《平方根》第3课时参考教案

合集下载

七年级数学下册(人教版)6.1.3平方根(第三课时)优秀教学案例

七年级数学下册(人教版)6.1.3平方根(第三课时)优秀教学案例
(二)过程与方法
在过程与方法方面,我制定了以下目标:
1.通过观察、分析和归纳,让学生自主发现平方根的性质,培养学生的观察能力和思维能力。
2.通过示例和练习,让学生掌握平方根的求法,提高学生的解决问题的能力。
3.培养学生与他人合作、交流的习惯,学会倾听他人的观点,培养团队精神。
4.培养学生自我反思的习惯,对学习过程进行总结和反思,提高学生的记忆和理解能力。
(三)小组合作
小组合作是一种有效的教学策略,能够培养学生的合作意识和团队精神。在教学过程中,我会组织学生进行小组讨论和合作,共同解决问题。例如,在讲解平方根的求法时,我会让学生分组进行练习,互相讨论和交流,共同解决问题。通过小组合作,学生能够相互学习,相互帮助,提高他们的合作能力和解决问题的能力。
(四)反思与评价
4.反思与评价:引导学生进行反思和评价,帮助他们巩固知识,提高记忆和理不断提高自己的学习水平。
5.总结归纳:引导学生回顾和总结所学知识,巩固所学知识,提高记忆和理解能力。通过总结归纳,学生能够对平方根的知识有一个全面、准确的理解,更好地应用于实际问题中。
(五)作业小结
在作业小结环节,我会布置一些与本节课内容相关的作业,让学生在课后进行练习和巩固。同时,我还会提醒学生在做作业时要注意的问题,如审题、检查等,帮助学生养成良好的学习习惯。在作业小结环节,学生能够通过自主学习来进一步提高对平方根的理解和应用能力。
五、案例亮点
1.情景创设:通过引入实际问题和生活实例,激发学生的学习兴趣,使学生能够主动参与到课堂学习中。这种教学方法不仅能够提高学生的学习积极性,还能够帮助学生更好地理解和应用平方根的知识。
(二)问题导向
问题导向的教学策略能够激发学生的思考,培养他们的解决问题的能力。在教学过程中,我会提出一系列问题,引导学生思考和探索平方根的性质和求法。例如,在讲解平方根的性质时,我会提问:“平方根的性质有哪些?它们是如何推导出来的?”引导学生观察和分析,激发他们的思考。通过问题导向,学生能够主动参与学习,提高他们的思维能力和解决问题的能力。

2021七年级数学下册6.1平方根第3课时教案新版新人教版

2021七年级数学下册6.1平方根第3课时教案新版新人教版

6.1 平方根(第3课时)教学内容一、情境导入思考:如果一个数的平方等于9,这个数是多少?讨论:这样的数有两个,它们是3和-3. 注意(-3)2=9中括号的作用.二、新课教学1. 平方根的概念如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.±±求一个数的平方根的运算,叫做开平方.例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.2. 观察下图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.根据这个关系说出1,4,9的平方根.学生根据图中的关系回答.例4 求下列各数的平方根.9(1) 100 (2)(3) 0.2516(注意书写格式)3. 按照平方根的概念,请同学们思考并讨论下列问题:(1)正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?(2)一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a 的算术平方根可用表示;正数A的负的平方根可用-a表示.a归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.三、小结1.什么叫做一个数的平方根?2.正数、0、负数的平方根有什么规律?3.怎样求出一个数的平方根?数a 的平方怎样表示?四、作业教材P47、P48习题6.1第4、8、9、10、11、12题.教学反思:励志名言学习不一定成功,不学习一定不能成功。

期末考,加油!生命之中最快乐的是拼搏,而非成功,生命之中最痛苦的是懒散,而非失败。

你要逼自己优秀,然后骄傲的生活,余生还长,何必慌张,以后的你,会为自己所做的努力,而感到庆幸,别在最好的年纪选择了安逸。

期末考,加油!吃别人吃不了的苦,忍别人受不了地气,付出比别人更多的努力,才会享受的比别人更多。

人教版数学七年级下册6.1.3《平方根》教案3

人教版数学七年级下册6.1.3《平方根》教案3

人教版数学七年级下册6.1.3《平方根》教案3一. 教材分析平方根是数学中的一个基本概念,它是指一个数乘以自身得到另一个数时,这个数就是原数的平方根。

平方根的引入可以帮助学生更好地理解有理数、无理数等概念,并且在实际问题中具有广泛的应用。

二. 学情分析学生在学习平方根之前,已经学习了有理数的乘法、平方等知识,对于乘法运算已经有了一定的理解。

但是,平方根的概念较为抽象,需要学生进行一定的思考和理解。

因此,在教学过程中,需要引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够应用平方根的概念解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:平方根的概念和求一个数的平方根的方法。

2.难点:理解平方根的概念,能够应用平方根解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组讨论法等教学方法,引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。

六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过一个实际例子来引入平方根的概念,例如:一个正方形的边长为4,求这个正方形的面积。

引导学生思考,如何求解这个问题。

2.呈现(15分钟)讲解平方根的概念,通过PPT课件或者板书,给出平方根的定义和性质。

同时,给出求一个数的平方根的方法。

让学生理解并掌握平方根的概念。

3.操练(10分钟)通过一些练习题,让学生运用平方根的概念来求解问题。

给予学生解答的指导,并纠正一些常见的错误。

4.巩固(10分钟)让学生通过一些实际问题,应用平方根的概念来解决问题。

让学生感受到平方根在实际问题中的应用价值。

5.拓展(10分钟)引导学生思考平方根的应用场景,例如:在物理学中,平方根的概念可以应用于振动频率的计算;在经济学中,平方根的概念可以应用于需求曲线的计算等。

让学生了解平方根在实际问题中的应用。

人教版七年级数学下册教案 6.1 平方根(3课时)

人教版七年级数学下册教案 6.1 平方根(3课时)

