2019版七年级数学下册 6 实数 6.1 平方根导学案3(新版)新人教版
6_1_2 用计算器求算术平方根及其大小比较(优质学案)
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学七年级下册6.1.2 用计算器求算术平方根及其大小比较 导学案一、学习目标:1.会用计算器求算术平方根;2.掌握算术平方根的估算及大小比较. 重点:会比较两个数的算术平方根的大小.难点:会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.二、学习过程: 课前自测求下列各数的算术平方根,并用“<”分别把被开方数和算术平方根连接起来. 1,4,9,16,25.【归纳】被开方数_______,对应的算术平方根也______. 若a >b >0,则_______________. 自主学习探究:能否用两个面积为1dm 2的小正方形拼成一个面积为2dm 2的大正方形?你知道这个大正方形的边长是多少吗?小正方形的对角线的长是多少呢?2有多大呢?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【归纳】事实上,2=1.414213562373…,它是一个_______________.(无限不循环小数是指小数位数_______,且小数部分__________的小数.)π也是一个无限不循小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循小数.典例解析例1.用计算器求下列各式的值:(1) 3136 (2) 2 (精确到0.001)【针对练习】用计算器求下列各式的值:(1) √1369 (2) √101.2036 (3) √5 (精确到0.01)合作探究 探究:(1)利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?规律:_____________________________________________________________ (2) 用计算器计算3≈______(精确到0.001),并利用你在(1)中发现的规律说03.0≈______,300≈______,30000≈______的近似值.2学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________你能根据3的值说出30是多少吗?典例解析例2.已知面积为37的正方形的边长为x ,则x 的取值范围是( ) A .4<x<5 B .5<x<6C .6<x<7D .7<x<8【针对练习】估计√17−1的值在( ) A .1到2之间 B .2到3之间C .3到4之间D .4到5之间 例3.通过估算比较下列各组数的大小: (1) √5 与 1.9; (2) 216 与 1.5.【针对练习】比较下列各组数的大小:(1)√8 与 √10; (2)√65 与 8; (3)√5−12 与 0.5; (4)√5−12 与 1.例4.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁出一块面积为300cm 2的长方形纸片,使它的长宽之比为3:2.她不知能否裁得出来,正在发愁.小明见了说“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”,你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________达标检测1.估计√11的值在( )A.1与2之间B.2与3之间C.3与4之间D.4与5之间 2.下列式子中,正确的是( )A.10<√127<11B.11<√127 <12C.12<√127 <13D.13<√127 <14 3.下列各数中,最大的数是( )A.-1B.0C.1D.√2 4.估算√31-2的值( )A.1与2之间B.2与3之间C.3与4之间D.4与5之间5.已知√6≈2.449,不再利用其他工具,能确定出近似值的是( )A.√0.6B.√60C.√600D. √6000 6.用计算器计算下列各式的值(精确到0.001). (1)√23≈______; (2)√26.5≈______; (3)√106≈______; (4)√0.56≈_______. 7.(1)已知√53≈7.2801,则√5300≈_______. (2)已知√2015≈44.889,则√20.15≈________. (3)已知√7≈2.65,√70≈8.37,则√0.007≈_________. 8.已知m 、n 是连续整数,m<√21<n,则m=____,n=____. 9.√20的整数部分是4,√20的小数部分是20-4,仿此填空: (1)√40的整数部分是____, 小数部分是_______; (2)√70的整数部分是____,小数部分是_________.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________10.设2+√6的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x-1的算术平方根.11.勤俭节约是中国人民的传统美德,涛涛的爷爷是能工巧匠,他把两张破损了一部分的桌面重新拼成一张完整的正方形桌面,其面积为169dm 2,已知他用的两张小桌面也是锯成了正方形的桌面,其中一张是边长为5dm 的小板子,试问另一张较大的桌面的边长应为多少才能拼出面积为169dm 2的桌面?12.(1)填写下表,观察被开方数a 的小数点与算术平方根√a 的小数点的移动规律:(2)根据你发现的规律填空:①已知√396.01=19.9,则√3.9601=_____________. ②已知√m =0.345,√n =34.5,则n 是m 的______倍.学习笔记记录区___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________。
《平方根》精品导学案 人教版七年级数学下册学案
