材料表征方法ppt课件

合集下载

材料表征技术ppt课件

材料表征技术ppt课件

1.空间点阵
F1-8空间点阵
30
莫塞莱定律
X射线荧光光谱分析和电子探针微区成分分 析的理论16 K射线的双重线
W靶: 0.0709nm 0.0714nm
K波长=? 加权平均
32
产生特征(标识)X射线的根本原因:内层电子的跃迁 • 激发源:高速电子、质子、中子、 X射线; • 每种元素都有特定波长的标识X射线:X射线光谱分析的原理
indexing, structure refinement and ultimately structure solving • Degree of orientation of the crystallites: texture analysis. • Deformation of the crystallites as a result of the production process: residual stress
• 要求与目标 正确选择方法、制订方案、分析结果 为以后掌握新方法打基础
• 课程安排
10
第一章 X射线的性质
• •1.1 引言 • •1.2 X射线的本质 • •1.3 X射线的产生及X射线管 • •1.4 X射线谱 • •1.5 X射线与固体物质相互作用
11
第一章 X射线的性质 1.1 引言
• 1895, (德,物)伦琴发现X射线 • 1912,(德,物)劳厄发现X射线在晶体 中的衍射
T2-15 特征X射线谱及管电压对特征谱的影响
27
特征X射线产生:能量阈值
EnRn2h(cZ)2
hn2 n1 En2 En1
激发--跃迁--能量降低
KL LK
辐射出来的光子能量
KL hh/c
激发所需能量--与原子核的结合能Ek

薄膜材料的表征方法-PPT

薄膜材料的表征方法-PPT

❖ 通过测量膜厚可以确定各种薄膜得沉积速率,即 以所测膜厚除以溅射时间得到平均沉积速率,因 此精确测量膜厚变显得尤为重要。
❖ 粗糙度仪法测膜厚得优点就是:
①直观―可以直接显示薄膜得几何厚度与表面(或 厚度)得不均匀;
②精确度高―在精确测量中,精度可达到0、5nm,通 常也能达到2nm,因此常用来校验其它膜厚测试方 法得测试结果;
来观测表面形貌。特别就
是二次电子因它来自样品
本身而且动能小,最能反映
样品表面层形貌信息。一
般都用它观测样品形貌。
图3-2 电子束与表面原子相互 特征X射线可供分析样品
作用图
得化学组分。
❖ 在扫描电子显微镜中,将样品发射得特征X射线送 入X射线色谱仪或X射线能谱仪可进行化学成份 分析。
❖ 当样品得厚度小于入射电子穿透得深度时,一部 分入射电子穿透样品从下表面射出。将这一系列 信号分别接受处理后,即可得到样品表层得各种 信息。SEM技术就是在试样表面得微小区域形成 影像得。下表列出了扫描电子显微镜可提供得样 品表层信息。
❖30keV左右得能量得电子束在入射到样品表面之后,将
与表面层得原子发生各种相互作用,产生二次电子、背散
射电子、俄歇电子、吸收电子、透射电子等各种信号(如
图3-2)。
从图3-2中瞧到,入射电子
束与样品表面相互作用可
产生7种信息。其中最常
用于薄膜分析得就是背散
射电子、二次电子与特征
X射线。前两种信息可用
❖ 扫描电子显微镜就是目前薄膜材料结构研究最直 接得手段之一,主要因为这种方法既像光学金相显 微镜那样可以提供清洗直观得形貌图象,同时又具 有分辨率高、观察景深长、可以采用不同得图象 信息形式、可以给出定量或半定量得表面成分分 析结果等一系列优点。扫描电子显微镜就是目前 材料结构研究得最直接得手段之一。

材料的测试、表征方法和技巧ppt课件

材料的测试、表征方法和技巧ppt课件
用) 共聚焦方式,适于表面或层面分析,高信噪比 能适合黑色和含水样品 高、低温及高压条件下测量 光谱成像快速、简便,分辨率高 仪器18稳固,体积适中,维护成本低,使用简单
红外光谱
光谱范围400-4000cm-1 分子振动谱 吸收,直接过程,发展较早
平衡位置附近偶极矩变化不为零 与拉曼光谱互补 实验仪器是以干涉仪为色散元件 测试在中远红外进行,不收荧光干扰
方法一:纵坐标为吸收强度,横坐标为波长λ(m) 和波数1/λ,单位:cm-1 。可以用峰数,峰位,峰
形,峰强来描述。 纵坐标是:吸光度A 应用:有机化合物
的结构解析 定性:基团的特征
吸收频率; 定量:特征峰的强