第六章实数教材简析本章的内容包括:平方根、立方根、实数.在学习了有理数的基础上,加强与实际的联系,从现实世界中抽象出一种不同于有理数的数,即无理数,开平方运算与开立方运算也是实际中经常用到的两种运算;注意将新旧知识进行联系与类比,数的范围由有理数扩充到实数,与有理数有关的运算法则、运算律、运算顺序在实数范围内都仍然适用.在中考中,本章的考点有平方根、立方根的定义及运算,实数的运算及大小比较等,考查基本概念及基本计算.教学指导【本章重点】平方根、算术平方根、立方根、无理数、实数的有关概念和运算.【本章难点】对无理数意义的理解、用有理数估计无理数的方法及实数与数轴上点的对应关系.【本章思想方法】1.体会分类的数学思想,如:对实数进行分类.2.掌握分类讨论思想,如:由于一个正数的平方根有两个,且这两个数互为相反数,因此与平方根有关的题目往往需要进行分类讨论.3.掌握转化思想,如:学习了平方根和立方根后,运用转化思想将某些二次方程、三次方程转化为求平方根、立方根的问题求解.4.体会数形结合思想,如:数的范围由有理数扩充到实数,实数与数轴上的点建立了一一对应关系,这样可以通过观察“形”的特点,解答一些关于实数的比较抽象的问题.课时计划6.1平方根3课时6.2立方根1课时6.3实数1课时6.1 平方根第1课时算术平方根教学目标一、基本目标【知识与技能】1.了解算术平方根的概念,会用根号表示一个数的算术平方根.2.根据算术平方根的概念求出非负数的算术平方根.3.了解算术平方根的性质.【过程与方法】加强概念形成过程的教学,提高学生的思维水平,鼓励学生进行探索和交流,培养他们的创新意识和合作精神.【情感态度与价值观】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣.二、重难点目标【教学重点】算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P40的内容,完成下面练习.【3 min反馈】1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.规定:0的算术平方根是0.3.算术平方根具有双重非负性:(1)a≥0;(2)a≥0.4.求下列各数的算术平方根:(1)81;(2)0.25;(3)23.解:(1)9.(2)0.5.(3)23.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】求下列各数的算术平方根:(1)64;(2)0.36;(3)214;(4)412-402.【互动探索】(引发学生思考)如何根据算术平方根的定义求非负数的算术平方根? 【解答】(1)∵82=64,∴64的算术平方根是8. (2)∵0.62=0.36,∴0.36的算术平方根是0.6. (3)∵⎝⎛⎭⎫322=94=214,∴214的算术平方根是32. (4)∵412-402=81,92=81,∴81=9.∵32=9, ∴412-402的算术平方根是3.【互动总结】(学生总结,老师点评)(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.活动2 巩固练习(学生独学) 1.5的算术平方根为( A ) A.5 B .25 C .±25D .±52.一个数的算术平方根是34,这个数是( C )A.32 B .34C.916D .不能确定3.要切一块面积为0.81 m 2的正方形钢板,它的边长是0.9m. 4.4的算术平方根是 2.5.已知3+a 的算术平方根是5,求a 的值.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 活动3 拓展延伸(学生对学)【例2】已知x 、y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.【互动探索】算术平方根和平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得出什么结论?【解答】由题意,得x -1=0,y -2=0, 所以x =1,y =2. 所以x -y =1-2=-1.【互动总结】(学生总结,老师点评)算术平方根、绝对值和平方式都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a性质:双重非负性⎩⎨⎧a ≥0a ≥0练习设计请完成本课时对应练习!第2课时 估算算术平方根教学目标 一、基本目标 【知识与技能】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识. 3.会用计算器求一个数的算术平方根. 【过程与方法】体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数. 【情感态度与价值观】培养学生的探究能力和归纳问题的能力. 二、重难点目标 【教学重点】夹值法及估计一个(无理)数的大小. 【教学难点】夹值法及估计一个(无理)数的大小的思想. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P41~P44的内容,完成下面练习. 【3 min 反馈】1.无限不循环小数是指小数位数无限,且小数部分不循环的小数.实际上,许多正有理数的算术平方根(例如3,5,7)都是无限不循环小数.2.被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律:当被开方数扩大(或缩小)到原来的100倍⎝⎛⎭⎫1100,10000倍⎝⎛⎭⎫110000…时,其算术平方根相应地扩大(或缩小)到原来的10倍⎝⎛⎭⎫110,100倍⎝⎛⎭⎫1100… 3.用计算器求一个正有理数的算术平方根的方法: 大多数计算器都有 键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON 键开机,再按键、“被开方数”、=,即可显示“算术平方根”. 4.与37最接近的整数是( B ) A .5 B .6 C .7D .8环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】通过估算比较下列各组数的大小: (1)5与1.9; (2)6+12与1.5. 【互动探索】(引发学生思考)(1)估算5的大小,或先求1.9的平方,再比较5与1.92的大小;(2)先估算6的大小,再比较6与2的大小,从而进一步比较6+12与1.5的大小.【解答】(1)(方法一)因为5>4,所以5>4,即5>2,所以5>1.9. (方法二)因为1.92=3.61,3.61<5,所以5>1.9.(2)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.【互动总结】(学生总结,老师点评)比较两个数的大小常用方法有:①作差比较法;②作商比较法;③移因数于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.活动2 巩固练习(学生独学)1.估计5+1的值,应在(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.估算19-2的值(B)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.计算:(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).解:(1)1225=35.(2)36.42≈6.035.(3)13≈3.606.活动3拓展延伸(学生对学)【例2】全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?【互动探索】(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.【解答】(1)当t=16时,d=7×16-12=7×2=14.即冰川消失16年后苔藓的直径是14厘米.(2)当d=35时,即7×t-12=35,所以t-12=25,解得t=37.即冰川约是在37年前消失的.【互动总结】(学生总结,老师点评)本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.环节3课堂小结,当堂达标(学生总结,老师点评)1.夹值法及估计一个(无理)数的大小.2.用计算器求一个正数的算术平方根.练习设计请完成本课时对应练习!第3课时平方根教学目标一、基本目标【知识与技能】掌握数的开方的意义、平方根的意义、平方根的表示方法.【过程与方法】通过带领学生探究一个数的平方根,使学生理解数的开方、平方根的概念.【情感态度与价值观】培养学生的探究能力和归纳问题的能力.二、重难点目标【教学重点】平方根的概念.【教学难点】求一个数的平方根.教学过程环节1自学提纲、生成问题【5 min阅读】阅读教材P44~P46的内容,完成下面练习.【3 min反馈】1.一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根或叫二次方根.也就是说,如果x2=a,那么x叫做a的平方根.2.一个正数有两个平方根,且它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.3.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.4.下列说法不正确的是(C)A.-2是2的平方根B.2是2的平方根C .2的平方根是 2D .2的算术平方根是 2 5.求下列各数的平方根: 16,0,49,242.解:16的平方根是±4. 0的平方根是0. 49的平方根是±23. 242的平方根是±24. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学) 【例1】求下列各数的平方根: (1)12425; (2)0.0001; (3)(-4)2; (4)81.【互动探索】(引发学生思考)把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.【解答】(1)∵12425=4925,⎝⎛⎭⎫±752=4925,∴12425的平方根是±75,即±12425=±75. (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01. (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4. (4)∵(±3)2=9=81,∴81的平方根是±3.【互动总结】(学生总结,老师点评)正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【例2】已知一个正数的两个平方根分别是2a +1和a -4,求这个数.【互动探索】(引发学生思考)一个正数的平方根有两个,它们之间有什么关系呢? 【解答】由于一个正数的两个平方根分别是2a +1和a -4,则有2a +1+a -4=0. 即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.【互动总结】(学生总结,老师点评)一个正数的平方根有两个,它们互为相反数,即它们的和为零.活动2 巩固练习(学生独学)1.关于平方根,下列说法正确的是( B ) A .任何一个数有两个平方根,并且它们互为相反数 B .负数没有平方根C .任何一个数只有一个算术平方根D .以上都不对2.如果a 、b 分别是16的两个平方根,那么ab =-16. 3.若25x 2=16,则x 的值为±45.4.求下列各数的平方根:(1)196; (2)10-4; (3)144169; (4)3625.解:(1)±14. (2)±10-2. (3)±1213. (4)±95.活动3 拓展延伸(学生对学) 【例3】求下列各式中x 的值. (1)x 2=361; (2)81x 2-49=0; (3)(3x -1)2=(-5)2.【互动探索】上述方程都可以化成一个数或代数式的平方的形式,结合平方根的定义,你能算出x 的值吗?【解答】(1)∵x 2=361,∴开平方,得x =±361=±19. (2)整理,得x 2=4981,∴开平方,得x =±4981=±79. (3)∵(3x -1)2=(-5)2,∴开平方,得3x -1=±5. 当3x -1=5时,x =2;当3x -1=-5时,x =-43.综上所述,x =2或-43.【互动总结】(学生总结,老师点评)利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.环节3 课堂小结,当堂达标 (学生总结,老师点评)平方根⎩⎪⎨⎪⎧平方根的概念平方根的性质开平方及相关运算练习设计请完成本课时对应练习!。

