第2章第8讲 函数与方程

合集下载

【高考数学】一轮总复习:第二章 第8讲 对数函数

【高考数学】一轮总复习:第二章 第8讲 对数函数
(1)若 f(1)=1,求 f(x)的单调区间; (2)若 f(x)的最小值为 0,求 a 的值.
【解】 (1)因为 f(1)=1,所以 log4(a+5)=1,因此 a+5=4,即 a=-1, 所以 f(x)=log4(-x2+2x+3). 由-x2+2x+3>0 得-1<x<3,即函数 f(x)的定义域为(-1,3). 令 g(x)=-x2+2x+3. 则 g(x)在(-1,1)上单调递增,在[1,3)上单调递减. 又 y=log4x 在(0,+∞)上单调递增, 所以 f(x)的单调递增区间是(-1,1),单调递减区间是[1,3).
A.a<b<c
B.b<a<c
√C.c<b<a
D.c<a<b
2
2
【解析】 (1)因为 23<32,所以 2<33,所以 log32<log333=23,所以 a<c.因为
2
2
33>52,所以 3>53,所以 log53>log553=23,所以 b>c,所以 a<c<b,故选 A.
(2)因为 f(x)为奇函数,所以 f(-x)=-f(x),
一、思考辨析
判断正误(正确的打“√”,错误的打“×”) (1)函数 y=log2x 及 y=log13x 都是对数函数.( × )
3
(2)对数函数 y=logax(a>0 且 a≠1)在(0,+∞)上是增函数.( × ) (3)函数 y=ln 11+-xx与 y=ln(1+x)-ln(1-x)的定义域相同.( √ )
(2)构造函数 f(x)=4x 和 g(x)=logax, 当 a>1 时不满足条件,

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第8节函数与方程课件新人教A版

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第8节函数与方程课件新人教A版

D.[1,2)
解析 依题意直线y=a与y=f(x)的图象有两个交点. 作出y=a,y=f(x)的图象,如图所示. 又当 x≤1 时,f(x)=12|x|∈(0,1]; 当x>1时,f(x)=-x2+4x-2=-(x-2)2+2, ∴当x=2时,f(x)有最大值f(2)=2. 结合图象,当 a∈0,12∪[1,2)时,两图象有 2 个交点. 此时,方程a=f(x)有两个不同实根. 答案 B
【训练3】 (1)(角度1)(202X·全国Ⅲ卷)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零
点,则a=( )
A.-12
1 B.3
1
C.2
D.1
(2)(角度2)若函数y=x+log2(a-2x)+2在R上有零点,则实数a的最小值为________.
解析 (1)f(x)=(x-1)2-1+a(ex-1+e1-x),则f(2-x)=(2-x-1)2-1+a[e2-x-1+ e1-(2-x)]=(1-x)2-1+a(ex-1+e1-x)=f(x),即f(x)的图象关于直线x=1对称. 若 f(x)有唯一的零点,则只有 f(1)=0,∴a=12. 或:作出y=a(ex-1+e-x+1)与y=-x2+2x的图象.
x0 所在的区间是________.
解析 (1)由函数 f(x)=x-1 a为奇函数,可得 a=0, 则 g(x)=ln x-2f(x)=ln x-2x. 又 g(2)=ln 2-1<0,g(3)=ln 3-23>0,
所以g(2)·g(3)<0. 故函数g(x)的零点所在区间为(2,3).
(2)设 f(x)=x3-12x-2,则 x0 是函数 f(x)的零点,在同一坐 标系下画出函数 y=x3 与 y=12x-2的图象如图所示. 因为 f(1)=1-12-1=-1<0,f(2)=8-120=7>0, 所以f(1)·f(2)<0,所以x0∈(1,2). 答案 (1)C (2)(1,2)

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。

第8讲 必修1第二章 函数的图像(教师版)

第8讲 必修1第二章 函数的图像(教师版)

教学课题 第8讲人教版必修1第二章 函数的图像教学目标 知识目标:1、掌握描点作图;2、理解图像的变换规律;能力目标:通过函数的图像培养学生数形结合的能力,锻炼学生数学理性思维。

教学重点与难点重点:图像的平移和变换难点:对图像的平移和变换的基本技巧教学过程 课堂导学 知识点梳理1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y=f (x ) ――――――――――――――――――――→a>1,横坐标伸长为原来的a 倍,纵坐标不变0<a<1,横坐标缩短为原来的a 倍,纵坐标不变 y =f (ax ). ②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ).答案 C5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的范围是 .答案 (0,1]解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1. 考题分类【考点1】作函数图像★例1 作出下列函数的图象: (1)y =|lg x |; (2)y =x +2x -1;(3)y =x 2-2|x |-1.解 (1)y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1,作出图象如图1.(2)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图3.引申探究作函数y =|x 2-2x -1|的图象.解 y =⎩⎨⎧x 2-2x -1 (x ≥1+2或x ≤1-2)-x 2+2x +1 (1-2<x <1+2)如下图点评 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx (m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.式训练1 作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3.解 (1)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-(x -12)2+94.∴y =⎩⎨⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如下图所示. 【考点2】识图与辨图例2 (1)(2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )(2)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()式训练3 已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)f (x )=x |4-x |=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4. f (x )的图象如图所示. (3)f (x )的单调递减区间是[2,4].(4)由图象可知,f (x )>0的解集为{x |0<x <4或x >4}. (5)∵f (5)=5>4,∴由图象知,函数在[1,5)上的值域为[0,5). 典型例题分析3.高考中的函数图象及应用问题一、已知函数解析式确定函数图象典例 (2015·北京海淀区期中测试)函数f (x )=2x +sin x 的部分图象可能是( )思维点拨 从y =f (x )的图象可先得到y =-f (x )的图象,再得y =-f (x +1)的图象.解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 答案 C温馨提醒 (1)对图象的变换问题,从f (x )到f (ax +b ),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别.(2)图象变换也可利用特征点的变换进行确定. 三、函数图象的应用典例:(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________. 思维点拨 (1)画出函数f (x )的图象观察.(2)利用函数f (x ),g (x )图象的位置确定a 的范围. 解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察得到,f (x )为奇函数,递减区间是(-1,1). (2)如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案 (1)C (2)[-1,+∞)温馨提醒 (1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2} 答案 C解析 令g (x )=y =log 2(x +1),作出函数g (x )的图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 6.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].7.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 . 答案 6解析 f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值, f (4)=6.8.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |, x ≠0,1, x =0,关于x 的方程f (x )=c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3= . 答案 0解析 方程f (x )=c 有三个不同的实数根等价于y =f (x )与y =c 的图象有三个交点,画出函数f (x )的图象(图略),易知c =1,且方程f (x )=c 的一根为0,令lg|x |=1,解得x =-10或10,故方程f (x )=c 的另两根为-10和10,∴x 1+x 2+x 3=0.B 组 专项能力提升 (时间:15分钟)9.函数y =f (x )的图象如图所示,则函数y =log 12f (x )的图象大致是( )答案 C解析由函数y=f(x)的图象知,当x∈(0,2)时,f(x)≥1,所以log12f(x)≤0.又函数f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以y=log12f(x)在(0,1)上是增函数,在(1,2)上是减函数.结合各选项知,选C.10.(2015·安徽)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是() A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0答案 C。

《课堂新坐标》高考数学一轮总复习课件:第二章 第八节 函数与方程(共33张PPT)

《课堂新坐标》高考数学一轮总复习课件:第二章 第八节 函数与方程(共33张PPT)

2+4 确度 ε=0.01,取区间(2,4)的中点 x1= 2 =3,计算
得 f(2)·f(x1)<0,则此时零点 x0 所在的区间为( )
A.(2,4)
B.(3,4)
探究·提知能
C.(2,3)
D.(2.5,3)
课后作
【解析】 由零点存在性定理知x0∈(2,3),故选C.
【答案】 C
菜单
新课标 ·文科数学(广东专用)
菜单
新课标 ·文科数学(广东专用)
Δ=b2-4ac
落实·固基础
Δ>0
二次函数 y=ax2+bx+c
(a>0)的图象
Δ=0
Δ<0
高考体验·明
探究·提知能与x轴的交点 零点个数
_(_x_1,___0_),___(x_2_,__0__) __(_x_1,___0_)_
2
1
无交点 课后作 0
菜单
新课标 ·文科数学(广东专用)
菜单
新课标 ·文科数学(广东专用)
落实·固基础
1.解答本题一要从图表中寻找数量信息,二要注 高考体验·明 意“精确度”的含义,切不可与“精确到”混淆.
2.(1)用二分法求函数零点的近似解必须满足①y
=f(x)的图象在[a,b]内连续不间断,②f(a)·f(b)<0.(2)
在第一步中,尽量使区间长度缩短,以减少计算量及计
落实·固基础
新课标 ·文科数学(广东专用)
第八节 函数与方程
高考体验·明
探究·提知能 菜单
课后作
新课标 ·文科数学(广东专用)
落实·固基础 1.函数零点
高考体验·明
(1)定义:对于函数y=f(x)(x∈D),把使____f_(x_)_=_0___成