6
方法二:纵坐标是百分透过率T%。百分透过率的定义 是辅射光透过样品物质的百分率,即 T%= I/I0×100%, I是透过强度,Io为入射强度。
峰数 峰数与分子自由度有关。无瞬间偶基距变化 时,无红外吸收
峰强 瞬间偶极矩大,吸收峰强;键两端原子电负 性相差越大(极性越大),吸收峰越强
由基态跃迁到第一激发态,产生一个强的吸收峰, 基频峰
由基态直接跃迁到第二激发态,产生一个弱的吸收 峰,倍1频1 峰
有机化合物基团的特征吸收
化合物红外光谱是各种基团红外吸收的叠加
各种基团在红外光谱的特定区域会出现对应的吸收 带,其位置大致固定
受化学结构和外部条件的影响,吸收带会发生位移, 但综合吸收峰位置、谱带强度、谱带形状及相关峰 的存在,可以从谱带信息中反映出各种基团的存在 与否
12
常见基团的红外吸收带
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X

《材料结构的表征》课件

《材料结构的表征》课件
《材料结构的表征》PPT 课件
欢迎来到《材料结构的表征》PPT课件!本课程将介绍材料结构的不同表征 方法,包括X射线衍射、电子显微镜技术、原子力显微镜技术等。
1. X射线衍射
1 原理
X射线通过物质后发生衍 射,通过分析衍射图案来 确定物质结构。
2 应用
X射线衍射广泛应用于晶 体学、材料科学等领域, 可用于分析晶体结构和晶 格参数。
原理
通过测量物质对不同波长的红外辐射的吸收、发射或散射,来确定物质的成分和结构。
应用
红外光谱广泛应用于化学、材料科学等领域,可用于鉴定化合物和分析有机物的功能基团。
示例
通过红外光谱可以鉴定食品中的添加剂,如防腐剂、甜味剂等。
5. 核磁共振
原理 应用 示例
核磁共振通过测量物质中原子核的能级跃迁和自 旋相互作用,得到原子核的谱线信息。
通过测量束缚与散射电子的能量 分布,研究材料表面的次表面组 分。
在湿润、低真空等环境下观察样品的显微结构。
3. 原子力显微镜技术
ห้องสมุดไป่ตู้
扫描隧道显微镜(STM)
原子力显微镜(AFM)
磁力显微镜
利用针尖与样品之间的隧道效应, 实现原子级别的表面成像。
通过感知样品表面的原子力变化, 实现高分辨率的微观成像。
利用样品表面的磁场分布,观察 磁性材料的磁场图像。
4. 红外光谱
3 示例
通过X射线衍射技术可以 确定金属合金中不同相的 含量和相间距离。
2. 电子显微镜技术
1
扫描电子显微镜(SEM)
利用射出的电子束与样品表面的相互作用,获取高分辨率的表面形貌信息。
2
透射电子显微镜(TEM)
通过射入样品的电子束与样品内部的相互作用,获取材料的内部结构信息。