平方根第三课时教案

平方根第三课时教案

学科:数学授课教师:年级:704班课题 6.1平方根(三)课时数教学目标知识与技能1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;过程与方法培养学生的探究能力和归纳问题的能力.情感态度价值观培养学生的探究能力和归纳问题的能力.教学重点平方根和算术平方根的联系与区别教学难点平方根和算术平方根的联系与区别教学方法自主探究使用媒体多媒体教学过程教学流程教学活动学生活动(一)复习引入(二)导入概念如果一个数的平方等于9,这个数是多少?学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.又如:,则x等于多少呢?给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.求一个数的平方根的运算,叫做开平方.例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.观察:课本中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.思考题是引入学生完成课本的填表练习(三)例题讲解(四)巩固练习(五)平方根的表示方法(六)平方根的性质例1:求下列各数的平方根。

(1) 100 (2)(3)0.25解;(1)∵(±10)2=100∴100的平方根是±100课本练习引入符号:正数a的算术方根可用表示;正数a平的负的平方根可用-表示.思考:表示什么意思,这里的x可取什么值答:a大于或者等于0归纳:正数有两个平方根,它们互为相反数0的平方根是0负数没有平方根规范书写格式(七)应用(八)练习例3:课本第166页的例5,求下列各式的值。

【教学方案】平方根第3课时教学方案

【教学方案】平方根第3课时教学方案

第六章 实数6.1 平方根第3课时《平方根》是人教版教材七年级数学第6章第一节的内容.在此之前,学生们已经掌握了算术平方根,这为过渡到本节内容的学习起到了铺垫的作用.一个正数的平方根有两个,而算术平方根只有一个.平方与开平方互为逆运算,利用这种互逆关系,可以求出一个数的平方根.本课既是前面学习的算术平方根的延续,又是用直接开平方法、公式法解一元二次方程的基础,同时本节课也为更好地理解立方根的概念和求法提供了思路和研究方法.1.了解平方根的概念,会用根号表示正数的平方根.2.了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根.3.通过学习平方根,进一步建立数感和符号感,发展抽象思维.4.通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力.5.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的.6.通过探究讨论活动培养语言归纳和锻炼克服困难的意志,建立自信心,提高学习热情. 【教学重点】 平方根的概念.【教学难点】平方根的概念及对符号“ ”意义的理解.一、知识回顾1.想一想,求出下列各数的算术平方根.(1)9 (2)25 (3)(4)02.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.(1)4 (2)16 (3)(4)0 (5)-0.0016 (6)-36.设计意图:回顾算术平方根的概念,为平方根的概念作铺垫.二、归纳平方根的概念根据上面的研究过程填表:设计意图:让学生在填空的过程中感受一个正数的平方根有两个,进而对平方根有一定的感悟认识,为归纳平方根的概念作铺垫.同学们通过讨论类比归纳出平方根的概念:平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=,那么x叫做的平方根.平方根的表示方法:x= ,其中符号“ ”读作根号,叫做被开方数.设计意图:引导学生用文字语言仿照算术平方根的概念得到平方根的概念,使学生的学习形成正迁移.三、认识开平方运算完成下列题目:(同学可以讨论完成)= ()= ()= 1= ()= ()= 4= ()= ()= 9通过以上填空描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.设计意图:从图表中让学生直观感受开平方运算与平方运算互为逆运算,并依据这种互逆关系,求一个非负数的平方根.四、运用新知例1写出下列各数的平方根:(1)100 (2)(3)0.25 (4)(5)0例2 判断下列说法是否正确:(1)-9的平方根是-3;()(2)49的平方根是7;()(3)的平方根是±2;()(4)-1 是1的平方根;()(5)若= 16,则x = 4 ()(6)7的平方根是±49. ()按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?归纳出:一个是正数有两个平方根,即正数进行开平方运算有两个结果;一个是负数没有平方根,即负数不能进行开平方运算.符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示. 设计意图:通过讨论,使学生对平方根有比较全面的认识,并体会分类思想.例3说出下列各式有没有意义,如有,并求出各式的值.(1)(2)- (3)五、巩固新知选择题:1.在0、-9、2、(-2 )2中,有平方根的是()个A、1个B、2个C、3个D、42.数16的平方根是()A、4B、C、-4D、4或-43.数0.25的平方根是()A、0.5B、0.05C、-0.5D、0.5或-0.54.数的平方根是()A、-6B、6C、6或-6D、无平方根六、课堂小结本节课我们学习了哪些内容,你能回答吗?1.什么叫平方根?如何表示一个数的平方根?2.如何求一个数的平方根?3.平方根有什么性质?4.平方根与算术平方根有什么异同?平方根与算术平方根的相同点与不同点:相同点:(1)存在条件相同:都具有非负性,即0或正数.(2)0的平方根和算术平方根都是0.不同点:(1)定义不同(2)个数不同:平方根有两个,算术平方根只有一个.(3)表示方法不同:正数a的算术平方根表示为,而正数a的平方根表示为.1.通过做习题复习算术平方根,学生易懂易接受.2.平方根概念的引入,利用学生已知算术平方根的概念,通过类比的方法,归纳使学生突破抽象,易接受.。

人教版七年级数学下册教案 6-1 平方根(第3课时)

人教版七年级数学下册教案 6-1 平方根(第3课时)