高考数学复习第2章函数导数及其应用第8讲一次函数反比例函数及二次函数

高考数学复习第2章函数导数及其应用第8讲一次函数反比例函数及二次函数
解析:∵函数图象的对称轴方程为 x=--24=2,∴f(x)在 [0,1]上单调递减,最大值为 f(0)=3,最小值为 f(1)=1-4+3= 0,值域为[0,3].当 x∈[0,3]时,f(x)在[0,2]上单调递减,在[2,3] 上单调递增,最大值 f(0)=3,最小值为 f(2)=22-4×2+3= -1,值域为[-1,3].
图象与 x 轴的两个交点的横坐标.
4.二次函数的图象及性质 解析式 f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
图象
开口 顶点
对称性 定义域
向上
向下
-2ba,4ac4-a b2 函数的图象关于 x=-2ba对称
(-∞,+∞)
(续表) 解析式
值域
f(x)=ax2+bx+c(a>0) 4ac4-a b2,+∞
2.y= 3-aa+6(-6≤a≤3)的最大值为( B )
9
32
A.9
B.2
C.3
D. 2
3.(2019年河南信阳模拟)函数y=-2x2-4ax+3在区间
[-4,-2]上是单调函数,则 a 的取值范围是( )C
A.(-∞,1]
B.[4,+∞)
C.(-∞,2]∪[4,+∞)
D.(-∞,1]∪[2,+∞)
解析:函数y=-2x2-4ax+3的图象的对称轴为x=-a,
由题意可得-a≤-4或-a≥-2,解得a≤2或a≥4,故选C.
4.(2017年北京)已知x≥0,y≥0,且x+y=1,则x2+y2的 取值范围是_____12_,__1___.
考点 1 二次函数的图象及应用
例 1:(1)(2018 年安徽淮南模拟)二次函数 y=ax2+bx 及指
第8讲 一次函数、反比例函数及二次函数

第八讲:多元函数微分(二)

第八讲:多元函数微分(二)

第八讲 多元函数微分二一、 例题选讲:12、 求21xyz y x=⎧⎨=⎩在(1,1,1)处的切线方程。

解:234213x y x yy y y z y z y --'⎧==⎧⎪⎪'=∴=⎨⎨⎪⎪'==-⎩⎩,切点(1,1,1),s ={2,1,-3}所以切线方程为:111213x y z ---==-。

3、 求曲面22az x y =+与x y z ==交点处的切平面方程。

解:交点为(0,0,0)与(,,)222a a a,设22(,,)F x y z x y az =+- 1{2,2,},(0,0,0){0,0,}n x y a n a ∴=-=- 在,在(,,)222a a a ,2(,,}n a a a =-切平面为:z=0和02ax y z +--=。

4、 证明曲面22()z f x y =+上任一点法线与z 轴相交,其中()0f u '≠。

解:2200(,,)(),{2,2,1}F x y z f x y z n x f y f ''=+-∴=-而混合积000002210010,x f y f x y z ''-=∴法线与z 轴相交。

5、 由22222880,x y z xz z +++-+=确定了z=f (x ,y ),求极值。

解:42880,4280x x x y y y x zz z xz z y zz xz z '''+++-=⎧⎨'''++-=⎩令00x y z z '=⎧⎨'=⎩,解得:48040x z y +=⎧⎨=⎩ 又22222880,x y z xz z +++-+=得驻点(167,0,87-),(-2,0,1) 再求二阶导:2242()288802288042()280x xx x x xx xx y x xy y xy xy y yy yy yy z zz z z xz z z z zz z xz z z zz xz z '''''''''⎧+++++-=⎪'''''''''+++-=⎨⎪'''''''+++-=⎩在(167,0,87-)A=244,0,,0,0,1515B C AC B A -==-∴=->< 极大值为87- 在(-2,0,1)A=244,0,,0,0,1515B C AC B A ==∴=->> 极小值为1。

(浙江专用)2018年高考数学总复习 第二章 函数概念与基本初等函数1 第8讲 函数与方程_函数

(浙江专用)2018年高考数学总复习 第二章 函数概念与基本初等函数1 第8讲 函数与方程_函数

第8讲 函数与方程、函数的模型及其应用基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·赣中南五校联考)函数f (x )=3x-x 2的零点所在区间是( ) A.(0,1)B.(1,2)C.(-2,-1)D.(-1,0)解析 由于f (-1)=-23<0,f (0)=30-0=1>0,∴f (-1)·f (0)<0.则f (x )在(-1,0)内有零点. 答案 D2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B.-2,0C.12D.0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0.答案 D3.(2017·杭州调研)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A.(1,3)B.(1,2)C.(0,3)D.(0,2)解析 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0,所以0<a <3. 答案 C4.(2017·德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4 L ,则m 的值为( ) A.5B.8C.9D.10解析 ∵5 min 后甲桶和乙桶的水量相等, ∴函数y =f (t )=a e nt 满足f (5)=a e 5n=12a ,可得n =15ln 12,∴f (t )=a ·⎝ ⎛⎭⎪⎫12t5,因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12k5=14a ,即⎝ ⎛⎭⎪⎫12k5=14,∴k =10,由题可知m =k -5=5. 答案 A5.(2017·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14B.18C.-78D.-38解析 令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案 C 二、填空题6.(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.解析 ∵f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1, ∴f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2) =x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2. 由此可得⎩⎪⎨⎪⎧2a +b =-3,①a 2+2ab =0,②a 3+3a 2=a 2b .③∵a ≠0,∴由②得a =-2b ,代入①式得b =1,a =-2. 答案 -2 17.(2017·湖州调研)设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系为y =c e kx,其中c ,k 为常量.已知某天的海平面的大气压为 1.01×105Pa ,1 000 m 高空的大气压为0.90×105Pa ,则c =________,k =________,600 m 高空的大气压强约为________Pa(保留3位有效数字).解析 将x =0时,y =1.01×105Pa 和x =1 000时,y =0.90×105Pa 分别代入y =c e kx,得⎩⎪⎨⎪⎧1.01×105=c e 0,0.90×105=c e 1 000k ,所以c =1.01×105,所以e1 000k=0.90×1051.01×105=0.901.01,所以k =11 000×ln 0.901.01,用计算器算得k ≈-1.153×10-4,所以y =1.01×105×e-1.153×10-4x,将x =600代入上述函数式,得y ≈9.42×104Pa ,即在600 m 高空的大气压强约为9.42×104Pa.答案 1.01×105-1.153×10-49.42×1048.(2015·安徽卷)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.解析 函数y =|x -a |-1的图象如图所示,因为直线y =2a 与函数y =|x -a |-1的图象只有一个交点,故2a =-1,解得a =-12.答案 -12三、解答题9.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围. 解 (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪12<a <34.10.(2017·山东实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故有a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.能力提升题组 (建议用时:25分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( ) A.[0,1)B.(-∞,1)C.(-∞,1]∪(2,+∞)D.(-∞,0]∪(1,+∞)解析 函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,画出h (x )=f (x )+x =⎩⎪⎨⎪⎧x ,x ≤0,e x +x ,x >0的大致图象(图略). 观察它与直线y =m 的交点,得知当m ≤0或m >1时,有交点,即函数g (x )=f (x )+x -m 有零点. 答案 D12.(2017·石家庄质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图3记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟D.4.25分钟解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t 2-152t +22516+4516-2=-15⎝ ⎛⎭⎪⎫t -1542+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟. 答案 B13.(2017·绍兴调研)已知f (x )=1x +2-m |x |,若f (x )有两个零点,则实数m 的值为________;若f (x )有三个零点,则实数m 的取值范围是________.解析 函数f (x )的零点,即为方程1x +2-m |x |=0即1m=|x |(x +2)的实数根,令g (x )=|x |(x +2)=⎩⎪⎨⎪⎧x 2+2x ,x >0,-x 2-2x ,x <0,其图象如图所示,当m =1时,g (x )图象与y =1m 有2个交点;当0<1m<1,即m >1时,有3个交点.答案 1 (1,+∞)14.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根. 15.已知函数f (x )=1|x +2|+kx +b ,其中k ,b 为实数且k ≠0. (1)当k >0时,根据定义证明f (x )在(-∞,-2)单调递增; (2)求集合M k ={b |函数f (x )有三个不同的零点}. (1)证明 当x ∈(-∞,-2)时,f (x )=-1x +2+kx +b . 任取x 1,x 2∈(-∞,-2),设x 2>x 1.f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-1x 1+2+kx 1+b -⎝ ⎛⎭⎪⎫-1x 2+2+kx 2+b =(x 1-x 2)⎣⎢⎡⎦⎥⎤1(x 1+2)(x 2+2)+k . 由所设得x 1-x 2<0,1(x 1+2)(x 2+2)>0,又k >0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-∞,-2)单调递增.(2)解 函数f (x )有三个不同零点,即方程1|x +2|+kx +b =0有三个不同的实根. 方程化为:⎩⎪⎨⎪⎧x >-2,kx 2+(b +2k )x +(2b +1)=0,与⎩⎪⎨⎪⎧x <-2,kx 2+(b +2k )x +(2b -1)=0. 记u (x )=kx 2+(b +2k )x +(2b +1),v (x )=kx 2+(b +2k )x +(2b -1). ①当k >0时,u (x ),v (x )开口均向上.由v (-2)=-1<0知v (x )在(-∞,-2)有唯一零点.为满足f (x )有三个零点,u (x )在(-2,+∞)应有两个不同零点.∴⎩⎪⎨⎪⎧u (-2)>0,(b +2k )2-4k (2b +1)>0,-b +2k 2k >-2,∴b <2k -2k .②当k <0时,u (x ),v (x )开口均向下.由u (-2)=1>0知u (x )在(-2,+∞)有唯一零点.为满足f (x )有三个零点,v (x )在(-∞,-2)应有两个不同零点.∴⎩⎪⎨⎪⎧v (-2)<0,(b +2k )2-4k (2b -1)>0,-b +2k 2k <-2.∴b <2k -2-k .综合①②可得M k={b|b<2k-2|k|}.。

