双金属核壳结构
双金属双硅层核壳纳米结构AuSiO2AgSiO2用于葡萄糖检测
Vol.40高等学校化学学报No.52019年5月㊀㊀㊀㊀㊀㊀CHEMICALJOURNALOFCHINESEUNIVERSITIES㊀㊀㊀㊀㊀㊀887 894㊀㊀doi:10.7503/cjcu20180722双金属双硅层核⁃壳纳米结构Au@SiO2@Ag@SiO2用于葡萄糖检测齐㊀琪1,鲁冰新1,车玉萍1,汪㊀洋2,翟㊀锦1(1.北京航空航天大学化学学院,北京100191;2.中国科学院化学研究所,北京100190)摘要㊀制备了一种灵敏度高㊁稳定性强的双金属双硅层核⁃壳结构纳米材料Au@SiO2@Ag@SiO2.由于双金属之间的硅层促进了远程等离子体的激发转移,使该纳米粒子具有良好的表面增强拉曼散射(SERS)的特性及优异的稳定性.利用这种SERS活性材料能直接检测出人体尿液的主要成分,且该材料呈现出对低浓度(10-6mol/L)葡萄糖的无标记高效检出能力.此外,还实现了人工尿液中等浓度(10-3mol/L)葡萄糖和尿素分子的同时检测,以及实际尿液中10-3mol/L葡萄糖的检测.Au@SiO2@Ag@SiO2纳米粒子具有在多种生物分子存在时快速检测葡萄糖的实际应用潜力.关键词㊀Au@SiO2@Ag@SiO2;表面增强拉曼散射;无标记;葡萄糖检测;尿液中图分类号㊀O657㊀㊀㊀㊀文献标志码㊀A㊀㊀㊀㊀收稿日期:2018⁃10⁃23.网络出版日期:2019⁃04⁃15.基金项目:国家重点研究发展计划项目(批准号:2017YFA0206902,2017YFA0206900)㊁国家自然科学基金(批准号:21471012,21771016)和国际科学和中国技术合作项目(批准号:2014DFA52820)资助.联系人简介:翟㊀锦,女,博士,教授,主要从事仿生光电转换纳米材料和器件研究.E⁃mail:zhaijin@buaa.edu.cn表面增强拉曼散射(SERS)是一种具有较高灵敏度的分析方法[1,2].SERS检测法具有快速㊁简便等特点,但是在检测某些低浓度物质时拉曼信号仍较弱,因此具有高效SERS增强效果的复合基底材料被研制出来[3,4].现在被普遍接受的2个SERS增强原理为化学增强和物理增强.局域等离子体共振(LSPR)在物理增强原理中起着决定性作用.LSPR属于一种光学现象,与金属纳米结构周围一定体积内自由电子的集体振荡有关.当入射光的频率与金属中自由电荷的振动频率相匹配时,就会发生表面等离子体共振,从而提高拉曼散射效应[5].在SERS检测中,贵金属Au和Ag因具有独特的光电性质而被广泛应用.同时,双金属Au⁃Ag复合体系能发挥协同效应,比单一贵金属具有更好的增强拉曼散射的特性[6,7].另外,通过调节双金属间的间距和连接可促成远程等离子体耦合,能够形成很强的 热点 (Hotspots)效应.Bu等[8]报道的一种C3N4/Ag复合纳米片具有良好的表面增强拉曼散射效应.Shen等[9]报道了一种新型多功能Fe3O4@Ag/SiO2/Au核⁃壳微球,并表明Ag与Au之间远距离的等离子体转移导致拉曼散射的进一步增强.Feng等[10]合成了一种Ag⁃silica⁃Au层状结构复合器件,并发现显著的远距离拉曼散射增强是由于介电层⁃氧化硅促进了Ag到Au有效的远程等离子体激发共振.Zhu等[11]制备了一种Ag⁃dielectric⁃Ag三层纳米壳状结构材料,发现Ag和Au之间无间隔或隔绝层过厚均会降低荧光猝灭效率.此外,SERS是近场效应,将增强效果更好的Ag纳米粒子作为外壳层,更具优势[12].但裸露的金属Ag存在易氧化㊁易聚集及稳定性差等缺点.Li等[13]提出一种在金属纳米球表面包覆绝缘层SiO2的SERS基底制备方法,该方法能防止金属纳米粒子聚集,避免金属粒子与检测物的直接接触,且对检测物具有多样适应性.葡萄糖作为人体主要的供能物质,其浓度能反映人体的健康程度[14].如糖尿病人需要调节血糖浓度来维持健康.另外,人体中除了血糖,葡萄糖还存在于人体组织液及尿液㊁汗液和唾液等体外排出液中,并且这些非血液中存在的葡萄糖与血糖密切相关[15].人们通过灵敏准确检测简单易取的生物排出液如尿液中的葡萄糖来间接感知血糖浓度[16].SERS技术在生物传感器中的应用为葡萄糖的灵敏和选择性检测提供了切实的解决方案[17].Gu等[18]基于表面增强888高等学校化学学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.40㊀拉曼光谱的新型硼酸钠纳米探针检测了活体尿液和血清中的葡萄糖(0 5 5mmol/L)和过氧化氢.Kwon等[19]通过可调控的等离子体腔实现了葡萄糖(0 18 18mg/mL)等小分子的无标记检测.Sun等[20]利用层流技术以4⁃巯基硼酸功能化的银纳米粒子为探针检测了1 0mg/dL的葡萄糖.本文通过逐层包覆的方法制备了一种多层核⁃壳结构复合体系的Au@SiO2@Ag@SiO2纳米粒子.由于内硅层促成了双金属之间的远程等离子体转移,赋予这种纳米粒子良好的拉曼散射增强作用.通过透射电子显微镜(TEM)和高角度环形暗场(HAADF)扫描电子显微镜对其形貌和结构进行了表征,发现这种核⁃壳结构纳米材料具有规则的形状和均匀的球体尺寸.同时,制备了单金属单硅层Au@SiO2和Ag@SiO2核⁃壳纳米粒子,并以结晶紫(CV)作为探针分子对比研究了它们与Au@SiO2@Ag@SiO2纳米粒子的SERS增强效果.所制备的复合结构材料具有长期稳定性和超强拉曼增强作用,将其应用于葡萄糖检测中,实现了干扰物尿素存在条件下等浓度葡萄糖的检测.进一步将葡萄糖加入到实际尿液中,在葡萄糖浓度低于血糖浓度范围(3 9 6 7mmol/L)时,仍能准确检出实际尿液中的葡萄糖.实验结果表明,双金属双硅层核⁃壳结构纳米复合材料Au@SiO2@Ag@SiO2适用于多种生物分子检测,从而提供了一种高灵敏㊁选择性检测多种分析物的方法.1㊀实验部分1.1㊀试剂与仪器氯金酸(HAuCl4㊃4H2O,分析纯)㊁柠檬酸钠(Na3C6H5O7㊃2H2O,分析纯)㊁硅酸钠(Na2SiO3,分析纯)㊁抗坏血酸(C6H8O6,分析纯)㊁硝酸银(AgNO3,分析纯)㊁氢氧化钠(NaOH,分析纯)㊁氯化钠(NaCl,分析纯)㊁磷酸钾(K3PO4,分析纯)和磷酸钠(Na3PO4,分析纯)均购自国药集团化学试剂有限公司;结晶紫(C25H30N3Cl,纯度ȡ99%)购自Sigma公司;氨丙基三乙氧基硅烷(C9H23O3SiN,97%)㊁葡萄糖(C6H12O6,分析纯)和尿素(CH4N2O,分析纯)均购自阿拉丁试剂公司.LaboratoryRAMHR800型激光共焦显微拉曼光谱仪(法国HORIBAJobinYvon公司),SERS光谱检测的激发波长为633nm,分辨率为1cm-1,激光功率为1 5mW,积分时间为1和5s;JEM⁃2100F型高分辨透射电子显微镜(日本电子株式会社).1.2㊀实验过程1.2.1㊀Au@SiO2纳米粒子的制备㊀利用柠檬酸钠还原法[13]制备了球形金纳米颗粒.取200mL0 01%(质量分数)氯金酸溶液加热至微沸,加入1 4mL1%(质量分数)柠檬酸钠溶液充分反应,溶液由淡黄色先变微蓝随后变为透明的棕红色,得到Au纳米粒子胶体溶液.待反应完全后,停止加热和搅拌,自然冷却至室温.随后加入1mmol/L的氨丙基三乙氧基硅烷溶液,室温下搅拌约20min后,加入3 2mL0 04mol/L硅酸钠溶液,搅拌均匀后移入96ħ油浴中反应40min,停止加热并自然降温,得到Au@SiO2纳米粒子.1.2.2㊀Ag@SiO2纳米粒子的制备㊀取45mg硝酸银用200mL超纯水溶解,加热至沸腾,加入4mL1%(质量分数)柠檬酸钠溶液并在沸腾状态下反应1h,溶液变为亮土黄色.待反应完全后,停止加热和搅拌,自然冷却至室温.随后加入1mmol/L氨丙基三乙氧基硅烷溶液,室温下搅拌约20min后,加入3 2mL0 04mol/L硅酸钠溶液,搅拌均匀后移入96ħ油浴中反应40min,停止加热并自然降温,得到Ag@SiO2纳米材料.1.2.3㊀Au@SiO2@Ag@SiO2纳米粒子的制备㊀取30mLAu@SiO2纳米胶体溶液,在避光条件下依次加入540μL0 1mol/L抗坏血酸㊁135μL0 1mol/L硝酸银及675μL0 1mol/L氢氧化钠.室温下缓慢搅拌4h后,加入3 2mL1mmol/L氨丙基三乙氧基硅烷溶液,继续搅拌约20min后,加入10mL0 04mol/L硅酸钠溶液,搅拌均匀后移入96ħ油浴中反应40min,停止加热并自然降温,得到Au@SiO2@Ag@SiO2纳米粒子.将上述3种纳米粒子胶体溶液分别取3mL,以8000r/min转速离心5min,移除上层清液后,加入超纯水至3mL,超声分散,再次离心.如此反复2次,最后一次离心移除上层清液后,加入超纯水至1mL,超声分散,分别得到3种纳米材料的1mL胶体浓缩液.1.2.4㊀结晶紫(CV)拉曼信号检测及Au@SiO2@Ag@SiO2纳米粒子的稳定性㊀将5μL10-6mol/L结晶紫溶液分别与浓缩的Au@SiO2,Ag@SiO2和Au@SiO2@Ag@SiO2纳米粒子溶液45μL混合,静置1h后,取5μL滴在洁净的尺寸为5mmˑ5mm硅片上,自然干燥.对每个样品在5个不同位置进行拉曼光谱检测,然后取平均值,积分时间为1s.每隔1周使用Au@SiO2@Ag@SiO2重复测试1次,以检测其稳定性.1.2.5㊀实际尿液的拉曼及增强拉曼信号检测㊀尿样于早上8时取自隔夜禁食12h的健康成人.取5μL尿样直接滴在硅片上,自然干燥后检测.另外,将5μL尿样与45μL浓缩的Au@SiO2@Ag@SiO2胶体溶液混合,取5μL滴在硅片上,自然干燥后检测.1.2.6㊀葡萄糖在人工尿液中的检测㊀将5μL分散在人工尿液中的不同浓度(10-2,10-3,10-4,10-5和10-6mol/L)葡萄糖与45μL浓缩的Au@SiO2@Ag@SiO2胶体溶液混合.取5μL滴在硅片上,自然干燥后,用拉曼光谱仪进行SERS测试,积分时间为5s.将5μL溶有等浓度(10-2和10-3mol/L)葡萄糖和尿素的人工尿液[21]及溶有等浓度(10-3mol/L)葡萄糖和尿素的人工尿液(均含0 17mol/L氯化钠㊁0 08mol/L磷酸钾和0 04mol/L磷酸钠)与45μL浓缩的Au@SiO2@Ag@SiO2胶体溶液分别混合.取5μL滴在硅片上,自然干燥后进行拉曼光谱检测.在硅片上测量每个样品独立的3个不同位置的光谱,以获得用于后续数据分析的平均SERS光谱.所有样品在550 1800cm-1波长范围内获取拉曼光谱,激发波长为633nm,积分时间为5s.1.2.7㊀实际尿液中葡萄糖的检测㊀将葡萄糖固体粉末分散在实际尿液中并稀释,得到葡萄糖浓度为10-1 10-3mol/L的尿液样本.分别取5μL尿液样本与45μL浓缩的Au@SiO2@Ag@SiO2胶体溶液混合,滴在硅片上,自然干燥后进行检测.对于每个样品,在硅片上测量样品独立的3个不同位置的光谱,以获得用于后续数据分析的平均SERS光谱.所有样品在550 1800cm-1波长范围内获取拉曼光谱,激发波长为633nm,激发功率为1 5mW,积分时间为5s.2㊀结果与讨论2.1㊀Au@SiO2,Ag@SiO2和Au@SiO2@Ag@SiO2的形貌结构图1显示制备的3种纳米粒子均为典型的球形核壳结构.图1(A)和(B)分别为Au@SiO2和Ag@SiO2纳米粒子的TEM照片.Au核与Ag核的直径分别约为36和48nm,其外面包覆的SiO2层厚度约7nm.Au@SiO2和Ag@SiO2纳米粒子的整体尺寸分别为(43ʃ3)和(55ʃ3)nm.图1(C)和(D)为Au@SiO2@Ag@SiO2纳米粒子的TEM照片,由于Au和Ag的电子密度不同,故呈现出明显的颜色衬度差异[22],可以清晰看到Au核和Ag壳,浅灰色的最外层为SiO2.Au@SiO2@Ag@SiO2纳米粒子的形状规则,分散均匀,具有稳定的结构.由图1(C)可见,核壳紧密包覆,单个纳米粒子尺寸约为70nm.单个纳米粒子的放大TEM照片如图1(D)所示,一层薄的SiO2包覆在40nm的Au核表面,而另一层厚度约为10nm的SiO2则包覆在Ag壳外部.Fig.1㊀TEMimagesofAu@SiO2(A),Ag@SiO2(B)andAu@SiO2@Ag@SiO2(C,D)图2示出了Au@SiO2@Ag@SiO2纳米粒子的高角度环形暗场扫描电子显微镜(HAADF⁃STEM)照片及能谱分析结果.其中,图2(C)为O呈红色,图2(D)为Si呈橙色,图2(E)为Ag呈黄色,图2(F)为Au呈绿色,厚度约15nm,包覆在Au核外部的硅层厚度为5nm.由图2可以看出合成的988㊀No.5㊀齐㊀琪等:双金属双硅层核⁃壳纳米结构Au@SiO2@Ag@SiO2用于葡萄糖检测Au@SiO2@Ag@SiO2纳米粒子具有理想的多层核⁃壳结构.Fig.2㊀HAADF⁃STEMimagesofAu@SiO2@Ag@SiO2(A,B),EDXmappingofO(C),Si(D),Ag(E)andAu(F)2.2㊀Au@SiO2@Ag@SiO2的SERS性能检测Fig.3㊀SERSspectraof10-6mol/LcrystalvioletonAu@SiO2@Ag@SiO2,Ag@SiO2,Au@SiO2andAu@SiO2@Agnanoparticles(A)andaverageintensityat808,918,1178,1375and1621cm-1(B)结晶紫(CV)作为SERS检测中常用的染料分子,其荧光信号较强,拉曼信号相对较弱.实验中采用结晶紫评价4种纳米粒子的SERS增强效果.将Au@SiO2,Ag@SiO2,Au@SiO2@Ag和Au@SiO2@Ag@SiO2纳米粒子分别作为增强结晶紫拉曼信号的基底物质,得到的拉曼光谱[图3(A)].可见,10-6mol/L的结晶紫吸附在纳米结构的SERS基底上产生了明显的拉曼特征峰,918cm-1处的峰归属为径向芳香环骨架振动;761,808和1178cm-1处的峰归属为C H键平面的径向芳香环弯曲振动;1302,1441,1533,1588和1621cm-1处的峰归属为芳香环的C C键伸缩振动[23].所得光谱强度与基底的SERS增强能力有关[24],吸附在Au@SiO2@Ag@SiO2纳米粒子上的结晶紫SERS信号最强,与该纳米粒子具有更高的SERS增强能力的预期一致.对比Au@SiO2@Ag@SiO2和Au@SiO2@Ag的拉曼信号强度发现,外层SiO2能够有效防止纳米颗粒的氧化㊁团聚引起的SERS效应降低现象,从而对SERS信号起到有效的增强作用.图3(B)显示了4种纳米粒子在结晶紫特征峰808,918,1178,1375和1621cm-1处的平均SERS光谱强度.误差线代表每个样品在5个不同点测量结果的相对标准偏差(RSD).相比于单金属单硅层的Au@SiO2和Ag@SiO2纳米粒子,Au@SiO2@Ag@SiO2产生的增强拉曼光谱强度高于二者之和,此现象源于Au和Ag纳米粒子之间存在的等离子耦合进而产生的局域等离子体共振.Au和Ag纳米粒子之间薄硅层的存在可以促成长距离等离子体激发,进而显著提高远程等离子体转移,形成强烈的增强拉曼光谱效应[8 10].通过计算得出,Au@SiO2@Ag@SiO2增强拉曼信号强度分别约为Au@SiO2纳米粒子的4 6倍和Ag@SiO2纳米粒子的2 8倍.因此,双金属复合体系比单金属更具优势.双金属粒子间的远程等离子体耦合效应显著提升了其拉曼增强性能.将Ag壳引入金纳米粒子中会引起等离子体共振的蓝移且缩短等离子激元线的宽度,实现在宽光谱范围内调节共振波长,从而提098高等学校化学学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.40㊀高传感性能和广泛适用性[25].Ag的表面等离子效应优于Au纳米粒子,但是Ag固有的易氧化性和不稳定性使其不能长时间保持原有的高效等离子体特性;并且Ag纳米粒子易聚集,从而显著降低了其拉曼增强性能.Li等[13]曾提出在金属纳米粒子外包覆一层薄SiO2绝缘层,以避免具有SERS活性的纳米结构与待测物直接接触,起到提高纳米粒子灵敏度㊁稳定性和再生性的作用.Liu等[2]发现在温度高达900ħ时,厚度为10 15nm的SiO2涂层可使Ag纳米结构保持稳定,且Ag纳米粒子的增强因子无明显变化.本实验通过7和14d的周期测试证明10nm厚的外硅层使Au@SiO2@Ag@SiO2纳米材料具有良好的长期稳定性.1178和1375cm-1处的SERS平均强度在不同时间的变化如图4所示.