初中数学七年级下册第六章实数学案〔人教版〕学习目标1.了解算术平方根的概念, 会求一些数的算术平方根, 并用算术平方根的符号表示2.理解算术平方根的非负性新知形成知识点一、平方根的概念如果一个数的平方等于a, 这个数就叫做a的平方根, 记作知识点二、一个正数有两个平方根, 它们互为相反数;0有一个平方根, 它是0本身;负数没有平方根知识点三、算术平方根的概念一个正数a的正的平方根, 叫做a的算术平方根.a(a≥0)稳固练习例1.一个正数的两个平方根分别是2a-1与-a+2, 那么a的值为()A.1B. -2C.2D. -1D【解析】解:∵一个正数的两个平方根分别是2a-1与-a+2,∵2a-1+〔-a+2〕=0解之:a=-1.故答案为:D.【分析】根据正数的两个平方根互为相反数, 可建立关于a的方程, 解方程求出a的值.例2在数学课上, 老师将一长方形纸片的长增加2 √3cm, 宽增加7 √3cm, 就成为了一个面积为192cm²的正方形, 那么原长方形纸片的面积为()A.18cm²B.20cm²C.36cm²D.48cm²A【解析】设正方形的边长为acm, 那么a2=192解得a=8√3〔只取正值〕∵原长方形的面积为:〔8√3-2√3〕×〔8√3-7√3〕=18cm 2. 故答案为:A.【分析】设正方形的边长为acm, 先利用正方形的面积公式求出a, 即可求出原长方形的长和宽, 然后利用长方形的面积公式求解即可.的算术平方根是()A. 5B. ±5C. −5D. 25的算术平方根为〔〕.A. ±8B. 8C. -8D. 16 3.以下说法错误的选项是〔〕A. 9的平方根是±3B. 一个数的绝对值一定是正数C. 单项式5x 2y 3z 与−2x 2y 3z 是同类项D. 平方根是本身的数只有04.在计算器上按键:, 显示的结果为〔〕A. -5B. 5C. -25D. 25 5.“3625的平方根是± 65〞, 以下各式表示正确的选项是〔〕A. √3625=± 65B. ± √3625=± 65C. √3625= 65D. ± √3625= 656.算术平方根等于它本身的数是〔〕A. 1和0B. 0C. 1D. ±1和0 7.当x=0时, 二次根式√4−2x 的值是( )A. 4B. 2C. √2D. 0 8.一个正数的两个平方根分别为a +3和4−2a , 那么这个正数为〔〕A. 7B. 10C. -10D. 100 9.一个正偶数的算术平方根是m , 那么和这个正偶数相邻的下一个正偶数的算术平方根是〔〕 A. m +2B. m +√2C. √m 2+2D. √m +2 10.根据表中的信息判断, 以下语句中正确的选项是 〔〕A. √25.281=B.235的算术平方根比小C.只有3个正整数n满足15.5<√n<15.6D.根据表中数据的变化趋势, 可以推断出2将比256增大参考答案1. A2. B3. B4. A5. B6. A7. B8. D9. C 10. C第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x表示乘公共汽车的站数, y表示应付的票价.x/站12345678910y/元1112233344A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h(单位:m)与上的台阶数m(单位:个)之间的函数关系式是()A .h =6mB .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2〕成反比例函数关系〔如图〕.当该物体与地面的接触面积为m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小,此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…如果按上述方法测得一副老花镜的镜片与光斑的距离为m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mg.研究说明当每立方米空气中含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.实验数据显示, 一般成人喝半斤低度白酒后, 小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕成正比例;小时后〔包括小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式〔2〕当每立方米空气中的含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?〔3〕当室内空气中的含药量每立方米不低于mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是()A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是() 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是() A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是() A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
七数导学案 平方根
七年级数学下册第六章《实数》导学案第1课时 6.1平方根(1) 3、12【学习目标】1.了解数的算术平方根的定义,会用根号表示一个数的算术平方根,并理解算术平方根的双重非负性2.能利用算术平方根的定义求一个非负数的算术平方根 【学习重点】了解算术平方根的概念、性质、会用根号表示一个正数的算术平方根 【学习难点】理解算术平方根的双重非负性一、自学教材40页,把书上的表格填写完整并回答下列问题:1. 一般地,如果一个___ 数x 的平方等于a ,即2x =a ,那么这个______叫做a 的_________.a 的算术平方根记为 ,读作“ ”,a 叫做 .规定:______的算术平方根是0. 记作0=2.判断下列语句是否正确?①5是25的算术平方根( ) ②-6是36的算术平方根( ) ③0.01是0.1的算术平方根( ) ④-5是-25的算术平方根( ) 3.3的算术平方根为 ,4的算术平方根为 二、自学例14、仿照例1,求下列各数的算术平方根: (1)100;(2) 2536;(3) 0.01 ;⑷ 0;三、探究 :四、1、a 可以取任何数吗? 五、2是什么数? 讨论结果:1、(1)被开方数a 是________,即____(2)是_______,即____. 练习、判断下列各式中的有理数是否有意义。
