量222m ⎛= ⎝⎭,()=sin ,cos n x x ,π0,2x ⎛⎫∈ ⎪⎝⎭. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.21.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列及均值E (X ).22.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.23.已知点A (0, 2),椭圆E :2222+x y a b +=1(a>b>0)2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.24.如下图所示,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE= CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D 'EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ ABCFE 的体积.。
高中毕业生士兵考军校数学科目专项测试卷及答案
2021年军考-高中学历士兵考军校-数学专项测试卷高中数学集合与函数1.设集合2{|20}A x R x x =∈-,{|1327}x B x N =∈< ,则()(R A B = ð)A .(0,1)B .[1,2]C .(2,3]D .{3}2.已知集合2{|(23)}A x y ln x x ==--,{|230}B x x =->,全集为U R =,则()(U A B = ð)A .(-∞,31)(2-⋃,)+∞B .3(2,3]C .[1-,3]D .3(2,)+∞3.已知全集U R =,集合2{|}A x x x =,集合{|21x B x = ,则()(U A B = ð)A .(0,)+∞B .[1,)+∞C .(,1)-∞D .(0,1)4.若a 为实数,则“1a <”是“11a>”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件5.“|1|2x -<成立”是“(3)0x x -<成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是()A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-7.函数3()1f x x =+()A .(,1)-∞-B .(1-,3]C .(-∞,1)(1--⋃,3]D .(-∞,1)(1--⋃,3)8.函数|34|,2()2,21x x f x x x -⎧⎪=-⎨>⎪-⎩则不等式()1f x 的解集是()A .5(,1)[,)3-∞+∞ B .5(,1][,3]3-∞ C .5[1,3D .5[,3]39.函数21()2f x x x=-的单调递增区间是()A .(-∞,1]B .(,0)-∞,(0,1)C .(-∞,0)(0⋃,1)D .(1,)+∞10.下列函数中,既是(0,)+∞上的增函数,又是偶函数的是()A .1y x=B .2x y =C .1||y x =-D .||y lg x =11.已知函数212()log (45)f x x x =--,则函数()f x 的减区间是()A .(,2)-∞B .(2,)+∞C .(5,)+∞D .(,1)-∞-12.函数y =的单调增区间是()A .(-∞,2]B .[1,2]C .[1,3]D .[2,3]13.下列函数中,在(0,)+∞内单调递增,并且是偶函数的是()A .2(1)y x =--B .cos 1y x =+C .||2y lg x =+D .2xy =14.下列函数在R 上是增函数的是()A .1y x =-+B .2y x =C .3x y =D .1y x=-参考答案1.【解答】解:[0A = ,2],{|03}{1B x N x =∈<= ,2,3},(R A ∴=-∞ð,0)(2⋃,)+∞,(){3}R A B ∴= ð.故选:D .2.【解答】解:2{|230}{|1A x x x x x =-->=<- 或3}x >,3{|}2B x x =>,U R =,{|13}U A x x ∴=- ð,3()(,3]2U A B = ð.故选:B .3.【解答】解: 全集U R =,集合2{|}{|0A x x x x x == 或1}x ,集合{|21}{|0}x B x x x ==,{|0}A B x x ∴= ,则(){|0}(0U A B x x =>= ð,)+∞.故选:A .4.【解答】解:由11a>得01a <<,则“1a <”是“11a>”的必要不充分条件,故选:B .5.【解答】解:由|1|2x -<解得:2121x -+<<+,即13x -<<.由(3)0x x -<,解得03x <<.“|1|2x -<成立”是“(3)0x x -<成立”必要不充分条件.故选:B .6.【解答】解:302x << ,023x ∴<<,0133x ∴<-<,解得:2133x -<<,故选:A .7.【解答】解:要使原函数有意义,则1030x x +≠⎧⎨-⎩ ,解得3x 且1x ≠-.∴函数3()1f x x =+(-∞,1)(1--⋃,3].故选:C .8.【解答】解:当2x 时()1f x ,即为|34|1x - 解得1x或53x 1x ∴ 或523x 当2x >时()1f x ,即为211x-- 解得13x < 23x ∴< 综上,5(,1][,3]3x ∈-∞ 故不等式()1f x 的解集是5(,1][,3]3-∞ 故选:B .9.【解答】解:由220t x x =-≠,可知函数开口向上,对称轴1x =,0x ≠且2x ≠.∴可得(,0)-∞,(0,1)单调递减,原函数()f x 的单调递增区间(,0)-∞,(0,1).故选:B .10.【解答】解:函数1y x=在(0,)+∞上是减函数,且是奇函数,即A 不符合题意;函数2x y =是非奇非偶函数,即B 不符合题意;函数1||y x =-在(0,)+∞上是减函数,即C 不符合题意;对于函数||y lg x =,当0x >时,有y lgx =,单调递增;而()||||()f x lg x lg x f x -=-==,所以()f x 是偶函数,即D 正确.