多孔材料孔结构表征ppt课件

多孔材料孔结构表征ppt课件

3. 孔结构的表征技术
3. 孔结构的表征技术
总结 显微法是研究100nm以上的大孔较为有 效的手段 ,能直接提供全面的孔结构信息。 对于孔径在30nm以下的纳米材料,常用气体 吸附法来测定其孔径分布;而对于孔径在 100μm以下的多孔体,则常用压汞法来测定 其孔径分布。
谢谢观赏! Thanks!
多孔材料孔结构表征
目录
1 引言 2 多孔材料的特性 3 孔结构的表征技术
1.引言
多孔材料普遍存在于我们的周围,在 结构、缓冲、减振、隔热、消音、过滤等 方面发挥着重大的作用。高孔率固体刚性 高而密度低,故天然多孔固体往往作为结 构体来使用,如木材和骨骼;而人类对多 孔材料使用,不但有结构的,而且还开发 了许多功能用途。
①孔径; ②孔径分布; ③孔形态; ④孔通道特性等
3. 孔结构的表征技术
3.1.显微法 显微法就是采用扫描电子显微
镜或透射电子显微镜对多孔陶瓷进 行直接观察的方法。该法是研究 100nm以上的大孔较为有效的手段 ,能直接提供全面的孔结构信息。 但显微法观察的视野小,只能得到 局部信息;而透射电子显微镜制样 较困难,孔的成像清晰度不高;显 微法是属于破坏性试验等,这些特 点使它成为其他方法的辅助手段, 用于提供有关孔形状的信息。
我们以沸石为例,现有制得的两 种沸石NaX和MNaX。
采用扫描电镜、X 射线衍射、氮 气吸附/脱附等对样品的结构表征结果
2. 孔结构的表征技术
图为NaX 和MNaX 的XRD 图谱,与标准 样对比未观察到任 何其它的杂峰, 说 明它们具有沸石固 有的FAU 拓扑结构 。MNaX 的衍射峰表 现出宽化的迹象, 说明它晶粒小。
MNaX体现出Ⅰ和Ⅳ型结合的特征,在较低的相对压力 (p/p0<0.01)下吸附量随压力的增大迅速上升, 即微孔填 充, 而后吸附量随压力的增加继续缓慢增加, 并当相对压 力达到p/p0≈0.4 时吸附量随压力增加迅速增加,吸附和脱 附过程变得不可逆, 即出现毛细凝聚现象,等温线上出 现明显的滞后环, 表现出典型的介孔材料特征。

材料结构表征与应用ppt课件

材料结构表征与应用ppt课件
2表面结构定性分 析与表面化学研究
固体样品探 测深度
约0.4~2nm(俄歇电 约0.5~2.5nm(金属 子能量50~2000eV范 及金属氧化物);约 围内)(与电子能量 4~10nm(有机化合 及样品材料有关) 物和聚合物)。
28
X射线衍射(X-ray diffraction,XRD)
XRD ,通过对材料进行X射线衍射,分析其衍射图谱, 获得材料的成分、材料内部原子或分子的结构或形态 等信息的研究手段。
XRD可以做定性,定量分析。即可以分析合金里面的相 成分和含量,可以测定晶格参数,可以测定结构方向、 含量,可以测定材料的内应力,材料晶体的大小等等。 一般主要是用来分析合金里面的相成分和含量。
10
三种组织分析手段的比较
扫描探针显微镜 扫描电子显微镜
观察倍率 ×10000000 ×1000000
×100000
×10000
光学显微镜
×1000
×100
分辨率
1000 0 10
1000 1
×10
100
10
1
0.1 nm
0.1
0.01
0.001 0.0001 μm
11
光学和电子显微镜
光学显微镜是利用光学原理,把人眼所不能分 辨的微小物体放大成像,以供人们提取微细结 构信息的光学仪器
应力分析等; (2)相变过程与产物的X射线研究:相变过程中产物
(相)结构的变化及最终产物、工艺参数对相变的影 响、新生相与母相的取向关系等; (3)固溶体的X射线分析:固溶极限测定、点阵有序化 (超点阵)参数、短程有序分析等; (4)高分子材料的X射线分析:高聚物鉴定、晶态与非 晶态及晶型的确定、结晶度测定、微晶尺寸测定等。

