2热学-第18章-热力学第一定律doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章 热力学第一定律

(The First Law of Thermodynamics)

§18.1-18.2 准静态过程 热力学第一定律 一、准静态过程

·热力学过程:热力学系统从一个状态变化 到另一个状态 ,称为热力学过程。 ·过程进行的任一时刻,系统的状态并非平衡态。

·热力学中,为能利用平衡态的性质,引入 准静态过程(quasi-static process) 的概 念。 1.准静态过程:系统的每一个状态都无限接近于平衡态的过程(理想化的过程)。 即准静态过程是由一系列平衡态组成的过程。

2.准静态过程是一个理想化的过程, 是实际过程的近似。

只有过程进行得无限缓慢,每个中间态才可看作是平衡态。所以,实际过程仅当进行得无限缓慢时才可看作是准静态过程。 3.怎样算“无限缓慢”

弛豫时间(relaxation time)τ:

系统由非平衡态到平衡态所需时间。

准静态过程

“无限缓慢”: ∆t 过程进行 >> τ

例如,实际汽缸的压缩过程可看作准静态 过程,

∆t 过程进行 = 0.1秒

τ = 容器线度/分子速度

= 0.1米/100米/秒 = 10-3秒

4.过程曲线

准静态过程可用过程曲线表示。 状态图(P -V 图、P -T 图、V -T 图)上 ·一个点代表一个平衡态; ·一条曲线代表一个准静态过程。

二、功、内能、热量

1.功·通过作功可以改变系统的状态。

·功:机械功(摩擦功、体积功)电流的功、电力功、磁力功 弹力的功、表面张力的功,… ·机械功的计算(见下) 2.内能

·内能包含系统内: (1)分子热运动的能量; (2)分子间势能和分子内的势能 (3)分子内部、原子内部运动的能量; (4)电场能、磁场能等。

过程曲线

P

(只对准

T不太大时,系统状态的变化主要由热运动的能量分子间的势能的变化

引起,其它形式的运动能量不改变。

·内能是状态的函数

*对于一定质量的某种气体,内能一般是

T、V或P的函数;

*对于理想气体,内能只是温度的函数

E = E(T)

*对于刚性理想气体分子,

i:自由度;ν:摩尔数

·通过作功改变系统内能的微观实质是:分子的有规则运动能量和分子的无规则运动能量的转化和传递。

3.热量

·传热也可改变系统的状态,其条件是系统

和外界的温度不同。

·传热的微观本质:是分子的无规则运动能量从高温物体向低温物体传递。

·热量:传热过程中所传递的热运动能量的

多少。

三、热力学第一定律

·对于一元过程(无限小过程)

·对于一过程

符号规定:Q > 0 向系统供热,W > 0 系统对外界作正功,∆E > 0 系统内能增加 ·叙述:(1)系统从外界吸收的热量等于系统内能的增量和系统对外界做功之和。 (2)第一类永动机( η > 1) 是不可能制成的。

·热力学第一定律是热现象中能量转化与守恒的定律,适用于任何系统的任何过程(非 准静态过程亦成立)。 四、 W 、Q 、∆E 的计算

1.W 的计算(准静态过程,体积功) (1)直接计算法(由定义)

系统对外作功,

·功是过程量

·P -V 图上过程 曲线下的面积即 W 的大小。

(2)间接计算法 (由相关定律、定理) 由 Q =∆E +W →W

思考:体积功式的适用条件? (只适用于理想气体? 只适用于准静态过程?)

2

W =⎰1 F ⋅d x = ⎰1 PS ⋅ d x

2

V

V 2

V 1

S

F

体积功的计算

P o

V 1

V 2

V

W

·

·

体积功的计算

(体积功)

V 2

V 1

W = ⎰

P d V

2. Q 的计算 (1)直接计算法

M :系统质量, μ:摩尔质量 C :摩尔热容量(后面还要讲) (2)间接计算法

由 Q = ∆E + W 3.∆E 的计算 (1)直接计算法

i :自由度 (上式仅对刚性理想气体分子,下同) (2)间接计算法

由 Q = ∆E + W

§18.3热容(量)

一、摩尔热容量(molar heat capacity) 1.摩尔热容量:一摩尔物质温度升高1度所 吸收的热量,即

2.

3.定压摩尔热容量

二、理想气体的摩尔热容量 1.定体摩尔热容量 ·对于理想气体等体过程,

2.定压摩尔热容量

d Q = d E = ν ( )R d T

i 2

d W =0,

C V = ( )V

ν

1

d Q

d T

C P = ( )P

ν

1

d Q

d T

·对于理想气体等压过程,再由理想气体状态方程有 于是 或

思考:为何 C P > C V ?

3.比热(容)比

对单原子分子, i = 3

, γ = 1.67 对双原子分子, i = 5,

γ = 1.40 对多原子分子, i = 6, γ = 1.33 (以上均为刚性理想气体分子)

三 热力学第一定律 对理想气体等值过程的应用 (一)等体过程(isochoric process) 1.特点: V = const .

d Q = d E +d W = ν ( )R d T + P d V

i

2 d Q = ν ( )R d T + νR d T

i 2 >1

(迈耶公式)

相关文档
最新文档