误差线代表3个样品的相对标准偏差(RSD),每个样品在3个不同的点进行测量.具有良好分散性的Au@SiO2@Ag@SiO2纳米粒子能够在室温下保持高效的SERS增强性能至少49d,到49d时1178和1375cm-1处的峰强分别仅降低了6%和9%.图4插图为21d时利用Au@SiO2@Ag@SiO2样品检测10-6mol/L结晶紫得到的SERS光谱图.红㊁蓝和黑色光谱分别为包括3次重复实验中的Au@SiO2@Ag@SiO2增强基底.Fig.4㊀Timecourseofintensityof1178(a)and1375cm-1(b)peakInset:SERSspectraof10-6mol/LCVonAu@SiO2@Ag@SiO2at21d.Fig.5㊀SpectraofCVwith10-7mol/L(a)and10-8mol/L(b)onAu@SiO2@Ag@SiO2NPs㊀㊀㊀㊀包覆有足够薄硅层的Au@SiO2@Ag@SiO2纳米粒子很多 热点 有利于基底和粒子之间的连接,导致吸附分子拉曼信号增强[26].最低浓度为10-8mol/L的结晶紫溶液可以通过Au@SiO2@Ag@SiO2纳米粒子基底被检测出,图5为检测得到的SERS光谱图.2.3㊀Au@SiO2@Ag@SiO2用于实际尿液检测尿液组分的含量与肾的健康状态密切相关.正常人体尿液的主要成分为水㊁无机盐㊁尿酸及尿素等.尿液中的尿素浓度足够高,因此可以使用正常拉曼光谱进行分析;而其它组分都是低浓度的,需要使用SERS进行分析[27].为了评价Au@SiO2@Ag@SiO2纳米粒子对人体尿液拉曼散射的影响,测定了Fig.6㊀SERS(a)andregularRaman(b)spectraofurinesample健康成人尿液的常规拉曼光谱和SERS光谱.图6示出了尿样与Au@SiO2@Ag@SiO2溶胶混合物的SERS光谱和无溶胶尿液的常规拉曼光谱.在相同的测定条件下,比较尿液与Au@SiO2@Ag@SiO2溶胶混合的SERS光谱与尿液的常规拉曼光谱发现,多个主要振动带的SERS强度显著增加.由于大部分的拉曼信号被显著的荧光背景覆盖,所以在不添加Au@SiO2@Ag@SiO2胶体的天然尿液中仅观察到很少的低强度拉曼峰;而在SERS光谱中可以观察到荧光背景强度明显降低,能清晰地分辨出高强度㊁尖锐的拉曼光谱峰.在550 1800cm-1范围内,实际尿液的SERS光谱与生化分子的振动模型相关.尿素作为正常尿液中最易检测到的化学成分,其拉曼光谱特征峰位于1003cm-1处,对应于C N198㊀No.5㊀齐㊀琪等:双金属双硅层核⁃壳纳米结构Au@SiO2@Ag@SiO2用于葡萄糖检测的对称伸缩振动[28],656cm-1处的峰对应于尿酸的OC N变形结构,842cm-1为肌氨酸酐的特征峰,1592cm-1处的峰对应于络氨酸的环呼吸振动.本文方法不涉及额外的分离㊁稀释或与其它试剂混合等化学分析步骤,可直接对样品进行检测,因此优于现有的一些测试方法.该SERS分析方法为尿液筛查提供了一种即时的测试方法.将此拉曼技术与便携式电子仪器相结合,可使SERS感应器件成为实际尿液分析的实用工具.2.4㊀Au@SiO2@Ag@SiO2用于尿液中葡萄糖的检测检测葡萄糖对糖尿病的诊断和治疗至关重要.对于大多数葡萄糖传感器,检测是间接的,依赖于酶,如葡萄糖氧化酶.酶蛋白的使用增加了传感器的成本,并在一定程度上影响传感器的灵敏度㊁稳定性和重复性[29].基于此,本文通过SERS方法将制备的具有增强拉曼散射性能的Au@SiO2@Ag@SiO2纳米粒子应用到葡萄糖检测中.为得到葡萄糖的最低检测限,将5μL人工尿液(含葡萄糖浓度为10-6 10-2mol/L)与45μLAu@SiO2@Ag@SiO2胶体溶液混合,测得的葡萄糖的SERS光谱如图7(A)所示.Au@SiO2@Ag@SiO2溶液中测得的葡萄糖拉曼光谱图与葡萄糖晶体的谱图相比有所偏移,这是因为吸附分子与SERS基底发生相互作用所致,谱线上的峰信息与葡萄糖的特征峰相符.拉曼散射光谱对应的葡萄糖结构信息如下:947cm-1处的峰归属为O C H的弯曲振动,1075cm-1处的峰归属为C OH的伸缩振动,1147,1195和1306cm-1处的峰归属为C C C O的伸缩振动,1395和1437cm-1处的峰归属为C C H的弯曲振动,1578cm-1处的峰归属为CH2的剪式振动[30].在特征峰位1075和1147cm-1处,浓度低至10-6mol/L的葡萄糖仍能被检出.这些峰的强度随着葡萄糖浓度的增大而增加.由图7(B)可见,1147cm-1处葡萄糖的拉曼信号强度和峰面积与浓度呈现非线性关系.综上,采用Au@SiO2@Ag@SiO2纳米粒子可实现葡萄糖分子的SERS无探针灵敏检测.Fig.7㊀SERSspectraofglucoseinartificialurineonAu@SiO2@Ag@SiO2withvariousconcentrationsofglucose(A)andthenonlinearvariationbetweenSERSintensityandareavs.logarithmicplotofglucoseconcentrationforthebandat1147cm-1(B)(A)c(glucose)/(mol㊃L-1):a.10-6;b.10-5;c.10-4;d.10-3;e.10-2.在有其它内源分子如尿素存在下,对人工尿液中的葡萄糖和尿素进行了检测.为模拟人体中尿素和葡萄糖的浓度范围(3 9 6 1和2 9 7 5mmol/L),将含有等浓度(10-3和10-2mol/L)尿素和葡萄糖的人工尿液通过Au@SiO2@Ag@SiO2纳米基底进行SERS检测.图8为测得的等浓度尿素和葡萄糖的拉曼光谱图.可见,在人工尿液中等浓度的葡萄糖和尿素可同时被检出.图8谱线a两者浓度均为10-3mol/L,谱线b两者浓度均为10-2mol/L.1001cm-1处为尿素的特征峰[28],其余的拉曼光谱峰与葡萄糖相匹配.图5中健康成人尿液位于1001cm-1处的SERS峰强度介于图8谱线a和b峰强度之间,与实际尿液中尿素浓度在10-3 10-2mol/L范围内一致.若血糖浓度高于肾糖阈值9 0mmol/L,超过了肾小球滤过率,会出现尿糖现象.这种检测基底可以被发展用于诊断分析肾脏病变或糖尿病等疾病.另外,在多数情况下,尿素和葡萄糖共同存在,如在培养液和工业污水中,需同时检测.葡萄糖和尿素混合物的SERS光谱表明,两者对表面增强散射敏感.这2种化合物在作为相互存在的化合物时,可以被同时识别,且不需要分离就能实现检测.以Au@SiO2@Ag@SiO2纳米粒子作为增强基底的SERS检测方法298高等学校化学学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.40㊀为尿素和葡萄糖的同时检测提供了便捷的途径.Fig.8㊀Ramanspectraof10-3mol/L(a)and10-2mol/L(b)ureaandglucoseFig.9㊀Ramanspectraofrealurineandglucosec(Glucose)/(mol㊃L-1):a.10-3;b.10-2;c.10-1.为了将此方法更好地应用于人体检测,SERS感应器件还应在更复杂的介质中进行检测.通过在健康成人尿液中添加葡萄糖固体粉末制备了含有10-3 10-1mol/L葡萄糖的实际尿液,并进行SERS检测.图9为含有不同浓度葡萄糖的实际尿液的拉曼光谱,942,1162和1448cm-1处的SERS峰对应于葡萄糖分子的特征峰;1073cm-1处的峰对应于葡糖酸;其它峰对应于尿液中的生物分子尿酸㊁肌氨酸酐㊁尿素和苯丙氨酸.由于实际尿液化学成分复杂,有些分子的特征峰会被荧光峰掩盖,或成为其它分子特征峰的峰肩而变得不明显,但仍能从葡萄糖特征峰的出现确定葡萄糖分子的存在;且随着葡萄糖浓度降低SERS光谱中葡萄糖特征峰的强度减小.结果表明,无论葡萄糖单独存在或与其它物质共存,都能通过葡萄糖分子的增强拉曼散射特征峰检测出不低于10-3mol/L的葡萄糖,显示出Au@SiO2@Ag@SiO2应用于实际检测的潜力.综上所述,合成了一种双金属双硅层的核⁃壳结构纳米粒子Au@SiO2@Ag@SiO2,利用这种纳米材料通过SERS技术可以准确检出实际尿液的成分,包括尿素㊁尿酸及苯丙氨酸等.此外,该复合材料可用于低浓度(10-6mol/L)葡萄糖的测定,在其它干扰生物分子存在的情况下低至10-3mol/L的葡萄糖仍可被检测出,且样品中多种生物分子的特征峰均能清楚地显示在SERS光谱中.这种可以用于检测单个或多个组分的拉曼光谱分析系统为多种物质的体外分析提供了高效便捷的方法.相比于传统方法,基于双金属双硅层新型材料的SERS技术,兼备了非侵入性㊁长期稳定性㊁抗干扰性和高灵敏性等优点,该纳米材料在生物医药领域具有广阔的临床应用前景.参㊀考㊀文㊀献[1]㊀CardinalM.F.,RodríguezgonzálezB.,AlvarezpueblaR.A.,PérezjusteJ.,LizmarzánL.M.,J.Phys.Chem.C,2010,114(23),10417 104232[2]㊀JankovicV.,YangY.M.,YouJ.B.,DouL.,LiuY.,CheungP.,ACSNano,2013,7(5),3815 3822[3]㊀ChoE.C.,CamargoP.H.,XiaY.,Adv.Mater.,2010,22(6),744 748[4]㊀XingS.,TanL.H.,ChenT.,YangY.,ChenH.,Chem.Commun.,2009,(13),1653 1654[5]㊀SharmaB.,FrontieraR.R.,HenryA.I.,RingeE.,DuyneR.P.V.,Mater.Today,2012,15(1/2),16 25[6]㊀KellyK.L.,CoronadoE.,LinL.Z.,SchatzG.C.,Environ.Chem.,2003,34(16),668 677[7]㊀SamalA.K.,PolavarapuL.,Rodal⁃CedeiraS.,Liz⁃MarzánL.M.,Pérez⁃JusteJ.,Pastoriza⁃SantosI.,Langmuir,2013,29(48),15076 15082[8]㊀BuT.J.,MaX.W.,ZhaoB.,SongW.,Chem.Res.ChineseUniversities,2018,34(2),290 295[9]㊀ShenJ.,ZhuY.,YangX.,ZongJ.,LiC.,Langmuir,2013,29(2),690 695[10]㊀FengJ.J.,GernertU.,HildebrandtP.,WeidingerI.M.,Adv.Funct.Mater.,2010,20(12),1954 1961[11]㊀ZhuJ.,XuZ.J.,WengG.J.,ZhaoJ.,LiJ.J.,ZhaoJ.W.,SpectrochimActaA,2018,200,43 50[12]㊀ChangH.,KangH.,YangJ.K.,JoA.,LeeH.Y.,LeeY.S.,ACSAppl.Mater.Inter.,2014,6(15),11859 11863[13]㊀LiJ.F.,HuangY.F.,YangZ.L.,LiS.B.,ZhouX.S.,FanF.R.,Nature,2010,464(7287),392 395[14]㊀SchollT.O.,SowersM.F.,ChenX.,LendersC.,Am.J.Epidemiol.,2001,154(6),514 520[15]㊀BruenD.,DelaneyC.,FloreaL.,DiamondD.,Sensors,2017,17(8),1866398㊀No.5㊀齐㊀琪等:双金属双硅层核⁃壳纳米结构Au@SiO2@Ag@SiO2用于葡萄糖检测[16]㊀MatzeuG.,FloreaL.,DiamondD.,Sensor.Actuat.B:Chem.,2015,211,403 418[17]㊀SunD.,QiG.,XuS.,XuW.,RSCAdv.,2016,6(59),53800 53803[18]㊀GuX.,WangH.,SchultzZ.D.,CamdenJ.P.,Anal.Chem.,2016,88(14),7191 7197[19]㊀KwonJ.A.,JinC.M.,ShinY.,KimH.Y.,KimY.,KangT.,Appl.Mater.Interfaces,2018,10,13226 13235[20]㊀SunD.,LiuX.Y.,XuS.P.,TianY.,XuW.Q.,TaoY.C.,Chem.Res.ChineseUniversities,2018,34(6),899 904[21]㊀WangH.,MalvadkarN.,KoytekS.,BylanderJ.,ReevesW.B.,DemirelM.C.,J.Biomed.Opt.,2010,15(2),027004[22]㊀LimD.K.,KimI.J.,NamJ.M.,Chem.Commun.,2008,(42),5312 5314[23]㊀BiG.,WangL.,CaiC.,UenoK.,MisawaH.,QiuJ.,J.Mod.Opt.,2014,6(15),1231 1235[24]㊀Montalb nM.,CoburnJ.,Lozano⁃PérezA.,CenisJ.,VílloraG.,KaplanD.,Nanomaterials,2018,8(2),126[25]㊀BeckerJ.,ZinsI.,JakabA.,KhalavkaY.,SchubertO.,SönnichsenC.,NanoLett.,2008,8,1719 1723[26]㊀DengZ.,ChenM.,WuL.,J.Phys.Chem.C,2007,111(31),11692 11698[27]㊀PremasiriW.R.,ClarkeR.H.,WombleM.E.,Laser.Surg.Med.,2010,28(4),330 334[28]㊀HuangS.,WangL.,ChenW.,FengS.,LinJ.,HuangZ.,Laser.Phys.Lett.,2014,11(11),115604[29]㊀DongX.C.,XuH.,WangX.W.,HuangY.X.,ChanparkM.B.,ZhangH.,ACSNano,2012,6(4),3206 3213[30]㊀YonzonC.R.,LyandresO.,ShahN.C.,DieringerJ.A.,DuyneR.P.,Top.Appl.Phys.,2006,103,367 379BimetallicMulti⁃coreNanoparticleswithDualSiO2LayerAu@SiO2@Ag@SiO2fortheDetectionofGlucose†QIQi1,LUBingxin1,CHEYuping1,WANGYang2,ZHAIJin1∗(1.SchoolofChemistry,BeihangUniversity,Beijing100191,China;2.InstituteofChemistry,ChineseAcademyofSciences,Beijing100190,China)Abstract㊀Surface⁃enhancedRamanscattering(SERS)wasdemonstratedasahighlyefficientapproachfortheamplificationofextremelylowsignalsduetothestrongelectromagneticfieldenhancementthatoccursnearclosely⁃packedmetallicnanostructures,whichwasdependentontheuniquelocalizedsurfaceplasmonresonance(LSPR).TodevelopsensitiveSERSprobes,differentgeometricconfigurationsasapproachesarefocusingonthesynthesisofadvancednanostructures,orefficientRamanlabelcompoundsthatareresonantwithexcitationlight.Thesegeometricfactorsaffectthepolarizationdirectionandmagnitudeofplasmoniccou⁃plingandtheSERSsignalintensity.Asweknow,plasmonicpropertiesofAuandAgNPsarehighlysensitivetotheirshapes.InordertoimprovetheperformanceofmetalnanoparticlesinSERSdetection,wepreparedahighlysensitiveandstablebimetallicdoublesiliconcore⁃shellnanostructuredmaterialofAu@SiO2@Ag@SiO2.ThenanoparticleshavegoodRamanscatteringpropertiesandexcellentstability,sincethesiliconlayerbetweenthebimetalspromotesremoteplasmaexcitationtransfer.ThemaincomponentofhumanurinecanbedirectlydetectedbyusingthisSERSactivematerial,andthematerialexhibitstheabilitytodetecthighlyeffectiveness10-6mol/Lglucosewithlabel⁃freeAu@SiO2@Ag@SiO2nanoparticles.Inaddition,simultane⁃ousdetectionofmediumconcentrationsof10-3mol/Lglucoseandureamoleculesinartificialurineanddetec⁃tionof10-3mol/Lglucoseinactualurinewerealsoachieved.TheAu@SiO2@Ag@SiO2nanoparticlesshowthepotentialfordetectionglucoseinthepresenceofmultiplebiomolecules.