4)1(- 4)2(- 4)3(--24)4()(-- 24)5(-四、[变式训练]想一想:下列式子表示什么意思?你能求出它们的值吗?﹙1﹚25﹙2﹙3﹙4五、当堂检测1、41页练习1、2题。
2.非负数a 的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是_________,____,_____=== 能力提升:1.若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-4927=,则x 的算术平方根是( )3、若一个数的算术平方根等于它本身,则这个数是((A )X ≥0 (B )X >O (C ) X >-2 (D ) X ≥-24、若X+2是一个数的算术平方根,则X 的范围是( )(A )X ≥0 (B )X >O (C ) X >-2 (D ) X ≥-25、a 的算术平方根是3,b 是16的算术平方根,a=___,b=_____则a -b =___,2.非负数a的算术平方根表示为___,225的算术平方根是____,0.64-的算术平方根____,0的算术平方根是_________,3. ____,_____===七年级数学下册第六章《实数》导学案平方根(2)一﹑学习目标1、会用计算器求数的算术平方根2、能用有理数估计一个无理数的大致范围教学重点、难点重点:用有理数估计一个无理数的大致范围。
人教版七年级数学下册教案 6.1 平方根(3课时)
第六章实数教材简析本章的内容包括:平方根、立方根、实数.在学习了有理数的基础上,加强与实际的联系,从现实世界中抽象出一种不同于有理数的数,即无理数,开平方运算与开立方运算也是实际中经常用到的两种运算;注意将新旧知识进行联系与类比,数的范围由有理数扩充到实数,与有理数有关的运算法则、运算律、运算顺序在实数范围内都仍然适用.在中考中,本章的考点有平方根、立方根的定义及运算,实数的运算及大小比较等,考查基本概念及基本计算.教学指导【本章重点】平方根、算术平方根、立方根、无理数、实数的有关概念和运算.【本章难点】对无理数意义的理解、用有理数估计无理数的方法及实数与数轴上点的对应关系.【本章思想方法】1.体会分类的数学思想,如:对实数进行分类.2.掌握分类讨论思想,如:由于一个正数的平方根有两个,且这两个数互为相反数,因此与平方根有关的题目往往需要进行分类讨论.3.掌握转化思想,如:学习了平方根和立方根后,运用转化思想将某些二次方程、三次方程转化为求平方根、立方根的问题求解.4.体会数形结合思想,如:数的范围由有理数扩充到实数,实数与数轴上的点建立了一一对应关系,这样可以通过观察“形”的特点,解答一些关于实数的比较抽象的问题.课时计划6.1平方根3课时6.2立方根1课时6.3实数1课时6.1 平方根第1课时算术平方根教学目标一、基本目标【知识与技能】1.了解算术平方根的概念,会用根号表示一个数的算术平方根.2.根据算术平方根的概念求出非负数的算术平方根.3.了解算术平方根的性质.【过程与方法】加强概念形成过程的教学,提高学生的思维水平,鼓励学生进行探索和交流,培养他们的创新意识和合作精神.【情感态度与价值观】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣.二、重难点目标【教学重点】算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P40的内容,完成下面练习.【3 min反馈】1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.规定:0的算术平方根是0.3.算术平方根具有双重非负性:(1)a≥0;(2)a≥0.4.求下列各数的算术平方根:(1)81;(2)0.25;(3)23.解:(1)9.(2)0.5.(3)23.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】求下列各数的算术平方根:(1)64;(2)0.36;(3)214;(4)412-402.【互动探索】(引发学生思考)如何根据算术平方根的定义求非负数的算术平方根? 【解答】(1)∵82=64,∴64的算术平方根是8. (2)∵0.62=0.36,∴0.36的算术平方根是0.6. (3)∵⎝⎛⎭⎫322=94=214,∴214的算术平方根是32. (4)∵412-402=81,92=81,∴81=9.∵32=9, ∴412-402的算术平方根是3.【互动总结】(学生总结,老师点评)(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.活动2 巩固练习(学生独学) 1.5的算术平方根为( A ) A.5 B .25 C .±25D .±52.一个数的算术平方根是34,这个数是( C )A.32 B .34C.916D .不能确定3.要切一块面积为0.81 m 2的正方形钢板,它的边长是0.9m. 4.4的算术平方根是 2.5.已知3+a 的算术平方根是5,求a 的值.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 活动3 拓展延伸(学生对学)【例2】已知x 、y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.【互动探索】算术平方根和平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得出什么结论?【解答】由题意,得x -1=0,y -2=0, 所以x =1,y =2. 所以x -y =1-2=-1.