新高考总复习 数学 第二章 函数 第8节 函数与方程 习题

新高考总复习 数学 第二章 函数 第8节 函数与方程 习题

多维层次练14[A 级 基础巩固]1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0C.12D .0解析:当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.答案:D2.(2020·长郡中学等十三校联考)已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x 的零点,则g (x 0)等于( )A .1B .2C .3D .4解析:因为f (x )在(0,+∞)上是增函数,且f (2)=ln 2-1<0,f (3)=ln 3-23>0,所以x 0∈(2,3),所以g (x 0)=[x 0]=2.答案:B3.已知函数f (x )=⎩⎨⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3解析:函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知,零点个数为2.答案:C4.已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18C .-78D .-38解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案:C5.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1解析:因为当x >0时,x =1是函数f (x )的一个零点, 所以当x ≤0时,要使f (x )=-2x +a 没有零点, 则-2x +a <0或-2x +a >0恒成立, 即a <2x 或a >2x 恒成立,故a ≤0或a >1.所以函数f (x )有且只有一个零点的充分不必要条件可以是a <0. 答案:A6.(多选题)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下:A .1.25B .1.437 5C .1.406 25D .1.421 9解析:由零点存在定理,在(1.406 25,1.437 5)内有零点, 又1.437 5-1.406 25=0.031 25<0.05,所以在区间[1.406 25,1.437 5]内任取一值可为零点近似解. 则B 、C 、D 均满足要求. 答案:BCD7.(2020·湖南雅礼中学检测)已知函数f (x )=⎩⎪⎨⎪⎧2|x |,x ≤1,x 2-3x +3,x >1,若关于x 的方程f (x )=2a (a ∈R)恰好有两个不同的实根,则实数a 的取值范围为( )A.12<a <1 B .a =12C.38<a ≤12或a >1 D .a ∈R解析:作出函数f (x )的图象如图:因为关于x 的方程f (x )=2a 恰好有两个不同实根, 所以y =2a 与函数y =f (x )的图象恰有两个交点, 所以2a >2或34<2a ≤1.解之得a >1或38<a ≤12.答案:C8.已知函数f (x )=a +log 2(x 2+a )(a >0)的最小值为8,则实数a 的取值范围是( )A .(5,6)B .(7,8)C .(8,9)D .(9,10)解析:由于f (x )在[0,+∞)上是增函数,在(-∞,0)上是减函数, 所以f (x )min =f (0)=a +log 2a =8. 令g (a )=a +log 2a -8,a >0.则g (5)=log 25-3<0,g (6)=log 26-2>0, 又g (a )在(0,+∞)上是增函数, 所以实数a 所在的区间为(5,6). 答案:A9.(2018·全国卷Ⅲ)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.解析:由题意知,cos ⎝ ⎛⎭⎪⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k=2时,x =7π9,均满足题意,所以函数f (x )在[0,π]的零点个数为3.答案:310.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________,函数的零点是________(用a 表示).解析:依题意,f (x )=x 2+ax +b 有不变号零点, 所以Δ=a 2-4b =0,知a 2=4b , 从而函数的零点x 0=-a2.答案:a 2=4b -a211.(2020·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2等于________.解析:考虑到x 1,x 2是函数y =e x 、函数y =ln x 与函数y =1x 的图象的交点A ,B 的横坐标.又A ⎝ ⎛⎭⎪⎫x 1,1x 1,B ⎝ ⎛⎭⎪⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.答案:112.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≤1,log 3 x ,x >1.(1)若f (1)=3,则实数a =________.(2)若函数y =f (x )-2有且仅有两个零点,则实数a 的取值范围是________.解析:(1)f (1)=1-a =3,所以a =-2,(2)作出y =2与y =f (x )的图象(略),y =f (x )-2有两个零点,则12-a <2,所以a >-1.答案:(1)-2 (2)(-1,+∞)[B 级 能力提升]13.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0B .1C .2D .3解析:由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2. 答案:C14.(2020·佛山调研)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞) B.⎝ ⎛⎭⎪⎫-1e 2,0 C .(1,+∞)∪{0}D .(0,1]解析:令g (x )=f (x )-b =0,函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得e x (x +2)<0,即x <-2,此时f (x )为减函数,由f ′(x )>0得e x (x +2)>0,即-2<x <0,此时f (x )为增函数, 即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1,故选D.答案:D15.已知函数f (x )=e x -e -x +4,若方程f (x )=kx +4(k >0)有三个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=________.解析:易知y =e x -e -x 为奇函数,且其图象向上平移4个单位,得y =f (x )的图象.所以y =f (x )的图象关于点(0,4)对称, 又y =kx +4过点(0,4)且关于(0,4)对称.所以方程f (x )=kx +4的三个根中有一个为0,且另两根之和为0.因此x 1+x 2+x 3=0. 答案:0[C 级 素养升华]16.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.解析:(1)当λ=2时,f (x )=⎩⎨⎧x -4,x ≥2,x 2-4x +3,x <2,其图象如图(1)所示.由图知f (x )<0的解集为(1,4).(2)f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况:①二次函数有两个零点,一次函数无零点;②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y =x -4与y =x 2-4x +3的图象,如图(2),平移直线x =λ,可得λ∈(1,3]∪(4,+∞).答案:(1,4) (1,3]∪(4,+∞) 素养培育直观想象——嵌套函数的零点问题(自主阅读)函数的零点是高考命题的热点,主要涉及判断函数零点的个数或范围,常考查三次函数与复合函数的相关问题.对于嵌套函数的零点,通常先“换元解套”,将复合函数拆解为两个相对简单函数,借助函数的图象、性质求解.1.嵌套函数的零点个数判断[典例1] 已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是________.解析:由2[f (x )]2-3f (x )+1=0得 f (x )=12或f (x )=1,作出函数y =f (x )的图象.由图象知y =12与y =f (x )的图象有2个交点,y =1与y =f (x )的图象有3个交点.因此函数y =2[f (x )]2-3f (x )+1的零点有5个.答案:5[解题思路] 1.上述题目涉及嵌套函数零点个数的判断,求解的主要步骤:(1)换元解套,转化为t =g (x )与y =f (t )的零点;(2)依次解方程,令f (t )=0,求t ,代入t =g (x ),求出x 的值域判断图象交点个数.2.抓住两点:(1)转化换元;(2)充分利用函数的图象与性质. 2.嵌套函数零点中的参数[典例2] (2020·湖北重点中学联考)已知函数f (x )=xe x ,若关于x的方程[f (x )]2+mf (x )+m -1=0恰有3个不同的实数解,则实数m 的取值范围是( )A .(-∞,2)∪(2,+∞) B.⎝⎛⎭⎪⎫1-1e ,+∞C.⎝⎛⎭⎪⎫1-1e ,1 D .(1,e)解析:因为f ′(x )=e x -x e x(e x )2=1-xe x ,所以f (x )在(-∞,1)上单调递增,在(1,+∞)上递减. 因此f (x )max =f (1)=1e.又当x →-∞时,f (x )→-∞;x →+∞时,f (x )→0且f (x )>0. 从而作出t =f (x )的简图,如图所示. 令t =f (x ),g (t )=t 2+mt +m -1. 由g (t )=0,得t =-1或t =1-m .当t =-1时,f (x )=xe x =-1,方程有一解,要使原方程有3个不同的实数解,必须使t =1-m 与t =f (x )的图象有两个交点.故0<1-m <1e ,所以1-1e <m <1.答案:C[解题思路] 1.题目以函数的图象、性质为载体,考查函数零点(方程的根)中参数的求解,综合考查直观想象、数学运算、逻辑推理等数学核心素养.2.涉及复合函数零点的步骤:①换元,令t =f (x ),y =g (t ),f (x )为“内函数”,g (t )为“外函数”;②作图,作“外函数”y =g (t )的图象与“内函数”t =f (x )的图象;③观察图象进行分析.[典例3] 函数f (x )=⎩⎪⎨⎪⎧ln (-x -1),x <-1,2x +1,x ≥-1,若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是________.解析:设t =f (x ),令f (f (x ))-a =0,则a =f (t ).在同一坐标系内作y =a ,y =f (t )的图象(如图所示).当a ≥-1时,y =a 与y =f (t )的图象有两个交点.设交点的横坐标为t 1,t 2(不妨设t 2>t 1)且t 1<-1,t 2≥-1.当t 1<-1时,t 1=f (x )有一解.当t 2≥-1时,t 2=f (x )有两解.综上,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点. 答案:[-1,+∞)[解题思路] 1.求解本题抓住分段函数的图象性质,由y =a 与y=f(t)的图象,确定t1,t2的取值范围.进而由t=f(x)图象确定x取值.2.含参数的嵌套函数方程,应注意让参数的取值“动起来”,抓临界位置,动静结合.。

