AMS-H-81200A 钛及钛合金热处理

AMS-H-81200A 钛及钛合金热处理
AMS-H-81200A 钛及钛合金热处理

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.Copyright 2002 Society of Automotive Engineers, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

AEROSPACE

MATERIAL

SPECIFICATION AMS-H-81200A Issued

APR 2001Revised JUN 2003

Superseding AMS-H-81200

Heat Treatment of Titanium and Titanium Alloys

NOTICE

This document is intended to replace MIL-H-81200. The original issue of AMS-H-81200 was taken directly from Military Specification MIL-H-81200A and contained only minor editorial and format changes required to bring it into conformance with the publishing requirements of SAE technical standards. This revision B changes the heat treatment requirements for parts from “may be heat treated in accordance with the requirements of AMS 2801” to “shall be heat treated in accordance with AMS 2801”. As an exception, it allows continuation of heat treatment procedures for specific parts which have been previously acceptable to the purchaser. It also adds the requirement that the heat treat parameters used for heat-treat-response-tests of raw material conform to the parameters used for heat treatment of parts (See 3.1.1).

The original Military Specification was adopted as an SAE standard under the provisions of the SAE Technical Standards Board (TSB) Rules and Regulations (TSB 001) pertaining to accelerated adoption of government specifications and standards. TSB rules provide for (a) the publication of portions of unrevised government specifications and standards without consensus voting at the SAE Committee level, and (b) the use of the existing government specification or standard format.

Under Department of Defense policies and procedures, any qualification requirements and associated qualified products lists are mandatory for DOD contracts. Any requirement relating to qualified products lists (QPL’s) has not been adopted by SAE and is not part of this SAE technical document.

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

AMS-H-81200A SAE AMS-H-81200A

1.SCOPE:

1.1Purpose:

This specification covers the heat treatment of titanium and titanium alloy mill products (raw

material), including wrought and cast products, by material producers. This specification also covers furnace equipment requirements, test procedures, and general information for heat treating

procedures, heat treating temperatures, and material test procedures for the heat treatment of

titanium and titanium alloys. It also describes procedures which, when followed, have produced the desired properties within the limitations of the respective alloys.

1.2Heat treatments:

The heat treatments covered by this specification are:

Anneal Solution heat treatment

Beta anneal Beta solution heat treatment

Recrystallization anneal Age

Duplex anneal Stress relief

1.3Alloys:

In addition to Commercially Pure Titanium (Ti40, Ti55, and Ti70), the following titanium alloys are covered by this specification:

Alpha alloys Alpha-Beta alloys Beta alloys

6Al-2Sn-4Zr-2Mo6Al-4V13V-11Cr-3Al

5Al-2.5Sn6Al-4V ELI3Al-8V-6Cr-4Mo-4Zr

5Al-2.5Sn ELI6Al-6V-2Sn15V-3Al-3Cr-3Sn

6Al-2Cb-1Ta-0.8Mo3Al-2.5V10V-2Fe-3Al

8Al-1Mo-1V6Al-2Sn-4Zr-6Mo

11Sn-5Zr-2Al-1Mo6Al-2Sn-2Zr-2Mo-2Cr-0.25Si

5Al-2Sn-2Zr-4Mo-4Cr

2.APPLICABLE DOCUMENTS:

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

AMS-H-81200A SAE AMS-H-81200A

2.1U.S. Government Publications:

Available from DODSSP, Subscription Services Desk, Building 4D, 700 Robbins Avenue,

Philadelphia, PA 19111-5094.

MIL-STD-45662Calibration System Requirement

2.2ASTM Publications:

Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 or

https://www.360docs.net/doc/481680101.html,.

ASTM E 3Metallographic Specimens, Preparation of

ASTM E 8Tension Testing of Metallic Materials

ASTM E 146Chemical Analysis of Zirconium and Zirconium Alloys

ASTM E 290Semi-Guided Bend Test for Ductility of Metallic Materials

2.3SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001 or https://www.360docs.net/doc/481680101.html,.

AMS 2750Pyrometry

AMS 2801Heat Treatment of Titanium Alloy Parts

2.4Order of precedence:

In the event of a conflict between the text of this document and the references cited herein, the text of this document shall take precedence. Nothing in this document, however, shall supersede

applicable laws and regulations, unless a specific exemption has been obtained.

3.REQUIREMENTS:

3.1General:

All heating and quenching equipment and procedures applied shall yield products complying with the requirements of appropriate acquisition documents. Equipment and procedures shall be designed to minimize the introduction of hydrogen, oxygen, nitrogen or other contaminants and in any case shall not allow introduction beyond levels established by the acquisition documents. Deviation from

process requirements specified herein or the application of processes different from those contained herein, may be used provided that compliant products result, these exceptions have been proven satisfactory, and that they are made known to the purchaser with accompanying data or other

justification to support the deviation prior to application of the deviant process.

3.1.1Heat treatment of mill products and titanium alloy parts: The requirements specified herein are

applicable to the heat treatment of mill products (raw material) (see 6.4.1). Producer heat

treatment of heat-treat-response-test samples shall conform to AMS 2801 (see 4.8.6.1). Parts

(see 6.4.2) shall be heat treated in accordance with AMS 2801 except as specified in 3.1.1.1.

3.1.1.1It is permissible, for specific parts, to use equipment, practices and test methods which

conformed to AMS-H-81200 or MIL-H-81200 and were previously acceptable to the purchaser.

3.2Heating systems:

3.2.1Batch furnaces:

3.2.1.1General requirements: Such furnaces may employ electrical heating elements or fuel combustion

as heat sources. Muffle furnaces and retorts are also allowed. Allowable environments

surrounding the furnace charge during heating are: inert gas (argon or helium), vacuum, slightly oxidizing mixtures resulting from the combustion in air of hydrocarbons (gas or oil), and air itself.

When removal of surface contamination is not feasible, inert gas or vacuum environment shall be employed. The selection of an atmosphere shall be such as to establish conformance with 3.1.

3.2.1.2Inert gases: Inert gases within the furnace shall be circulated as necessary to protect all surfaces

of the workpieces comprising the furnace charge. The dew point of the inert gases shall be

minus 65°F (-54°C) or lower. This requirement shall be met during all stages of a heating,

soaking or cooling cycle. Ducts and zones which are to contain furnace charges shall be so

sealed as to prevent contamination of any charge to the degree that it is rendered nonconforming to specified material requirements.

3.2.1.3Vacuum: Vacuum furnaces used for outgassing hydrogen shall be capable of reducing hydrogen

concentrations within the charge to levels complying with 3.1. Vacuum furnaces and retorts used for prevention of surface contamination shall be capable of yielding product conforming to 3.1. 3.2.1.4Combusted hydrocarbons: Furnaces heated by the combustion in air of gas or oil shall contain a

slightly oxidizing gas mixture. There shall be no impingement of flame upon the furnace charge.

3.2.1.5Prohibited atmospheres: Endothermic, exothermic, hydrogen, and cracked ammonia

atmospheres shall not be used during any heat treatment operation.

3.2.1.6Furnace purging: Prior to thermal treatment of workpieces, each furnace which has contained an

atmosphere unacceptable for heat treating (see 3.2.1.5) shall be purged with air or inert gas, as applicable.

3.2.1.6.1Purging prior to introducing air or combusted hydrocarbons: The volume of purging air

introduced shall be at least twice the volume of the furnace chamber. During purging, the minimum temperature within the chamber shall be the intended soaking temperature of the

charge. When air-flow purging is impractical, the furnace temperature shall be set at 200°F

above the intended soaking temperature, and be held at that temperature for a minimum of four hours. Following purging, the furnace shall be stabilized at the required temperature, charged, and the charge heated and soaked in accordance with 3.2.1.7, as applicable. Following the

thermal treatment and any subsequent cleaning, pickling, or other process which may

introduce hydrogen contamination, specimens shall be taken from the charge and subjected to the test specified in 4.7.3. Results shall show compliance with 3.6.5, as applicable.