【互动总结】(学生总结,老师点评)算术平方根、绝对值和平方式都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a性质:双重非负性⎩⎨⎧a ≥0a ≥0练习设计请完成本课时对应练习!第2课时 估算算术平方根教学目标 一、基本目标 【知识与技能】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识. 3.会用计算器求一个数的算术平方根. 【过程与方法】体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数. 【情感态度与价值观】培养学生的探究能力和归纳问题的能力. 二、重难点目标 【教学重点】夹值法及估计一个(无理)数的大小. 【教学难点】夹值法及估计一个(无理)数的大小的思想. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P41~P44的内容,完成下面练习. 【3 min 反馈】1.无限不循环小数是指小数位数无限,且小数部分不循环的小数.实际上,许多正有理数的算术平方根(例如3,5,7)都是无限不循环小数.2.被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律:当被开方数扩大(或缩小)到原来的100倍⎝⎛⎭⎫1100,10000倍⎝⎛⎭⎫110000…时,其算术平方根相应地扩大(或缩小)到原来的10倍⎝⎛⎭⎫110,100倍⎝⎛⎭⎫1100… 3.用计算器求一个正有理数的算术平方根的方法: 大多数计算器都有 键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON 键开机,再按键、“被开方数”、=,即可显示“算术平方根”. 4.与37最接近的整数是( B ) A .5 B .6 C .7D .8环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】通过估算比较下列各组数的大小: (1)5与1.9; (2)6+12与1.5. 【互动探索】(引发学生思考)(1)估算5的大小,或先求1.9的平方,再比较5与1.92的大小;(2)先估算6的大小,再比较6与2的大小,从而进一步比较6+12与1.5的大小.【解答】(1)(方法一)因为5>4,所以5>4,即5>2,所以5>1.9. (方法二)因为1.92=3.61,3.61<5,所以5>1.9.(2)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.【互动总结】(学生总结,老师点评)比较两个数的大小常用方法有:①作差比较法;②作商比较法;③移因数于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.活动2 巩固练习(学生独学)1.估计5+1的值,应在(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.估算19-2的值(B)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.计算:(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).解:(1)1225=35.(2)36.42≈6.035.(3)13≈3.606.活动3拓展延伸(学生对学)【例2】全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?【互动探索】(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.【解答】(1)当t=16时,d=7×16-12=7×2=14.即冰川消失16年后苔藓的直径是14厘米.(2)当d=35时,即7×t-12=35,所以t-12=25,解得t=37.即冰川约是在37年前消失的.【互动总结】(学生总结,老师点评)本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.环节3课堂小结,当堂达标(学生总结,老师点评)1.夹值法及估计一个(无理)数的大小.2.用计算器求一个正数的算术平方根.练习设计请完成本课时对应练习!第3课时平方根教学目标一、基本目标【知识与技能】掌握数的开方的意义、平方根的意义、平方根的表示方法.【过程与方法】通过带领学生探究一个数的平方根,使学生理解数的开方、平方根的概念.【情感态度与价值观】培养学生的探究能力和归纳问题的能力.二、重难点目标【教学重点】平方根的概念.【教学难点】求一个数的平方根.教学过程环节1自学提纲、生成问题【5 min阅读】阅读教材P44~P46的内容,完成下面练习.【3 min反馈】1.一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根或叫二次方根.也就是说,如果x2=a,那么x叫做a的平方根.2.一个正数有两个平方根,且它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.3.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.4.下列说法不正确的是(C)A.-2是2的平方根B.2是2的平方根C .2的平方根是 2D .2的算术平方根是 2 5.求下列各数的平方根: 16,0,49,242.解:16的平方根是±4. 0的平方根是0. 49的平方根是±23. 242的平方根是±24. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学) 【例1】求下列各数的平方根: (1)12425; (2)0.0001; (3)(-4)2; (4)81.【互动探索】(引发学生思考)把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.【解答】(1)∵12425=4925,⎝⎛⎭⎫±752=4925,∴12425的平方根是±75,即±12425=±75. (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01. (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4. (4)∵(±3)2=9=81,∴81的平方根是±3.