九年级数学下册第二章二次函数8二次函数与一元二次方程习题课件北师大版20222220416

九年级数学下册第二章二次函数8二次函数与一元二次方程习题课件北师大版20222220416

x

y

0.1 0.24
0.2

-0.44

x

y

1.8 -0.44
1.9

0.24

由图象可知方程的近似根是x1=0.1,x2=1.9.
第十五页,编辑于星期六:七点 十分。
【总结提升】求一元二次方程近似根的“四步法”
第十六页,编辑于星期六:七点 十分。
题组一:二次函数与一元二次方程的关系 1.抛物线y=-3x2-x+4与坐标轴的交点个数是 ( )
第三十页,编辑于星期六:七点 十分。
3.对于二次函数y=x2+6x+1,当x=-5.8时,y=-0.16<0;当
x=-5.9时,y=0.41>0.那么方程x2+6x+1=0的一个根的近
似值是
.(精确到0.1)
【解析】因为y=x2+6x+1的对称轴是x=-3,且当x=-5.8时,
y=-0.16<0;当x=-5.9时,y=0.41>0.所以方程x2+6x+1=0的
=0(a≠0)的关系.
抛物线y=ax2+bx+c与x轴的 一元二次方程ax2+bx+c=0(a≠0)
交点的个数
的根的情况
2
__两__个_不__等__实__数_根___
1
__两_个__相__等__实__数__根__
0
__无_实__数__根__
第三页,编辑于星期六:七点 十分。
2.一元二次方程的图象解法. 二次函数y=ax2+bx+c的图象与x轴有交点时,交点的____横__坐_标就 是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的___. 根

第二章 一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章  一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章一元二次函数、方程和不等式(公式、定理、结论图表)1.不等关系不等关系常用不等式来表示.2.实数a,b的比较大小文字语言数学语言等价条件a-b是正数a-b>0a>ba-b等于零a-b=0a=ba-b是负数a-b<0a<b3.重要不等式一般地,∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.4.等式的性质(1)性质1如果a=b,那么b=a;(2)性质2如果a=b,b=c,那么a=c;(3)性质3如果a=b,那么a±c=b±c;(4)性质4如果a=b,那么ac=bc;(5)性质5如果a=b,c≠0,那么ac=b c .5.不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒ac>bd.(7)乘方法则:a>b>0⇒a n>b n>0(n∈N,n≥2).6.基本不等式(1)有关概念:当a,b均为正数时,把a+b2叫做正数a,b的算术平均数,把ab叫做正数a,b的几何平均数.(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即ab≤a+b2,当且仅当a=b时,等号成立.7.已知x、y都是正数,(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值S24.(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值2p.上述命题可归纳为口诀:积定和最小,和定积最大.8.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.9.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.10.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.11.三个“二次”的关系|b提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则>0,+4a<0,解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R. 12.分式不等式的解法主导思想:化分式不等式为整式不等式类型同解不等式思考1:x -3x +2>0与(x -3)(x +2)>0等价吗?将x -3x +2>0变形为(x -3)(x +2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.13.(1)不等式的解集为R (或恒成立)的条件设二次函数y =ax 2+bx +c若ax 2+bx +c ≤k 恒成立⇔y max ≤k 若ax 2+bx +c ≥k 恒成立⇔y min ≥k14.从实际问题中抽象出一元二次不等式模型的步骤(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).(3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.<解题方法与技巧>1.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.典例1:已知x≤1,比较3x3与3x2-x+1的大小.[解]3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=3x2(x-1)+(x-1)=(3x2+1)(x-1).∵x≤1得x-1≤0,而3x2+1>0,∴(3x2+1)(x-1)≤0,∴3x3≤3x2-x+1.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.典例2:若a>b>0,c<d<0,e<0,求证:e(a-c)2>e(b-d)2.[思路点拨]可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.[证明]∵c<d<0,∴-c>-d>0.又∵a>b>0,∴a-c>b-d>0.∴(a-c)2>(b-d)2>0.两边同乘以1(a-c)2(b-d)2,得1(a-c)2<1(b-d)2.又e<0,∴e(a-c)2>e(b-d)2.3.对基本不等式的理解2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a、b都是正典例3:给出下面四个推导过程:①∵a、b为正实数,∴ba+ab≥2ba·ab=2;②∵a∈R,a≠0,∴4a+a≥24a·a=4;③∵x、y∈R,xy<0,∴xy+yx=-- 2.其中正确的推导为()A.①②B.①③C.②③D.①②③B[解]①∵a、b为正实数,∴ba、ab为正实数,符合基本不等式的条件,故①的推导正确.②∵a∈R,a≠0,不符合基本不等式的条件,∴4a+a≥24a·a=4是错误的.③由xy<0,得xy、yx均为负数,但在推导过程中将整体xy+yx提出负号后,为正数,符合均值不等式的条件,故③正确.]4.利用基本不等式比较大小1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件.等号成立的条件是a=b;a2+b2≥2ab成立的条件是a,b∈R,等号成立的条件是a=b.典例4:(1)已知a,b∈R+,则下列各式中不一定成立的是()A.a+b≥2ab B.ba+a b ≥2C.a2+b2ab ≥2ab D.2aba+b≥ab(2)已知a,b,c是两两不等的实数,则p=a2+b2+c2与q=ab+bc+ca的大小关系是________.(1)D(2)a2+b2+c2>ab+bc+ac[解](1)由a+b2≥ab得a+b=2ab,∴A成立;∵ba+ab≥2ba·ab=2,∴B成立;∵a2+b2ab≥2abab=2ab,∴C成立;∵2aba+b≤2ab2ab=ab,∴D不一定成立.(2)∵a、b、c互不相等,∴a2+b2>2ab,b2+c2>2ac,a2+c2>2ac.∴2(a2+b2+c2)>2(ab+bc+ac).即a2+b2+c2>ab+bc+.]5.利用基本不等式证明不等式1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.典例5:已知a,b,c是互不相等的正数,且a+b+c=1,求证:1a+1b+1c>9.[思路点拨]看到1a+1b+1c>9,想到将“1”换成“a+b+c”,裂项构造基本不等式的形式,用基本不等式证明.[证明]∵a,b,c∈R+,且a+b+c=1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+2+2+2=9.当且仅当a =b =c 时取等号,∴1a +1b +1c>9.6.利用基本不等式求最值利用基本不等式求最值的关键是获得满足基本不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或定积;典例6:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12(1-2x )的最大值.[思路点拨](1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y=12x (1-2x )的最值,需要出现和为定值.[解](1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=--4x 3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x<12,∴1-2x>0,∴y=14×2x(1-2x)≤14×=14×14=116∴当且仅当2x=1-2xx=14时,y max=116.7.利用基本不等式求条件最值1.本题给出的方法,用到了基本不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会变形.f(x)=ax(b-ax)型.典例7:已知x>0,y>0,且满足8x+1y=1.求x+2y的最小值.[解]∵x>0,y>0,8x+1 y=1,∴x+2yx+2y)=10+xy+16yx≥10+2xy·16yx=18,+1y=1,=16yx,=12,=3时,等号成立,故当x=12,y=3时,(x+2y)min=18.8.利用基本不等式解决实际问题1.在应用基本不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.时,可用函数的单调性求解典例8:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?[解]设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy ,所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.x +3y =18,x =3y ,=4.5,=3.故每间虎笼长为4.5m,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =-32y =32y (6-y ).∵0<y <6,∴6-y >0.∴S ≤32(6-y )+y 22=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.9.不等式恒成立问题对于恒成立不等式求参数范围问题常见类型及解法有以下两种:(1)变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元.(2)转化法求参数范围已知二次函数y=ax2+bx+c的函数值的集合为B={y|m≤y≤n},则(1)y≥k恒成立⇒y min≥k即m≥k;(2)y≤k恒成立⇒y max≤k即n≤k.典例9:已知y=x2+ax+3-a,若-2≤x≤2,x2+ax+3-a≥0恒成立,求a的取值范围.[思路点拨]对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.[解]设函数y=x2+ax+3-a在-2≤x≤2时的最小值为关于a的一次函数,设为g(a),则(1)当对称轴x=-a2<-2,即a>4时,g(a)=(-2)2+(-2)a+3-a=7-3a≥0,解得a≤73,与a>4矛盾,不符合题意.(2)当-2≤-a2≤2,即-4≤a≤4时,g(a)=3-a-a24≥0,解得-6≤a≤2,此时-4≤a≤2.(3)当-a2>2,即a<-4时,g(a)=22+2a+3-a=7+a≥0,解得a≥-7,此时-7≤a<-4.综上,a的取值范围为-7≤a≤2.。