6.1 平方根第3课时一、教学目标【知识与技能】1.了解平方根的概念,掌握平方根的特征.2.能正确区分平方根与算术平方根的意义.3.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根.【过程与方法】类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.【情感态度与价值观】使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.二、课型新授课三、课时第3课时共3课时四、教学重难点【教学重点】理解平方根概念,会用符号表示一个正数的平方根.【教学难点】理解平方根的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)1.什么叫做算术平方根?如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.100; 1;36121; 0; -0.0025; (-3)2; -25.3.填空:(1)3²=_______, (-3)²=_______; (2)(23)2=________,=(−23)2=________; (3)0.8²=_______,(-0.8)²=_______.反过来,如果已知一个数的平方,怎样求这个数? (二)探索新知1.出示课件5-9,探究平方根的概念及性质教师问:要做一张边长是3分米的方桌面,它的面积是多少?学生答:它的面积是9平方分米.教师问:这个问题实际上就是求:32=? 这是已知底数和指数,求幂的运算.这是什么运算?学生答:这是乘方运算.教师问:反过来,要做一张面积是9平方分米的方桌面,它的边长是多少分米?学生答:它的边长是3分米.教师问:实际上就是要求出一个数,使它的平方等于9, 即:( )2=9,应该填什么呢?学生答:显然,括号里应是±3. 教师问:桌子的边长为何是3分米?学生答:-3不符题意. ∴方桌面的边长应是3分米. 教师问:你还能得到什么问题呢?学生问:如果一个数的平方等于9,这个数是多少? 教师答:由于(±3)2=9 ,所以这个数是3或-3. 教师问:想一想:3和-3有什么特征? 学生答:3和-3互为相反数,只有符号不同. 教师问:3和-3互为相反数,会不会是巧合呢? 学生答:猜想不一定是巧合,需要实例吧! 做一做,想一想:(1) 4的平方等于16,那么16的算术平方根就是_____. (2)25的平方等于425,那么425的算术平方根就是____.(3) 展厅地面为正方形,其面积是49 m 2,则其边长为___m. 教师依次展示学生的答案:学生1答:(1)16的算术平方根就是4. 学生2答:(2)425的算术平方根就是25. 学生3答:(3)其边长为7m.教师总结如下:答案如下:(1)4;(2)25;(3)7.教师问:平方等于16, 425,49的数还有吗?学生答:还有-4,-25,-7.教师问:填一填,想一想: 写出左圈和右圈中的“?”表示的数:学生答:如下图所示:总结点拨:(出示课件10)根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念: 定义:如果有一个数x ,使得x ²=a ,那么我们把x 叫作a 的一个平方根,也叫作二次方根.例如: (±1)2=1,1的平方根为±1.平方根的性质:如果x 是正数a 的一个平方根,那么a 的平方根有且只有两个:x 与-x.即平方根互为相反数.教师问:121的平方根是什么?(出示课件11) 学生答:121的平方根是±11. 教师问:0的平方根是什么? 学生答:0的平方根是0. 教师问:1649的平方根是什么? 学生答:1649的平方根是±47.教师问:-9有没有平方根?为什么?学生答:没有,因为一个数的平方不可能是负数.教师问:通过这些题目的解答,你能发现什么?(出示课件12)学生答:有些数有两个平方根,有些数有一个平方根,有些数没有平方根. 教师问:正数有几个平方根? 学生答:正数有2个平方根. 教师问:0有几个平方根?学生答:0有1个平方根.教师问:有没有一个数的平方是负数? 学生答:没有一个数的平方是负数. 教师问:负数有几个平方根呢? 学生答:负数没有平方根. 教师问:为何负数没有平方根呢?学生答:因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根. 总结点拨:(出示课件13) 平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根. 考点1:求平方根 求下列各数的平方根:(1)100; (2) 916 ; (3)0.25.(出示课件14)师生共同讨论解答如下: 教师依次展示学生解答过程:学生1解:(1) ∵(±10)2=100,∴100的平方根是±10; 学生2解:(2) ∵(±34 )2=916 , ∴916 的平方根是±34; 学生3解:(3) ∵(±0.5)2=0.25,∴0.25的平方根是±0.5. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根. 出示课件15,学生自主练习后口答,教师订正. 2.出示课件16-17,探究平方根的读法和表示 教师问:非负数a 的平方根表示为什么呢? 学生答:非负数a 的平方根表示为±√a . 教师问:±√a 的各部分表示什么意思呢?师生一起解答:一个正数a 的正平方根,用“√a ”表示,(读作“根号a”).又叫a 的算术平方根.a 的负平方根,用“-√a ”表 示a 的算术平方根的相反数,(读作“负根号a”). 合起来,一个正数a 的平方根就用“ ±√a ”表示,(读作“正、负根号a”)如下图所示:出示课件17,学生自主练习后口答,教师订正. 考点2:利用平方根的表示求平方根 分别求下列各数的平方根:(1)36;(2)259 ;(3)1.21 (出示课件18)学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程:学生1解:(1)由于(±6)²=36,因此36的平方根是6与-6. 即±√36=±6.学生2解:(2)由于(±53)²=259,因此259的平方根是53与-53.即±√259=±53.学生3解:(3)由于(±1.1)²=1.21, 因此1.21的平方根是1.1与-1.1. 即±√1.21=±1.1.出示课件20,学生自主练习后口答,教师订正. 3.出示课件21-24,探究平方与开方的关系 教师出示问题:请完成下面的题目:学生答:答案如下图所示:教师问:上面的运算是平方运算,什么是平方运算呢?学生答:已知一个数,求它的平方的运算,叫作平方运算.教师问:反之,已知一个数的平方,求这个数的运算是什么?师生一起解答:求一个数的平方根的运算叫作开平方.教师问:开平方与平方是什么关系?学生答:互为逆运算.教师总结点拨:(出示课件23)已知底数和指数求幂已知幂和指数求底数教生一起完成下面的题目:总结点拨:(出示课件25)平方根与算术平方根的联系与区别:考点3:开平方的有关计算 求下列各式的值:(出示课件26) (1)√36;(2)-√0.81;(3)±√499 学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√36=6; 学生2解:(2)-√0.81=−0.9; 学生3解:(3)±√499=±73.出示课件27,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧. (三)课堂练习(出示课件28-33) 练习课件第28-33页题目,约用时20分钟. (四)课堂小结(出示课件34)(五)课前预习预习下节课(6.2第1课时)的相关内容.知道立方根、三次方根、开立方的定义及利用计算器求立方根的步骤. 七、课后作业教材第46-47页练习第1,2,3,4题. 八、板书设计6.1.平方根第3课时1、平方根定义2、归纳正数有两个平方根,0的平方根是0;负数没有平方根3、考点讲解考点1 考点2 考点3九、教学反思成功之处:本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境—合作探究—分析计算—总结升华”为主线,使学生亲身体验根据平方根计算和算术平方根计算的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.不足之处:在教学过程中,对于平方根的作用、算术平方根深入讨论,有些学生只是知道要取算术平方根,对于其中的原因根本没有明白,部分学生对于平方根的理解还不够深刻.补救措施:适当增加学生熟悉的实例,通过对比,使学生明白为什么要取算术平方根,并能更进一步理解平方根的含义,掌握根据平方根和算术平方根的异同.。

华师大版数学八年级上册11.1《平方根和立方根》(第3课时)教学设计

华师大版数学八年级上册11.1《平方根和立方根》(第3课时)教学设计

华师大版数学八年级上册11.1《平方根和立方根》(第3课时)教学设计一. 教材分析《平方根和立方根》是华师大版数学八年级上册第11.1节的内容,本节内容是在学生已经掌握了有理数、实数等知识的基础上,进一步引导学生学习平方根和立方根的概念,理解平方根和立方根的性质,以及掌握求平方根和立方根的方法。

教材通过例题和练习,使学生能够熟练运用平方根和立方根解决实际问题。

二. 学情分析八年级的学生已经具备了一定的实数知识,对于新知识的学习有一定的接受能力。

但学生在学习过程中,可能对平方根和立方根的概念和性质理解不够深入,需要在教学中加以引导和巩固。

此外,学生对于实际问题的解决能力有待提高,需要通过实例讲解和练习,使学生能够将理论知识运用到实际问题中。

三. 教学目标1.知识与技能:使学生掌握平方根和立方根的概念,理解平方根和立方根的性质,能够熟练运用平方根和立方根解决实际问题。

2.过程与方法:通过实例讲解和练习,培养学生运用平方根和立方根解决实际问题的能力。

3.情感态度与价值观:激发学生学习平方根和立方根的兴趣,培养学生的耐心和毅力,提高学生解决问题的自信心。

四. 教学重难点1.重点:平方根和立方根的概念,平方根和立方根的性质。

2.难点:平方根和立方根在实际问题中的应用。

五. 教学方法1.情境教学法:通过实例导入,激发学生的学习兴趣,使学生能够直观地理解平方根和立方根的概念。

2.启发式教学法:在讲解过程中,引导学生思考,激发学生的思维能力,帮助学生理解平方根和立方根的性质。

3.练习法:通过布置课堂练习和课后作业,使学生巩固所学知识,提高实际问题解决能力。

六. 教学准备1.教学PPT:制作教学PPT,包括平方根和立方根的概念、性质、实例讲解和练习题。

2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,如计算墙壁的高度、计算物体的体积等,引导学生思考如何利用平方根和立方根解决这些问题。