【互动总结】(学生总结,老师点评)正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【例2】已知一个正数的两个平方根分别是2a +1和a -4,求这个数.【互动探索】(引发学生思考)一个正数的平方根有两个,它们之间有什么关系呢? 【解答】由于一个正数的两个平方根分别是2a +1和a -4,则有2a +1+a -4=0. 即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.【互动总结】(学生总结,老师点评)一个正数的平方根有两个,它们互为相反数,即它们的和为零.活动2 巩固练习(学生独学)1.关于平方根,下列说法正确的是( B ) A .任何一个数有两个平方根,并且它们互为相反数 B .负数没有平方根C .任何一个数只有一个算术平方根D .以上都不对2.如果a 、b 分别是16的两个平方根,那么ab =-16. 3.若25x 2=16,则x 的值为±45.4.求下列各数的平方根:(1)196; (2)10-4; (3)144169; (4)3625.解:(1)±14. (2)±10-2. (3)±1213. (4)±95.活动3 拓展延伸(学生对学) 【例3】求下列各式中x 的值. (1)x 2=361; (2)81x 2-49=0; (3)(3x -1)2=(-5)2.【互动探索】上述方程都可以化成一个数或代数式的平方的形式,结合平方根的定义,你能算出x 的值吗?【解答】(1)∵x 2=361,∴开平方,得x =±361=±19. (2)整理,得x 2=4981,∴开平方,得x =±4981=±79. (3)∵(3x -1)2=(-5)2,∴开平方,得3x -1=±5. 当3x -1=5时,x =2;当3x -1=-5时,x =-43.综上所述,x =2或-43.【互动总结】(学生总结,老师点评)利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.环节3 课堂小结,当堂达标 (学生总结,老师点评)平方根⎩⎪⎨⎪⎧平方根的概念平方根的性质开平方及相关运算练习设计请完成本课时对应练习!。
平方根人教版数学七年级下册教案
平方根人教版数学七年级下册教案平方根人教版数学七班级下册教案1教学目标学问技能1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示2.会用计算器求算术平方根3.了解无限不循环小数的特点数学思索1.通过学习算术平方根,建立初步的数感和符号感,进展抽象思维2.通过探究的大小,培育同学估算意识,了解两个方向无限靠近的数学思想解决问题1.通过拼大正方形的活动,表达解决问题方法的多样性,进展形象思维2.在探究活动中,学会与人合作,并能与他人沟通思维的过程和探究的结果情感看法1.通过学习算术平方根,熟悉数学与人类生活的亲密联系2.通过探究活动,熬炼克服困难的意志,建立自信念,提高学习热忱教学重点、难点重点:算术平方根的概念,感受无理数难点:探究的大小的过程教学过程与流程设计活动1创设情景,引入算术平方根20xx年10月16日,我国进行首次载人航天飞行取得圆满胜利。
中华民族探究太空的千年幻想实现了。
宇宙在脱离地球轨道进入正常运行轨道的速度要满意一个条件,即介于第一宇宙速度与其次宇宙速度之间,第一宇宙速度和其次宇宙速度分别满意:第一宇宙速度v1〔米/秒〕:,其次宇宙速度v2〔米/秒〕:小欧同学预备参与学校进行的美术作品竞赛。
他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参与竞赛,请你帮他计算一下这块正方形画布的边长应取多少?小欧还要预备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来:面积191636边长1346上面的问题,事实上是已知一个正数的平方,求这个正数的问题一般地,假如一个正数x的平方等于a,即,那么这个正数x 叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。
规定:0的算术平方根是0。
活动2通过一些简洁例题,进一步了解算术平方根1、你能求出以下各数的算术平方根吗?2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。
人教版七年级数学下册教案 6-1 平方根(第3课时)
6.1 平方根第3课时一、教学目标【知识与技能】1.了解平方根的概念,掌握平方根的特征.2.能正确区分平方根与算术平方根的意义.3.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根.【过程与方法】类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.【情感态度与价值观】使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.二、课型新授课三、课时第3课时共3课时四、教学重难点【教学重点】理解平方根概念,会用符号表示一个正数的平方根.【教学难点】理解平方根的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)1.什么叫做算术平方根?如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.100; 1;36121; 0; -0.0025; (-3)2; -25.3.填空:(1)3²=_______, (-3)²=_______; (2)(23)2=________,=(−23)2=________; (3)0.8²=_______,(-0.8)²=_______.反过来,如果已知一个数的平方,怎样求这个数? (二)探索新知1.出示课件5-9,探究平方根的概念及性质教师问:要做一张边长是3分米的方桌面,它的面积是多少?学生答:它的面积是9平方分米.