第2章+一元二次函数、方程和不等式知识点汇总

第2章+一元二次函数、方程和不等式知识点汇总

《人教A版必修一知识点汇总》第2章《一元二次函数、方程和不等式》知识点汇总2.1 等式性质与不等式性质1.实数的大小比较(1)方法一:数轴法(优点是形象生动)(2)方法二:作差法(优点是快捷方便,并且适合一切实数比较大小)当 a ∈ R ,b ∈ R 时a −b >0⟺ a > ba −b <0⟺ a < ba − b=0 ⟺ a = b作差法:比较两个实数(或代数式)的大小,可以转化为考察它们的差是正数、负数、或零,这种比较大小的方法称为作差比较法.(3)方法三:作商法(优点是快捷方便,并且只适合两个正数比较大小)当 a>0 ,b >0 时a>1 ⟺ a >bba<1 ⟺ a <bba=1 ⟺ a =bb作商法:比较两个正数的大小,可以转化为考察它们的商是大于1、小于1、或等于1,这种比较大小的方法称为作商比较法.2.不等式的性质(1)性质1(可加性)如果a > b, 那么 a±c > b±c;(2)性质2(可乘性)① 如果 a > b,c>0,那么 ac > bc 或ac >bc;②如果 a > b,c<0,那么 ac < bc 或ac <bc.(3)性质3 (传递性)如果 a > b ,b > c , 那么 a > c;(4)性质4(对称性) a > b ⟺ b < a ;(5)性质5 (可移性) a+b > c ⇔ a > c − b ;(6)性质6(同向可加性)如果a>b ,c>d ,那么 a+c >b+d;(7)性质7(同向同正可乘性)如果 a > b >0,c > d >0 ,那么 ac > bd.(8)性质8(同向同正可乘方性)如果 a > b > 0,n ∈N∗ ,那么 a n>b n;(9)性质9(同正可开方性)如果 a > b > 0,n ∈N∗ , 那么√a n>√b n;(10)性质10(同号可倒性)如果 ab > 0,且 a > b , 那么1a <1b;2.2《基本不等式》1.基本不等式对于 ∀ a >0 ,b > 0 ,都有√a2+b22≥a+b2≥√ab≥21a+1b(当且仅当a=b 时等号成立)注1:a+b2叫正数 a 与 b 的算术平均数,√ab叫正数 a 与 b 的几何平均数;注2:基本不等式通常用于求解与两个正项相关的最值问题,且在实际运用中,通常变形为对于 ∀ a > 0,b > 0 ,都有a+b ≥2 √ab(当且仅当a=b 时等号成立)2.实例运用例1.已知x > 0 , 求x +1x的最小值.解:∵ 已知x > 0,∴ 1x>0∴ 据基本不等式可得x +1x ≥2√x ∙1x=2(当且仅当x =1x(即x=1)时等号成立)故x +1x的最小值为2例5.已知 x>0 ,y >0,且1x +9y=1,求 x+y 的最小值.解:∵ 已知1x +9y=1∴ x+y=(x+y) ( 1x +9y=1)=yx+9xy+10又∵ 已知x>0 ,y >0∴ yx >0,9xy>0∴ yx +9xy≥2√yx∙9xy=2√9=6y x +9xy+10≥6+10(可加性)即x+y≥16(当且仅当yx =9xy,即y=3x 时等号成立)故x+y 的最小值为16.2.3 二次函数与一元二次方程、不等式1.一元二次不等式的概念像x2−7x+6>0这样,含有一个未知数,并且含有未知数项的最高次数为2的不等式,就称为一元二次不等式.其一般式为ax²+bx+c > 0 (a ≠ 0)注:上面一般式中的“>”也可以换成“<”,“≥”或“≤”.2.一元二次不等式的图解法三作图一 化二解 四答(1)典例讲解:解不等式 −x 2+2x >−3解:原一元二次不等式等价于x 2−2x −3 <0∵∆=b 2−4ac =(−2)2−4×1×(−3)=16>0解一元二次方程 x 2−2x −3 =0 可得x 1=−1,x 2=3又∵二次项系数a =1>0二次函数y =x 2−2x −3的图像如图所示由上图可知不等式 x 2−2x −3 <0的解集为 {x | −1< x < 3}即原不等式的解集为{x | −1< x < 3}(2)一元二次不等式的图解法小结①一化:将原不等式化成一般式,即ax²+bx +c > 0 (a ≠ 0)或ax²+bx +c < 0 (a ≠ 0)的形式,其中二次项系数a >0;②二解:判断∆=b 2−4ac 的符号,并利用配方法、公式法、因式分解法求出一元二次方程ax²+bx +c = 0 的实数根(x =−b±√b 2−4ac 2a); ③三作图:根据二次函数y =ax²+bx +c (a > 0)的图像与x 轴的位置关系确定一元二次不等式ax²+bx +c > 0 (a ≠ 0)或ax²+bx +c < 0 (a ≠ 0)的解集.④四答:通常要将不等式的解集用数集或区间来表示.(3)实例运用例1 看图口答.①不等式x²−2x−3 >0的解集为{ x | x<−1 或 x>3 } ;②不等式x²−2x−3 ≤0的解集为{ x | −1≤x≤3 } ;③不等式x²−2x−3 >0的解集为{ x | x≤−1 或 x≥3 } ;例2 求不等式9x2−6x+1>0的解集.解:∵ 已知9x2−6x+1>0∴ a=9 ,b=−6 ,c=1又∵ ∆=b2−4ac=(−6)2−4×9×1=0∴解一元二次方程9x2−6x+1=0可得x=13又∵二次项系数 a=9>0,∴可得二次函数y=9x2−6x+1的图像如图所示:由图可知原一元二次不等式的解集为{ x | x≠1}3例3 求不等式−x2+2x−3>0的解集.解:原不等式−x2+2x−3>0可化为x2−2x+3< 0∴ a=1 ,b=−2 ,c=3又∵ ∆=b2−4ac=(−2)2−4×1×3=−8<0∴ 一元二次方程 x2−2x+3=0没有实数根又∵二次项系数 a=1>0,∴可得二次函数 y=x2−2x+3的图像如图所示:由图可知一元二次不等式 x2−2x+3< 0的解集为 ∅故原一元二次不等式−x2+2x−3>0的解集为∅。

第8讲:二次函数(专题讲座)

第8讲:二次函数(专题讲座)

(聚焦2008)第8讲:二次函数专题讲座(一)二次函数的解析式的三种形式(1)标准式:y=ax 2+bx+c (a ≠0);(2)顶点式:y=a (x+m )2+n (a ≠0);(3)两根式:y=a (x -x 1)(x -x 2)(a ≠0)【例1】已知二次函数y=f (x )同时满足条件:(1)f (1+x )= f (1-x );(2)y=f (x )的最大值是15;(3)f (x )=0的两根立方和等于17。

求y =f (x )的解析式。

(二)二次函数的基本性质(1)二次函数f (x )=a x 2+bx+c (a ≠0)的图像是一条抛物线,对称轴方程为x =-a b 2,顶点坐标是(-a b 2,acb ac 442-)。

当a >0时,抛物线开口向上,函数在(-∞,-a b 2]上递减,在[-ab 2,+∞)上递增。

当a <0时,抛物线开口向下,函数在(-∞,-a b 2]上递增,在[-a b 2,+∞)上递减。

(2)直线与曲线的交点问题:①二次函数f (x )=a x 2+bx+c (a ≠0),当Δ=b 2-4ac >0时,图像与x 轴有两个交点M1(x 1,0)M2(x 2,0),于是|M1M2|=|x 1-x 2|=||a ∆。