3.2.1.6.2Purging prior to introducing inert gas: Procedures for purging shall comply with 3.2.1.2. The

volume of gas introduced shall be at least twice the volume of the furnace chamber. Furnaces shall be charged while cold, and then purged and filled with inert gas. The charge shall then be heated and soaked in accordance with 3.2.1.7, as applicable. Following the thermal treatment, samples shall be taken from the charge and subjected to the test specified in 4.7.3. Results

shall show conformance to 3.6.5, as applicable. Additionally, samples shall be taken from the charge and examined in accordance with 4.7.4.2. Results shall show conformance to 3.6.6.

3.2.1.7

Temperature uniformity: Batch furnaces shall be so controlled that, during heating and soaking periods, temperatures at all points within the working zones are less than the maxima of the

ranges specified in Tables I, III, IV, and V, as applicable to the product. After a charge has

reached a pre-selected soaking temperature throughout its thickness within a specified range, the temperature at any point in the working zone shall lie within the limits specified below, as

applicable to the thermal treatment intended. Regardless of temperature tolerances, no soaking temperature during any thermal treatment shall be higher than the applicable maximum, nor

lower than the applicable minimum of the specified range.3.2.2

Continuous furnaces: 3.2.2.1General requirements: Such furnaces may be heated by radiation from electrically-energized heating elements or by combusted hydrocarbons.

Heat treatment

Temperature tolerance °F °C Annealing

±25±14Beta annealing or beta solution heat treating

±25±14Recrystallization annealing

±25±14Duplex annealing

±25±14Solution heat treating

±25±14Stress relieving

±25±14Aging

±15±8

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

3.2.2.2Temperature control: A temperature profile from furnace entry to exit shall be so developed and

maintained that the charge within the working zone experiences the appropriate thermal cycle to the degree necessary for eventual product acceptability in terms of specified requirements.

3.2.2.3Continuous vacuum furnaces: Continuous vacuum furnaces shall be so sealed as to minimize

hydrogen, oxygen and nitrogen absorption of the product and in any case shall not allow

absorption beyond levels established by the acquisition documents.

3.2.3Continuous induction heating: Such a heating method shall be applied only to the annealing of

thin-walled tubing and extrusions of thin sections. The technique shall be such that the workpiece being heated is of uniform temperature around the perimeter of its cross-section. Prior to

production, values of the process parameters which produce acceptable product shall be

determined and documented.

3.2.4Pyrometry and furnace temperatures control: The requirements and procedures for control and

testing of furnaces, ovens, vacuum furnaces and allied pyrometric equipment used for heat

treatment shall be in accordance with AMS 2750.

3.2.

4.1System accuracy: Each system shall be set to control working temperatures and be corrected to

within the applicable tolerances specified herein.

3.3Quenching facilities and media:

3.3.1Quenching baths: Quenching baths holding water or oil shall be of such dimensions, volume, and

construction that products quenched therein will, upon aging, develop the properties specified

within applicable product documents. Mechanical stirring of the bath may be applied when

necessary.

3.3.2Spray or flow quenching: Continuous furnaces discharging solution heat treated alloy sheet, plate,

and strip may be equipped with a quenchant system which directs a spray or streams of quenchant onto the product as it emerges from the furnace. The spray or flow of quenchant shall be applied evenly over the workpiece width, top and bottom surfaces, over a period of time and at a volume rate such that the resulting product will upon aging develop properties meeting specified

requirements.

3.3.3Location of quenching facility: Quenching and handling facilities shall be located such that contact

between quenchant and workpieces occurs within the time required for compliance with 3.1 and for the Ti-6Al-4V and Ti-6Al-4V ELI alloys, within the limits specified in Table II.

3.3.4Quenching media: Use of molten salt baths for quenching is prohibited.

3.4Ancillary equipment:

Jigs, fixtures, trays, hangers, racks, ventilators, etc. shall be so designed and constructed that each workpiece can be processed in accordance with this specification.

3.5Thermal treatment parameter values:

The parameters (ie. temperatures, times, etc.) for the various thermal treatment processes shall be as specified herein, except where deviation has been accepted by the purchaser in accordance with

3.1 (see 6.2).

3.5.1Solution heat treating: Solution heat treating of parts, mill product, castings, and forgings shall be

as specified in Table I, as applicable.

3.5.2Quenching: All heat treatable titanium alloys, except alloys which can be cooled in air or inert gas,

shall be quenched by complete immersion in water or oil, as applicable, or by water spray or flow when applicable to quenching sheet, strip or plate. Maximum delay times for Ti-6Al -4V and Ti-6Al-4V ELI alloys shall conform to Table II, and for other alloys shall be as necessary to develop

required properties.

3.5.3Aging: Solution heat treated alloy workpieces shall be aged in accordance with Table III, as

applicable. Workpieces shall be cooled from the aging temperature in air, an inert gas, or in the aging furnace.

3.5.4Stress-relieving treatment: Time-temperature cycles for stress relieving shall be as specified in

Table IV, as applicable. Workpieces may be cooled from the stress relieving temperature in air, an inert gas, or in the stress-relieving furnace.

3.5.5Annealing: Time-temperature cycles for annealing shall be as specified in Table V, as applicable.

For duplex annealing of Ti-6Al-4V and Ti-6Al-4V ELI alloys, see Table V, note 6/.

3.5.6Beta annealing: When such annealing or beta solution heat treatment is specified (see 6.2), a lot of

workpieces of Ti-6Al-4V, Ti-6Al-4V ELI, Ti-6Al-6V-2Sn, or other alpha-beta alloy shall be soaked at

a temperature which is 50 ± 25°F (30 ± 15°C) above the determined beta transus of the lot (see

4.7.4.1). The soaking time shall be such that all portions of the furnace charge and of each

workpiece including midsection are soaked for at least 30 minutes. Following soaking, the lot shall be cooled in air or inert gas to ambient temperature. Furnace cooling is not permitted. Water

quenching shall not be performed, unless specified in the contract or on the drawing. When water quenching is specified, the products of Ti-6Al-4V, Ti-6Al-4V ELI, and Ti-6Al-6V-2Sn shall be given a second anneal between 1350°F (732°C) and 1400°F (760°C) for 1 to 3 hours.

3.6Process requirements other than those specified in 3.5:

3.6.1General requirements: All heating, quenching and other processing equipment used for thermal

treating shall be capable of producing end product conforming to 3.1. All units of a lot shall be

heated uniformly and on the whole piece, never on a portion only. For coiled product heated within

a continuous furnace or straight product heated within an induction coil, the product shall be

heated uniformly in its cross-section.

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

AMS-H-81200A SAE AMS-H-81200A

3.6.2Surface cleanliness: Prior to thermal treatment, surfaces of workpieces shall be free from heavy

lubricants, halogen compounds, and other foreign matter, which will cause product to become

noncompliant. Product coated with light oils need not be cleaned prior to thermal treatment,

provided that the oil either vaporizes or burns off during preheating. Halogenated solvents (see sample list 6.3.5) and methanol shall not be used to degrease workpieces, unless the workpieces are subsequently cleaned using an alkaline solution or an acid pickle. Such cleaning shall be

performed prior to thermal treatment.

3.6.3Holding fixtures: All racks, support or fixtures contacting workpieces shall be made of heat

resistant metal such as 300 series stainless steel or nickel base alloys. The use of ceramic or

other suitable non-reacting material is also permitted. Fixtures shall be designed to permit free flow of heating and quenching media around each workpiece and to minimize distortion of

workpieces being treated.

3.6.4Protective coatings: The use of coatings to protect against scaling and to ease scale removal is

permissible, on condition that resultant product meets the requirements of 3.1. Such a condition shall be demonstrable by test data.

3.6.5Hydrogen contamination: Hydrogen concentrations in workpieces which are submitted for

inspection, after all thermal treatments and manufacturer’s processing, shall show no

concentrations in excess of those specified in the acquisition documents when tested for in

accordance with 4.7.3. Control of hydrogen absorption shall stem from control of furnace

atmospheres, cleanliness of workpiece surfaces, and acid pickling. Where maximum hydrogen concentration is not specified in acquisition documents, the maximum allowable hydrogen

concentration shall be as agreed upon between the contracting activity and the contractor.