纳米材料的表征方法ppt课件

纳米材料的表征方法ppt课件
3
透射电子显微镜(TEM)的主要功能
研究纳米材料的 结晶情况,
观察纳米材料的 形貌,
分散情况 评估纳米粒子的
粒径。
4
扫描电子显微镜(SEM)
SEM是一种多功能的电子显微镜分析仪器. 1935年卡奴提出了SEM的工作原理 1942年制造出了世界上第一台SEM 现代的SEM是剑桥大学欧特利与学生在1948-
对表面进行纳米加工,构建新一代的纳米电子器件.
8
STM的优点
它有原子量级的极高分辨率(横向可达0.1nm,纵向可达 0.01nm),即能直接观察到单原子层表面的局部结构 。 比如表 面缺陷、表面吸附体的形态和位置等.
STM能够给出表面的三维图像 STM可在不同的环境条件下工作,包括真空、大气、低温,甚至
纳米材料的表征方法
向利
1
纳米材料的表征
表征技术是指物质结构与性质及其应用的有关分析、 测试方法,也包括测试、测量工具的研究与制造。
表征的内容包括材料的组成、结构和性质等。 组成:构成材料的化学元素及其相关关系 结构:材料的几何学、相组成和相形态等 性质:指材料的力学、热学、磁学、化学等
2
纳米材料表征手段
1.形貌,电子显微镜(TEM、SEM),普通的是电子枪 发射光电子,还有场发射的,分辨率和适应性更好;
2.结构,一般是需要光电电子显微镜,扫描电子显 微镜不行
3.晶形,单晶衍射仪,XRD,判断纳米粒子的晶形及 结晶度
4.组成,一般是红外,结合四大谱图,判断核壳组பைடு நூலகம்成,只作为佐证
5.性能,光-紫外,荧光;电--原子力显微镜 (AFM),拉曼;磁--原子力显微镜或者专用的仪器
样品可浸在水中或电解液中,所以适用于研究环境因素对样品表 面的影响. 可研究纳米薄膜的分子结构.

材料表征方法拉曼光谱课件

材料表征方法拉曼光谱课件

THANKS
数据分析
结合样品的性质和实验目 的,对特征峰进行定性和 定量分析,得出有关材料 结构和性质的结论。
03
拉曼光谱在材料表征中的应 用
晶体结构分析
总结标词题
拉••曼光文文谱字字能内内够容容通过分 析•材料文中字特内定容振动模 式来• 确文定字其内晶容体结构。
详细描述
拉曼光谱可以检测到 材料中特定分子的振 动模式,这些振动模 式与晶体的对称性和 振动频率密切相关, 从而可以推断出材料
样品安装
将处理好的样品放置在拉曼光谱仪的样品台上,确保样品与激光光路对准。
数据采集
启动光谱仪,收集样品的拉曼散射信号,记录光谱数据。
实验数据处理与分析
01
02
03
数据预处理
对采集到的原始数据进行 整理、平滑和背景校正等 处理,以提高数据质量。
特征峰识别
根据拉曼光谱的原理,识 别出与样品相关的特征峰, 并确定其对应的振动模式。
优点
可以提供分子振动和转动信息,适用 于各种类型的材料,包括非晶体、部 分晶体和有机/无机材料。
05
拉曼光谱的未来发展与展望
高灵敏度拉曼光谱技术
总结词
随着科学研究的深入,对材料表征的精度和灵敏度要求越来 越高,高灵敏度拉曼光谱技术成为未来的发展趋势。
详细描述
高灵敏度拉曼光谱技术通过采用先进的激光技术和信号处理 方法,提高了拉曼散射的信号强度和信噪比,从而能够更准 确地检测微弱信号,对痕量物质和低浓度样品进行有效的表征。
的晶体结构。
总结词
拉曼光谱在晶体结构 分析中具有高精度和
高灵敏度。
详细描述
拉曼光谱的分辨率高, 可以区分不同晶体的 振动模式,从而准确 地确定材料的晶体结 构。此外,拉曼光谱 的灵敏度高,可以检 测到微小的晶体结构