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册 教案6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册教案6.1 第3课时《算术平方根和平方根》一. 教材分析《算术平方根和平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要介绍了平方根和算术平方根的概念,以及它们的性质和运算。

通过学习本节课,学生能够理解平方根和算术平方根的概念,掌握它们的性质和运算,并为后续学习二次根式打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方,对数的认识,以及一些基本的代数运算。

但是,对于平方根和算术平方根的概念和性质可能还比较陌生。

因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握这些概念和性质。

三. 教学目标1.理解平方根和算术平方根的概念。

2.掌握平方根和算术平方根的性质和运算。

3.能够运用平方根和算术平方根解决实际问题。

四. 教学重难点1.平方根和算术平方根的概念。

2.平方根和算术平方根的性质和运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体例子和实际操作,引导学生主动探索、积极思考,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.教学PPT。

2.练习题。

3.教学道具(如平方根和算术平方根的模型)。

七. 教学过程1.导入(5分钟)利用生活实例或数学故事,引出平方根和算术平方根的概念。

例如,讲解勾股定理时,提到直角三角形的两条直角边的平方和等于斜边的平方,从而引出平方根和算术平方根的概念。

2.呈现(10分钟)通过PPT展示平方根和算术平方根的定义,以及它们的性质和运算。

让学生观察和思考,引导他们发现其中的规律。

3.操练(10分钟)让学生分组进行讨论,运用平方根和算术平方根的性质和运算,解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目难度可以适当调整,以保证大部分学生能够成功。

教师选取部分学生的作业进行点评,指出其中的错误和不足。

5.拓展(10分钟)引导学生运用平方根和算术平方根解决更复杂的问题,如二次方程的求解、实际生活中的测量等。

华师大版数学八年级上册11.1《平方根和立方根》(第3课时)说课稿

华师大版数学八年级上册11.1《平方根和立方根》(第3课时)说课稿

华师大版数学八年级上册11.1《平方根和立方根》(第3课时)说课稿一. 教材分析本次说课的内容是华师大版数学八年级上册第11.1节《平方根和立方根》的第三课时。

这部分内容是在学生已经掌握了有理数的乘方、平方根和立方根的定义以及性质的基础上进行学习的。

本节课的主要内容是平方根和立方根的运算以及它们在实际问题中的应用。

教材通过例题和练习题的形式,使学生能够进一步理解和掌握平方根和立方根的运算方法,提高解决问题的能力。

二. 学情分析根据我对学生的了解,他们在学习本节课的内容时,已经具备了以下基础:一是掌握了有理数的乘方,能够理解平方根和立方根的定义;二是具备一定的数学运算能力,能够进行简单的数学计算。

然而,学生在学习过程中,对于平方根和立方根的运算规则,可能还存在一定的困惑,需要通过本节课的学习,进一步巩固和提高。

三. 说教学目标根据教材内容和学生的实际情况,我设定了以下教学目标:一是让学生理解和掌握平方根和立方根的运算方法;二是培养学生运用平方根和立方根解决实际问题的能力;三是通过教学,提高学生的数学运算能力和逻辑思维能力。

四. 说教学重难点本节课的教学重难点是平方根和立方根的运算方法以及它们在实际问题中的应用。

学生在学习过程中,可能会对平方根和立方根的运算规则产生困惑,需要通过教师的引导和讲解,帮助学生理解和掌握。

五. 说教学方法与手段为了达到本节课的教学目标,我采用了以下教学方法与手段:一是采用讲练结合的方式,通过例题和练习题,使学生理解和掌握平方根和立方根的运算方法;二是运用多媒体教学手段,通过动画和图片,直观地展示平方根和立方根的运算过程,提高学生的学习兴趣;三是学生进行小组讨论,培养学生的合作意识和团队精神。

六. 说教学过程本节课的教学过程分为以下几个环节:一是导入新课,通过复习有理数的乘方,引出平方根和立方根的概念;二是讲解平方根和立方根的运算方法,通过例题和练习题,使学生理解和掌握;三是应用练习,让学生运用平方根和立方根解决实际问题;四是课堂小结,总结本节课的学习内容;五是布置作业,巩固所学知识。

6.1平方根(课时3)课件(新人教版七年级数学下)

6.1平方根(课时3)课件(新人教版七年级数学下)
6.1 平方根(第三课时)学案
【学习目标】
1.掌握平方根的概念,明确平方根与算术平方根的联系与区别. 能用符号正 确地表示一个数的平方根 2.理解开平方与平方间的互逆关系.根据这种互逆关系求一个数的平方根.
.
【重点难点】
重点:平方根的概念; 求一个数的平方根. 难点:平方根的概念; 求一个数的平方根.
9
数学活动二:数学活动二:求一个数的平方根
把求一个数a的平方根的运算,叫做开平方,而平方运算与开平方运算互 为逆运算.根据这种运算关系,可以求一个数的平方根. 例如当 2 时,x=±1; 当 2 时,则x=±4,
x = 16 x =1 2 2 当x = 36 时,x=±6; 当 x = 49 时,x=±7; 2 4 4 2 当x = ,则 ± 为 的平方根,它们的对应关系如图所示. 25 5 25
【当堂达标】
1. 169 的平方根是多少?
2.
16 的值为多少?16的平方根为多少? 16 的平方根呢?
3.若 35 的整数部分为a,小数部分为b,求a、b的值.
4. 有一长方形花坛,长是宽的4倍,其面积为 25m2 ,求长和宽
平方 开平方
数学活动三:应用
1 (2) (3)0 36
2. 121的平方根是多少?
(4)0.01
3.
49
的算术平方根是多少?
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识?还 有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
创设情景
1.如果一个数的平方等于9,则这个数是________;
2.填表
【课中探究】
数学活动一:阅读教材,理解平方根的概念:
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根, 即若 x 2 = a ,则x为a的平方根,记为 x = 为±3 是9的平方根,表示为 ? 3

《平方根》第3课时参考PPT课件

《平方根》第3课时参考PPT课件
6.1 3)
思考
如果一个正数的平方等于9,
这个正数是多少? 3
3叫做9的算术平方根或9的算术平方根是3
如果一个数的平方等于 9,这 个数是多少?
3 或 -3
x2
1
16 36
49 4
25
x
+1 -1
+4 -4
+6 -6
+7
-7
2 +5
2 -
5
一般的,如果一个数的平方等于 a ,那
么这个数叫做 a 的 平方根 或 二次方根。
即如果 x2 = a,那么x 叫做 a 的平方根。
如:3和-3是9的平方根,简记为±3 是9
的平方根。
求一个数a的平方根的运算,叫做开平方。
平方
开平方
+1
1
-1
+1
1
-1
+2
4
-2
+2
4
-2
+3
9
-3
9
+3
-3ห้องสมุดไป่ตู้
开平方与平方互为逆运算。
练习
1.填表
x
8
-8
3 5
3 5
11 -11 0.6 -0.6
解: (1) 因为122 = 144,所以 144 = 12
(2) 因为0.92 知=0道.81一,所个以数的算0.术81 0.9
(3)
因为平出什方它么1141根的?2 ,负119就的261 平可,所方以以根立。即 为写119261
11 14
2.计算下列各式的值: 13
-0.07
8 9
练习
3.平方根概念的起源与几何中的正 方形有关。如果一个正方形的面 积为A,那么这个正方形的边长是 多少?