3.6.5.1Rework of product contaminated by hydrogen: An excessive hydrogen concentration found in a

lot may be reduced to an acceptable concentration by heating the lot in a vacuum furnace

conforming to 3.2.1.3. Such action shall be reported to the purchaser. Heating under vacuum

which results in overaging of a lot shall be cause for rejection of that lot. Salvage by re-solution heat treating and aging shall be performed only with the consent of the purchaser. Records of all re-heat treatments shall be prepared and maintained in accordance with 4.8.4.

3.6.6Surface contamination: Surface contamination after heat treatment shall be removed by chemical

or mechanical means. The surfaces of machined, ground, blasted or acid-pickled workpieces shall not exhibit the effects of absorbed oxygen or nitrogen to the degree that the surface contamination of the product exceeds the levels specified in the acquisition documents when tested in

accordance with 4.7.4.2.

3.7Product monitoring:

Periodic monitoring of heat treated workpieces to determine compliance to 3.1 shall include the evaluation of tensile and bend properties.

3.7.1Tensile properties: Specimens taken from thermally treated workpieces in accordance with

4.6.3

and tested in accordance with 4.7.1 shall exhibit tensile strengths, yield strengths, elongations, and reductions in area in compliance with applicable requirements of acquisition documents. Tension testing shall be performed in accordance with Table VII of this specification unless otherwise

specified in the acquisition documents.

3.7.2Bend properties: Flat-rolled product of 0.187 inch (

4.75 mm) nominal thickness or less when

sampled in accordance with 4.6.3.1 shall exhibit no cracks or separation in any direction when

examined at 20X magnification after having been tested in accordance with 4.7.2.

4.QUALITY ASSURANCE PROVISIONS:

4.1Responsibility for inspection:

Unless otherwise specified in the contract or purchase order, the contractor is responsible for the performance of all inspection requirements as specified herein. Except as otherwise specified in the contract or purchase order, the contractor may use his own or any other facilities suitable for the performance of the inspection requirements specified herein, unless disapproved by the purchaser.

The purchaser reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure that supplies and services conform to the

prescribed requirements.

4.1.1Responsibility for compliance: All items shall meet all requirements of Sections 3. The inspection

set forth in this specification shall become a part of the contractor’s overall inspection system or quality program. The absence of any inspection requirements in the specification shall not relieve the contractor of the responsibility of ensuring that all products or supplies submitted to the

Government for acceptance comply with all requirements of the contract. Sampling inspection, as part of manufacturing operations, is an acceptable practice to ascertain conformance to

requirements, however, this does not authorize submission of known defective material, either

indicated or actual, nor does it commit the Government to accept defective material.

4.2Quality conformance tests:

4.2.1Periodic Tests: Tests to determine conformance to the following requirements are classified as

periodic tests and, unless otherwise specified by the contracting activity (see 6.2), shall be

performed at the frequency specified herein, as applicable to furnace type.

a.Daily check of the dew point of the inert gases.

b.Monthly test of furnace pyrometer systems accuracy (see 4.5.1)

c.Weekly checks for hydrogen pickup or contamination, except for processes wherein every

thermally treated lot is analyzed, or for treatments in a vacuum furnace or in inert gas.

d.At least one surface contamination examination weekly (see 4.7.4.2) of product thermally

treated in a vacuum furnace or in inert gas, in order to detect possible leakage.

e.Quarterly calibration of furnace instruments as in 4.5.

f.Quarterly system accuracy tests and instrument calibration of stress relieving as in 4.5.

g.Temperature surveys of furnace (see 4.3. for frequency).

4.2.2Preproduction tests: Tests to determine conformance to the following requirements are classified

as preproduction tests and shall be performed prior to any production heat treating:

a.Furnace temperature uniformity or distribution (see 4.4.)

b.Pyrometer system accuracy as in 4.5.

c.Furnace instrument calibration as in 4.5.

d.Dew point of the inert gas when such gas is used.

e.Hydrogen contamination.

f.Leak rate.

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

4.3Equipment Calibration and Tests:

4.3.1Pyrometric calibration: Pyrometric equipment shall be calibrated in accordance with AMS 2750.

4.3.2Test procedures for equipment: Heat treating equipment shall be tested in accordance with AMS

2750.

4.4Survey requirements:

4.4.1General: Procedures for surveying furnaces shall be in accordance with AMS 2750.

4.4.2Furnace temperatures when making initial surveys: Furnaces used for thermal treatment shall be

surveyed at the highest and lowest service temperatures anticipated as governed by the furnace application and also at one or more intermediate temperatures so that span between tested

temperatures does not exceed 600°F.

4.4.3Survey requirements, batch furnaces:

4.4.3.1Number and location of thermocouples during initial surveys: In the furnace, thermocouples shall

be placed in accordance with AMS 2750, as applicable. Thermocouples may also be attached to the furnace charges at exposed surfaces and within the charges. The number and distribution of these thermocouples shall be subject to purchaser approval (see 6.2).

4.4.4Survey requirements, continuous furnaces, all gaseous atmospheres:

4.4.4.1Furnace temperatures when making initial surveys: The maximum and minimum temperatures

within the working zones shall not exceed those specified in 4.4.2, as applicable to the intended thermal treatment. Furnaces used for more than one kind of thermal treatment shall be surveyed at the highest and lowest anticipated service temperatures.

4.4.4.2Number and locations of the thermocouples during initial surveys: Thermocouples shall be

placed in the furnace in the number and locations which will enable the determination of entry-to-exit temperatures profiles at each working temperature. A minimum of two thermocouples shall be attached to each furnace charge and accompany the charge through the furnace.

4.4.5Survey requirements, continuous furnaces, vacuum:

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

AMS-H-81200A SAE AMS-H-81200A

4.4.

5.1Number and locations of thermocouples during initial surveys: Thermocouples within the furnace

shall be placed in accordance with 4.4.4.2.

4.4.

5.2Survey procedure: Except as otherwise specified herein, the survey procedure shall conform to

4.4.2. When the furnace charge cannot be wired with thermocouples without destroying the

vacuum, the survey shall entail inspections of product after thermal treatment. Such inspections shall include, but not be limited to: tension tests (see 4.7.1), bend tests (see 4.7.2),

determination of hydrogen concentration (see 4.7.3), and metallographic examinations (see

4.7.4). Such inspections shall be performed on the first lot of each product passed through a new

or refurbished furnace (see 4.6.2 for lot definition).

4.4.6Survey requirements, induction heating systems:

4.4.6.1Thermal treatments and workpiece temperatures: Only solution heat treating, stress relieving,

and annealing treatments shall be carried out by induction heating. The temperatures in 4.4.2

shall be considered as nonmandatory. Other temperatures appropriate to products to be heat

treated may be selected, provided that the requirements of 3.1 are met.

4.4.6.2Temperature measurement: To determine uniformity of temperature around the cross-sectional

perimeter of a workpiece, a minimum of four thermocouples shall be attached around such

perimeter approximately 90 degrees apart.

4.4.6.3Survey procedure: Workpiece with thermocouples attached shall be passed through the

induction coil at a rate and power density which will result in sufficient heating to accomplish the desired result. Temperature readings need not be taken while the thermocouple hot junctions

are within the induction coil. Several workpiece passages at various rates and power densities may be needed before proper conditions can be determined.

4.5Calibration:

Calibration of equipment as specified in 4.3 shall be carried out in accordance with MIL-STD-45662.

4.5.1Accuracy of furnace pyrometric systems:

4.5.1.1General requirements: The accuracy of such systems shall be checked by procedures in

accordance with AMS 2750, except as otherwise specified herein. The test thermocouple, test

potentiometer, and cold junction compensation system shall within the previous 3 months have

been calibrated against National Institute of Standards and Technology (NIST) primary or

secondary certified thermocouples and potentiometers to an accuracy of ± 2°F (±1°C) of NIST

true temperature.