教师问:这个问题实际上就是求:32=? 这是已知底数和指数,求幂的运算.这是什么运算?学生答:这是乘方运算.教师问:反过来,要做一张面积是9平方分米的方桌面,它的边长是多少分米?学生答:它的边长是3分米.教师问:实际上就是要求出一个数,使它的平方等于9, 即:( )2=9,应该填什么呢?学生答:显然,括号里应是±3. 教师问:桌子的边长为何是3分米?学生答:-3不符题意. ∴方桌面的边长应是3分米. 教师问:你还能得到什么问题呢?学生问:如果一个数的平方等于9,这个数是多少? 教师答:由于(±3)2=9 ,所以这个数是3或-3. 教师问:想一想:3和-3有什么特征? 学生答:3和-3互为相反数,只有符号不同. 教师问:3和-3互为相反数,会不会是巧合呢? 学生答:猜想不一定是巧合,需要实例吧! 做一做,想一想:(1) 4的平方等于16,那么16的算术平方根就是_____. (2)25的平方等于425,那么425的算术平方根就是____.(3) 展厅地面为正方形,其面积是49 m 2,则其边长为___m. 教师依次展示学生的答案:学生1答:(1)16的算术平方根就是4. 学生2答:(2)425的算术平方根就是25. 学生3答:(3)其边长为7m.教师总结如下:答案如下:(1)4;(2)25;(3)7.教师问:平方等于16, 425,49的数还有吗?学生答:还有-4,-25,-7.教师问:填一填,想一想: 写出左圈和右圈中的“?”表示的数:学生答:如下图所示:总结点拨:(出示课件10)根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念: 定义:如果有一个数x ,使得x ²=a ,那么我们把x 叫作a 的一个平方根,也叫作二次方根.例如: (±1)2=1,1的平方根为±1.平方根的性质:如果x 是正数a 的一个平方根,那么a 的平方根有且只有两个:x 与-x.即平方根互为相反数.教师问:121的平方根是什么?(出示课件11) 学生答:121的平方根是±11. 教师问:0的平方根是什么? 学生答:0的平方根是0. 教师问:1649的平方根是什么? 学生答:1649的平方根是±47.教师问:-9有没有平方根?为什么?学生答:没有,因为一个数的平方不可能是负数.教师问:通过这些题目的解答,你能发现什么?(出示课件12)学生答:有些数有两个平方根,有些数有一个平方根,有些数没有平方根. 教师问:正数有几个平方根? 学生答:正数有2个平方根. 教师问:0有几个平方根?学生答:0有1个平方根.教师问:有没有一个数的平方是负数? 学生答:没有一个数的平方是负数. 教师问:负数有几个平方根呢? 学生答:负数没有平方根. 教师问:为何负数没有平方根呢?学生答:因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根. 总结点拨:(出示课件13) 平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根. 考点1:求平方根 求下列各数的平方根:(1)100; (2) 916 ; (3)0.25.(出示课件14)师生共同讨论解答如下: 教师依次展示学生解答过程:学生1解:(1) ∵(±10)2=100,∴100的平方根是±10; 学生2解:(2) ∵(±34 )2=916 , ∴916 的平方根是±34; 学生3解:(3) ∵(±0.5)2=0.25,∴0.25的平方根是±0.5. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根. 出示课件15,学生自主练习后口答,教师订正. 2.出示课件16-17,探究平方根的读法和表示 教师问:非负数a 的平方根表示为什么呢? 学生答:非负数a 的平方根表示为±√a . 教师问:±√a 的各部分表示什么意思呢?师生一起解答:一个正数a 的正平方根,用“√a ”表示,(读作“根号a”).又叫a 的算术平方根.a 的负平方根,用“-√a ”表 示a 的算术平方根的相反数,(读作“负根号a”). 合起来,一个正数a 的平方根就用“ ±√a ”表示,(读作“正、负根号a”)如下图所示:出示课件17,学生自主练习后口答,教师订正. 考点2:利用平方根的表示求平方根 分别求下列各数的平方根:(1)36;(2)259 ;(3)1.21 (出示课件18)学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程:学生1解:(1)由于(±6)²=36,因此36的平方根是6与-6. 即±√36=±6.学生2解:(2)由于(±53)²=259,因此259的平方根是53与-53.即±√259=±53.学生3解:(3)由于(±1.1)²=1.21, 因此1.21的平方根是1.1与-1.1. 即±√1.21=±1.1.出示课件20,学生自主练习后口答,教师订正. 3.出示课件21-24,探究平方与开方的关系 教师出示问题:请完成下面的题目:学生答:答案如下图所示:教师问:上面的运算是平方运算,什么是平方运算呢?学生答:已知一个数,求它的平方的运算,叫作平方运算.教师问:反之,已知一个数的平方,求这个数的运算是什么?师生一起解答:求一个数的平方根的运算叫作开平方.教师问:开平方与平方是什么关系?学生答:互为逆运算.教师总结点拨:(出示课件23)已知底数和指数求幂已知幂和指数求底数教生一起完成下面的题目:总结点拨:(出示课件25)平方根与算术平方根的联系与区别:考点3:开平方的有关计算 求下列各式的值:(出示课件26) (1)√36;(2)-√0.81;(3)±√499 学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√36=6; 学生2解:(2)-√0.81=−0.9; 学生3解:(3)±√499=±73.出示课件27,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧. (三)课堂练习(出示课件28-33) 练习课件第28-33页题目,约用时20分钟. (四)课堂小结(出示课件34)(五)课前预习预习下节课(6.2第1课时)的相关内容.