八年级数学上册 13.1《平方根》(第3课时)教案 新人教版

八年级数学上册 13.1《平方根》(第3课时)教案 新人教版

13.1平方根(第3课时)一、教学目标1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根.2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.二、重点和难点1.重点:平方根的概念.2.难点:归纳有关平方根的结论.三、合作探究(一)基本训练,巩固旧知1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长==;(2)面积为15的正方形,边长=≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即 2.89=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即3≈ .(二)什么是平方根呢?大家先来思考这么一个问题.(三)如果一个正数的平方等于9,这个正数是多少?如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根(板书:3和-3是9的平方根).我们再来看几个例子.x2 16 36 49 1 4 25x同学们大概已经明白了平方根的意思.平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?平方根:如果一个数的平方等于a,那么这个数叫做a的平方根.大家把平方根概念默读两遍.(生默读)平方根概念与算术平方根概念只有一点点区别,哪一点点区别?四、精讲精练例1、求下面各数的平方根:(1)100; (2)0.25; (3)0; (4)-4;(1)因为(±10)2=100),所以100的平方根是+10和-100的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4.这说明什么?从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0有几个平方根?负数有几个平方根?小组讨论:正数有平方根(板书:正数有两个平方根).平方根有什么关系?0的平方根有个,平方根是 .负数平方根大家把平方根的这三条结论读两遍.精练1.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;2.填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35,的算术平方根是35.3.判断题:对的画“√”,错的画“×”.(1)0的平方根是0 ()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()五、课堂小结:如果一个数的平方等于a,那么这个数叫做a的平方根.六、作业P75 3 p76 8。

平方根教案 (3)

平方根教案 (3)

平方根教案简介平方根是数学中常见的概念,它可以帮助我们求解一个数的平方根。

在本教案中,我们将学习什么是平方根,如何计算平方根,以及一些平方根的性质和应用。

目标通过学习本课程,学生将能够:•理解平方根的概念和计算方法。

•运用平方根解决实际问题。

•掌握平方根的性质和应用。

课程安排本课程共分为以下几个部分:1.什么是平方根2.计算平方根的方法3.平方根的性质和应用4.练习题和活动1. 什么是平方根平方根指的是一个数的平方等于给定数的正值根。

设a为一个非负实数,如果存在一个非负实数x,使得x^2 = a,那么x被称为a的平方根。

我们可以用数学公式表示平方根:√a = x其中,√表示平方根运算,a是被开方的数,x是平方根。

例如,2的平方根是1.4142(近似值),我们可以表示为√2 = 1.4142。

2. 计算平方根的方法计算平方根有多种方法,下面介绍两种常用的方法:2.1 试错法试错法是一种简单但不够精确的计算平方根的方法。

步骤如下:1.选择一个数作为初始猜测值。

2.计算猜测值的平方。

3.如果猜测值的平方等于给定数,则猜测值就是平方根。

4.如果猜测值的平方大于给定数,说明猜测值过大,选择一个较小的数作为新的猜测值。

5.如果猜测值的平方小于给定数,说明猜测值过小,选择一个较大的数作为新的猜测值。

6.重复步骤2至5,直到找到足够接近给定数的猜测值。

2.2 牛顿法牛顿法是一种更精确的计算平方根的方法,它利用函数的切线来逼近平方根。

步骤如下:1.选择一个数作为初始猜测值。

2.使用猜测值近似计算平方根的值。

3.计算猜测值的平方与给定数之间的差异。

4.使用差异与猜测值的导数(切线斜率)来调整猜测值。

5.重复步骤2至4,直到找到足够接近给定数的猜测值。

3. 平方根的性质和应用平方根具有一些有趣的性质和广泛的应用。

在这一部分,我们将介绍一些常见的性质和应用。

3.1 平方根的性质•平方根是非负数,即对于任意非负实数a,有√a ≥ 0。

2024秋八年级数学上册第4章实数4.1平方根3平方根教案(新版)苏科版

2024秋八年级数学上册第4章实数4.1平方根3平方根教案(新版)苏科版
⑤ 课堂展示与点评:学生展示讨论成果,教师进行点评和总结,加深学生对平方根的认识和理解。
⑥ 课堂小结:回顾本节课的主要内容,强调平方根的重要性和意义,布置课后作业巩固学习效果。
教学评价与反馈
1. 课堂表现:
- 学生参与度:大部分学生能够积极参与课堂讨论,提出问题和建议。
- 学生理解度:学生对于平方根的定义和性质有较好的理解,能够运用到实际问题中。
2. 课程平台:学校提供的教学管理系统,如学习通、智慧课堂等。
3. 信息化资源:教学PPT、教学视频、在线练习平台、数学软件工具。
4. 教学手段:小组讨论、合作学习、问题引导、实例分析、练习巩固。
教学过程设计
1. 导入新课(5分钟)
目标:引起学生对平方根的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是平方根吗?它与我们的生活有什么关系?”
根据学生的学习者分析,教师可以针对学生的兴趣和能力进行教学设计,提供清晰的实例和练习,帮助学生克服困难和挑战,提高学生对平方根概念和性质的理解和应用能力。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 软硬件资源:多媒体投影仪、白板、黑板、粉笔、教学卡片、计算器。
过程:
简要回顾本节课的学习内容,包括平方根的基本概念、求法、性质及案例分析等。
强调平方根在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用平方根。
布置课后作业:让学生撰写一篇关于平方根的应用案例报告,以巩固学习效果。
知识点梳理
1. 平方根的定义:一个正数的平方根是另一个数,它的平方等于这个正数。同样,一个负数的平方根也是一个数,它的平方等于这个负数。0的平方根是0。

人教版数学七年级下册 6.1.3平方根教案(表格式)

人教版数学七年级下册 6.1.3平方根教案(表格式)