4.5.1.2Special requirements: When the furnace construction is such that test thermocouples can not be

placed adjacent to working thermocouples, a plan for the calibration of pyrometric systems shall be adopted by the party responsible under contract for heat treatments administered. This plan shall be subject to disapproval by the contracting activity (see 6.2).

4.6Sampling for product monitoring:

Such sampling shall be for inspection for conformance to 3.1. The sampling requirements of the subparagraphs herein shall not apply to a product covered by a sampling plan within a product

specification. Subject to the contracting activity’s approval (see 6.2), product specification test

results may be used to satisfy any one of the inspections specified in section 4.7 to demonstrate conformance to 3.1.

4.6.1Unit of inspection: The unit of inspection shall be one piece of rod, bar, sheet, plate, or shape, one

coil of strip, or one forged or cast semi-finished part.

4.6.2Lot: A lot shall consist of a group of product units of the same heat, mechanically and thermally

treated to substantially the same properties using the same pieces of equipment, such treatment being applied to the units as a batch, or to the group unit-by-unit over essentially a continuous time interval not to exceed 8 hours, and inspected at the same time.

4.6.3Specimen selection: Specimens for each inspection (see 4.7) shall be selected in accordance with

4.6.3.1, 4.6.3.2, 4.6.3.3, 4.6.3.4, 4.6.3.5, 4.6.3.6, and 4.6.3.7, as applicable. Specimens of suitable

dimensions shall be removed from product where configuration and dimensions permit. Where such removal is impossible, specimens shall be taken from a sample piece of appropriate

dimensions and of the same heat as a product unit with which the sample is heat treated.

4.6.3.1Wrought product except forged parts: Two specimens for tension testing in accordance with

4.7.1 shall be excised from each lot of such product after the final thermal treatment. In addition,

from each lot of product within the thickness range specified in 3.7.2, two specimens shall be

excised for the bend test specified in 4.7.2. Bars, billets, and blooms to be manufactured into

forged parts shall, when specified on the drawing, have test blanks removed, forged into

specimens simulating the forged parts to be made, heat treated, and tested in accordance with

4.7.1.

4.6.3.2Forgings: Unless otherwise specified in product specifications or other acquisition documents,

each furnace charge of raw or rough-machined forgings shall be accompanied by two blanks with comparable mechanical working from the same heat as the lot being heated. These blanks shall be suitable for machining into test specimens conforming to 4.7.1, as applicable, and be from

locations complying with product specifications or other acquisition documents, as applicable. 4.6.3.3Standard components: When heat treating standard components, such as nuts and bolts, for

which the frequency of testing is specified, the applicable requirements of the component product specification shall take precedence.

4.6.3.4Cast parts: Unless otherwise specified, each furnace load of cast parts undergoing heat

treatment shall be accompanied by three tension specimens as specified in 4.7.1, poured within the same casting lot as the parts represented unless specimens from actual castings are used.

4.6.3.5Induction heated product: Unless otherwise specified in acquisition documents, two blanks to be

made into specimens conforming to 4.7.1, as applicable, shall be removed from the first and the last workpiece of the lot treated.

4.6.3.6Sampling for analysis of hydrogen concentration: Product heated in air at temperatures equal to

or less than 1000°F (540°C), or under vacuum or inert gas need not be sampled and analyzed

after such treatments. From product heated above 1000°F, two specimens shall be taken from each thermally treated lot and tested in accordance with 4.7.3 for conformance to 3.6.5. When the product is strip, one specimen shall be taken from each end of a coil. The other product shall be sampled randomly.

4.6.3.7Sample for metallographic examinations for surface contaminations: Product heated at

temperatures equal to or less than 1000°F (540°C), need not be sampled and examined, unless otherwise specified. From product heated above 1000°F, two specimens from each thermally

treated lot shall be subjected to the examination specified in 4.7.4.2 for compliance with 3.6.6.

When the product is strip, one specimen shall be taken from each end of a coil. The other

product shall be sampled randomly. For examinations for adequate purging (see 3.2.1.6), only

one sample need be taken from the furnace charge.

4.7Test methods:

Unless other test methods are specified in other product acquisition documents, the test methods specified herein shall apply.

4.7.1Tension test: Specimens selected in accordance with 4.6, as applicable, shall be prepared and

tested in accordance with ASTM E 8 for conformance to 3.7.1. The rate of strain during testing shall be 0.003 to 0.007 in./in./minute until the yield strength at the designated offset has been

exceeded, after which the rate of strain shall be increased so as to result in fracture within one

additional minute. In case of dispute over strain rates, a strain rate of 0.005 in/in./minute shall be applied until the designated offset yield point has been exceeded, after which the crosshead speed shall be a minimum of 0.1 in./minute until fracture.

4.7.2Bend test: Specimens selected in accordance with 4.6.3.1 shall be tested for conformance to 3.7.2

by applying test procedures within ASTM E 290 as modified herein. Specimen edges in the width direction shall be free of burrs. Deburring by any conventional technique is allowed. Specimen widths shall not be less than one inch (25.4 mm), nor shall specimen lengths be less than 2 inches

(50.8 mm). During testing, each specimen shall be supported as a simple beam across a female

die conforming to Figure 1; such die selected in accordance with the specified bend to be imparted.

Each specimen shall be bent by a 3-point load resulting from the pressure of a male die centered over the female die, the male die being manufactured in accordance with Figure 1, and selected for the test in accordance with the specified bend to be imparted. Bend tests may be performed on a power brake.

4.7.3Hydrogen analysis: Specimens selected in accordance with 4.6.3.6 shall be analyzed by the hot

extraction method specified in ASTM E 146 to determine compliance with 3.6.5. Other methods may be used subject to the approval of the contracting activity.

4.7.4Metallographic examinations:

4.7.4.1Determination of beta transus: When beta annealing of an alpha-beta alloy is specified (see

3.5.6), representative samples from the lot to be so annealed shall be taken for solution heat

treating and quenching. Each test specimen shall be of such dimensions that its center will cool faster than the critical rate during the quench. A range of solution heat treating temperatures

spanning the nominal beta transus shall be applied using a different temperature for each

specimen. Following quenching, specimens for metallographic examination shall be prepared in accordance with ASTM E 3, as applicable, etched in a suitable solution, and examined at

magnifications to 500X to determine the amount of primary alpha phase present. The

temperature at which this phase is no longer present shall be deemed the beta transus of the lot.

Such temperature may be determined by interpolation. In lieu of metallography, a beta transus may be determined by means of a differential thermal analyzer.

4.7.4.2Metallographic examination for surface contamination by oxygen and nitrogen: Specimens

selected in compliance with 4.6.3.7 shall be prepared according to ASTM E 3, as applicable,

etched in a suitable solution, and examined at 200X or higher magnification to determine

conformance to 3.6.6.

4.8Records:

4.8.1Retention of inspection records: Unless otherwise specified in the acquisition documents,

inspection records shall be on file for five years and shall be available for examination by the

contracting activity.

4.8.2Records of calibration: Records of calibration shall be kept for five years and shall be available for

examination by the contracting activity.

4.8.3Test results: Results of all tests required by this specification shall be retained for five years after

date of performance, and shall be available for examination by the contracting activity.

4.8.4Furnace records: Records relative to the identification and history of usage of each furnace shall

be maintained as evidence of compliance with this specification. Information recorded shall

include as a minimum the furnace number or description, size, temperature range of usage, type(s) of thermal treatment applied (solution heat treatment, annealing, etc.), temperature(s) at which

uniformity was surveyed, dates of each survey, number and locations of thermocouples during

each survey, and dates and other specifics of substantial repairs or alterations. These records

shall be kept for 5 years after the date of performance or as otherwise specified in the acquisition documents.

4.8.5Records of hydrogen outgassing treatments: During a hydrogen outgassing treatment, the working

temperature, the soaking time, and absolute pressure within the furnace shall be recorded.

