第讲一次函数反比例函数及二次函数24页PPT

合集下载

九年级数学中考一次函数反比例函数二次函数复习人教版PPT课件

九年级数学中考一次函数反比例函数二次函数复习人教版PPT课件

1、正比例函数与一次函数的关系:
正比例函数
y=kx(k≠0)
一次函数
(b=0)
y=kx+b(k≠0)
图象与性质: 都是一条直线
k>0
k<0
y
y
b>0
b>0
(0,b)
b=0
b=0
b
b<0 b<0
x
x
b
正比例函数是特殊的一次函数
2、一次函数y=kx+b(k≠0)的图象的位置及 增减性:
当k>0时
y
当k<0时
3.一次函数与正比例函数之间的关系: 正比例函数是当b=0时的特殊的一次函 数.
(一)、一次函数:
由于两点确定一条直线,因此在今后作 一次函数图象时,只要描出适合关系式的 两点,再连成直线即可 .
一般选取两个特殊点:直线与 y 轴的交
点(0,b),直线与 x 轴的交点(- b ,0)
k
画正比例函数y=kx的图象时,只要描 出点(0,0), (1,k)即可
oA
x
y
b>0
b=0
o
x
b<0
b<0
b=0 o
x
b<0
• y随x的增大而增大; y随x的增大而减小.
3、特殊的一次函数——正比例函数y=kx(k≠0)的 性质:
<1>正比例函数y=kx的图象必经过原点; <2>当k>0时,图象经过第一、三象限,y随x的增 大而增大; <3>当k<0时,图象经过第二、四象限,y随x的增 大而减小.
k
k
y Y=kx+b
(o,b) Y>0

二次函数的图像和性质(共82张PPT)

二次函数的图像和性质(共82张PPT)

y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像

反比例函数应用ppt课件ppt

反比例函数应用ppt课件ppt

经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

人教版九年级数学上册 《二次函数》PPT课件

人教版九年级数学上册 《二次函数》PPT课件

第七页,共二十四页。
式子①②③④有什么共同点?
y=6x2
d
1 2
n2
1 2
n
d
1 2
n
2
3 2
n
函数都是用自 变量的二次整
式表示的
y 20x2 40x 20
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做 二次函数。其中a为二次项系数,b为一次项系数,c为常数
项。
第八页,共二十四页。
这种产品的原产量是20件, 一年后的产量是
20(1+x)件,再经过一年后的产量是 20(1+件x,)即2 两年后
的产量y=______2_0_(_1_+x)2

y 20x2 40x 20
此式表示了两年后的产量 y与计划增产的倍数x之间的 关系,对于x的每一个值,
y都有唯一的一个对应值,
即y是x的函数。
有什么联系和区别?
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是函 数y= ax2+bx+c中y=0时得到的. 区别:前者是函数.后者是方程.等式另一边前 者是y,后者是0
第十二页,共)x m2-7 (1)m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是二次函数?
人教版九年级数学上册 《二次函数》PPT课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第一页,共二十四页。
基础回顾 什么叫函数?
在某变化过程中的两个变量x、y,当变量x在 某个范围内取一个确定的值,另一个变量y总 有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫做 函数关系。

关于反比例函数的ppt课件

关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像

反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

2、性质:1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.反比例函数图象是中心对称图形,对称中心是原点一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

一次函数反比例函数及二次函数课件

一次函数反比例函数及二次函数课件
2.求解与二次函数有关的不等式问题,可借助二次函数的 图象特征,分析不等关系成立的条件.
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;

沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)

沪科版数学九年级上册21.3二次函数与一元二次方程  课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.

人教版初三数学9年级下册 第26章(反比例函数)26.1.1 反比例函数 课件(共17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1  反比例函数 课件(共17张ppt)
复习回顾
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均