第3课时平方根9,那么-3叫做9的什么根呢?探究点1平方根的概念和计算(1)填表:(2)如果我们把上述填表的x的值分别叫做1,16,36,49,4的25平方根,你能类比算术平方根的概念,给出平方根的概念吗?答:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.例如,±3是9的平方根.(3)我们把求一个数a的平方根的运算,叫做开平方.观察下图,你发现了什么?答:平方与开平方互为逆运算.探究点3平方根与算术平方根的关系问题1我们已经学过一个正数的算术平方根的表示方法,你能表示一个正数的平方根吗?答:我们知道,正数a 的算术平方根可以用a 表示;正数a 的负的平方根,可以用符号“-√a ”表示,故正数a 的平方根可以用符号“±√a ”表示,读作“正、负根号a ”.例如,±√9=±3,±√25=±5.问题2符号√a 只有当a ≥0时有意义,a <0时无意义,你知道为什么吗?答:因为在我们所认识的数中任何一个数的平方都不会是负数,所以负数不能开平方,即当a <0时,a 无意义.问题3说一说算术平方根与平方根之间的区别与联系.例1(教材P46例5)求下列各式的值: (1)√36;(2)-√0.81;(3) ±√499.解:(1)因为62=36,所以√36=6; (2)因为0.92=0.81,所以-√0.81=-0.9; (3)因为(73)2=499,所以±√499= ±73.问题4知道一个数的算术平方根,就可以立即写出它的负的平方根.为什么?答:因为一个数的负的平方根等于它的算术平方根的相反数. 【对应训练】1.下列计算错误的是( A )A.√4 = ±2B.√(−3)2 = 3C.±√16 = ±4D.-√25 = -5 2~3.教材P47练习第3~4题.例2求下列各式中x 的值:已知一个数的平方根,求原数的方法:需要根据题目的叙述进行判断,当题目中有类似“A 和B 是一个正数的两个平方根”或“一个正数的平方根分别是A 和B ”这样的描述时,则根据平方根的性质知A +B =0,直接列出方程求未知数,再进一步求得原数;当题目中有类似“A 和B 是一个正数的平方根”这样的描述时,则除了A +B =0,还需考虑A =B 的情况,需分别列方程求出未知数.例1若2m -4与3m -1是一个正数的两个平方根,则这个正数为( B ) A.1 B.4 C.±1 D.±4解析:由题意可知2m -4+3m -1=0,所以m =1,所以2m -4=-2,所以这个正数为4.故选B.例2已知a-1和5-2a 都是m 的平方根,求a 与m 的值. 解:根据题意,分以下两种情况:①当a -1与5-2a 是同一个平方根时,a -1=5-2a ,解得a =2.此时m =(2-1)2=1; ②当a -1与5-2a 是两个平方根时,a -1+5-2a =0,解得a =4.此时m =(4-1)2=9. 综上所述,a =2,m =1或a =4,m =9.例1已知5x -1的平方根是±3,4x +2y +1的平方根是±1,求4x -2y 的算术平方根. 解:因为5x -1的平方根是±3,4x +2y +1的平方根是±1, 所以5x -1=9,4x +2y +1=1,所以x =2,y =-4. 所以4x -2y =16,所以4x -2y 的算术平方根为4.例2已知a ,b ,c 满足b =-√(a −3)2+4,c 的平方根等于它本身.求a +√b −c 的平方根. 解:因为-(a -3)2≥0,所以a =3.【作业布置】1.教材P47习题6.1第3,4,7,8,9,10题.2.相应课时训练.教学步骤师生活动 板书设计6.1平方根 第3课时平方根1.平方根的概念.2.求一个正数的平方根的运算——开平方.3.平方根的性质及其应用:正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.平方根与算术平方根的区别与联系.教学反思本节课借助算术平方根的知识得出平方根的知识,渗透“类比思想”,通过大量实例让学生体会平方根的概念及其性质,渗透“具体—抽象—具体”的研究思路.结合学过的运算理解“开平方”的新运算,使学生的学习形成迁移.借助例题和课堂练习巩固新知,提高学生的学习能力.把a = 3代入b = √−(a−3)2+ 4,得b = 4.因为c的平方根等于它本身,所以c = 0.所以a + √b−c=3+√4−0=5,所以a+√b−c的平方根为±√5.增乘开方法增乘开方法是由我国古代数学家贾宪在十一世纪中叶所提出来的.那么古人又是如何求一个数的算术平方根的呢?下面以求55 225的算术平方根为例进行说明.1.由于55 225是一个五位数,因此我们估算商(即算术平方根)应当是一个三位数,并且由于万位上的数是5,所以估计商的百位数是2.2.令借为1,法的值则为借乘商(1×2),如图①.3.更新实,使之为原实减去商乘法(5-2×2=1),则新实为1,如图②.4.更新法为商乘借加到旧法上(2+2×1=4),如图③.5.将法后移一位,借后移两位,如图④.然后重复上面1~5的步骤:1.估算商的十位为3(3×4000=12000<15225).2.更新法为原法加上十位商乘借(4000+3×100=4300),如图⑤.3.更新实,使之为原实减去十位商乘法(15225-3×4300=2325),则新实为2325,如图⑥.4.更新法为十位商乘借加到旧法上(43+3×1=46).5.将法后移一位,借后移两位,如图⑦.再重复上面的1~3的步骤,得到图⑧,此时更新后的实为0(2325-465×5=0).由此我们得出,55 225的算术平方根为235.。

部编人教版七年级数学下册《平方根(3)》教案

部编人教版七年级数学下册《平方根(3)》教案

6.1平方根第三课时一、教学目标1.核心素养通过学习平方根,初步形成基本的数学抽象和运算能力.2.学习目标(1)6.1.3.1了解平方根的概念,以及运用开方与平方之间的互逆关系求平方根.(2)6.1.3.2掌握平方根的性质,明确平方根和算术平方根之间的联系和区别.3.学习重点平方根的概念和以及运用开平方的互逆关系求平方根.4.学习难点平方根和算术平方根的联系与区别.二、教学设计(一)课前设计1.预习任务阅读教材6444P P -任务1思考:什么叫一个数的平方根?如何用符号表示? 什么叫开平方?任务2平方根的性质是什么?平方根和算术平方根之间有什么联系和区别?预习自测(1)一般的,如果一个数x 的_____等于a ,即a x =2,那么这个数x 就叫做a 的_______或________.(知识点:平方根的定义) 【解析】考查平方根定义:平方;平方根;a ±(2)求一个数a 的平方根的运算,叫做__ _;平方与开平方互为 ____运算.(知识点:平方根的定义)【解析】考查定义,开平方;逆(3)正数a 的算术平方根用“_______”表示,正数a 的负的平方根用“______”表示;正数的平方根有_____个,它们互为______;0的平方根是_____;负数____平方根;非负数的平方根记为______,读作“_______”.(知识点:平方根的定义) 【解析】。

;正负根号;没有;;相反数;;;a a 02a -a ± (二)课堂设计1.知识回顾(1)算术平方根:一般地,如果一个正数x 的平方为a ,即2x a =,那么正数x 叫做a 的算术平方根.(2)正数a 的算术平方根记为a ”或“二次根号a ”,其中a 叫做被开方数,记作a x =.规定:0的算术平方根是0,记作错误!未找到引用源。