②若抛物线y=ax 2+bx+c (a ≠0)与直线y=mx+n ,则其交点由二方程组成的方程组的解来决定,而方程组的解由一元二次方程ax 2+bx+c =mx+n ,即px 2+qx+r=0的解来决定,从而将交点问题归结为判定一元二次方程的判别式Δ的符号决定。

特别地,抛物线与x 轴的交点情况由ax 2+bx+c=0的解的情况决定,于是也归结为判定一元二次方程ax 2+bx+c = 0的判别式Δ的符号问题。

当Δ= b 2-4ac>0时,方程ax 2+bx+c=0有两个不同的实数根,即对应的抛物线与x 轴有两个交点,此时二次函数的图像被x 轴截得的弦长L=|x 2-x 1|=||4)()(21212212a x x x x x x ∆=-+=-。

人教A版必修一课件第二章一元二次函数、方程和不等式(知识整合)

人教A版必修一课件第二章一元二次函数、方程和不等式(知识整合)

(1)求k的值;
[分析] (1)根据题意,比例系数为 k,设燃料费为 W1=kv2,将 v= 10 时 W1=96 代入即可算出 k 的值.
(2)算出航行 100 海里的时间为1v00小时,燃料费为 96v,其余航行运 作费用为15 v000元,由此可得航行 100 海里的总费用为 W=96v+15 v000, 再运用基本不等式求最值即可.
解得 m∈R,
所以 m<0,符合题意.
综上所述,实数 m 的取值范围是mm<16
.
(3)令 g(m)=mx2-mx-1=(x2-x)m-1,
若对满足|m|≤2 的一切 m 的值不等式恒成立,则只需gg2-<20<,0,
即-2x22-x2-x-x-1<10<,0,
解得1-2
3 1+ <x< 2
3 .
因此,航行 100 海里的总费用为 W=0.96v2·1v00+15 v000=96v+15 v000(0<v≤15), 因为 96v+15 v000≥2 1 440 000=2 400, 所以当且仅当 96v=15 v000时,即 v= 1590600=12.5<15 时,航行 100 海里的总费用最小,且这个最值为 2 400 元.
所以实数 x 的取值范围是x1-2
3 1+ <x< 2
3
.
[归纳提升] 不等式恒成立求参数范围的方法 1.变更主元法
根据实际情况的需要确定合适的主元,一般知道取值范围的变 量看作主元.
2.分离参数法 若f(a)<g(x)恒成立,则f(a)<g(x)min. 若f(a)>g(x)恒成立,则f(a)>g(x)max. 3.数形结合法 利用不等式与函数的关系将恒成立问题通过函数图象直观化.

函数与方程

函数与方程

函数与方程
李涛
【期刊名称】《青海教育》
【年(卷),期】2005(000)008
【摘要】在中学数学教学中,运用函数理论解答方程问题的主要理论依据是:①函数y=f(x)与y=g(x)图像交点的横坐标是方程f(x)=g(x)的实根;②一元二次方程实根的分布规律,其载体是一元二次函数、一元二次方程和一元二次不等式.……
【总页数】1页(P74-)
【作者】李涛
【作者单位】
【正文语种】中文
【中图分类】G4
【相关文献】
1.函数与方程零点“牵手”魂——《函数与方程》教学设计与教学反思
2.醉翁之意不在酒——从"用函数观点看一元二次方程"的片段教学引发函数与方程之间关系的思考
3.能分离,则难偏自消,方程解集显函数——从2015年全国高考看函数与方程的本质关系
4.用数学思想引领高三复习教学--以“函数与方程思想”破解“函数零点与方程的根”为例
5.函数与方程零点“牵手”魂——“函数与方程”教学实录与反思
因版权原因,仅展示原文概要,查看原文内容请购买。

2021年新教材人教A版高中数学必修第一册第二章一元二次函数、方程和不等式 教学课件

2021年新教材人教A版高中数学必修第一册第二章一元二次函数、方程和不等式 教学课件
答案
B
)
3.设a、b是实数,且a+b=3,则2a+2b的最小值是(
A.6
B.4 2
C.2 6
D.8
解析 ∵a+b=3,

∴2a+2b≥2 2a·2b=2 2a b=2 8=4 2,
3
当且仅当 a=b=2时,“=”成立.
答案 B
)
4.将一根铁丝切割成三段做一个面积为2 m2、形状为直角三角形
的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费
C.a2-b2<0
D.a+b<0
解析
)
本题可采用特殊值法,取a=-2,b=1,则a-b<0,a3+b3<0,a2-b2>0,
排除A,B,C,故选D.
答案 D
3.设M=x2,N=-x-1,则M与N的大小关系是(
A.M>N
B.M=N
C.M<N
D.与x有关
12 3
解析 M-N=x +x+1=(x+ ) + >0.
知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建
应用基本不等式的条件.
(3)在求最值的一些问题中,有时看起来可以运用基本不等式求
最值,但由于其中的等号取不到,所以运用基本不等式得到的
p
结果往往是错误的,这时通常可以借助函数 y=x+x(p>0)的单
调性求得函数的最值.
4.求解应用题的方法与步骤:
第二章 一元二次函数、方程和不等式
2.1等式性质与不等式性质
2.2基本不等式 P24
2.3二次函数与一元二次方程、不等式 P53
学习目标
1.理解不等式的概念.
2.了解不等式(组)的实际背景.
3.掌握不等式的性质.

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

由 a>b>0,有 ab>0⇒aab>abb⇒1b>1a,故 B 为假命题;
a<b<0⇒-a>-b>0⇒-1b>-1a>0,
a<b<0⇒-a>-b>0
⇒ab>ba,故 C 为假命题;
a>b⇒b-a<0,
a1>1b⇒a1-b1>0⇒ba-ba>0⇒ab<0.
∵a>b,∴a>0,b<0,故 D 为真命题. 解析
答案
2
PART TWO
核心素养形成
题型一 作差法比较大小
例 1 比较下列各组中两个代数式的大小:
(1)x2+3 与 3x;
(2)设 x,y,z∈R,比较 5x2+y2+z2 与 2xy+4x+2z-2 的大小.
[解] (1)∵(x2+3)-3x=x2-3x+3=x-322+34≥34>0,∴x2+3>3x. (2)∵5x2+y2+z2-(2xy+4x+2z-2)=4x2-4x+1+x2-2xy+y2+z2-
第二章 一元二次函数、方程 和不等式
2.1 等式性质与不等式性质
(教师独具内容) 课程标准:1.梳理等式的性质,理解不等式的概念,掌握不等式的性质, 能运用不等式的性质比较大小.2.能运用不等式的性质证明不等式和解决实 际问题. 教学重点:1.不等式的性质.2.不等式性质的应用. 教学难点:用不等式的性质证明不等式. 核心素养:1.借助不等式性质的判断与证明,培养逻辑推理素养.2.通过 大小比较及利用不等式求范围,提升数学运算素养.
∴0<a-b<6,
故 2a+3b 的取值范围为-18<2a+3b<-5,a-b 的取值范围为 0<a-