†SupportedbytheNationalKeyResearchandDevelopmentProgramofChina(Nos.2017YFA0206902,2017YFA0206900),theNationalNaturalScienceFoundationofChina(Nos.21471012,21771016)andtheInternationalScienceandTechnologyCooperationProgramofChina(No.2014DFA52820).Keywords㊀Au@SiO2@Ag@SiO2;Surface⁃enhancedRamanscattering;Label⁃free;Detectionofglucose;Urine(Ed.:Y,K)498高等学校化学学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.40㊀。
核壳结构双金属纳米粒子的研究与应用
化 学 进 展
PROGRESS IN CHEM ISTRY
Vol. 22 No. 2 /3 M ar. , 2010
核壳结构双金属纳米粒子的研究与应用 3
王 锐 訾学红 刘立成 戴洪兴 何 洪 3 3
(北京工业大学环境与能源工程学院化学化工系 北京 100124)
摘 要 核壳结构双金属纳米粒子因其特殊的原子排列方式和不同寻常的优异性能引起了普遍关注 , 在各种应用尤其是催化领域展示出巨大的潜力 。本文综述了近年来有关核壳结构双金属纳米粒子合成与应 用方面的研究结果 。首先介绍了纳米合金的基本概念和主要结构 ,然后依照构造核壳结构的不同策略 ,分别 介绍了核壳结构纳米合金的两种主要制备方法 ,即连续还原法和共还原法 ,其中又包括水相体系 、多元醇体 系 、表面取代 、Dendrimer络合 、外延生长等不同合成体系 。最后阐述了核壳结构纳米合金在催化领域的研究 进展和应用前景 ,指出了未来研究亟待解决的问题和发展方向 。
·3 60·
化 学 进 展
ቤተ መጻሕፍቲ ባይዱ
第 22卷
构的双金属纳米粒子 。 许多单金属纳米粒子的制备过程被借鉴来用于
合成双金属纳米材料 ,如经典的制备纳米金的 Turkevich法 [ 17 ]和 Frens法 [ 18 ] ,制备贵金属 ( Pt、Pd、 Rh)纳米粒子的 polyol法等 。 211 连续还原法 ( successive reduction)
双金属核壳结构.doc
双金属核壳结构的制备及催化性能研究摘要双金属核壳纳米结构由于具有大量的潜在应用价值,近年来已引起人们极大的关注。
本文综述了水相体系还原法、多元醇体系还原法、热分解—还原法、化学镀法、胶体粒子模板法、共沉积法、电化学法、表面取代反应和表面处理等双金属核壳纳米结构的制备方法,简述了各种方法的原理、优缺点和应用情况,另外,对双金属核壳纳米结构电催化氧化、有机物加氢、催化脱氯、环境催化方面的应用作了简述。
最后,对今后双金属核壳结构型的研究方向进行了展望。
关键词双金属核壳制备方法催化1 引言在对高性能新材料的探索过程中,纳米材料以其特殊的优异性能吸引了许多研究者的兴趣,掀起了纳米材料的研究热潮。
对应用纳米技术制备具有某种功能的特性的材料来说,有必要寻求可靠、可控的方法纳米材合成料的。
核壳结构纳米材料[1](core-shell nanomaterials)是指具有“核壳包裹”这种特殊原子排列方式的纳米复合材料,可看作是对原始纳米粒子的剪裁和改造,通常记作“核@壳”。
金属@金属(即核壳双金属)纳米材料因其巨大的催化应用潜力而受到催化学者的广泛关注。
2 双金属核壳结构制备方法2.1水相体系还原法在水相中,利用不同还原剂和保护剂,通过先后两次还原不同金属形成核壳结构的纳米合金,这是目前使用最多的一种合成方法。
Yang等[ 2 ]用NaBH4还原合成Ag溶胶,再利用柠檬酸钠溶液热回流使Pt还原并沉积在Ag表面,得到红棕色Ag@Pt溶胶。
Zhou等[3 ]在冰浴下,利用NaBH4还原HAuCl4制成Au 纳米溶胶,再逐滴加入H2PdC l4和抗坏血酸,得到深棕色Au @ Pd纳米溶胶。
一般地,水相中连续还原时,壳层金属通常采用较温和的还原剂(如抗坏血酸)以控制还原速率,使其更易更好地实现包覆效果,有时采用冰浴等降温手段效果更好[ 4 ]。
2.2 多元醇体系还原法多元醇还原法是合成单金属(尤其是贵金属)纳米粒子最简便有效的方法之一,该方法也被用于制备双金属核壳结构。
Au-Pd双金属核壳结构————表征十分清晰
Green ChemistryDynamic Article LinksCite this:Green Chem.,2011,13,/greenchemPAPEROne-step room-temperature synthesis of Au@Pd core–shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer†Xin Huang,a ,b Hao Wu,a Shangzhi Pu,c Wenhua Zhang,b ,c Xuepin Liao*a ,b and Bi Shi*bReceived 23rd October 2010,Accepted 8th February 2011DOI:10.1039/c0gc00724bBayberry tannin (BT),a natural plant polyphenol,is used for the one-step synthesis of Au@Pd core–shell nanoparticles (Au@Pd NPs)in aqueous solution at room temperature.Due to its mild and stepwise reduction ability,BT was able to preferentially reduce Au 3+to Au NPs when placed in contact with an Au 3+/Pd 2+mixture,and subsequently,the formed Au NPs served as in situ seeds for the growth of a Pd shell,resulting in the formation of Au@Pd NPs.Importantly,it is feasible to adjust the morphology of the Pd shell by varying the Pd 2+/Au 3+molar ratio.Au@Pd NPs with a spherical Pd shell were formed when the Pd 2+/Au 3+molar ratio was 1/50,while Au@Pd NPs with cubic Pd shell predominated when the ratio was increased to 2/1.The core–shell structure of synthesized Au@Pd NPs was characterized by TEM,HAADF-STEM,EDS mapping,an EDS line scan,and EDS point scan.Furthermore,density functional theory (DFT)calculationssuggested that the localization of BT molecules on the surface of the Au clusters was the crucial factor for the formation of Au@Pd NPs,since the BT molecules increased the surface negative charges of the Au NPs,favoring the attraction of Pd 2+over Au NPs and resulting in the formation of a Pd shell.IntroductionThe construction of core–shell bimetallic nanoparticles (NPs)has attracted growing interest in recent decades because their unique optical,electrical,and catalytic properties have great potential in diverse fields such as biomedical,information storage and catalysis.1–3The most distinct advantages of core–shell bimetallic NPs are their tunable structural and electronic properties compared with their monometallic counterparts.4,5By changing the composition,core size,and shell thickness,one can rationally control the physicochemical properties of the shell metal,and thus design various functional core–shell NPs.6–8Core-shell bimetallic NPs are generally prepared by a two-step seeding–growth method where pre-synthesized metal NPs are used as seeds for the overgrowth of second metal.9According to this method,various core–shell bimetallic NPs,such asaDepartment of Biomass chemistry and Engineering,Sichuan University,Chengdu,610065,P .R.China.E-mail:xpliao@;Fax:+862885460356;Tel:+862885400382bNational Engineering Laboratory of Clean Technology for Leather Manufacture,Sichuan University,Chengdu,610065,P .R.China.E-mail:shibi@;Fax:+862885460356;Tel:+862885400356cCollege of Chemistry,Sichuan University,Chengdu,610064,China.E-mail:Huawenzhang@†Electronic supplementary information (ESI)available:TEM,EDS,XRD and surface charge calculation of the materials.See DOI:10.1039/c0gc00724bRh@Pt,10Au@Pd and Au@Ag,11have been successfully syn-thesized by choosing different metal NPs as seeds.Although the seeding–growth method is a useful methodology for preparing core–shell bimetallic NPs,the synthetic procedures are some-what tedious due to the stepwise nature of this method (the metal seeds need to be prepared beforehand),and the strict reaction conditions that are often employed (such as high temperature and high vacuum).12–14Therefore,much effort has been devoted to develop a more facile strategy,such as one-step synthesis method,15for the preparation of core–shell bimetallic NPs.However,it is in principle extremely difficult to construct core–shell bimetallic NPs without seeds,because the simultaneous reduction of bimetallic precursors often leads to the formation of a bimetallic alloy.Very recently,the in situ seeding–growth method was devel-oped for the one-step aqueous synthesis of core–shell bimetallic NPs.16,17The basic principle of this novel approach is to take advantage of the difference in reduction potentials of metal ions,by which the metal ions with higher reduction potential are reduced first and