故选:D .11.【解答】解:设245t x x =--,由0t >可得5x >或1x <-,则12log y t =在(0,)+∞递减,由245t x x =--在(5,)+∞递增,可得函数()f x 的减区间为(5,)+∞.故选:C .12.【解答】解:由2430x x -+- 得2430x x -+ ,得13x,设243t x x =-+-,则对称轴为2x =,则y =为增函数,要求函数y =的单调增区间,根据复合函数单调性之间的关系知,只需要求243t x x =-+-的递增区间,243t x x =-+- 的递增区间为[1,2],∴函数y =的单调增区间是[1,2],故选:B .13.【解答】解:A .2(1)y x =--的对称轴为1x =,为非奇非偶函数,不满足条件.B .cos 1y x =+是偶函数,但在(0,)+∞内不是单调函数,不满足条件.C .||2y lg x =+为偶函数,在(0,)+∞内单调递增,满足条件,D .2x y =,(0,)+∞内单调递增,为非奇非偶函数,不满足条件.故选:C .14.【解答】解:对于A :函数在R 递减,对于B :函数在(,0)-∞递减,在(0,)+∞递增,对于C :函数在R 递增,对于D :函数在(,0)-∞递增,在(0,)+∞递增,故选:C .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公安边防消防警卫部队院校招生文化统考数学模拟题
注意:本试卷共三大题,满分150分
一 选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号。
) 1设集合{}
(){}
R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( ) A ∅ B {}0 C {}1,0 D {}1
2已知不等式()
()01242
2
<-+--x a x a 对R x ∈恒成立,则a 的取值围是 ( )
A a ≤2-
B 2-≤a 56<
C 2-5
6
<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( ) A. c b a >> B. c a b >> C. b a c >> D. a c b >> 4设0>ω,函数2)3
sin(++=π
ωx y 的图像向右平移
3
4π
个单位后与原图像重合,则ω的最小值是 ( ) A
32 B 34 C 2
3
D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x
++=22)((b 为常数),则()=-1f
( ) A 3 B 2 C -1 D -3 6 ()(
)
3
4
11x x -
-的展开式2x 的系数是 ( )
A -6
B -3
C 0
D 3
7 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为 ( ) A 3 B 4 C 5 D 6
8 设n m ,是平面α的两条不同直线,21,l l 是平面β的两条相交直线,则α∥β的一个充分而不必要条件是 ( )
A m ∥β且1l ∥α
B m ∥1l 且n ∥2l
C m ∥β且n ∥β
D m ∥β且n ∥2l
二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。
) 9. 函数x x y sin 162
+-=的定义域 。
10. 设n S 为等差数列{}n a 的前n 项和,若,24,363==S S 则9a = 。
11.
=++++∞→)3
1
31311(lim 2n x 。
12.
13. 的值域为2cos 4sin 2
+-=x x y 。
14. 设=⎪⎭
⎫
⎝⎛'=21
cos )(πf x
x f ,则 。
15. 已知抛物线x y 42=,过点()0,4P 的直线与抛物线相交于()()2211,,,y x B y x A 两点,则2
221y y +的最小值
是 。
三 解答题(本大题共7小题,共75分。
解答应写出文子说明、证明过程或演算步骤) 16.(本小题共10分)
(1)求函数x x x x y 4
2
cos 4cos 4cos sin 47-+-=的最大值与最小值。
17(本小题共10分)求解方程:(
)
2313log 13log 1
33=⎪⎭
⎫ ⎝
⎛---x x
18.(本小题共10分)设数列{}n a 的前n 项和为n S ,已知24,111+==+n n a S a 。
(1) 设n n n a a b 21-=+,证明数列{}n b 是等比数列; (2)求数列{}n a 的通项公式。
19.(本小题共10分)
设向量()()()ββββααsin 4,cos ,cos 4,sin ,sin ,cos 4-===c b a 。
(1) 若a 与c b 2-,求()βα+tan 得值; (2)求c b +得最大值。
20.(本小题共10分)
如图所示,已知ABC C B A -111是正棱柱,AC D 是的中点,11BC AB ⊥。
求二面角C BC D --1的度数。
1A A D 1C C
1B B 21.(本小题共10分)
已知a 是实数,函数()a x x x f -=
)(。
(1) 求函数)(x f 的单调区间,说明)(x f 在定义域上有最小值 (2) 设()a m 为)(x f 的定义域上的最小值,写出()a m 的表达式; (3) 当a = 10 时,求出()10)(-=x x x f 在区间[]3,0上的最小值。
22.(本小题共15分)
已知椭圆12
22
=+y x 的左焦点为F ,坐标原点为O 。
(1) 求过点F O 、,并且与椭圆的左准线l 相切的圆的方程;
(2) 设过点F 的直线交椭圆于B A 、两点,并且线段AB 的中点在直线0=+y x 上,求直线AB 的方程。
第一套答案1
2
3
答案:A
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22。