高考数学一轮复习 第2章 函数与基本初等函数 第8讲 函数与方程课时作业(含解析)新人教B版-新人教

高考数学一轮复习 第2章 函数与基本初等函数 第8讲 函数与方程课时作业(含解析)新人教B版-新人教

第8讲 函数与方程课时作业1.(2019·某某质检)函数f (x )=ln x -1x -1的零点的个数是() A .0 B .1 C .2 D .3答案 C解析 在同一平面直角坐标系中作出函数y =1x -1与y =ln x 的图象(图略),由图象可知有两个交点.2.(2019·某某模拟)函数f (x )=ln x -2x的零点所在的大致区间是()A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)答案 B解析 因为f ′(x )=1x +2x2>0(x >0),所以f (x )在(0,+∞)上单调递增,又f (3)=ln 3-23>0,f (2)=ln 2-1<0,所以f (2)·f (3)<0,所以函数f (x )唯一的零点在区间(2,3)内.故选B .3.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为()A .12,0 B .-2,0 C .12 D .0答案 D解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.4.函数f (x )=1-x log 2x 的零点所在的区间是()A .⎝ ⎛⎭⎪⎫14,12 B .⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,3)答案 C解析 因为y =1x与y =log 2x 的图象只有一个交点,所以f (x )只有一个零点.又因为f (1)=1,f (2)=-1,所以函数f (x )=1-x log 2x 的零点所在的区间是(1,2).故选C .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为() A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故原函数有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎫12x =x 13 的解,则x 0属于区间()A .⎝ ⎛⎭⎪⎫23,1B .⎝ ⎛⎭⎪⎫12,23C .⎝ ⎛⎭⎪⎫13,12 D .⎝ ⎛⎭⎪⎫0,13 答案 C解析 令g (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 13 ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1212 <f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1213 ,g ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1213>f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1313 ,所以由图象关系可得13<x 0<12.7.(2019·某某模拟)f (x )=3x-log 2(-x )的零点的个数是() A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x-log 2(-x )有且仅有1个零点,故选B .8.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2019-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是()A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d答案 D解析 f (x )=2019-(x -a )(x -b )=-x 2+(a +b )x -ab +2019,又f (a )=f (b )=2019,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D .9.(2019·某某某某模拟)已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 C解析 如图,在同一平面直角坐标系内作出函数y =⎝ ⎛⎭⎪⎫12x,y =-1x 的图象,由图象可知,当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x ,当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x <-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,故选C .10.(2019·某某质检)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是()A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .11.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是()A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)答案 C解析 画出函数f (x )的图象,再画出直线y =-x 并上下移动,可以发现当直线y =-x 过点A 时,直线y =-x 与函数f (x )的图象有两个交点,并且向下无限移动,都可以保证直线y =-x 与函数f (x )的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C .12.(2019·某某正定模拟)已知f (x )为偶函数且f (x +2)=f (x ),若当x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的解的个数是()A .0B .2C .4D .6答案C解析 画出函数f (x )和y =log 3|x |的图象(如图所示),由图象可知方程f (x )=log 3|x |的解有4个.故选C .13.已知函数y =f (x )的图象是连续曲线,且有如下的对应值表:x 1 2 3 4 5 6 y124.435-7414.5-56.7-123.6则函数y =f (x )在区间[1,6]上的零点至少有________个. 答案 3解析 由零点存在性定理及题中的对应值表可知,函数f (x )在区间(2,3),(3,4),(4,5)内均有零点,所以y =f (x )在[1,6]上至少有3个零点.14.已知f (x )=⎩⎪⎨⎪⎧x ln x ,x >0,x 2-x -2,x ≤0,则其零点为________.答案 1,-1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为1,-1.15.(2019·某某模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值X 围是________. 答案 (0,1)解析 函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x )和y =m 的图象有3个交点.画出函数y =f (x )的图象,由图可知要使函数y =f (x )和y =m 的图象有3个交点,m 应满足0<m <1,所以实数m 的取值X 围是(0,1).16.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值X 围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.17.(2019·某某模拟)函数f (x )的定义域为实数集R ,且f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,-1≤x <0,log 2(x +1),0≤x <3,对任意的x ∈R 都有f (x +2)=f (x -2).若在区间[-5,3]上函数g (x )=f (x )-mx +m 恰好有三个不同的零点,某某数m 的取值X 围.解 因为对任意的x ∈R 都有f (x +2)=f (x -2),所以函数f (x )的周期为4.由在区间[-5,3]上函数g (x )=f (x )-mx +m 有三个不同的零点,知函数f (x )与函数h (x )=mx -m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f (x )与h (x )在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m <1-0-5-1,即-12≤m <-16.。

2024届新高考一轮复习人教B版 主题二 第二章 第8节 函数与方程 课件(48张)

2024届新高考一轮复习人教B版 主题二 第二章 第8节 函数与方程 课件(48张)

A.(0,1)
B.(1,2)
C.(-2,-1)
D.(-1,0)
A
)
解析:f(0)=-1,f(1)=2,故f(0)f(1)<0,由零点存在定理可知f(x)的零点所在
的一个区间是(0,1).
-, ≤ ,
3.已知函数 f(x)=
则函数 f(x)的零点为(
+ , > 1,
A.2
B.(0,1)
C.( ,+∞)
D.[1,+∞)