Records shall be retained and be available for review in accordance with 4.8.1.--` , ` , ` , ` ` ` ` ` ` ` ` , , , ` , , , -` -` , , ` , , ` , ` , , ` ---

4.8.6Noncompliance: If any test result fails to meet the requirements specified herein, the cause of

failure shall be determined and the equipment repaired if applicable. If tests indicate improper heat treatment, the equipment and process shall not be used for heat treatment of titanium alloys until the deviation(s) is corrected and satisfactory performance is re-established. Questionable material shall be investigated, categorized as conforming or non-conforming and disposed of accordingly.

Evaluation of the equipment and/or material shall be documented and the appropriate corrective action shall be taken and documented. The quality assurance organization shall notify the

contracting activity of nonconformance when previously heat treated lots are suspect.

4.8.6.1Response-to-Heat-Treatment Tests: During the 18 month period following publication of AMS-H-

81200A, if samples heat treated in accordance with AMS 2801 do not meet tensile properties

requirements, material may be accepted based on successful tests of additional samples heat

treated in accordance with AMS-H-81200. The actual heat treatment times and temperatures

and the properties obtained for both treatments shall be included in the report.

5.PACKAGING:

This section is not applicable to this document.

6.NOTES:

(This section contains information of a general or explanatory nature that may be helpful but is not mandatory.)

6.1Intended use:

This specification is intended for development and control of heat treating procedures applied to titanium and titanium alloy wrought and cast product.

6.2Acquisition requirements:

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

Acquisition documents must specify the following:

a.Title, number, and date of this specification.

b.Issue of DODISS to be cited in the solicitation, and if required, the specific issue of individual

documents referenced (see 2.1).

https://www.360docs.net/doc/481680101.html,e of thermal treatment parameter values other than those specified herein (see 3.5).

https://www.360docs.net/doc/481680101.html,e of beta annealing (see 3.5.6).

e.Frequency of periodic tests if other than 4.2.1.

f.Approval of number and distribution of thermocouples as in 4.4.3.1.

g.Furnace construction approval as in 4.5.1.2.

h.Whether product specification test results may be used, as in 4.6.

6.3General information:

6.3.1Avoidance of contamination during thermal treatments: The following paragraphs list those means

which may be adopted to avoid contamination of the heat treated product with hydrogen, oxygen, and nitrogen. Information on the reactions between these elements and titanium and its alloys may be found in MIL-HDBK-697, “Titanium and Titanium Alloys”.

6.3.1.1Hydrogen contamination: Such contamination of bare workpieces may be avoided by heating

within either a vacuum, or an inert gas of low dew point. Avoidance may also be achieved by

coating workpieces with an impermeable material. Bare workpieces should not be in contact with dissociated hydrocarbons or cracked ammonia. Contaminated workpieces may be salvaged by heating under vacuum.

6.3.1.2Oxygen and nitrogen contamination: Since contamination resulting from contact with these

gases during thermal treatment is confined to a thin surface layer, the contaminate may be

removed by mechanical or chemical means, as applicable. If the chemical means is acid

pickling, then care should be exerted to avoid hydrogen contamination. Where surface removal can be applied, considerable latitude in selecting atmospheric environments is afforded. Where removal of contaminated layers is not feasible, contamination may be minimized by either very

brief contact with a contaminating atmosphere, the application of a protective coating, or heating within an inert atmosphere or vacuum.

6.3.2Heat treating temperatures: The hardening heat treatments selected for the alpha-beta and beta

alloys are designed to provide the best combination of strength, ductility, notch and fracture

toughness. Whenever specified practice appears questionable, or if preproduction tests produce erratic results, the heat treater is advised to consult the applicable product specification to establish corrective action. Scaling of titanium and titanium alloys starts at about 1000°F (540°C). Heating above 1000°F under oxidizing conditions results in increasingly severe surface scaling as well as diffusion of oxygen. Oxygen diffusion results in a hard, brittle surface layer. If the solution heat treating temperature is below the minimum specified, complete solution is not effected and the

optimum mechanical properties are not developed. The selection of solution heat treating

temperatures should be guided by beta transus temperatures, nominal values of which are within Table VI.

6.3.3Quenching: For the alpha-beta alloys, a rapid quenching after solution heat treating is necessary in

order to meet the minimum mechanical properties.

6.3.4Annealing stability: Thermal stability of the alpha-beta titanium alloys depends upon the

transformation characteristics of beta phase. The slow cooling stabilizing anneal is designed to produce a stable beta capable of resisting further transformation when exposed to elevated

temperature in service. In regard to other alloys, such as Ti-6Al-2Sn-4Zr-2Mo, stabilization

treatment applied subsequent to the solution heat treatment achieves the required stability.

6.3.5Stress corrosion: Titanium alloys are susceptible to stress corrosion by halides at temperatures

above 550°F (290°C). For this reason, particular care must be taken to insure proper cleanliness, that is, absence of halogen compounds on parts heat treated or used above 550°F. Halogenated solvents should be avoided for cleaning titanium alloys. A sample list of halogenated

hydrocarbons is shown below.

Halogenated hydrocarbons

Carbon tetrachloride Methyl chloride Trichlorofluoromethane

Trichlorotrifluoroethane Methyl iodide Octafluorocyclobutane

Trichloroethylene Trichloroethane

6.3.6Rate of heating: When material, size, or design of parts, or the operating conditions are such that

no cracking or excessive warpage results, the parts may be charged into the heat treating furnace at any desired temperature which does not exceed the maximum working temperature specified for the process and the material involved. Parts of complicated design having abrupt changes of

section or sharp corners, and parts which have been previously hardened above 120 ksi (827

MPa), should be subcritically annealed, or preheated prior to charging into furnaces which are at or above any transformation temperature. This does not apply to aging of beta alloys. Alternatively, the furnace temperature can be lowered several hundred degrees prior to charging to avoid

cracking and minimize distortion.

6.3.7Soaking times: The soaking times listed within the tables are approximately correct for heating in

air, in a gaseous atmosphere, or in a vacuum. The soaking times appropriate to a particular lot will vary with the composition of material, capacity of heating elements, and size of charge, as well as the thickness of the individual part. Excessive soaking times should be avoided, so as to minimize scaling, avoid surface contamination, and avoid beta grain growth when solution heat treating

alpha-beta alloys.

6.3.8Shape influence: Most of the published literature and the data in this specification are based on

tests of round specimens of various diameters. In order to apply these data successfully to actual parts, it is convenient to visualize the parts as simple geometric shapes such as rounds, hexagons, squares, plates or tubes. These shapes can then be considered as the size round which will have approximately the same cooling rates as that of the simple shape. The relationship between the various simple shapes and the corresponding rounds is shown in Figure 2.

6.3.9Metrication: Dimensions in inch/pound units and Fahrenheit temperatures are primary; dimensions

in SI units and Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information purposes.

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

AMS-H-81200A SAE AMS-H-81200A 6.4Definitions:

6.4.1Raw material (e.g., sheet, plate, bar, forgings, castings and extruded shapes): Usually identified

by a heat or lot number, is usually destructively tested for acceptance. It is heat treated, usually by or for a material producer, in accordance with a material specification which may require, by

reference, conformance to a heat treating specification. It may include rough or partially machined or similarly modified parts heat treated by a material producer in accordance with the procedures and destructive testing requirements of a material specification.

6.4.2Parts: Usually identified by a part number, are produced from raw material in accordance with the

requirements of a drawing and are usually tested by nondestructive means only. They are heat treated by or for a fabricator, in accordance with a drawing, purchase order, fabrication order, or heat treatment specification. At the time of heat treatment, they may resemble raw material.

6.5Subject term (key word) listing:

Aging

Alloy

Anneal

Beta transus

Furnace

Heat treatment

Hydrocarbons

Quench

Stress-corrosion

Stress relief

Titanium

6.6Marginal indicia:

A change bar ( l ) located in the left margin is for the convenience of the user in locating areas where

technical revisions, not editorial changes, have been made to the previous issue of a specification.