2015高考总复习数学(文)课件:3.3一次函数、反比例函数及二次函数

2015高考总复习数学(文)课件:3.3一次函数、反比例函数及二次函数
a2 1 2 y=-t-2 +4(a -a+2)在[-1,1]单调递增,
1 3 10 由 ymax=-2+4a=2,解得 a= 3 .
a (3)当2<-1,即 a<-2 时, 函数
a2 1 2 y=-t-2 +4(a -a+2)在[-1,1]单调递减,
5 1 由 ymax=-4a-2=2,得 a=-2(舍去). 10 综上可得,a 的值为 a=-2 或 a= 3 .
【方法与技巧】“区间固定对称轴动”以及“对称轴固定 区间动”是二次函数中分类讨论的最基本的两种题型,应引起 足够的重视.本例中的二次函数是区间 t∈[-1,1]固定,对称轴
a t= 在变化,因此要讨论对称轴相对于该区间的位置关系,即 2
a a a 分-1≤ ≤1, >1 及 <-1 三种情况讨论. 2 2 2
象与 x 轴两个交点的横坐标. 4.二次函数的图象及性质
对于二次函数
2 4 ac - b b f(x)=ax2+bx+c=ax+2a2+ 4a .
(1) 当 a>0 时 , f(x) 的 图 象 开 口 向 上 , 顶 点 坐 标 为
2 4 ac - b b - , 2a ,对称轴为直线 4 a
【互动探究】 2.(2012 年北京)已知 f(x)=m(x-2m)(x+m+3),g(x)=2x (-4,0) . -2.若∀x∈R,f(x)<0 或 g(x)<0,则 m 的取值范围是________
解析:首先看 g(x)=2x-2 没有参数,从 g(x)=2x-2 入手,
显然x<1时,g(x)<0,x≥1时,g(x)≥0,而对∀x∈R,f(x)<0
f(x)在区间 x∈[-3,-1]上单调递增,则 y∈[-11,3].

沪科版数学九年级上册21.5反比例函数 课件(共34张PPT)

沪科版数学九年级上册21.5反比例函数  课件(共34张PPT)
随堂练习
如图,是反比例函数 图象的一支.根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?解:因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.又因为这个函数图象位于第一、三象限,所以m-5>0,解得m>5.
(2)在这个函数图象的某一支上任取点A( )和点B( ).如果 ,那么 和 有怎样的大小关系?解:∵m-5>0, ∴在这个函数图象的任一支上,y都随x的增大而减小, ∴当 时, .
当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大
练一练
1.如果反比例函数 的图象位于第二、四象限内,那么满足条件的正整数k的值是_______.2.已知直线y=kx+b 的图象经过第一、二、四象限,则函数 的图象在第________象限.3.在反比例函数 的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是________.
24
(1)(3)
3.已知一次函数y=kx+b的图象如图所示,那么正比例函数y=kx和反比例函数 在同一平面直角坐标系中的图象大致是( )
C
4.已知反比例函数 (k为常数,k≠1)若点A(1,2)在这个函数的图象上,求k的值.若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围.若k=13,试判断点B(3,4),C(2,5),B点是否在这个函数的图象上,并说明理由.解:(1)代入A(1,2)得k-1=2,k=3; (2)k-1>0,k>1; (3) 代入B(3,4),C(2,5),B点在函数图象上,C点不在.
C
A
3.若函数 是反比例函数,则m的值是_____.4.在下列函数表达式中,x均表示自变量,那么哪些是y关于x的反比例函数?其相应的k的值是多少?① ;② ;③xy=2;④ ;⑤ y关于x的反比例函数有①②③;对应的k值分别为2.5,;2;7

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像
工程设计和优化
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。

一次函数反比例函数二次函数图像及性质

一次函数反比例函数二次函数图像及性质

02
反比例函数图像及性质
反比例函数定义与表达式
定义
反比例函数是一种特殊的函数, 其自变量和因变量的乘积为常数 ,且该常数不为零。
表达式
一般地,反比例函数可以表示为 y = k/x (k ≠ 0) 的形式,其中 k 是比例系数。
反比例函数图像特征
图像位置
反比例函数的图像分布在两个象 限内,当 k > 0 时,图像位于第 一、三象限;当 k < 0 时,图像
一次函数反比例函 数二次函数图像及 性质
汇报人:XXX 2024-01-28
目录
• 一次函数图像及性质 • 反比例函数图像及性质 • 二次函数图像及性质 • 函数图像变换规律探讨 • 函数性质应用举例
01
一次函数图像及性质
一次函数定义与表达式
定义
一次函数是函数中的一种,一般形如$y=kx+b$($k,b$是常数,$k≠0$), 其中$x$是自变量,$y$是因变量。
表达式
一次函数的标准形式为$y=kx+b$,其中$k$是斜率,表示$x$每增加一个单位 ,$y$增加$k$个单位;$b$是截距,表示当$x=0$时,$y$的值。
一次函数图像特征
1 2 3
直线形状
一次函数的图像是一条直线。
斜率决定倾斜程度
当$k>0$时,直线从左下方向右上方倾斜;当 $k<0$时,直线从左上方向右下方倾斜;当 $k=0$时,直线与$x$轴平行。
二次函数
图像沿x轴或y轴平移,开 口方向和宽度不变,顶点 位置发生变化。
伸缩变换规律
一次函数
01
通过改变斜率的大小,可以实现图像在x轴或y轴方向上的伸缩
变换。
反比例函数