A
)
解析:x+a=0,x=-a<a,
则 x=-a 是函数 f(x)的一个零点,

由 ln x+2=0,解得 x=,

要使得 f(x)有两个不同的零点,则 a∈(0,).
+ , ≤ ,
有两个不同
+ , >
5.函数f(x)=x·2x-kx-2在区间(1,2)内有零点,则实数k的取值范围是
③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.
(4)判断是否达到近似的精度ε:若|a-b|<ε,则得到零点的近似值a(或b);否则重复步
骤(2)~(4).
用二分法求方程的近似解应具备两个条件,一是方程对应的函数在零点附近连
续不断,二是该零点左、右的函数值异号.
4.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
给定近似的精度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.
(2)求区间(a,b)的中点c.
(3)计算f(c),并进一步确定零点所在的区间:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲函数与方程基础知识整合1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈区间D),把使□01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与□02x轴有交点⇔函数y=f(x)有□03零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有□04 f(a)·f(b)<0,那么,函数y=f(x)在区间□05(a,b)内有零点,即存在c∈(a,b),使得□06f(c)=0,这个□07c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点□08(x1,0),(x2,0)□09(x1,0)无交点零点个数□102□111□120有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)函数的零点是实数,而不是点,是方程f(x)=0的实根.(5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)的闭区间[a,b]上有零点的充分不必要条件.1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由零点存在性定理得,零点所在的区间是(-1,0).故选B.2.(2019·全国卷Ⅲ)函数f(x)=2sin x-sin2x在[0,2π]的零点个数为()A.2 B.3C.4 D.5答案 B解析令f(x)=0,得2sin x-sin2x=0,即2sin x-2sin x cos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个.故选B.3.函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3) B.(1,2) C.(0,3) D.(0,2) 答案 C解析 因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3.故选C .4.(2019·河南郑州模拟)函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .3答案 C解析 作出函数y =|x -2|与g (x )=ln x 的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f (x )在定义域内有2个零点.故选C .5.函数f (x )=e x +3x 的零点有________个. 答案 1解析 ∵f (x )=e x +3x 在R 上是单调递增函数,且f (-1)=e -1-3<0,f (0)=1>0,∴函数f (x )有1个零点.6.函数y =⎝ ⎛⎭⎪⎫12|x |-m 有两个零点,则m 的取值范围是________.答案 (0,1)解析 如图,作出y =⎝ ⎛⎭⎪⎫12|x |的图象.则当0<m <1时,直线y =m 与曲线y =⎝ ⎛⎭⎪⎫12|x |的图象有两个交点,即函数y =⎝ ⎛⎭⎪⎫12|x |-m 有两个零点.核心考向突破考向一 函数零点所在区间的判断例1 (1)(2019·重庆模拟)设函数y =x 2与y =⎝ ⎛⎭⎪⎫12x -2的图象交点为(x 0,y 0),则x 0所在区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 因函数y =x 2与y =⎝ ⎛⎭⎪⎫12x -2的图象交点为(x 0,y 0),则x 0是方程x 2=⎝ ⎛⎭⎪⎫12x-2的解,也是函数f (x )=x 2-⎝ ⎛⎭⎪⎫12x -2的零点.∵函数f (x )在R 上单调递增,f (2)=22-1=3>0,f (1)=1-2=-1<0,∴f (1)·f (2)<0.由零点存在性定理可知,方程的解在(1,2)内.故选B .(2)(2019·包头模拟)已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( )A .0B .2C .5D .7答案 C解析 ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.判断函数零点所在区间的常用方法(1)定义法:利用函数零点存在性定理,首先看函数y =f (x )的区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(3)数形结合法:画出相应的函数图象,通过观察图象与x轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.[即时训练] 1.函数f(x)=2x+ln 1x-1的零点所在的大致区间是()A.(1,2) B.(2,3) C.(3,4) D.(4,5) 答案 B解析易知f(x)=2x +ln 1x-1=2x-ln (x-1)在(1,+∞)上单调递减且连续,当1<x<2时,ln (x-1)<0,2x>0,所以f(x)>0,故函数f(x)在(1,2)上没有零点.f(2)=1-ln 1=1,f(3)=23-ln 2=2-3ln 23=2-ln 83,8=22≈2.828>e,所以8>e2,即ln 8>2,所以f(3)<0.所以f(x)的零点所在的大致区间是(2,3),故选B.2.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内答案 A解析函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0.所以f(a)f(b)<0,f(b)f(c)<0,即f(x)在区间(a,b)和区间(b,c)内各有一个零点.考向二函数零点个数的讨论例2 (1)(2020·福州期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3答案 C解析 令f (x )+3x =0,则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.故选C .(2)(2019·南昌模拟)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( )A .9B .10C .11D .18答案 B解析 在同一平面直角坐标系内作出函数y =f (x )与y =|lg x |的大致图象如图,由图象可知,它们共有10个不同的交点,因此函数F (x )=f (x )-|lg x |的零点个数是10.故选B .确定函数零点个数的方法及思路(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时训练] 3.(2019·乐山模拟)函数f (x )=x 2-⎝ ⎛⎭⎪⎫12|x |的零点个数为( )A .0B .1C .2D .3答案 C解析 由f (x )=x 2-⎝ ⎛⎭⎪⎫12|x |,得f (-x )=(-x )2-⎝ ⎛⎭⎪⎫12|-x |=f (x ),∴f (x )为偶函数,且在(0,+∞)上单调递增,又f (0)·f (1)<0,∴f (x )在(0,+∞)上有且仅有1个零点.∴函数f (x )的零点个数为2,故选C .4.函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 由2x |log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎫12x ,作出y =|log 0.5x |和y =⎝ ⎛⎭⎪⎫12x 的图象,如图所示,则两个函数图象有两个交点,故函数f (x )=2x |log 0.5x |-1有两个零点.精准设计考向,多角度探究突破考向三函数零点的应用角度1利用零点比较大小例3(1)(2019·承德模拟)已知a是函数f(x)=2x-log12x的零点,若0<x0<a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定答案 C解析在同一平面直角坐标系中作出函数y=2x,y=log12x的图象(图略),由图象可知,当0<x0<a时,有2x0<log12x0,即f(x0)<0.(2)已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是()A.x2<x1<x3B.x1<x2<x3C.x1<x3<x2D.x3<x2<x1答案 B解析令y1=2x,y2=ln x,y3=-x-1,因为函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,x2,x3,则y1=2x,y2=ln x,y3=-x-1的图象与y=-x的交点的横坐标分别为x1,x2,x3,在同一平面直角坐标系内分别作出函数y1=2x,y2=ln x,y3=-x-1及y=-x的图象如图,结合图象可得x1<x2<x3,故选B.在同一平面直角坐标系内准确作出已知函数的图象,数形结合,对图象进行分析,找出零点的范围,进行大小比较.[即时训练] 5.(2019·广东七校联考)已知函数f (x )=⎝ ⎛⎭⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎫15x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0.故选A .6.已知x 0是函数f (x )=2x +11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B解析 在同一平面直角坐标系内作出函数y =2x 和函数y =1x -1的图象,如图所示.由图象可知函数y =2x 和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),则由函数图象可知,f (x 1)<0,f (x 2)>0. 角度2 由函数零点存在情况或个数求参数范围例4 (1)(2019·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( )A .⎣⎢⎡⎦⎥⎤54,94B .⎝ ⎛⎦⎥⎤54,94C .⎝ ⎛⎦⎥⎤54,94∪{1}D .⎣⎢⎡⎦⎥⎤54,94∪{1}答案 D解析 如图,分别画出两函数y =f (x )和y =-14x +a 的图象.①先研究当0≤x ≤1时,直线y =-14x +a 与y =2x 的图象只有一个交点的情况.当直线y =-14x +a 过点B (1,2)时, 2=-14+a ,解得a =94.所以0≤a ≤94.②再研究当x >1时,直线y =-14x +a 与y =1x 的图象只有一个交点的情况: a .相切时,由y ′=-1x 2=-14,得x =2,此时切点为⎝ ⎛⎭⎪⎫2,12,则a =1. b .相交时,由图象可知直线y =-14x +a 从过点A 向右上方移动时与y =1x 的图象只有一个交点.过点A (1,1)时,1=-14+a ,解得a =54.所以a ≥54.结合图象可得,所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤54,94∪{1}.故选D .(2)(2019·浙江高考)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则( )A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >0答案 C解析 由题意,b =f (x )-ax =⎩⎪⎨⎪⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.设y =b ,g (x )=⎩⎪⎨⎪⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0.即以上两个函数的图象恰有3个交点,根据选项进行讨论. ①当a <-1时,1-a >0,可知g (x )在(-∞,0)上单调递增; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知g (x )在(0,+∞)上单调递增.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B . ②当a >-1,即a +1>0时, 因为g ′(x )=x [x -(a +1)](x ≥0), 所以当x ≥0时,由g ′(x )<0可得0<x <a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去.综上,-1<a <1,b <0.故选C .已知函数零点求参数范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.[即时训练] 7.(2019·唐山模拟)当x ∈[1,2]时,若函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,2解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤ 2;当0<a <1时,如图②所示,要使两个函数图象有交点,需满足12·12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎡⎦⎥⎤12, 2.8.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, 所以方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎫2x -122-14,因为x ∈[-1,1],所以2x ∈⎣⎢⎡⎦⎥⎤12,2,所以⎝ ⎛⎭⎪⎫2x -122-14∈⎣⎢⎡⎦⎥⎤-14,2.所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,2.课时作业1.(2019·郑州质检)函数f (x )=ln x -1x -1的零点的个数是( ) A .0 B .1 C .2 D .3答案 C解析 在同一平面直角坐标系中作出函数y =1x -1与y =ln x 的图象(图略),由图象可知有两个交点.2.(2019·金华模拟)函数f (x )=ln x -2x 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(1,e)和(3,4) D .(e ,+∞)答案 B解析 因为f ′(x )=1x +2x 2>0(x >0),所以f (x )在(0,+∞)上单调递增,又f (3)=ln 3-23>0,f (2)=ln 2-1<0,所以f (2)·f (3)<0,所以函数f (x )唯一的零点在区间(2,3)内.故选B .3.已知函数f (x )=⎩⎨⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0 B .-2,0 C .12 D .0答案 D解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.4.函数f (x )=1-x log 2x 的零点所在的区间是( ) A .⎝ ⎛⎭⎪⎫14,12B .⎝ ⎛⎭⎪⎫12,1C .(1,2)D .(2,3)答案 C解析 因为y =1x 与y =log 2x 的图象只有一个交点,所以f (x )只有一个零点.又因为f (1)=1,f (2)=-1,所以函数f (x )=1-x log 2x 的零点所在的区间是(1,2).故选C .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故原函数有5个零点.6.若x 0是方程⎝ ⎛⎭⎪⎫12x =x 13 的解,则x 0属于区间( )A .⎝ ⎛⎭⎪⎫23,1B .⎝ ⎛⎭⎪⎫12,23C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫0,13 答案 C解析 令g (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 13 ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1212 <f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1213 ,g ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1213 >f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1313 ,所以由图象关系可得13<x 0<12.7.(2019·银川模拟)f (x )=3x -log 2(-x )的零点的个数是( ) A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x -log 2(-x )有且仅有1个零点,故选B .8.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2019-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d答案 D解析 f (x )=2019-(x -a )(x -b )=-x 2+(a +b )x -ab +2019,又f (a )=f (b )=2019,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D .9.(2019·吉林长春模拟)已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 C解析 如图,在同一平面直角坐标系内作出函数y =⎝ ⎛⎭⎪⎫12x,y =-1x 的图象,由图象可知,当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x ,当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x<-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,故选C .10.(2019·郑州质检)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .11.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)答案 C解析 画出函数f (x )的图象,再画出直线y =-x 并上下移动,可以发现当直线y =-x 过点A 时,直线y =-x 与函数f (x )的图象有两个交点,并且向下无限移动,都可以保证直线y =-x 与函数f (x )的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C .12.(2019·河北正定模拟)已知f (x )为偶函数且f (x +2)=f (x ),若当x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的解的个数是( )A .0B .2C .4D .6答案C解析 画出函数f (x )和y =log 3|x |的图象(如图所示),由图象可知方程f (x )=log 3|x |的解有4个.故选C .13.已知函数y =f (x )的图象是连续曲线,且有如下的对应值表:x 1 2 3 4 5 6 y124.435-7414.5-56.7-123.6则函数y =f (x )在区间[1,6]上的零点至少有________个. 答案 3解析 由零点存在性定理及题中的对应值表可知,函数f (x )在区间(2,3),(3,4),(4,5)内均有零点,所以y =f (x )在[1,6]上至少有3个零点.14.已知f (x )=⎩⎨⎧x ln x ,x >0,x 2-x -2,x ≤0,则其零点为________.答案 1,-1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为1,-1.15.(2019·泉州模拟)已知函数f (x )=⎩⎨⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x )和y =m 的图象有3个交点.画出函数y =f (x )的图象,由图可知要使函数y =f (x )和y =m 的图象有3个交点,m 应满足0<m <1,所以实数m 的取值范围是(0,1).16.已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值范围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.17.(2019·柳州模拟)函数f (x )的定义域为实数集R ,且f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,-1≤x <0,log 2(x +1),0≤x <3,对任意的x ∈R 都有f (x +2)=f (x -2).若在区间[-5,3]上函数g (x )=f (x )-mx +m 恰好有三个不同的零点,求实数m 的取值范围.解 因为对任意的x ∈R 都有f (x +2)=f (x -2),所以函数f (x )的周期为4.由在区间[-5,3]上函数g (x )=f (x )-mx +m 有三个不同的零点,知函数f (x )与函数h (x )=mx -m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f (x )与h (x )在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m <1-0-5-1,即-12≤m <-16.。

相关文档
最新文档