An (R) symbol to the left of the document title indicates a complete revision of the specification, including technical revision. Change bars and (R) are not used in original publications, nor in

specifications that contain editorial revisions only.

PREPARED UNDER THE JURISDICTION OF AMS COMMITTEE “G”

TABLE I. Solution heat treating schedule for raw materials and semi-finished parts 1/

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

--`,`,`,````````,,,`,,,-`-`,,`,,`,`,,`---

钛合金热处理

第十三章有色金属及合金 内容提要: 有色金属的产量和用量不如黑色金属多,但由于其具有许多优良的特性,如特殊的电、磁、热性能,耐蚀性能及高的比强度(强度与密度之比)等,已成为现代工业中不可缺少的金属材料。 1.铝及铝合金; 2.钛及钛合金; 3.铜及铜合金; 4.轴承合金。 基本要求: 掌握和了解各种有色金属的牌号、成分、性能和用途。 13.1铝及铝合金 13.1.1铅及铝合金的性能特点及分类编号 纯铝:纯铝具有银白色金属光泽,密度小(2.72 ),熔点低(660.4℃), 导电、导热性能优良。 耐大气腐蚀,易于加工成形。 具有面心立方晶格,无同素异构转变,无磁性。 1 铝合金及其特点 铝合金常加入的元素主要有Cu、Mn、Si、Mg、Zn等,此外还有Cr、Ni、Ti、Zr 等辅加元素。 ①比强度高(>>高强钢)。可用于轻结构件,尤其航空。 ②突出理化性能。导电、抗大气腐蚀。 ③良好加工性。高塑性、易冷成形;某些合金铸造性能好,宜作压铸件。 2 铝合金分类及分类编号 13.1.2铝合金的强化 1 形变强化 2沉淀强化 3 固溶强化和时效强化: 13.1.3变形铝合金 变形铝及铝合金牌号表示方法:根据国标规定,变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号。GB 3190-82中的旧牌号仍可继续使用,表示方法为: ?防锈铝合金:LF+序号 ?硬铝合金: LY +序号 ?超硬铝合金:LC +序号 ?锻铝合金: LD +序号 常用变形铝合金 1 防锈铝合金:主要是Al-Mn和Al-Mg系合金。 Mn和Mg主要作用是提高抗蚀能力和塑性,并起固溶强化作用。 防锈铝合金锻造退火后组织为单相固溶体,抗蚀性、焊接性能好,易于变形加工,但切削性能差。不能进行热处理强化,常利用加工硬化提高其强度。常用的Al-Mn系合金有 LF21 ( 3A21 ),其抗蚀性和强度高于纯铝,用于制造油罐、油箱、管道、铆钉等需要弯曲、冲压加工的零件。常用的Al-Mg系合金有 LF5( 5A05 ),其密度比纯铝小,强度比Al-Mn合金高,在航空工业中得到广泛应用,如制造管道、容器、铆钉及承受中等载荷的零件。

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

钛合金高温形变强韧化机理

第35卷1999 第1期 年1月 金属学报 ACTA METALLURGICA SINICA Vol.35No.1 January1999钛合金高温形变强韧化机理* 周义刚 曾卫东 李晓芹 俞汉清 (西北工业大学材料科学与工程学院,西安710072) 曹春晓 (北京航空材料研究院,北京100095) 摘 要 详细研究并讨论了钛合金高温形变强韧化机理.结果表明,三态组织中少量等轴 相与基体 相没有固定的位向关系,位错容易找到可开动的滑移面,对变形起着协调作用,因而合金具有较高的塑性;大量网篮交织的条状 ,不仅增加了相界面,提高了合金的强度与抗蠕变能力,而且不断改变裂纹扩展方向,导致裂纹路径曲折、分枝多,断裂韧性好.新的变形理论适用于 ,近 ,( + )和近 型钛合金. 关键词 高温形变,强韧化机理,三态组织,钛合金 中图法分类号 T G146.2 文献标识码 A 文章编号 0412-1961(1999)01-0045-48 AN INVESTIGATION OF HIGH-TEMPERATURE DEFORMA TION STRENGTHENING AND TOUGHENING MECHANISM OF TITANIUM ALLOY Z H O U Yigang,ZEN G Weidong,LI Xiaoqin,YU H anqing Col lege of M aterials Science and Engineering,Northw estern Polytechnical Universi ty,Xi an710072 CAO Chunx iao Beijing Institute of Aeronauti cal M aterials,Beijing100095 Cor resp ondent:ZH OU Yigang,p r o f essor,Tel:(029)8493939,Fax:(029)8491000, E-mail:z engjiang@https://www.360docs.net/doc/481680101.html, M anuscript received1998-05-12,in revised form1998-08-11 ABSTRAC T T he high-temperature deformation strengthening and toug hening mechanisms have been investigated.It is found that equiax ed alpha phases in tri-modal m icrostructure have no inherent orien taion w ith transformed beta m atrix,dislocations can easily find their slip plane,so they give coordination of materials deform ation,and result in higher ductility.The striature alpha phases not only increase the strength and creep properties,but also change the cracks propagation directions,thus cracks make a more w inding w ay along or cross grain boundary between striature alpha phases,and materials show a higher fracture toug hness.T his new deformation theory applies to ,near ,( + )and titanium alloys. KEY W ORDS hig h-tem perature deformation,streng thening and toug hening mechanism,tri-modal microstructure,titanium alloy 国内外对( + )钛合金的变形通常是在相变点以下3050!进行,称为常规锻造.常规锻造获得的等轴组织具有室温强度高、塑性好等优点,但其高温性能、抗疲劳裂纹扩展能力和断裂韧性较差[1].50年代后期,C roan等人[2]提出了 锻造工艺,其优点是提高了合金的抗蠕变性能、冲击和断裂韧性,但是明显降低塑性和热稳定性,导致? 脆性#和?组织遗传性#[3].60年代初,She egarev等人[4]提出的形变热处理理论,有效地提高了合金的强度和韧性,但是 *收到初稿日期:1998-05-12,收到修改稿日期:1998-08-11 作者简介:周义刚,男,1930年生,教授锻后水冷的组织在随后的低温时效过程中分解,降低合金的热稳定性.因此,如何解决钛合金强度-塑性-韧性的相互匹配,一直是钛合金科学工作者努力解决的课题. 本文提出的钛合金高温形变强韧化工艺(又称近 锻造工艺),是在相变点以下1015!加热、变形.为控制变形温度,以坯料的平均相变点确定名义加热温度,并采用金相试样法测定和控制炉温精度.变形后快淬的锻件经两次高温加一次低温的强韧化处理后,获得由一定数量的等轴初生 、条状 构成的网篮和转变 基体组成的三态组织,从而克服了以往研究的不足,使合金的强度-塑性-韧性得以兼顾.