27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)

27.2 反比例函数的图象和性质 - 第1课时课件(共18张PPT)
解:(1)把点P(-6,8)的坐标代入 ,得 .解得k=-48.所以这个反比例函数的表达式为 .(2)当x=4时,y=-12.当x=2时,y=-24≠24.所以,点M(4,-12)在这个反比例函数的图像上,点N(2,24)不在这个反比例函数的图像上.
课堂巩固
1. 下列图象中是反比例函数的是( ).
C
.
(-3,-4)
拓展提升
1.如果一个正比例函数图象与反比例函数 的图象交于A( ),B( )两点,那么( )( )的值为_____.2.在平面直角坐标系中,直线y=x与双曲线 交于A,B两点.若点A,B的横坐标分别为x1,x2,则x1+x2的值为 .
第 二十七章 反比例函数
27.2 反比例函数的图像和性质第1课时
学习目标
1.会用描点法画出反比例函数的图像.2.了解双曲线的定义.
学习重难点
理解并掌握画反比例函数的图像的方法.
重点
难点
理解反比例函数性质.
回顾复习
1.反比例函数
2.一次函数、二次函数的图象
一次函数的图象是一条直线.
二次函数的图象是一条抛物线.
24
0
课堂小结
描点法画反比例函数图像的步骤:列表、描点、连线 反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线. 反比例函数的图像关于直线y=±x对称,关于原点成中心对称.
同学们再见!
授课老师:
时间:2024年9月15日
它们的图像都由两条曲线组成;都关于y=±x对称,关于原点成中心对称;同时都与坐标轴不存在交点,且图像无限贴近坐标轴.
归纳总结
反比例函数 (k 为常数,k ≠ 0)的图像由分别位于两个象限内的两条曲线组成已知点P(-6,8)在反比例函数 的图像上.(1)求这个反比例函数的表达式.(2)判断点M(4,-12)和N(2,24)是否在这个反比例函数的图像上.

一次函数反比例函数二次函数

一次函数反比例函数二次函数

函数函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数函数有三种表示形式:(1)列表法(2)图像法(3)解析式法一、一次函数与正比例函数:◆公式:y=kx+b (k,b为常数,且k≠0)当b =0时,y=kx+b 即为y=kx,所以正比例函数,是一次函数的特例.◆一次函数与正比例函数的图形与性质图像:正比例函数:经过原点的一条直线正比例函数(y=kx)一次函数(y=kx+b )性质:正比例函数:y=kx (k≠0)当k>0时, 经过一、三象限,即随着x的增大(或减小)y也增大(或减小);当k<0时, 经过二、四象限,即随着x的增大(或减小)y反而减小(或增大)。

一次函数:当k>0时,经过一、三象限,y随x的增大(或减小)而增大(或减小);当k<0时,经过二、四象限,y随x的增大(或减小)而减小(或增大). 二、反比例函数◆公式:(k为常数,k≠0)◆反比例函数的图像与性质反比例函数k的符号k>0 k<0图像性质①x的取值范围0x≠y的取值范围0y≠②当k>0时,图像在一、三①x的取值范围0x≠y的取值范围0y≠②当k<0时,图像在二、四象限,y随x的增大而增大三、二次函数◆ 公式:y=+bx+c(a,b,c 是常数a ≠0)二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

◆ 抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

◆ 二次函数解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点(1)一般一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

初三反比例函数ppt课件ppt课件

初三反比例函数ppt课件ppt课件

反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件
压强与面积的关系
在气瓶压力一定的情况下,压力的作 用面积与压强成反比关系,即当作用 面积增大时,压强减小;反之,当作 用面积减小时,压强增大。
在经济中的应用
供需关系
在市场经济中,商品的需求量与价格之间存在反比例关系,即当价格上涨时,需 求量减少;反之,当价格下降时,需求量增加。
投资回报
投资者在考虑投资回报时,通常会选择投资回报率较高的项目,即投资回报与投 资额成反比关系。
与几何知识的结合
与直角坐标系的结合
反比例函数的图像位于直角坐标系的两个象限内,可以通过几何知识来研究其性质,例如对称性和渐 近线。
与圆的结合
在某些条件下,反比例函数的图像与圆的图像相似,可以通过圆的性质来类比研究反比例函数的性质 。
在数学竞赛中的应用
01
反比例函数在数学竞赛中常作为 难题出现,需要学生具备扎实的 数学基础和灵活的思维才能解决 。
05 反比例函数的扩展知识
与其他函数的联系
与一次函数的联系
反比例函数与一次函数在某些条件下可以相互转化,例如$y = kx$($k neq 0$)可以转化为$y = frac{1}{x}$的 形式。
与二次函数的联系
反比例函数的图像与二次函数图像在形式上有所不同,但它们在某些性质上有相似之处,例如对称性和极值点。
反比例函数的定义域和值域
由于分母不能为0,所以反比例函数的定义域为{x|x≠0},值域 为{y|y≠0}。
反比例函数的图像
图像特点
反比例函数的图像位于第一象限 和第三象限,呈双曲线状,且随 着k值的正负变化,图像分别位于 x轴的上方和下方。
图像绘制
在直角坐标系中,取点(x,y)满足 xy=k,然后描绘出这些点的轨迹, 即为反比例函数的图像。