材料微观组织表征及性能检测分析微观组织表征部分ppt课件

材料微观组织表征及性能检测分析微观组织表征部分ppt课件
12
引言
材料表征与检测技术
材料的组织表征技术及方法
场离子显微镜(FIM)利用半径为50nm探针尖端表面原子层的轮廓边缘 电场的不同,借助氮、氖等惰性气体产生的电离化,可以直接显示晶界或 位错露头处原子排列及气体原子在表面的吸附行为,可达0.2~0.3 nm的分 辨率。
20世纪80年代初期发展的扫描隧道显微镜(STM)和80年代中期发展的 原子力显微镜(SFM),克服了透射电子显微镜景深小、样品制备复杂等缺 点,借助一根针尖与试样表面之间隧道效应电流的调控,在将针尖在表面 作x,y方向扫描的同时,在保持隧道效应电流恒定的电路控制下,针尖将 依表面的原子起伏而在z方向上下游动。这种移动经电信号放大并由计算 机进行图像处理,可以在三维空间达到原子分辨率,得到表面原子分布的 图像,其纵、横向分辨率分别达到0.05及0.2nm,为材料表面表征技术开 拓了崭新的领域。与此技术有关的利用近程作用力而设计出来的原子力显 微镜等也在发展,在探测表面深层次的微观结构上显示了无与伦比的优越 性。在有机分子的结构中,应用STM已成功观察到苯在Rh(3+)晶面的单 层吸附,并且显示清晰的Kekule环状结构。
10
引言
材料表征与检测技术
材料的结构测定技术及方法
中子受物质中原子核散射,所以轻重原子对中子的散射能力差别比较 小,中子衍射有利于测定轻原子的位置,如液氮温区的新型超导体的超导 临界温度与晶体结构中氧原子空位有一定关系,目前X射线、电子衍射、 高分辨像对氧原子空位的测定都无能为力,中子衍射则可以提供较多的信 息。
景深小 放大倍率有限 无法直接定量
20
金相分析及组织表征
激光扫描共聚焦显微分析技术
激光扫描共聚焦显微镜
激光共聚焦扫描显微镜(laser confocal scanning microscope,LSCM) 用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光 收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物 点。由于激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高 的分辨力,大约是普通光学显微镜的3倍。系统经一次调焦,扫描限制在样 品的一个平面内。调焦深度不一样时,就可以获得样品不同深度层次的图 像,这些图像信息都储于计算机内,通过计算机分析和模拟,就能显示被 观察样品的立体结构。激光共聚焦扫描显微镜是当今世界最先进的细胞生 物学分析仪器,近年也在材料科学领域中得到广泛应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 为达此目的纳米材料成分分析按照分析手段不同 又分为光谱分析质谱分析和能谱分析;
01.03.2020
清华大学化学系材料与表面实验室
8
纳米材料成份分析种类
光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离子 体原子发射光谱ICP-OES, X-射线荧光光谱XFS 和X-射 线衍射光谱分析法XRD; 质谱分析
• 纳米科学和技术是在纳米尺度上(0.1nm~100nm 之间)研究物质(包括原子、分子)的特性和相互 作用,并且利用这些特性的多学科的高科技。
• 纳米科学大体包括纳米电子学、纳米机械学、纳 米材料学、纳米生物学、纳米光学、纳米化学等 领域。
01.03.2020
清华大学化学系材料与表面实验室
3
纳米材料分析的意义
01.03.2020
清华大学化学系材料与表面实验室
12
电感耦合等离子体质谱法
• ICP-MS 是利用电感耦合等离子体作为离子源的 一种元素质谱分析方法;该离子源产生的样品离 子经质谱的质量分析器和检测器后得到质谱;
• 检出限低(多数元素检出限为ppb-ppt级) • 线性范围宽(可达7个数量级) • 分析速度快(1分钟可获得70种元素的结果) • 谱图干扰少(原子量相差1可以分离),能进行
• 本低强度低,分析灵敏度高,其检测限达到10- 5~10-9g/g(或g/cm3)
• 几个纳米到几十微米 的薄膜厚度测定;
01.03.2020
清华大学化学系材料与表面实验室
14
表面与微区成份分析