第四章 钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。 ⑨β相稳定元素含量越高,相变过程中晶格改组的阻力就越大,因而转变所需

第四章钛合金的相变及热处理完整版

第四章钛合金的相变及 热处理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S 降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。

钛合金及其热处理工艺简述样本

钛合金及其热解决工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金基本信息进行了简要简介,对钛几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金热解决类型及工艺,为之后生产实习中对钛合金热解决工艺结识提供指引。 核心词:钛合金,热解决 1 引言 钛在地壳中蕴藏量位于构造金属第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了初期人们对钛合金开发和运用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术改进和提高,钛合金应用才逐渐开展[5]。 纯钛熔点为1668℃,高于铁熔点。钛在固态下具备同素异构转变,在882.5℃以上为体心立方晶格β相,在882.5℃如下为密排六方晶格α相。钛 合金依照其退火后室温组织类型进行分类,退火组织为α相钛合金记为TAX,也 称为α型钛合金;退火组织为β相钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相钛合金记为TCX,也称为α+β型钛合金,其中“X”为顺序号。国内当前钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC型15个以上[5]。 钛合金具备如下特点:

(1)与其她合金相比,钛合金屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金密度为4g/cm3,大概为钢一半,因而,它具备较高比强度; (3)钛合金耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完毕之后,为了消除材料中加工应力,达到使用规定性能水平,稳定零件尺寸以及去除热加工或化学解决过程中增长有害元素(例如氢)等,往往要通过热解决工艺来实现。钛合金热解决工艺大体可分为退火、固溶解决和时效解决三个类型。由于钛合金高化学活性,钛合金最后热解决普通在真空条件下进行。热解决是调节钛合金强度重要手段之一。 2 钛合金合金化特点 钛合金性能由Ti同合金元素间物理化学反映特点来决定,即由形成固溶体和化合物特性以及对α?β转变影响等来决定。而这些影响又与合金元素原子尺寸、电化学性质(在周期表中相对位置)、晶格类型和电子浓度等关于。但作为Ti合金与其他有色金属如Al、Cu、Ni 等比较,尚有其独有特点,如:(1)运用Tiα?β转变,通过合金化和热解决可以随意得到α、α+β和β相组织; (2)Ti是过渡族元素,有未填满d电子层,能同原子直径差位于±20%以内置换式元素形成高浓度固溶体;

钛合金热处理操作注意事项

钛合金热处理操作注意事项 淬火: 1.淬火操作时,从出炉到进入淬火介质之间的转移时间越短越好,以防β相分解,转移时间最长不超过10s 2.淬火加热保温时间的计算公式: t=(5~8)Aδ(min) A—保温时间系数3min/mm δ—零件有效厚度(mm) 淬火介质:高闪点的油,或不含氯化物的盐浴如亚硝酸盐和硝酸盐浴 防氧化和腐蚀: 1.在氯盐浴中加热时,发生热盐腐蚀的临界温度是288oC,主要是热处理前零件清洗不正确,要求正确清洗。搬运时,不要在零件上按指纹,对于工件上的油和润滑脂应清洗干净 2.钛合金在真空中加热时,真空压力为0.1~1kPa 3.为防止氧化,可用高纯度氩、氖等惰性气体保护,也可用塑料进行保护,或加热前把零件在熔融的玻璃中浸蘸一下 变形:为防止热处理翘曲,零件应固定于铁基或镍基合金制造的夹具中为防止夹具带来的油污,在夹具里垫薄钛板或喷Al2O3,将钛零件

同夹具隔开,夹具在使用前应进行烧焦处理 有害气体影响: 氢气:含氢量超过0.02%会产生氢脆,所以钛合金最好在真空中加热,用火焰加热时,火焰不能直接喷在工件上,火焰调成中性或略带氧化性 氧气:氧易和钛生成TiO2薄膜,使用过程中易产生剥落 氮气:零件吸入氮气变脆,塑性下降 钢材断裂的基本分析 如今,用于各行业的钢材品种达数千种之多。每种钢材都因不同的性能、化学成分或合金种类和含量而具有不同的商品名称。虽然断裂韧性值大大方便了每种钢的选择,然而这些参数很难适用于所有钢材。主要原因有:第一,因为在钢的冶炼时需加入一定数量的某种或多种合金元素,成材后再经简单热处理便可获得不同的显微组织,从而改变了钢的原有性能;第二,因为炼钢和浇注过程中产生的

钛合金及其热处理实用工艺简述

钛合金及其热处理工艺简述 钛业股份:新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在882.5℃以上为体心立方晶格的β相,在882.5℃以下为密排六方晶格的α相。钛 合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好;

(5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。 2 钛合金的合金化特点 钛合金的性能由Ti同合金元素间的物理化学反应特点来决定,即由形成的固溶体和化合物的特性以及对α?β转变的影响等来决定。而这些影响又与合金元素的原子尺寸、电化学性质(在周期表中的相对位置)、晶格类型和电子浓度等有关。但作为Ti合金与其它有色金属如Al、Cu、Ni 等比较,还有其独有的特点,如: (1)利用Ti的α?β转变,通过合金化和热处理可以随意得到α、α+β和β相组织; (2)Ti是过渡族元素,有未填满的d电子层,能同原子直径差位于±20%以的置换式元素形成高浓度的固溶体; (3)Ti及其合金在远远低于熔点的温度中能同O、N、H、C等间隙式杂质发生反应,使性能发生强烈的改变; (4)Ti同其它元素能形成金属键、共价键和离子键固溶体和化合物。 Ti合金合金化的主要目的是利用合金元素对α或β相的稳定作用,来控制α和β相的组成和性能。各种合金元素的稳定作用又与元素的电子浓度(价电子数与原子的比值)有密切关系,一般来说,电子浓度小于4的元素能稳定α相,电子浓度大于4的元素能稳定β相,电子浓度等于4的元素,既能稳定α相,也能稳定β相。 工业用Ti合金的主要合金元素有Al、Sn、Zr、V、Mo、Mn、Fe、Cr、Cu和Si 等,按其对转变温度的影响和在α或β相中的固溶度可以分为三大类:α稳定元素、β稳定元素、中性元素[6,7]。

第四章 钛合金的相变及热处理

钛合金的相变及热处理-第四章. 第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶 转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。

2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严 重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转 变,。转变温度会随所含合金元素的性试样表面出现浮凸,显微组织中出现针状α′质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。

(3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转 变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或甥??、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M降低至室温一下,β相将被冻结到室S 温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M;马氏体相变终了温度M。 f S ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。. ⑨β相稳定元素含量越高,相变过程中晶格改组的阻力就越大,因而转变所需 的过冷度越大,MM越低。fS 、⑩六方马氏体有两种组织形态。合金元素含量 少时,M点高,形成块状组织,S 在电子显微镜下呈板条状马氏体;合金元素含量高时,M点低,形成针状组织,

钛合金及其热处理工艺简述

钛合金及其热处理工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在882.5℃以上为体心立方晶格的β相,在882.5℃以下为密排六方晶格的α相。钛合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。

钛及钛合金的热处理

钛及钛合金的热处理 钛及钛合金通过程序控制技术和各种热处理工艺可获得不同特性的产品,表1~表4列出了工业纯钛及部分钛合金的热处理工艺。 表1 工业纯钛和部分钛合金的β相变温度 合 金 β相变温度 ℃,±15°υ,±25°工业纯钛,0125%O2最大9101675 工业纯钛,014%O2最大9451735 α或近α合金 Ti25Al2215Sn10501925 Ti28Al21Mo21V10401900 Ti2215Cu(IM I230)8951645 Ti26Al22Sn24Zr22Mo9951820 Ti26Al25Zr2015Mo2012Si (IM I685)10201870 Ti2515Al2315Sn23Zr21Nb2013 Mo2013Si(IM I829)10151860 Ti2518Al24Sn2315Zr2017Nb2015 Mo2013Si(IM I834)10451915 Ti26Al22Cb21Ta2018Mo10151860 Ti2013Mo2018Ni(TiCode12)8801615 α2β合金 Ti26Al24V1000(a)1830(b) Ti26Al27Nb(IM I367)10101850 Ti26Al26V22Sn(Cu+Fe)9451735 Ti23Al2215V9351715 Ti26Al22Sn24Zr26Mo9401720 Ti24Al24Mo22Sn2015Si(IM I550)9751785 Ti24Al24Mo24Sn2015Si(IM I550)10501920 Ti25Al22Sn22Zr24Mo24Cr(Ti217)9001650 Ti27Al24Mo10001840 Ti26Al22Sn22Zr22Mo22Cr20125Si9701780 Ti28Mn800(c)1475(d)β或近β合金 Ti213V211Cr23Al7201330 Ti21115Mo26Zr2415Sn(βШ)7601400 Ti23Al28V26Cr24Zr24Mo(βC)7951460 Ti210V22Fe23Al8051480 Ti215V23Al23Cr23Sn7601400 (a)±20℃,(b)±30υ,(c)±35℃,(d)±50υ。 表2 工业纯钛和部分钛合金的消除应力热处理合 金 温 度时间 ℃υh 工业纯钛(所有等级) α或近α合金 480~595900~11001/4~4 Ti25Al2215Sn540~6501000~12001/4~4 Ti28Al21Mo21V595~7051100~13001/4~4 Ti2215Cu(IM I230)400~600750~11101/2~24 Ti26Al22Sn24Zr22Mo595~7051100~13001/4~4 Ti26Al25Zr2015Mo2012Si (IM I685)530~570980~105024~48 Ti2515Al2315Sn23Zr21Nb2013 Mo2013Si(IM I829)610~6401130~11901~3 Ti2518Al24Sn2315Zr2017Nb2 015Mo2013Si(IM I834)625~7501160~13801~3 Ti26Al22Cb21Ta2018Mo595~6501100~12001/4~2 Ti2013Mo2018Ni(TiCode l2)480~595900~11001/4~4α2β合金 Ti26Al24V480~650900~12001~4 Ti26Al27Nb(IM I367)500~600930~11101~4 Ti26Al26V22Sn(Cu+Fe)480~650900~12001~4 Ti23Al2215V540~6501000~12001/4~2 Ti26Al22Sn24Zr26Mo595~7051100~13001/4~4 Ti24Al24Mo22Sn2015Si (IM I550)600~7001110~12902~4 Ti24Al24Mo24Sn2015Si (IM I551)600~7001110~12902~4 Ti25Al22Sn24Mo22Zr24Cr (Ti217)480~650900~12001~4 Ti27Al24Mo480~705900~13001~8 Ti26Al22Sn22Zr22Mo22Cr2 0125Si480~650900~12001~4 Ti28Mn480~595900~11001/4~2β或近β合金 Ti213V211Cr23Al705~7301300~13501/4~1/2 Ti21115Mo26Zr2415Sn (βШ)720~7301325~13501/4~1/2 Ti23Al28V26Cr24Zr24Mo (βC)705~7601300~14001/6~1/4 Ti210V22Fe23Al675~7051250~13001/2~2 Ti215V23Al23Cr23Sn790~8151450~15001/4~1/2 42 稀有金属快报2003年第6期