then serve as the in situ seeds for the successive reduction of shell metal ions.To achieve such a synthesis,a suitable reductant is essential because strong reductants inevitably lead to the formation of binary alloys,while reducing agents that are too weak cannot effectively reduce the metal precursors.18In this regard,important achieve-ments have been made by the use of ammonium compounds.For example,Lee et al.16successfully synthesized Au@PdD o w n l o a d e d b yE a s t C h i n a U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y o n 15 J u l y 2011P u b l i s h e d o n 28F e b r u a r y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0G C 00724BView Onlinecore–shell nanooctahedra via the simultaneous reduction of Au 3+and Pd 2+using cetyltrimethylammonium chloride (CTAC)as the reductant.However,this reaction system needs to be sealed and heated at high temperature to promote the complete reduction of metal ions owing to the weak reducing power of the reductant employed.Yan and co-workers 17prepared Au@Co core–shell NPs using ammonia–borane to simultaneously re-duce Au 3+and Co 2+precursors.Although the synthetic process was rapidly completed at room temperature,the reductant is expensive,and additional stabilizers are required to protect the NPs.Another important issue for the preparation of core–shell nanoparticles is control of their core–shell structure,but so far this has been a big challenge.In the present investigation,we wish to propose a green strategy for the synthesis of core–shell Au@Pd bimetallic NPs by using plant tannins (also called plant polyphenols)as a reductant and stabilizer.The interesting feature of this method is that Au@Pd NPs can be synthesized in one step at room temperature under an ambient atmosphere without additional stabilizer.More importantly,the core–shell structure of Au@Pd NPs can be rationally designed by varying the molar ratio of Au 3+/Pd 2+and the concentration of plant tannin.Plant tannins,extracted from plants,are soluble polyphenols with multifunctional groups,which are generally classified into condensed tannins and hydrolysable tannins.The molecular structure of condensed tannins mainly consists of polymerized flavan-3-ols.The unique electronic properties of condensed tannins are that they are able to gradually donate the electrons of ortho -phenolic hydroxyls,thus exhibiting mild and stepwise reduction ability.19Additionally,the molecular backbone of condensed tannins consists of aromatic rings,which can provide steric hindrance to prevent the aggregation of metal particles,thus acting as an effective stabilizer.20,21More recently,we devel-oped a green strategy for the one-step room-temperature synthe-sis of gold nanoparticles (Au NPs)by using condensed tannin as the reductant and stabilizer.22Our research demonstrated that condensed tannins can rapidly reduce Au 3+to metallic nanoparticles,and simultaneously stabilize them by attaching to their surface.At higher tannin concentrations,the excess tannin molecules could form a supramolecular tannin shell around the Au NPs due to the strengthened intermolecular interactions (hydrogen bonds and/or hydrophobic bonds)between tannins.Considering these unique properties of condensed tannins,we therefore hypothesized that,if the condensed tannins localized on the surface of Au NPs can successively reduce second metal ions with lower reduction potential,core–shell Au@M NPs (M represents other metals)would be easily prepared under mild conditions by using condensed tannins as reductant and stabilizer.In order to verify our hypothesis,we first investigated the reduction rate of bayberry tannin (BT,a typical condensed tannin)upon individual Au 3+and Pd 2+precursors.Subsequently,a series of Au 3+/Pd 2+mixtures with different molar ratios were blended with BT solution at room temperature under ambient atmosphere.The resultant nanoparticles were examined by transmission electron microscopy (TEM),and analyses of the core–shell structure were performed using a high-angle annular dark-field scanning TEM (HAADF-STEM)technique.Subsequently,theoretical calculations were used to provide understanding of the formation of Pd shell over the Au core.Much to our delight,Au@Pd NPs with core–shell structure can be easily synthesized under mild conditions by using BT,a typical natural non-toxic polyphenol,as the reductant and stabilizer,which is much more environmentally benign than the conventional ‘bottom-up’methods of nanoparticle preparation that need toxic chemical reducing agents and/or stabilizers.Moreover,the morphology of the Pd shell could be tuned from sphere to cube by varying the molar ratio of Au 3+/Pd 2+and the BT concentration.Consequently,our investigations have provided the first successful example of a ‘green’synthesis of Au@Pd core–shell nanoparticles by using plant tannins (plant polyphenols)as the reductant and stabilizer.Experimental sectionAll the reactions were carried out at room temperature under ambient atmosphere without N 2protection.HAuCl 4,PdCl 2and other chemicals were purchased and used as received.Distilled water was used for the preparation of all solutions.Synthesis of BT-stabilized nanoparticles(a)BT 0.4-Au 0.5NPs.10.0mL of HAuCl 4solution (0.025mmol)was directly added to 40.0mL of BT solution (0.02g)at 30◦C under ambient atmosphere.The resulting solu-tion was denoted as BT 0.4-Au 0.5NPs,in which the concentration of Au 3+was 0.5mmol L -1and that of BT was 0.4g L -1.(b)BT 0.4-Pd 0.5NPs and BT 0.4-Pd 1.0NPs.BT 0.4-Pd 0.5NPs were simply obtained by mixing 10.0mL of PdCl 2solution (0.025mmol)with 40.0mL of BT solution (0.02g),followed by shaking at 30◦C under ambient atmosphere for 24h.For the preparation of BT 0.4-Pd 0.5NPs,the concentration of Pd was 0.5mmol L -1and that of BT was 0.4g L -1.The BT 0.4-Pd 1.0NPs were synthesized by the same procedures used for the preparation of BT 0.4-Pd 0.5NPs,except that the amount of Pd 2+was increased to 0.050mmol.In the case of BT 0.4-Pd 1.0NPs,the concentration of Pd 2+was 1.0mmol L -1and that of BT was 0.4g L -1.(c)Core-shell BT 0.4-Au x @Pd y NPs.10.0mL of HAuCl 4/PdCl 2mixture with different molar ratios (0.025mmol Au 3+/0.0005mmol Pd 2+,0.050mmol Au 3+/0.0010mmol Pd 2+,0.025mmol Au 3+/0.025mmol Pd 2+,0.025mmol Au 3+/0.050mmol Pd 2+,and 0.050mmol Au 3+/0.025mmol Pd 2+)was mixed with 40.0mL of BT solution (0.02g).The resultant mixture was subsequently shaken at 30◦C under ambient atmosphere for 24h.As a result,a series of BT-stabilized Au x @Pd y NPs (denoted BT 0.4-Au x @Pd y NPs)were prepared,where x and y are the molar concentrations (mmol L -1)of Au and Pd,respectively,and the concentration of BT was fixed at 0.4g L -1.Herein,Au x @Pd y -BT 0.4NPs with different Au/Pd molar ratios were synthesized includingBT 0.4-Au 0.5@Pd 0.01,BT 0.4-Au 1.0@Pd 0.02,BT 0.4-Au 0.5@Pd 0.5,BT 0.4-Au 0.5@Pd 1.0,and BT 0.4-Au 1.0@Pd 0.5.