• X射线光电子能谱;(10微米,表面) • 俄歇电子能谱;(6nm,表面) • 二次离子质谱;(微米,表面) • 电子探针分析方法;(0.5微米,体相) • 电镜的能谱分析;(1微米,体相) • 电镜的电子能量损失谱分析;(0.5nm)
纳米材料的测试与表征
前言
• 纳米材料分析的特点
• 纳 纳米材料的粒度分析
• 纳米材料的形貌分析
• 纳米材料的界面分析
01.03.2020
清华大学化学系材料与表面实验室
2
纳米材料分析的特点
• 纳米材料具有许多优良的特性诸如高比表面、高 电导、高硬度、高磁化率等;
• ICP是利用电感耦合等离子体作为激发源,根据处于激 发态的待测元素原子回到基态时发射的特征谱线对待测 元素进行分析的方法;
• 可进行多元素同时分析,适合近70 种元素的分析; • 很低的检测限,一般可达到10-1~10-5μg/cm-3 • 稳定性很好,精密度很高 ,相对偏差在1%以内 ,定量
分析效果好;线性范围可达4~6个数量级 • 对非金属元素的检测灵敏度低;
主要包括电感耦合等离子体质谱ICP-MS 和飞行时间二次 离子质谱法TOF-SIMS 能谱分析
主要包括X 射线光电子能谱XPS 和俄歇电子能谱法AES
01.03.2020
清华大学化学系材料与表面实验室
9
体相成分分析方法
• 纳米材料的体相元素组成及其杂质成分的分析方 法包括原子吸收原子发射ICP, 质谱以及X 射线 荧光与衍射分析方法;
• 因此确定纳米材料的元素组成测定纳米材料中杂质 的种类和浓度是纳米材料分析的重要内容之一。
01.03.2020
清华大学化学系材料与表面实验室
6
01.03.2020
图1 不同结构的CdSe1-XTeX 量 子点的结构和光谱性质示意图
1核壳结构的CdTe-CdSe 量子点 2 核壳结构的CdSe-CdTe 量子点 3 均相结构的CdSe1-XTeX 量子点 4 梯度结构的CdSe1-XTeX 量子点
同位素分析;
01.03.2020
清华大学化学系材料与表面实验室
13
X-射线荧光光谱分析法
• 是一种非破坏性的分析方法,可对固体样品直接 测定。在纳米材料成分分析中具有较大的优点;
• X 射线荧光光谱仪有两种基本类型波长色散型和 能量色散型;
• 具有较好的定性分析能力,可以分析原子序数大 于3的所有元素。
检测限低 ,ng/cm3,10-10-10-14g
• 测量准确度很高 ,1%(3-5%)
• 选择性好 ,不需要进行分离检测
• 分析元素范围广 ,70多种
• 难熔性元素,稀土元素和非金属元素 , 不能同时进行 多元素分析;
01.03.2020
清华大学化学系材料与表面实验室
11
电感耦合等离子体发射光谱法ICP
• 其中前三种分析方法需要对样品进行溶解后再进 行测定,因此属于破坏性样品分析方法。
• 而X 射线荧光与衍射分析方法可以直接对固体样 品进行测定因此又称为非破坏性元素分析方法。
01.03.2020
清华大学化学系材料与表面实验室
10
原子吸收分析特点
• 根据蒸气相中被测元素的基态原子对其原子共振辐射 • 的吸收强度来测定试样中被测元素的含量; • 适合对纳米材料中痕量金属杂质离子进行定量测定,
• 纳米技术与纳米材料属于高技术领域,许多研究人 员及相关人员对纳米材料还不是很熟悉,尤其是对 如何分析和表征纳米材料,获得纳米材料的一些特 征信息。
• 主要从纳米材料的成份分析,形貌分析,粒度分析, 结构分析以及表面界面分析等几个方面进行了简单 的介绍。
• 力图通过纳米材料的研究案例来说明这些现代技术 和分析方法在纳米材料表征上的具体应用。
01.03.2020
清华大学化学系材料与表面实验室
15
电子探针分析方法
上述四种量子点的平均直径为 5.9nm 组成为CdSe0.6Te0.4
清华大学化学系材料与表面实验室
7
成分分析类型和范围
• 纳米材料成分分析按照分析对象和要求可以分为 微量样品分析和痕量成分分析两种类型;
• 纳米材料的成分分析方法按照分析的目的不同又 分为体相元素成分分析表面成分分析和微区成分 分析等方法;
01.03.2020
清华大学化学系材料与表面实验室
4
纳米材料的成份分析
01.03.2020
清华大学化学系材料与表面实验室
5
成分分析的重要性
• 纳米材料的光电声热磁等物理性能与组成纳米材料 的化学成分和结构具有密切关系;
1. TiO2纳米光催化剂掺杂C,N例子说明
2. 纳米发光材料中的杂质种类和浓度还可能对发光 器件的性能产生影响据报;如通过在ZnS 中掺杂 不同的离子可调节在可见区域的各种颜色
相关文档
最新文档