知道立方根、三次方根、开立方的定义及利用计算器求立方根的步骤. 七、课后作业教材第46-47页练习第1,2,3,4题. 八、板书设计6.1.平方根第3课时1、平方根定义2、归纳正数有两个平方根,0的平方根是0;负数没有平方根3、考点讲解考点1 考点2 考点3九、教学反思成功之处:本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境—合作探究—分析计算—总结升华”为主线,使学生亲身体验根据平方根计算和算术平方根计算的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.不足之处:在教学过程中,对于平方根的作用、算术平方根深入讨论,有些学生只是知道要取算术平方根,对于其中的原因根本没有明白,部分学生对于平方根的理解还不够深刻.补救措施:适当增加学生熟悉的实例,通过对比,使学生明白为什么要取算术平方根,并能更进一步理解平方根的含义,掌握根据平方根和算术平方根的异同.。
人教版七年级数学下册6.1.3.平方根 (1)导学案无答案
1、49的立方根是_______,算术平方根是_______
2、0.09的立方根是________,立方根是_______
3、一个正数的立方等于1/100,这个数是_______
4、一个数的立方等于1/100,这个数是________
5、 的平方根是_______
6、填空:
(1)121的立方根是,121的立方根是;
二自主探究阅读书本49-52页
1.求下列各数的平方根:
(1)8; (2) ; (3)0; (4)-0.064
解:(1)因为()3=8,所以8的立方根是______;
( 2 )因为()3= ,所以 的立方根是______;
(3)因为()3= 0,所以0的立方根是_______;
(4)因为()3= —0.064所以 —0.064的立方根是_______;
.根据上题得到平方根的性质:
(1)正数的立方根为_______
(2)0的立方根是_______
(3)负数的立方根为_______
2.我们知道,数a的立方根可以用3 表示;读作_________其中a叫_________,3叫_________例如,3
三 合作交流
各小组成员互相讨论较难问题,相互提问,准备展示以上问题
营中七年级下学期数学学科导学案(编号:)
上课时间:年月日第周星期:第课时备课组长签字:蹲点领导签字:-颜毅班级:小组:学生姓名:完成情况:
课题:立方根课型:预展课设计人:方常梅
学习
目标
1.了解数的立方根的概念,并会用符号表示,会求一个数的立方根
2理解立方与开立方之间是互为逆运算的关系
3体验探究与合作体会学数学来源于生活。
重点:求一些数的立方根。
淳化县一中七年级数学下册第六章实数6.1平方根第2课时平方根导学案新版新人教版53
6.1 平方根第2课时平方根一、新课导入1.导入课题:如果一个数的平方等于9,这个数是多少?从前面我们知道,这个数可以是3,除了3以外,还有没有别的数的平方也等于9呢?这就是这节课要研究的问题:平方根(板书课题).2.学习目标:(1)知道什么叫平方根?用符号如何表示它?有哪些性质?(2)能利用开平方与平方互为逆运算求某些非负数的平方根.3.学习重、难点:重点:平方根的概念.难点:平方根算术平方根的区别和联系.二、分层学习1.自学指导:(1)自学内容:课本P44“思考”至P45“思考”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课本、思考相关问题,注意平方根与算术平方根定义的区别.(4)自学参考提纲:①根据“导入课题”中问题的研究过程填表:②一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根或二次方根,即如果x2=a,那么x就叫做a的平方根.你能说说平方根与算术平方根的定义有什么不同吗?③求一个数a的平方根的运算,叫做开平方,平方运算与开平方运算有什么关系?④根据平方与开平方运算的关系,可以求一个数的平方根,按例4的格式求下列各数的平方根:64; 0.09; 4981; (-7)2; 0.解:∵(±8)2=64,∴64的平方根是±8.∵(±0.3)2=0.09,∴0.09的平方根是±0.3.∵(±79)2=4981,∴4981的平方根是±79.∵(±7)2=(-7)2=49,∴(-7)2的平方根是±7.∵02=0,∴0的平方根是0.⑤判断下列说法是否正确:a.49的平方根是7.(×)b.2是4的平方根.(√)c.-5是25的平方根.(√)d.64的平方根是±8.(√)e.-16的平方根是-4.(×)2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应的指导.(2)生助生:小组内相互交流和纠错.4.强化:(1)平方根的概念(注意与算术平方根的概念相对照).(2)求下列各数的平方根:25 0.64 (-2)481上面4个小题的答案依次为:±5,±0.8,±4,±31.自学指导:(1)自学内容:课本P45“思考”至P46“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课本,弄清楚平方根有什么性质,用符号如何表示它.(4)自学参考提纲:①请归纳出正数、0、负数的平方根的特征,并说说得出这些特征的理由.②因为正数a的平方根有2个,它们互为相反数,其中正的平方根就是它的算术平方a a a的平方根就用符号±a表示,读作正、负根号a.③式子a 有意义时,a 应满足条件a ≥0,这是为什么呢? ④你能说说式子:9;-0.49;±6481表示的意义吗?其值分别为多少? 上述3小题的答案依次为3,-0.7,±89⑤判断下列各式计算是否正确?并说明理由:4=±2 ±4=±2 -4=±2上面3小题的答案依次为:错误,正确,错误,理由略. 2.自学:同学们可结合自学指导进行学习. 3.助学: (1)师助生:①明了学情:教师巡视课堂,了解学生的学习情况,着重关注学生是否理解平方根的性质得出的理由及相应符号所表示的意义.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,订正纠错,互助解疑难. 4.强化:(1)平方根的性质.