反比例函数的图象和性质课件

反比例函数的图象和性质课件
02
当 k > 0 时,反比例函数的图像 分布在第一象限和第三象限;当 k < 0 时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的基本形式
反比例函数的基本形式是 y = k/x (k ≠ 0),也可以表示为 xy = k。
在这个函数中,x 和 y 的乘积始终等 于 k,而 k 的值决定了函数的图像在 哪个象限分布。
反比例函数的图像
反比例函数的图像通常是以原点为中心的双曲线,分布在四个象限。
当 k > 0 时,图像在第一象限和第三象限;当 k < 0 ,图像在第二象限和第四象 限。
反比例函数的图像不会与坐标轴相交,因为当 x 或 y 趋于无穷大时,y 或 x 将趋于 0。
CHAPTER 02
反比例函数的图像性质
人口增长与资源消耗的关 系
随着人口的增长,资源消耗也相应增加,但 这种增加并不是线性的,而是呈现出反比例 关系。这意味着人口增长得越快,资源消耗 得也越快,进一步加剧了资源紧张的局面。
在数学问题中的应用
解决几何问题
在几何学中,反比例函数经常被用来描述和解决与面积、体积和角度等相关的数学问题 。通过利用反比例关系,可以简化复杂问题的求解过程。
压强与体积的关系
在气体压力问题中,压强与体积成反比,即当体积增大时, 压强减小;反之亦然。这是解释和预测气体压力和体积关系 的基础。
在实际生活中的应用
药物剂量与效果的关系
在药物研究中,药物的剂量与其效果之间往 往存在反比例关系。这意味着当剂量增加时 ,效果可能减弱;反之亦然。了解这种关系 对于药物设计和使用非常重要。
反比例函数的图象和 性质ppt课件
contents
目录
• 反比例函数简介 • 反比例函数的图像性质 • 反比例函数的数学性质 • 反比例函数的应用 • 反比例函数与其他知识点的联系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若一次函数 y=kx+b 在(-∞,+∞)上是减函数,则点(k,
b)在直角坐标平面的( C ) A.上半平面
B.下半平面
C.左半平面
D.右半平面
2.函数 f(x)=2x2-6x+1 在区间[-1,1]上的最小值是( C)Biblioteka A.-9B.-72
C.-3
D.-1
3.已知:函数 f(x)=x2+4(1-a)x+1 在[1,+∞)上是增函数, 则 a 的取值范围是__a_≤__32__.
考点1 二次函数的值域 例1:根据函数单调性求下列函数的值域. (1)f(x)=x2+4x-1,x∈[-4,-3]; (2)f(x)=-2x2-x+4,x∈[-3,-1]; (3)f(x)=2x2-4x-1,x∈(-1,3); (4)f(x)=-—1 x2-x-1,x∈[-4,0].
2
解析:(1)f(x)=x2+4x-1=(x+2)2-5, 在区间[-4,-3]上单调递减,则 y∈[-4,-1]. (2)f(x)=-2x2-x+4=-2x+142+383, f(x)在区间 x∈[-3,-1]上单调递增,则 y∈[-11,3]. (3)f(x)=2x2-4x-1=2(x-1)2-3, x∈(-1,3),当 x=1 时,f(x)取最小值-3, 又 f(-1)=f(3)=5, 则 y∈[-3,5).
4.将抛物线 y=2(x+1)2-3 向右平移 1 个单位,再向上平移 2 个单位,所得抛物线为__y_=__2_x_2_-__1,其顶点坐标为__(_0_,__-__1.)
5.函数 y=ax 和 y=bx在(0,+∞)上都是减函数,则 y=ax2 +bx+c 在(-∞,0)上的单调性为__单__调__递__增_.
“区间固定对称轴动”以及“对称轴固定区间 动”是二次函数中分类讨论的最基本的两种题型,应引起足够的 重视.本例中的二次函数是区间 t∈[-1,1]固定,对称轴 t=a2在变 化,因此要讨论对称轴相对于该区间的位置关系,即分-1≤a2≤1, a2>1 及a2<-1 三种情况讨论.