(d)Core-shell BT x -Au 0.5@Pd 0.5NPs.To investigate the effects of BT concentration on the morphology of Au@Pd NP,BT solution with different concentrations was used in the preparation process.The detailed synthetic procedures were theD o w n l o a d e d b yE a s t C h i n a U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y o n 15 J u l y 2011P u b l i s h e d o n 28F e b r u a r y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0G C 00724BTable 1Experimental parameters for the preparation of BT-stabilized nanoparticles aAu 3+(mmol)Pd 2+(mmol)BT (g)Deionized water (ml)Particle shape BT 0.4-Au 0.50.025—0.0250.0Spherical BT 0.4-Pd 0.5—0.0250.0250.0Spherical BT 0.4-Pd 1.0—0.0500.0250.0Cubic BT 0.4-Au 0.5@Pd 0.010.0250.00050.0250.0Spherical BT 0.4-Au 1.0@Pd 0.020.0500.00100.0250.0SphericalBT 0.4-Au 0.5@Pd 0.50.0250.0250.0250.0Spherical/cubic BT 0.4-Au 0.5@Pd 1.00.0250.0500.0250.0Spherical/cubic BT 0.4-Au 1.0@Pd 0.50.0500.0250.0250.0Spherical BT 0.1-Au 0.5@Pd 0.50.0250.0250.00550.0SphericalBT 0.8-Au 0.5@Pd 0.50.0250.0250.0450.0Spherical/cubicaThe whole synthetic process was carried out 303K under ambient atmosphere.same as used for Au x @Pd y -BT 0.4,but the final concentration of BT was varied from 0.1g L -1to 0.8g L -1by changing the BT dosage.The synthetic parameters of BT-stabilized nanoparticles are summarized in Table 1.CharacterizationThe UV/vis spectra were recorded on a Shimazu TU-1901spectrophotometer.Wide-angle X-ray diffraction (XRD)mea-surements were obtained by an X’Pert PRO MPD diffractometer (PW3040/60)with Cu-K a radiation.Transmission electron microscopy (TEM)observation was carried out on a FEI-Tecnai G2microscope.Density functional calculationsIn order to theoretically investigate the effect of BT molecules on the surface charges of Au NPs,density functional theory (DFT)calculations were performed using the program package Dmol 3in the Accelrys Materials Studio.Considering that the actual BT-stabilized Au nanopaticles are too large for the DFT calculations,the model Au 43cluster was constructed based on a face-centered-cubic (fcc)octahedral to represent Au NP .Additionally,due to the complexity of molecular structure of BT,pyrogallol was used as a model compound to simulate the interaction of ortho -phenolic hydroxyls of BT with the Au 43cluster.Metal atom core electrons were treated using the quasi-relativistic pseudopotentials,in which the mass-velocity and Darwin relativistic corrections were introduced.During the calculations,the generalized gradient approximation (GGA)and localized double-numerical basis sets with polarizationfunctions (DNP)were employed.A real-space cutoff of 4.5A˚was used,with convergence criteria of 2¥10-5hartree (1hartree =27.2eV),4¥10-3hartree A˚-1,and 5¥10-3A ˚for energy,energy gradient,and geometry,respectively.The self-consistent field (SCF)calculations were conducted with the spin-polarization Kohn–Sham formalism,and molecular symmetry was not enforced to allow for geometry relaxation.Results and discussionOne-step synthesis of BT-stabilized Au NP (BT-Pd)and BT-stabilized Pd NP (BT-Pd)Bayberry tannin (BT)is a typical kind of condensed tannin,which consists of polymerized flavan-3-ols and flavan-3-gallate,as shown in Fig.1.There are a large number of ortho -phenolic hydroxyls on the B-ring of the BT molecule,which can be gradually oxidized to benzoquinones when exposed to air or electrophilic ions;23it thus exhibits mild and stepwise reduction ability.On the other hand,the reduction potentials of Au 3+(E 0AuCl 4-/Au =+1.002eV vs.SHE)is much higher than that of Pd 2+(E 0PdCl 4-/Pd =+0.591eV vs.SHE).24Therefore,it can be rationally assumed that Au 3+will be preferentially reduced over the Pd 2+when Au 3+and Pd 2+are simultaneously exposed to BTsolution.Fig.1Molecular structure of BT and its reduction properties.To verify this assumption,assessment of the reduction rate of Au 3+or Pd 2+with BT solution was carried out,where the concentration of BT was fixed at 0.4g L -1,and those of Au 3+and Pd 2+were both 0.5mmol L -1.For the preparation of BT 0.4-stabilized Au NP 0.5(BT 0.4-Au 0.5),complete reduction of Au 3+can be achieved within several minutes.Upon the mixing of Au 3+with BT solution,the color rapidly changed from yellow to purple–red,which suggested the formation of Au NPs.The fast reduction rate is also reflected on the UV-vis spectra of BT 0.4-Au 0.5.In Fig.2a,the surface plasmon resonance (SPR)peak of Au NP is clearly observed at 524nm,25and its absorbance intensity rapidly reaches equilibrium in the first 3min (inset in Fig.2a).The transmission electron microscopy (TEM)image of BT 0.4-Au 0.5in Fig.2b clearly shows the roughly spherical Au NPs with an average diameter of 11±2nm (see Fig.S1for details†).Importantly,the EDS mapping analyses of BT 0.4-Au 0.5in Fig.2c–e reveal that the O mapping image has a similar shape to that of Au,which directly confirms the encapsulation of Au NP in the supramolecular BT shell.In contrast to the fast rate of Au 3+reduction,Pd 2+exhibited a much slower reduction rate under the same conditions.InD o w n l o a d e d b yE a s t C h i n a U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y o n 15 J u l y 2011P u b l i s h e d o n 28F e b r u a r y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0G C 00724BFig.2UV-vis spectra,TEM and HRTEM images of BT 0.4-Au 0.5(a,b,c)and BT 0.4-Pd 0.5(g,h,i).HAADF-STEM image (d)and EDS mapping images (e and f)of BT0.4-Au 0.5.Fig.2g,the characteristic peak of BT 0.4-Pd 0.5at 416nm takes almost 12h to reach equilibrium.This strongly suggests that BT can preferentially reduce Au 3+when treated with an Au 3+/Pd 2+mixture.Additionally,it is somewhat surprising that the Pd NPs synthesized from the slow reduction process have a small particle size of 5–12nm (Fig.S2).Possibly,BT molecules have strong stabilizing effect toward Pd NPs at such concentrations (BT =0.4g L -1,Pd 2+=0.5mmol L -1).When further increasing the Pd concentration to 1.0mmol L -1,cubic Pd particles are found to be predominant in the diameter range of 300–800nm (Fig.S3).According to the literature,26the shape of Pd NPs can vary between spheres,cubes,triangles and pentagons,depending on the species of reducing agent,the reducing speed,and the ratio of metal precursor to stabilizer/reducing agent.In the current work,the Pd NPs have two shapes –spheres and cubes.Consequently,we inferred that it was feasible to adjust the morphology of the Pd shell by varying the ratio of Pd 2+concentration and BT concentration when preparing BT-stabilized Au@Pd core–shell NPs.Synthesis of BT-stabilized Au@Pd NP (BT-Au@Pd)with spherical and cubic Pd shellsWe have shown above that the reduction rate of Au 3+with BT solution was faster than for Pd 2+.Therefore,when a Au 3+/Pd 2+mixture is exposed to BT,Au 3+will be first reduced to Au NPs in solution,and then serve as the in situ nucleation center for the growth of the Pd shell.The proposed preparation mechanism is depicted in Fig.3.As documented in the literature,27,28the low-coordinated surface atoms of Au NP are characterized by negative charges.Our density functional theory (DFT)calculations (see below)also show that the surface atoms of the Au NP carry more negative charges when stabilized by BT,which is due to the electron transfer from BT to Au NP .Hence,after Au 3+is reduced to Au NP,the positively charged Pd 2+(with a slow reduction rate)will be preferentially absorbedon Fig.3Schematic outline of the preparation of BT-stabilized Au@Pd NP with tunable structure.the negatively charged Au NP via electrostatic attractions.27,29Following this,the Pd 2+slowly reduces to Pd over the Au NP via the action of the supramolecular BT shell.It should be noted that the BT shell on the surface of the Au NP is the crucial factor for this synthetic route because individual Pd nuclei will be randomly formed in solutions if no BT molecules are located on Au NP .The above element mapping analyses of BT 0.4-Au 0.5have confirmed the presence of BT shell over Au NP .Thus,it is feasible to prepare Au@Pd core–shell NP via one-step reduction of Au 3+/Pd 2+mixture by using BT as the stabilizer and reductant.Additionally,the morphology of Pd shell should be tunable in principle,since the reducing ability of supramolecular BT shell can be adjusted by controlling the initial concentration of BT,and the Au 3+/Pd 2+molar ratio also influences the reduction extent of Pd 2+.To achieve a spherical Pd shell,the Pd 2+/Au 3+molar ratio was fixed at 1/50(0.01mmol L -1/0.5mmol L -1)to ensure a thin shell of Pd over Au NP .Spherical core–shell Au@Pd NPs were synthesized by mixing BT solution (0.4g L -1)with a Pd 2+/Au 3+mixture (0.01mmol L -1/0.5mmol L -1),followed by shaking at room temperature for 24h.A TEM image of BT 0.4-Au 0.5@Pd 0.01is shown in Fig.4a.Spherical nanoparticles are clearly formed,the average diameter being in the range 10±4nm (Fig.4b).Further EDS mapping analysis demonstrates the formation of a supramolecular BT shell on Au@Pd NP,since the O mapping image in Fig.4d is similar to the corresponding HAADF-STEM image (Fig.4c).In Fig.4e–f,EDS mapping images of Au and Pd have similar shapes,which confirms that all particles are bimetallic in nature.However,the EDS line analysis of a distinct nanoparticle (Fig.4g)clearly shows that Au has a much higher intensity than Pd.The EDS line of Au exhibits an ‘K ’-shaped distribution with the maximum intensity at the particle center,whereas the Pd distribution is much wider without a maximum intensity at the particle center.Subsequent EDS point spectra (Fig.S4)acquired from the edge and center of the nanoparticle show the higher atomic percentage of Au at the center with a higher atomic percentage of Pd at the edge,which is consistent with the EDS line analysis.All these results strongly confirm the core–shell structure of obtained NPs.10Subsequently,we doubled the concentration of Pd 2+and Au 3+,but still fixed the Pd 2+/Au 3+molar ratio at 1/50(0.02mmol L -1/1.0mmol L -1).D o w n l o a d e d b yE a s t C h i n a U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y o n 15 J u l y 2011P u b l i s h e d o n 28F e b r u a r y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0G C 00724BFig.4TEM image (a)and the corresponding size distribution (b)of spherical BT 0.4-Au 0.5@Pd 0.01.HAADF-STEM image (c)and EDS map-ping images (d,e,f)of BT 0.4-Au 0.5@Pd 0.01.Cross-sectional compositional line spectra (g)of a distinct BT 0.4-Au 0.5@Pd 0.01nanoparticle.Under such synthetic conditions,spherical Au@Pd NPs were still prepared based on the TEM and EDS mapping analyses (Fig.S5),and the corresponding particle diameter range is similar to that of BT 0.4-Au 0.5@Pd 0.01.In addition,a stepwise reduction of Au 3+and Pd 2+was also performed to prepare BT 0.4-Au 0.5@Pd 0.01NPs by adding Pd 2+to solutions after the reduction of Au 3+in BT solutions.The corresponding TEM and EDS line analysis (Fig.S6)suggested that the core–shell BT 0.4-Au 0.5@Pd 0.01NPs were produced by the step-wise reduction method,which further confirmed the proposed mechanism in Fig.3.To synthesize Au@Pd NPs with cubic Pd shell,the Pd 2+/Au 3+molar ratio was increased to 1/1(0.5mmol L -1/0.5mmol L -1)while the BT concentration was kept at 0.4g L -1.The TEM image of BT 0.4-Au 0.5@Pd 0.5is shown in Fig.5a,showing that a considerable number of Au@Pd NPs with a cubic Pd shell were formed,while others have spherical morphologies.Clearly,the increase of Pd content in solutions favors the sufficient growth of Pd shell over the Au NP .Another interesting phenomenon is that multi-Au cores can be contained in a single Pd cube (Fig.5b and d),apart from the expected formation of Au@Pd NPs with single Au core (Fig.5c and e).To specifically explain the formation of multi-Au cores is difficult,but one can speculate that the BT shells of adjacent Au NPs may interact via intermolecular interactions (hydrogen bonds and/or hydrophobic bonds)to form a supramolecular tannin network,22,30,31and that such BT network allows the reductive growth of Pd over the adjacent Au NPs,which leads to the formation of Au@Pd NP containing multi-Au cores.The corresponding core and shell size distributions of cubic Au@Pd NPs are illustrated in Fig.5f and g,respectively.The spherical Au core has an average diameter of 20±5nm while that for the cubic Pd shell is 150±50nm.Subsequently,we furtherincreasedFig.5TEM image (a)of BT 0.4-Au 0.5@Pd 0.5.High-magnification TEM images (b,c,d,e)of cubic Au@Pd core–shell NPs marked in (a).The corresponding core (f)and shell (g)size distributions of cubic BT 0.4-Au 0.5@Pd 0.5.the Pd 2+/Au 3+molar ratio to 2/1(1.0mmol L -1:0.5mmol L -1)in order to promote the formation of more cubic Au@Pd NPs (Fig.S7).A large number of cubic Au@Pd NPs are formed,for which the corresponding average sizes for core (20±7nm)and shell (150±60nm)are close to those of cubic BT 0.4-Au 0.5@Pd 0.5.In addition,the Au@Pd NPs with multi-Au cores are still observed in BT 0.4-Au 0.5@Pd 1.0.Subsequent element analyses confirm the formation of Au core and cubic Pd shell,as well as the presence of BT shell over the Au@Pd NP .All these results suggest a similar formation mechanism for cubic BT 0.4-Au 0.5@Pd 0.5and BT 0.4-Au 0.5@Pd 1.0except that higher content of Pd 2+is provided during the preparation of BT 0.4-Au 0.5@Pd 1.0,which results in the sufficient growth of Pd shell over more Au cores.The wide-angle XRD patterns of BT 0.4-Pd 1.0,BT 0.4-Au 0.5and BT 0.4-Au 0.5@Pd 1.0are presented in Fig.S8.The characteristic peaks of a face-centered-cubic (fcc)metallic gold (38.2◦,44.4◦,64.6◦,77.6◦and 81.7◦,JCPDS-4784)are clearly observed,which confirm the reduction of Au 3+to Au(0)in BT 0.4-Au 0.5.32Apart from the characteristic peaks of metallic gold,the characteristic peaks of metallic Pd are also observed at 39.7◦,46.7◦,and 82.1◦.These peaks correspond to the {111},{200},and {311}planes of a fcc lattice,respectively,indicating the fcc structure of Pd shell in BT 0.4-Au 0.5@Pd 1.0.33,34Compared with the {111}reflection of Au core at 38.2◦,the intensity of the {111}reflection of Pd shell at 39.7◦is relatively weak,which is possibly due to the BT shell on