钛合金热处理综述

钛合金热处理综述 姓名学号

目录 引言...................................................... 一、钛合金在航空航天的应用.............................. 二、钛合金综述.......................................... 1.钛合金的分类及特点 A.分类 B.各类钛合金的特点 2.合金元素 A.合金元素分类 B.合金元素作用 3.钛的相变 A.同素异构转变 B.β相转变

C.时效过程中亚稳定相的分解 D.钛合金二元相图 三、热处理引言.......................................... 四、热处理基本原理...................................... 4.退火 A.回复 B.再结晶 C.去应力退火 D.简单退火 E.完全退火 F.等温退火和双重退火 G.真空退火

5.固溶与时效处理(强化热处理) A.固溶处理 B.时效处理 C.固溶-时效处理 6.形变热处理(热机械处理) 7.化学热处理 五、热处理缺陷和防治.................................... 六、钛合金组织与性能.................................... 1.钛合金相组成 2.钛合金组织类型 A.魏氏体组织 B.网篮组织

C.等轴组织 D.双态组织 3.钛合金的热处理与组织、性能的关系 A.常规拉伸性能 B.疲劳性能 C.断裂韧性 D.应力腐蚀断裂 七、钛的表面热处理...................................... 1.渗无机元素表面热处理 A.渗碳 B.渗氮 C.渗硼

钛合金的相变及热处理

钛合金的相变及热处理 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 同素异晶转变 1.高纯钛的β相变点为℃,对成分十分敏感。在℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。 ⑨β相稳定元素含量越高,相变过程中晶格改组的阻力就越大,因而转变所需的过冷度越大,M S 、M f越低。

钛合金热处理工艺

在600 C 左右进行热处理并迅速淬火来增加TiAl3 合金的强度,强化的主要机制是时效増强。时效增强的特点是淬火温度越高,増强的效果就越好,但由于此合金的复合材料包含碳纤维,当温度超过某个临界温度(约700C)时,就会在介面形成金属碳化物,这使得碳纤维的增强效果大大减弱,所以最佳的淬火温度应在600 C 左右,且淬火的时间不宜太长或太短。太短组分不够均匀,空穴浓度不够高,硬化微区的浓度不够高。太长也会在介面形成金属碳化物,所以最佳的淬火时间应该是2小时左右。 钛合金锻件热处理中的淬火、时效工艺介绍如下: 1.淬火 淬火是时效处理前的预备工序,其目的是通过淬火获得某种不稳定组织,这种不稳定组织在随后时效过程中发生分解或析出,形成沉淀硬化,以提高合金的强度。 钛合金淬火应分为无相变淬火和相变淬火两种类型。 无相变淬火过程实质是把金属在较高温度下固有的状态保持到低温,并由此形成过饱和固溶体。钛合金的无相变淬火既可由β区进行(β合金),也可由(α+β)区进行。 钛合金的相变淬火或马氏体淬火同样可由β区或(α+β)区进行,主要特点是可使钛合金发生马氏体转变并形成α′和α″。 淬火后的室温组织形态主要取决淬火加热温度和冷却温度。(α+β)合金在(α+β)区上部加热淬火时,得到了马氏体相,而从(α+β)区下部淬火则得到不稳定β相。 对于β型合金情况稍有不同,为了经过淬火处理后获得单一介稳β相组织,以改善合金的工艺塑性,合金的加热温度高于临界点TB。另外,为保证时效后达到更高的强度也需采用高温淬火。再考虑到β型合金合金化程度高,临界点低(如TB1及TB2合金的TB=750℃,而(α+β)型的TC4合金TB则高达980~1000℃),因此,在稍高于临界点的β区加热后并不致于导致严重的脆性。鉴于上述原因,国产β型合金TB1及TB2均在高于TB温度下淬火处理。 (α+β)型合金淬透性差,如TC4为25mm,TC6为40mm,故只适合小尺寸零件。β型合金TB1及TB2的淬透性较高,可达150~200mm,一般尺寸的零件在空冷的条件也可获得单相β组织。 2.时效 对于(α+β)型及近β型钛合金,其平衡条件下的组织为α+β。不同的合金其差异仅在于α和β两相所占的比例,而这个比例是随时效加热温度不同和加热保温时间长短有所变化。例如经热处理强化的BT3-1合金中β相的含量为19%,经过长时(15000h以上)加热后,β相的含量为8%。 淬火形成的介稳定相,无论是马氏体α′,α″或ω相及介稳β相,在时效过程中均发生分解或析出,最终产物皆为(α+β)相,只不过是转变机制和程度不同而已。

第四章 钛合金的相变及热处理

第4章钛合金得相变及热处理 可以利用钛合金相变诱发得超塑性进行钛合金得固态焊接,接头强度接近基体强度。 4、1 同素异晶转变 1.高纯钛得β相变点为882、5℃,对成分十分敏感。在882、5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格得取向关系。 2.扫描电镜得取向成像附件技术(OrientationImaging Microscopy , OIM) 3.α/β界面相就是一种真实存在得相,不稳定,在受热情况下发生明显变化,严重影响合金得力学性能。 4.纯钛得β→α转变得过程容易进行,相变就是以扩散方式完成得,相变阻力与所需要得过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素得性质与数量得不同而不同。 5.钛与钛合金得同素异晶转变具有下列特点: (1)新相与母相存在严格得取向关系 (2)由于β相中原子扩散系数大,钛合金得加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成得粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当得形变再结晶消除粗晶组织。 4、2 β相在冷却时得转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中得转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相得过程来不及进行,但就是β相得晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相得成分未发生变化,但晶体结构发生了变化得过饱与固溶体就是马氏体。 ②如果合金得溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格得过饱与固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格得马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变就是一个切变相变,在转变时,β相中得原子作集体得、有规律得进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金得加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火得加热温度一般均低于其β相变点。 ⑨β相稳定元素含量越高,相变过程中晶格改组得阻力就越大,因而转变所需得过冷度越大,M S 、M f越低。

相关文档
最新文档