【互动探究】
2.设非空集合 S={x|m≤x≤l}满足:当 x∈S 时,有 x2∈S.
(4)f(x)=-12x2-x-1=-12(x+1)2-12, x∈[-4,0],当 x=-1 时,f(x)取最大值-12. 又 f(-4)=-5,f(0)=-1, 则 y∈-5,-12.
求二次函数在某个区间的最值,最容易出现的错 误就是直接代两头(将两端点代入),当然这样做,有时答案也对, 那是因为在该区间函数刚好单调,这纯属巧合.求二次函数在某 个区间的最值,应该配方,找到对称轴和顶点,结合图形求解.
1.一次函数 y=kx+b,当 k>0 时,在实数集 R 上是增函数. 当 k<0 时,在实数集 R 上是减函数.
2.反比例函数y=—kx 定义域为(-∞,0)∪(0,+∞),当k>0
时,在(-∞,0),(0,+∞)都是减函数,k<0 时,(-∞,0),(0, +∞)都是增函数.
3.二次函数的解析式有三种形式 (1)一般式:___f_(_x_)=__a_x_2_+__b_x_+__c_(a_≠_0_)_____. (2)顶点式:__f_(_x_)=__a_(_x_-__h_)_2+__k_(_a_≠_0_)______,顶点__(_h_,__k_). (3)两根式___f(_x_)_=__a_(x_-__x_1_)_(x_-__x_2_)(_a_≠_0_)____,x1 ,x2 为二次函 数图象与 x 轴两个交点的横坐标. 4.二次函数的图象及其性质
【互动探究】 1.若函数y=x2-2x+3在闭区间[0,m]上有最大值为3,最
小值为2,则m的取值范围是_____[_1_,2_].
解析:y=(x+1)2+2是以直线x=1为对称轴开口向上、其 最小值为2的抛物线,又∵f(0)=3,
结合图象易得,2≥m≥1,∴m的取值范围是[1,2].
考点2 含参数问题的讨论 例 2:已知函数 y=-sin2x+asinx-a4+12的最大值为 2,求 a 的值.
对于二次函数 f(x)=ax2+bx+c=ax+2ba2+4ac4-a b2. (1)当 a>0 时,f(x)的图象开口向上.顶点坐标为-2ba,4ac4-a b2. 对称轴为 x=-2ba.
f(x)在-∞,-2ba上减少,f(x)在-2ba,+∞上增加. 当 x=-2ba时,函数取得最小值4ac4-a b2. (2)当 a<0 时,f(x)的图象开口向下.顶点坐标为-2ba,4ac4-a b2. 对称轴为 x=-2ba. f(x)在-∞,-2ba上增加,f(x)在-2ba,+∞上减少. 当 x=-2ba时,函数取得最大值4ac4-a b2.
解析:令 t=sinx,则 t∈[-1,1]. ∴y=-t-a22+14(a2-a+2),对称轴为 t=a2, (1)当-1≤a2≤1,即-2≤a≤2 时, ymax=14(a2-a+2)=2,解得 a=-2 或 a=3(舍去).
(2)当a2>1,即 a>2 时, 函数 y=-t-a22+14(a2-a+2)在[-1,1]单调递增, 由 ymax=-12+34a=2,解得 a=130. (3)当a2<-1,即 a<-2 时, 函数 y=-t-a22+14(a2-a+2)在[-1,1]单调递减, 由 ymax=-54a-12=2,得 a=-2(舍去). 综上可得,a 的值为 a=-2 或 a=130.
②若 m=-12,则 m2=14,l≥14,S=x-21≤x≤l

x2∈[0,l2]⊆-12,l,l2≤l,∴0≤l≤1,∴14≤l≤1;
③若 l=12,则 S=xm≤x≤12
,若
m>0,则
给出如下三个命题:①若 m=1,则 S={1};②若 m=-12,则14
≤l≤1;③若 l=12,则- 22≤m≤0.其中正确命题的个数是( )
A.0
B.1
C.2
D.3
解析:①若 m=1,则 S={x|1≤x≤l},l≥1, x2∈[1,l2]⊆[1,l],l2≤l,∴0≤l≤1.∴l=1.S={1};
相关文档
最新文档