the surface of the Au core disturbing the ordered crystallization of the Pd shell during the relatively slow reduction of Pd 2+.35To confirm that the reduction extent of Pd 2+is mainly dependent on the residual BT molecules,a mixture of Au 3+/Pd 2+with molar ratio of 2/1(1.0mmol L -1/0.5mmol L -1)was added to 0.4g L -1of BT solution,followed by constant shaking at room temperature for 24h.The resultant BT 0.4-Au 1.0@Pd 0.5was characterized by TEM and EDS analyses,and the corresponding results are shown in Fig.6.All the BT 0.4-Au 1.0@Pd 0.5particles are spherical rather than cubic,which is completely different fromD o w n l o a d e d b yE a s t C h i n a U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y o n 15 J u l y 2011P u b l i s h e d o n 28F e b r u a r y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0G C 00724BFig.6TEM image (a)and the corresponding size distributions (b)of spherical BT 0.4-Au 1.0@Pd 0.5.HAADF-STEM image (c)and EDS mapping images (d,e,f)of BT 0.4-Au 1.0@Pd 0.5marked in (a).Cross-sectional compositional line spectra (g)of BT 0.4-Au 1.0@Pd 0.5in (c).the BT 0.4-Au 0.5@Pd 1.0.The average diameter of BT 0.4-Au 1.0@Pd 0.5is 12±6nm,which is very similar to that of BT 0.4-Au 1.0@Pd 0.02.EDS mapping images of O,Au and Pd all exhibit similar shapes,which confirm the presence of the BT shell and the binary nature of BT 0.4-Au 1.0@Pd 0.5NPs.However,subsequent EDS line analysis (Fig.6c)suggests that the intensity of Au with a ‘K ’-shaped distribution is much higher than that of Pd (‘M’-shaped distribution).These results are quite different from those of BT 0.4-Au 0.5@Pd 1.0,but very similar to those of BT 0.4-Au 1.0@Pd 0.02.According to the preparation mechanism proposed in Fig.3,it is reasonable to explain the difference in morphologies between BT 0.4-Au 0.5@Pd 1.0and BT 0.4-Au 1.0@Pd 0.5.After the addition of Au 3+/Pd 2+mixture into BT solution,Au 3+with higher reduction potential was first reduced,along with partial oxidation of BT,and then the Pd 2+in solution was gradually reduced by the residual BT.Under such conditions,the reduction extent of Pd is mainly dependent on the content of remaining BT.When the molar ratio of Au 3+/Pd 2+is 1/2,the residual BT is sufficient enough to reduced the Pd 2+,and thus,considerable amounts of cubic Au@Pd NPs were formed.However,in the case of high molar concentrations of Au 3+,as in BT 0.4-Au 1.0@Pd 0.5,the majority of BT molecules are consumed by the reduction of Au 3+,which leads to the insufficient reduction of Pd 2+,resulting in a thin shell of Pd over the spherical Au core.As a result,BT 0.4-Au 1.0@Pd 0.5exhibited a similar morphology and particle size distribution to BT 0.4-Au 1.0@Pd 0.02.Clearly,the BT in BT 0.4-Au 1.0@Pd 0.02and BT 0.4-Au 1.0@Pd 0.5was insufficient even for the complete reduction of 0.02mmol L -1Pd 2+,otherwise their particle size should not be similar because of the different reduction extent of Pd 2+.This strongly suggests that the morphology of Au@Pd NP is significantly affected by the molar ratio of Au 3+/Pd 2+as well as the BT concentration.Effect of BT concentration on the synthesis of Au@Pd NPs To verify the effect of BT on the synthesis of Au@Pd NPs,the molar ratio of Au 3+/Pd 2+mixture was fixed at 1/1(0.5mmol L -1/0.5mmol L -1)while the concentration of BT was decreased to 0.1g L -1.The TEM image of BT 0.1-Au 0.5@Pd 0.5is shown in Fig.7a,which shows that spherical nanoparticles have been formed.However,the particle diameters vary widely,from 15to 70nm (Fig.7b),and the particle aggregation is obvious.These results can be related to the insufficient reducibility and stabilizing effect of BT,since low concentrations of BT are unable to rapidly reduce the metal precursors,and in addition,they cannot provide enough steric hindrance to suppress the aggregation of the nanoparticles.36,37Further EDS mapping analyses confirm the binary nature of the prepared nanoparticles (Fig.7d–f)while the EDS line analysis shows that Au element has much higher intensity than Pd (Fig.7g),which is similar to those observed in BT 0.4-Au 1.0@Pd 0.5.Additionally,it is also found that some Au NPs covered with insufficient growth of Pd shell are aggregated (Fig.S9).All these facts suggest the insufficient reduction of Pd 2+under such BTconcentrations.Fig.7TEM image (a)and the corresponding size distribution (b)of spherical BT 0.1-Au 0.5@Pd 0.5.HAADF-STEM image (c)and EDS mapping images (d,e,f)of BT 0.1-Au 0.5@Pd 0.5marked in (a).Cross-sectional compositional line spectra (g)of a distinct BT 0.1-Au 0.5@Pd 0.5nanoparticle.Subsequently,the concentration of BT was increased to 0.8g L -1while the molar ratio of the Au 3+/Pd 2+mixture was kept at 1/1(0.5mmol L -1/0.5mmol L -1).It was found that the morphology of BT 0.8-Au 0.5@Pd 0.5shows a bimodal distribution where more than 96%of the particles are in the diameter range of 9±2nm,and less than 4%of the particles have large diameters (average 300–600nm;Fig.S10).Additionally,transparent floc-cules are clearly observed surrounding the small nanoparticles (Fig.S10a);this is the supramolecular BT network formed from the aggregation of excess free BT molecules in solution.Due to the presence of the supramolecular BT network,each small nanoparticle in Fig.S10a is isolated,and the corresponding EDS mapping analyses confirm the binary nature of theseD o w n l o a d e d b yE a s t C h i n a U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y o n 15 J u l y 2011P u b l i s h e d o n 28F e b r u a r y 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 0G C 00724B。
核_壳型纳米双金属微粒的研究进展_罗斯
第20卷第6期2007年12月污染防治技术P OLLUTI O N C ONTROL TECHNOLOGY Vol .20,No .6Dec.,2007・专论与综述・核-壳型纳米双金属微粒的研究进展3罗 斯, 王晓栋, 高树梅, 秦 良, 季 力, 杨旭曙, 王连生(污染控制与资源化研究国家重点实验室,南京大学环境学院,江苏南京 210093)摘 要:纳米材料以其独特的性质,在光学、化工、环保、陶瓷、生物和医药等诸多方面具有广泛的应用价值。
而纳米金属材料的表面包覆和修饰是21世纪纳米材料科学的一个新的研究方向。
文中比较系统地综述了核-壳型纳米双金属微粒制备方法的研究进展,包括还原化学镀法、共沉淀法等,简要分析了各类制备方法的基本原理、特点及适用的范围,并在此基础上讨论了核-壳型纳米双金属粉末的未来研究发展方向。
关键词:核-壳型;纳米微粒;双金属中图分类号:T B383;X131;O57212;TG14 文献标识码:AResearch Progress on Nanom eter Core -Shell B im et a lli c Parti clesLOU Si, WANG Xiao 2dong, G AO Shu 2mei, Q IN L iang, J IL i, Y ANG Xu 2shu, WANG L ian 2sheng(S tate Key L abora tory of Pollu tion Control and R esou rces R euse,School of the Environm en t,N anjing U n iversity,N anjing,J iangsu 210093,China )Abstract:Due t o the unique characteristics,nanometer materials are extensively used in op tics,che m istry industry,cera m ic,medicine and s o on .The surface coating and decorati on of nanometer materials have been a ne w research field in the material sci 2ence .I n this paper,recent p r ogress in research on nanometer core -shell bi m etallic particles p reparati on,such as themal decompo 2siti on -reducti on,p reci p itati on method and s o on,were revie wed .The basic p rinci p le,characteristics and app licati on scope of these vari ous methods were evaluated briefly .Moreover,the trend of further studies in the field of nanometer core -shell bi m etallic powders was als o discussed .Key words:core -shell;nanometer particles;bi m etal收稿日期:2007-06-043基金项目:江苏省自然科学基金创新人才项目(No .BK200418);国家自然科学基金项目(No .20507008);国家自然科学基金项目(No .20477018);国家973项目(No .2003CB415002)作者简介:罗 斯(1985—),女,湖南浏阳人,在读硕士研究生,从事有机污染化学研究。