.(3)算术平方根的双重非负性:只有非负数才有算术平方根,算术平方根是非负数.2.问题探究探究点一:具体到抽象,认识平方根●活动一 具体到抽象,探得概念平方根的概念:一般的,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根,表示为:a x ±=(0≥a ).如:932=,()93-2=,我们就说3和-3都是9的平方根,也可以说9的平方根是3±. 422=,()422=-,±2叫做4的平方根.100102=,()100102=-,±10叫做100的平方根.169132=,()169132=-,±13叫做169的平方根.●活动二 互逆运算,揭示本质求一个数的平方根的运算,叫做开平方. 开平方和平方是一种互逆运算.a x =2 −−−→←互逆运算 a x ±=↓ ↓平方运算 开平方运算例题:求下列各数的平方根.(1)16 (2)169 (3)0.25 (知识点:平方根的定义)解析:(1)∵()1642=±, (2)∵169432=⎪⎭⎫ ⎝⎛±, ∴16的平方根是±4 , ∴169的平方根是±43, 即±16= ±4. 即43169±=±. (3)∵()0.250.52=±,∴0.25的平方根是±0.5 ,即±0.25= ±0.5.方法总结:根据开平方和平方互为逆运算的关系,可以求一个非负数的平方根.探究点二 对比学习,辨识平方根●活动一 总结性质,辨识两根通过我们前面的学习,我们可以作如下总结:正数的平方根:一个正数a 有两个平方根,它们互为相反数,其中正的平方根就是这个数的算术平方根.0的平方根:0只有一个平方根,它是0本身.负数没有平方根. 所以有:正数a 的算术平方根用“a ”表示,正数a 的负的平方根用“a -”表示; 正数的平方根记为a ±,读作“正、负根号a ”.例题:求下列各式的值.(1)36 (2)-0.81 (3)949±解析:(1)因为3662=,所以636=. (2)因为0.810.92=,所以9.00.81-=-.(3)因为949372=⎪⎭⎫ ⎝⎛,所以37949±=±. 方法总结:在计算时一定要认清是求平方根还是算术平方根.综上,我们归纳一下平方根和算术平方根的联系与区别:联系:具有包含关系:平方根包含算术平方根,而算术平方根是平方根的一种.存在条件相同:平方根和算术平方根都是只有非负数才有.0的平方根和算术平方根都是0. 区别:定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根” ; “非负数a 的非负平方根叫a 的算术平方根”.个数不同:一个正数有2个平方根,而一个正数的算术平方根只有1个.表示法不同:正数a 的平方根表示为a ±,正数的算术平方根表示为a . 所以如果已知一个数的其中一个平方根,那它的另一个平方根也能被很快写出.3.课堂总结【知识梳理】(1)平方根的概念:一般的,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根,表示为:a x ±=.(2)开平方运算和平方运算互为逆运算,常用开平方来求一个数的平方根.(3)平方根的性质:一个正数a 有两个平方根,它们互为相反数,其中正的平方根就是这个数的算术平方根. 0的平方根:0只有一个平方根,它是0本身.负数没有平方根.如果给出其中的一个平方根,另一个平方根即可知.(4)平方根的表示方法:a ±(0≥a )(不能丢符号)【重难点突破】(1)从具体到抽象,得出平方根的概念,然后运用开平方求一个数的平方根,在这个过程中,充分体会开平方和平方的互逆关系,加深对概念的理解.(2)充分解析平方根概念,得出其性质;后将平方根与算术平方根进行比较,找到区别与联系,加深对两根的理解.4.随堂检测(1)9的平方根是( )A .3 B.-3 C.±3 D. ±3 (知识点:平方根的定义) 【解析】:39±=±,所以选C(2)下列说法中不正确的是( ) A.5-是5的平方根 B. 5 是5的平方根C.5的平方根是5.D.5的算术平方根是5. (知识点:平方根的定义,算术平方根的定义)【解析】:C 故选的算术平方根是的平方根,都是和,所以的平方根是.5555-555±(3)若一个数的平方根等于它的算术平方根,则这个数是______.(知识点:平方根的定义,算术平方根的定义)【解析】:0;0的平方根等于它的算术平方根.(4)16的平方根是_________.(知识点:平方根的定义,算术平方根的定义) 【解析】:216±=±(5)若一个正数的平方根是12+x 和4-x ,则x 是______.(知识点:平方根的定义)【解析:1x x -41x 2=∴=+∴相反数正数的两个平方根互为。

6.1平方根第3课时教学设计

6.1平方根第3课时教学设计

6.1平方根教学设计(第3课时)【教学目标】一、知识与技能:掌握平方根的概念,明确平方根和算术平方根之间的联系和区别。

二、过程与方法:能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系。

三、情感态度与价值观:培养学生的探究能力和归纳问题的能力。

【教学重点】平方根和算术平方根的联系与区别。

【教学难点】平方根的概念和求数的平方根。

【教学过程】〈一〉复习回顾,巩固旧知。

1 .复习算术平方根的概念。

如果一个正数x的平方等于a,即x2=a ,那么这个正数x叫做a的算术平方根。

a算术平方根表示为:a(a > 0)o强调:0的算术平方根是0o负数没有算术平方根。

2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根。

100; 1 ; 0; —25。

〈二〉创设情景,引入新课。

请同学们思考这么一个问题:如果一个数的平方等于9,这个数是多少?从前面我们知道,这个数可以是3。

又由于(—3)2= 9,这个数也可以是-3。

所以如果一个数的平方等于9,那么这个数是3或-3 o我们再来看几个例子:(教师出示下表)平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?〈三〉新课传授。

【引导、归纳】指导学生归纳,说出概念。

师生共同总结完善,归纳如下:平方根:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

例如3和-3是9的平方根,简记为土3是9的平方根。

让学生观察课本第45页中的图6.1-2。

图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质。

〈四〉讲解例题,练习巩固。

例4:求下面各数的平方根:9(1)100 (2)(3) 0.2516解:⑴因为(土10)2= 100,所以100的平方根是土10。

3 9 9 3(2)因为(土—)2= ,所以和的平方根是土—。

4 16 16 4(3)因为(土0.5 )2= 0.25 , 所以0.25的平方根是土0.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1平方根第3课时
一、教学目标
1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)
的平方根.
2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
二、重点和难点
1.重点:平方根的概念.
2.难点:归纳有关平方根的结论.
三、合作探究
(一)基本训练,巩固旧知
1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作.
2.填空:
(1)面积为16=;
(2)面积为15的正方形,≈(利用计算器求值,精确到0.01).
3.填空:
(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;
(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈. (二)什么是平方根呢?大家先来思考这么一个问题.
(三)如果一个正数的平方等于9,这个正数是多少?
如果一个数的平方等于9,这个数是多少?
和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根(板书:3和-3是9的平方根).
我们再来看几个例子.
(师出示下表)
同学们大概已经明白了平方根的意思.平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?
平方根:如果一个数的平方等于a,那么这个数叫做a的平方根.
大家把平方根概念默读两遍.(学生默读)
平方根概念与算术平方根概念只有一点点区别,哪一点点区别?
四、精讲精练
例1、求下面各数的平方根:
(1)100;(2)0.25;(3)0;(4)-4;
(1)因为(±10)2=100,所以100的平方根是+10和-10
(2)(±0.5)2=0.25,所以0.25的平方根是+0.5和-0.5
(3)因为0的平方是0,所以0的平方根是0
0的平方是0正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4.这说明什么?
从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0有几个平方根?负数有几个平方根?
小组讨论:
正数有平方根(板书:正数有两个平方根).
平方根有什么关系?
0的平方根有个,平方根是.负数平方根
大家把平方根的这三条结论读两遍.
精练
1.填空:
(1)因为()2=49,所以49的平方根是;
(2)因为()2=0,所以0的平方根是;
(3)因为()2=1.96,所以1.96的平方根是;
2.填空:
(1)121的平方根是,121的算术平方根是;
(2)0.36的平方根是,0.36的算术平方根是;
(3) 的平方根是8和-8,的算术平方根是8;
(4) 的平方根是3
5

3
5
-,的算术平方根是
3
5
.
3.判断题:对的画“√”,错的画“×”.
(1)0的平方根是0 ()
(2)-25的平方根是-5;()
(3)-5的平方是25;()
(4)5是25的一个平方根;()
(5)25的平方根是5;()
(6)25的算术平方根是5;()
(7) 25的平方根是±5;()
(8)2
(5)
-的算术平方根是-5. ()
五、课堂小结:如果一个数的平方等于a,那么这个数叫做a的平方根.
六、作业P47 3 P48 8。

相关文档
最新文档