一种ZIF-8@ZIF-67钴锌双金属核壳结构金属有机框架材料及其制备方法和
专利名称:一种ZIF-8@ZIF-67钴锌双金属核壳结构金属有机框架材料及其制备方法和应用
专利类型:发明专利
发明人:杨铭方,钟良枢,孙予罕
申请号:CN201711349588.1
申请日:20171215
公开号:CN107964102A
公开日:
20180427
专利内容由知识产权出版社提供
摘要:本发明提供一种ZIF‑8@ZIF‑67钴锌双金属核壳结构金属有机框架材料及其制备方法和应用,首先利用可溶性锌盐和2‑甲基咪唑在水中合成ZIF‑8核心,再将ZIF‑8核心置于ZIF‑67的前驱体可溶性钴盐和2‑甲基咪唑的溶剂环境中,溶剂热条件制备核壳结构MOF。
所述制备方法具有制备方法简便,产率高,晶粒大小可控,两种组分比例可控等特点,有别于传统核壳结构MOFs制备方法。
由于ZIF‑8@ZIF‑67具有MOFs的超高比表面积和复杂的孔道结构的特点,提高了其对水相中重金属离子的吸附性,可以应用于废水处理。
申请人:中国科学院上海高等研究院
地址:201210 上海市浦东新区海科路99号
国籍:CN
代理机构:上海光华专利事务所(普通合伙)
更多信息请下载全文后查看。
nisn核壳结构双金属粉高温互连材料的制备与研究
摘要环境问题日益受到人们的重视,油动汽车逐渐被混合动力汽车和电动汽车所取代,混合动力汽车和电动汽车必将是汽车未来发展的趋势。
在电动汽车和混合动力汽车中,功率器件是电力电子系统能够稳定运行的关键部件之一,其可靠性对汽车运行至关重要。
SiC成为继Si之后,新一代很有潜力的半导体材料,与Si 基半导体器件相比,SiC基的功率器件能够承受更高温度。
采用这种半导体,在设计功率模块时,冷却不再是较大的限制因素,整体模块的体积和重量可以大幅度缩减。
镍是一种较为稳定的元素,在电子封装中,与SnPb钎料的反应速度比铜要慢两个数量级,因而可以用作Cu的扩散阻隔层,在UBM (under-bump metallization)中有着广泛应用。
根据Ni-Sn二元相图,二者可以形成的相有Ni3Sn、Ni3Sn2和Ni3Sn4;Ni/Sn扩散偶实验表明,Ni3Sn4是Ni-Sn首先生成的相,接着依次是Ni3Sn和Ni3Sn2,但后两者的形成速度较慢。
在低温回流(250℃)时,以Ni3Sn4为主,而Ni3Sn4的熔点为794.5 ℃,这就可以获得低温回流高温使用的效果。
在Ni-Sn TLP技术中,250 ℃条件下,其加工时间长达1-2 h,而且有大量锡的残余,所产生的Ni-Sn IMCs 不均匀;如果提高加工温度,又会带来较大的残余应力不利于器件可靠运行。
本课题采用一种Ni@Sn核壳结构的新思路来解决由Ni-Sn TLP技术产生的加工时间长、Ni-Sn IMCs不均等问题。
Ni@Sn核壳结构是以Ni为核,以Sn为壳,借助于Ni核与Sn壳较大的接触面积,加快Ni与Sn之间冶金反应,缩减加工时间;同时,Ni@Sn由化学镀敷而成,在镀敷层厚度一定的情况下,是一种Ni与Sn成分比例相对固定的结构,这直接使得其回流后所形成焊缝中Ni-Sn IMCs均匀分布。
鉴于直接由Ni@Sn粉末制成的钎料膏产生的空隙多,不利于其高温剪切强度,加上Sn在Ni上润湿差所产生的锡富集带来的不利影响,本课题选择将Ni@Sn 粉末压制成片使用。
双金属结构特征
双金属结构特征双金属结构特征是指由两种不同金属材料组成的结构体,通常被应用于制造具有特定功能的器件或零件。
这种结构在工程领域中有着广泛的应用,其特征主要体现在以下几个方面。
双金属结构具有优异的机械性能。
不同金属材料的特性和性能各异,通过将两种材料结合在一起,可以充分发挥各自的优势,从而提高整体的机械性能。
例如,将高强度的钢材与耐蚀性好的不锈钢组合,可以制造出具有高强度和耐腐蚀性能的双金属结构材料,广泛应用于船舶、汽车等领域。
双金属结构具有良好的导热性能。
不同金属材料的导热系数也不相同,通过合理选择和组合不同的金属材料,可以实现对热量的有效传导和分散。
这一特性在制造散热器、热交换器等需要进行热能转移的设备中得到广泛应用。
例如,将铜和铝组合在一起,可以制造出具有优异导热性能的双金属散热器,提高设备的散热效果。
双金属结构具有特殊的热膨胀性能。
不同金属材料具有不同的线膨胀系数,通过将两种材料组合在一起,可以实现对温度变化的适应。
这一特性在制造温度传感器、热敏电阻等器件时得到广泛应用。
例如,将铁镍合金与铜材料组合在一起,可以制造出具有特殊热膨胀性能的双金属材料,用于制造温度传感器,实现对温度变化的敏感。
双金属结构还具有良好的耐蚀性能。
通过合理选择和组合具有不同耐蚀性能的金属材料,可以制造出具有较高耐蚀性的双金属结构材料。
例如,将具有抗腐蚀性能的不锈钢和具有高强度的钢材组合在一起,可以制造出耐腐蚀性能优异的双金属结构材料,广泛应用于化工、海洋等领域。
双金属结构还具有特殊的电学性能。
不同金属材料的导电性能也不相同,通过将两种具有不同导电性能的金属材料结合在一起,可以实现对电流的分流和传导。
这一特性在制造电阻器、电极等电子元件中得到广泛应用。
例如,将具有较高电阻率的镍铬合金与具有较低电阻率的铜材料组合在一起,可以制造出具有特殊电学性能的双金属电阻器,用于电子电路中的电流调节。
双金属结构特征主要体现在其优异的机械性能、良好的导热性能、特殊的热膨胀性能、耐蚀性能和电学性能等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双金属核壳结构的制备及催化性能研究摘要双金属核壳纳米结构由于具有大量的潜在应用价值,近年来已引起人们极大的关注。
本文综述了水相体系还原法、多元醇体系还原法、热分解—还原法、化学镀法、胶体粒子模板法、共沉积法、电化学法、表面取代反应和表面处理等双金属核壳纳米结构的制备方法,简述了各种方法的原理、优缺点和应用情况,另外,对双金属核壳纳米结构电催化氧化、有机物加氢、催化脱氯、环境催化方面的应用作了简述。
最后,对今后双金属核壳结构型的研究方向进行了展望。
关键词双金属核壳制备方法催化1 引言在对高性能新材料的探索过程中,纳米材料以其特殊的优异性能吸引了许多研究者的兴趣,掀起了纳米材料的研究热潮。
对应用纳米技术制备具有某种功能的特性的材料来说,有必要寻求可靠、可控的方法纳米材合成料的。
核壳结构纳米材料[1](core-shell nanomaterials)是指具有“核壳包裹”这种特殊原子排列方式的纳米复合材料,可看作是对原始纳米粒子的剪裁和改造,通常记作“核@壳”。
金属@金属(即核壳双金属)纳米材料因其巨大的催化应用潜力而受到催化学者的广泛关注。
2 双金属核壳结构制备方法2.1水相体系还原法在水相中,利用不同还原剂和保护剂,通过先后两次还原不同金属形成核壳结构的纳米合金,这是目前使用最多的一种合成方法。
Yang等[ 2 ]用NaBH4还原合成Ag溶胶,再利用柠檬酸钠溶液热回流使Pt还原并沉积在Ag表面,得到红棕色Ag@Pt溶胶。
Zhou等[3 ]在冰浴下,利用NaBH4还原HAuCl4制成Au 纳米溶胶,再逐滴加入H2PdC l4和抗坏血酸,得到深棕色Au @ Pd纳米溶胶。
一般地,水相中连续还原时,壳层金属通常采用较温和的还原剂(如抗坏血酸)以控制还原速率,使其更易更好地实现包覆效果,有时采用冰浴等降温手段效果更好[ 4 ]。
2.2 多元醇体系还原法多元醇还原法是合成单金属(尤其是贵金属)纳米粒子最简便有效的方法之一,该方法也被用于制备双金属核壳结构。
具体方法是:利用液相多元醇体系(多为乙二醇或1, 4-丁二醇)分散金属盐,升温回流使金属离子被多元醇还原并聚集,最终形成金属纳米粒子。
该方法制备的金属纳米粒子尺度小,粒度均一,且分散性好。
由于制备条件温和,过程简单,多元醇体系中的连续还原法被广泛应用于核壳结构纳米合金的制备中。
Alayoglu等[5]采用多元醇还原法,在乙二醇中升温回流,连续还原,合成了一系列具有不同Rh核尺寸和Pt壳厚度的Rh@Pt纳米合金。
Zhou等[ 6 ]利用乙二醇进行连续多元醇反应合成了核壳结构的Pt@ Cu 和Cu @ Pt粒子。
微波具有升温迅速、受热均匀的特点,近年来,利用微波加热替代传统油浴加热,以实现多元醇热回流的微波辅助多元醇还原法成为合成纳米粒子的有效方法[7]。
Tsuji等[ 8 ]利用MW—polyol方法合成了Au@Ag纳米晶。
先还原HAuCl4形成Au核,再利用微量Cl-调节,还原AgNO3并使Ag壳外延地生长在Au核周围。
该方法得到的Au@Ag纳米晶具有非常规则的晶体嵌套形貌。
研究表明,该实验中微量Cl-调节对于核壳金属晶体的形成有重要作用。
实验发现,普通的连续还原过程会得到复杂结构的合金纳米粒子。
Ferrer等[9]在PVP保护下,利用乙二醇在140°下回流使PdCl2还原为灰黑色Pd溶胶,再加入HAuCl4溶液回流并还原,得到Pd-Au纳米合金。
研究发现,,此过程制得的Au-Pd粒子中没有“纯相”的核或壳,而是一种三层结构:在最内层Au-Pd原子均匀混合,中间为Au富集的过渡区,最外层则是Pd富集的外壳。
2.3 热分解—还原法[10]热分解—还原法主要针对金属的硝酸盐、碳酸盐与碱盐等易分解的化合物来进行,用作还原的气体通常为H2、CO2、天然气等,其中H2最为常用。
这些金属微粒能否以现有的芯核作为晶核,进入晶粒生长阶段,还必须考虑金属与作为芯核的原始颗粒之间的界面问题。
当然,事先对芯核进行表面处理,改善其表面活性,这有利于金属微粒沉积到芯核表面,形成致密的金属包覆层。
热分解—还原法制备双金属核壳结构的基本步骤包括:对芯核的前期处理,对芯核预包覆,对包覆层进行还原。
制备过程中通常需考虑还原温度、还原时间、气体流量等因素的影响。
该法适用范围广,不仅可以制备核壳双金属,还可以制备金属包覆非金属或陶瓷的复合粉末。
热分解—还原法制备双金属核壳结构的基本原理、步骤以及应遵循的原则,还需根据所用材料的基本性能进行分析,合理制定工艺方案,才能得到满意的结果。
由于该方法的物化反应机理特别复杂,尤其是界面问题仍然需要进行继续深入研究。
2.4 化学镀法化学镀法[11]是在没有外加电流的情况下,利用还原剂将溶液中的金属离子化学还原在具有催化活性的基体表面,使之形成金属镀层,因此,该法也被称为无电镀镀覆。
该法操作方便,工艺简单,镀层厚度均匀且易于控制,外观良好。
廖辉伟等[12]以电子企业印刷电路板废液为原料,以聚乙烯吡咯烷酮(PVP)作为保护剂、水合肼为还原剂在液相中还原制取了纳米铜粉;再用化学镀法在活化和敏化后的铜粉表面包覆一层银粉,得到包覆效果较好的核壳结构Cu@Ag双金属粉。
该复合材料表面抗氧化性和导电性能接近单纯银粉,可作为银粉导电填料的替代材料。
熊晓东等[13]利用该法在活性铝粉表面包覆纯镍层制备出核壳结构Al@Ni双金属粉。
该核壳结构Al@Ni复合材料在热喷涂材料、金属陶瓷复合材料、有机化工催化剂、高温合金的粉末成型材料、固体燃料等领域有着重要用途。
2.5 胶体粒子模板法按照结晶学理论,均相成核的自由能要大于异相成核的自由能。
因此只要条件控制得当,可以将胶体粒子作为成核和生长的中心,直接在芯核粒子表面沉积外壳层物质来获得核壳复合粒子。
Ah等[14]首先以制备出核壳结构Au@Pt为前提,由柠檬酸钠还原HAuCl4溶液制备出粒径约15 nm的Au胶体,然在剧烈搅拌下将制备的Au胶体加入到老化2天的H2PtCl6水溶液中,利用抗坏血酸还原实现Pt在Au表面的沉积,制备出核壳结构Au@Pt双金属粒子;然后将其用激光照射,激光光子能量会使得Au表面的纳米Pt熔化,在Au颗粒表面铺展形成光滑的Pt层。
因为Au的熔点比Pt低,进一步激光照射会造成芯核Au的熔化并溢出,反包覆在Pt的表面形成核壳结构Pt@Au利用晶核生长理论发展起来的在胶体粒子表面定向沉积法,已成为一种应用非常广泛的制备核壳双金属复合粒子的方法。
2.6 共沉积法在含有两种或多种金属离子的溶液中加入强还原剂,由于金属离子的还原电位不同,使得溶液中金属离子将以不同的顺序被还原出来,后还原出来的金属颗粒便以先还原出来的颗粒为结晶芯核,而形成核壳结构的复合粉。
该法工艺和设备非常简单,经济合算。
但是需要严格控制体系反应温度、金属离子浓度、还原剂的种类及其用量,并且反应速度过快容易制得单纯的二元金属混合粉。
Cho等[15]利用微乳液法在十六烷基三甲基溴化铵(CTAB)、正丁醇、正辛烷和水组成的反胶束体系中,用NaBH4作为还原剂先后连续还原FeSO4和HAuCl4,在反胶束体系内先生成Fe核,由于过量的NaBH4的存在,Au在Fe外层被还原,生成核壳结构Fe@Au复合纳米粒子。
2.7 电化学法电化学法是将待包覆的导电芯核作阴极,壳层金属作阳极,通电后溶液中镀层金属放电,并在阴极上析出而沉积在芯核表面形成金属包覆复合粉末。
最近Jin等[16]利用电化学法制备出了核壳结构Au@Pt双金属粉末,具体工艺流程是:首先将铟锡氧化物(ITO)电极于甲醇溶液中利用3一氨丙基三甲氧基硅烷改性,使表面产生可以使Au颗粒组装的胺基端,然后加入已制备好的Au颗粒中,这样可以将Au组装在改性过的铟锡氧化物电极表面。
通过CuSO4和H2SO4溶液中的欠电位沉积方法在Au颗粒表面沉积上单层Cu膜,然后转移到一定浓度的含H4ClO4的K2PtCl4溶液中,保持电极断路,表面的Cu颗粒与K2PtCl4发生置换反应,实现Pt在Au表面的沉积,制备出核壳结构Au@Pt 纳米颗粒。
2.8 表面取代反应和表面处理普通的连续还原法过程简单、易于理解,但“核”未做任何处理,第二种金属成壳的趋向不强,本应该沉积成壳的金属往往独立成核,就会在形成核壳结构的同时,不可避免地形成单金属粒子“副产物”。
为避免出现这种情况,针对“核”的相关处理非常重要。
一些研究工作进行了创新性尝试并取得了不错的效果。
其中,表面取代反应和表面处理是最具代表性的两种方法。
表面取代反应是指在液相中,不同金属体系由于具有不同的氧化还原电势,通过第二种金属盐在预制的簇或粒子表面发生取代反应,不添加任何还原剂也可以实现第二种金属的还原,也称为“伽凡尼取代反应”。
由于反应发生在核金属表面,故可以保证粒子形成核壳结构。
Chen等[17]借助表面取代反应合成了AgPt空心纳米球。
值得注意的是,表面取代反应未必会形成核壳式纳米合金,而经常得到空心纳米结构。
利用取代反应合成核壳式纳米合金会受到一定限制,核金属的氧化消耗常会在粒子内部形成空洞,而通过调节金属添加比例等可对空心部分进行控制,仍是一种很有潜力的合成方法。
表面处理是指用加入一种还原性物质附着在预先制备的纳米粒子表面,并加入另一种金属盐,通过某种方式使金属只在核表面被还原而不会独立成核。
Mandal等[18]使用的磷钨酸(H3( PW12O40) , PTA )是一种紫外激发型还原剂,经紫外光辐射后具备还原能力。
将磷钨酸锚定在核粒子表面,除去溶剂中残留磷钨酸,加入第二种金属盐并经紫外辐射,则金属只在核表面被还原而不会独立成核。
3 催化性能研究3.1 电催化氧化双金属核壳结构纳米颗粒具有较多的暴露的贵金属原子数目。
另外,核本身与壳之间产生的电子交换效应也促进了壳层上活性氧物种的生成,起到了贵金属表面氧化反应的促进作用。
因而,核壳结构纳米颗粒在电催化氧化反应中具有很高的催化活性,该结果对提高燃料电池的效率及降低贵金属的用量以降低燃料电池的生产成本等具有重大的意义。
Zhang 等[19]采用连续还原的方法制备了碳负载可磁性回收的Fe@Pt 核壳结构的纳米粒子,应用到液体燃料硼氢化氨(AB)电氧化反应中。
研究结果表明,具有无定形结构的Fe 核的Fe@Pt 单位Pt 表面积产生的最大电流密度比商用Pt/C 催化剂高出3倍多,增长幅度高达354%;具有晶态结构的Fe 核的Fe@Pt 的活性则低于商用的Pt/C 催化剂。
这是由于无定形的Fe 核具有晶格缺陷,中间层产生缺电子效应,有可能改变了原子结构,协调外层的Pt壳分散,该催化剂在100 次循环和使用3 周后电流密度(活性)没有降低,同时具有磁性容易回收。