(2)平方根的符号表示:±a ,其中a ≥0 三、评价1.学生的自我评价:学生代表交流学习目标的达成情况和学习感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法和效果等)进行总结和点评(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本课时教学重在挖掘平方根与算术平方根间的区别与联系,通过实例训练引导学生认识新知识,形成计算能力.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列各式:①3-3;23 ()2110C ) A.1个 B.2个 C.3个 D.4个2.(10分)下列各式中正确的是(C )±4 3.(10分)下列说法中正确的有(A )(1)0的平方根是0;(2)1的平方根是1;(3)-1的平方根是-1;(4)± A.1个 B.2个 C.3个 D.4个 4.(20分)求下列各数的平方根: (1)49; (2)425; (3)6110; (4)0.0016. 解:(1)∵(±7)2=49.∴49的平方根为±7; (2)∵(±25)2=425,∴425的平方根为±25 ; (3)∵(±3110)2=6110,∴6110的平方根为±3110; (4)∵(±0.04)2=0.0016,∴0.0016的平方根为±0.04. 5.(20分)求下列各式的值:(1(2(3)(4)解:(1(2±310;(3)(4)2110=-1100. 二、综合运用(20分)6.(10分)求下列各式中x 的值:(1)x 2=25; (2)x 2-81=0; (3)25x 2=36. 解:(1)∵(±5)2=25,∴x=±5; (2)∵(±9)2=81,∴x=±9; (3)x 2=3625. ∵(±65)2=3625. ∴x=±65.7.(10分)根据下表回答下列问题:(1)268.96的平方根是±16.4;(2285.6≈16.9;(3270在表中哪两个相邻的数之间?为什么?270∵268.96<270<272.25,∴270<16.5.三、拓展延伸(10分)8.若一个数x的平方根是2a+3和1-4a,求a和x的值. 解:∵2a+3和1-4a是x的平方根,∴2a+3+1-4a=0,∴a=2,∴2a+3=2×2+3=7.∴x=(2a+3)2=72=49.平行线的性质◆回顾归纳1.两条平行直线被第三条直线所截,同位角_______,内错角____,同旁内角______.2.同时垂直于两条平行线,并且夹在这两条平行线间的______叫做这两条平行线的距离.◆课堂测控知识点一两直线平行同位角相等1.(上海市)如图1所示,直线a∥b,且a,b被c所截,若∠1=40°,则∠2=______.图1 图2 图3知识点二两直线平行内错角相等2.如图2所示,直线a∥b,且a,b被c所截,若∠1=60°,则∠2=_______,∠3=________.知识点三两直线平行同旁内角互补3.如图3所示,若AB∥CD,∠DEF=120°,则∠B=_______.4.如图4所示,DE∥BC,DF∥AC,下列结论正确的个数为()①∠C=∠AED ②∠EDF=∠BFD ③∠A=∠BDF ④∠AED=∠DFBA.1个 B.2个 C.3个 D.4个图4 图55.如图5,在甲,乙两地之间修一条笔直公路,从甲地测得公路的走向是北偏东50°,甲,乙两地同时开工,若干天后,公路准确接通,则乙地所修公路走向是()A.北偏45° B.南北方向 C.南偏西50° D.以上都不对6.(过程探究题)如图6所示,已知CD平分∠ACB,∠EDC=12∠ACB ,∠DCB=30°,求∠AED度数.[解答]因为∠1=12∠ACB(已知)又因为∠2=12∠ACB()所以∠1=∠2(等量代换)即DE∥BC(内错角相等,_______)又因为∠DCB=30°(已知)图6所以∠ECB=2×30°=60°即∠AED=______=_______.完成上述填空,理解解题过程.◆课后测控1.如图7所示,砌墙师傅用重锤线检验砌的墙体是否与地面垂直,墙体坚直线用a表示,重锤线用b表示,地平线用c表示,当a∥b时,因为b⊥c,则a______c,这里运用了平行线的性质是_______.图7 图8 图9 图102.如图8所示,一块木板,AB∥CD,木工师傅量得∠B=80°,∠C=65°,则∠A=______,∠D=______.3.家住湖边的小海,帮爸爸用铁丝用网箱如图9所示,若AB∥CD,AC∥BD,若∠1=α,则:①∠3=α;②∠2=180°-α;③∠4=α,其中正确的个数有()A.0个 B.1个 C.2个 D.3个4.如图10所示,AM平分∠BAC,AM∥EN,则与∠E相等的角下列说法不正确的是()A.∠BAM B.∠ABC C.∠NDC D.∠MAC5.(阅读理解题)如图,若∠3=∠4,你能说明AD∥BC,AB∥DC吗?小亮回答:都行,∵∠3=∠4,∴AD∥BC,AB∥DC小亮错在哪里,请指出错因,并改正.6.如图,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断EF∥BD吗?为什么?7.如图所示,若∠1+∠2=180°,∠3=110°,求∠4.◆拓展创新8.(探究题)如图所示,若AB∥CD,且∠1=∠2,试判断AM与CN位置关系,并说明理由.参考答案回顾归纳1.相等,相等,互补 2.线段的长度课堂测控1.40° 2.60°,120° 3.60°4.D(点拨:∵DE∥BC,∴∠C=∠AED,∠EDF=∠BFD,∵DF∥AC,∴∠A=∠BDF,∵DE∥BC,DF∥AC,∴∠AED=∠DFB.)5.C6.已知,两直线平行,∠ECB,60°解题规律:运用平行线性质及角平分线性质.课后测控1.⊥,两直线平行,同位角相等(同旁内角互补).2.115°,100°3.C(点拨:②④正确)4.B(点拨:∠BAM=∠MAC=∠NDC.)5.错误,不能识别AD∥BC.因为∠3=∠4,所以AB∥CD.思路点拨:∠3与∠4是直线AB,CD被BD所截得到的内错角.6.可以,∵∠AED=60°,EF平分∠AED∴∠FED=30°又∵∠EDB=∠2=30°∴EF∥BD解题规律:证两直线平行,找内错角相等.7.设∠2对顶角为∠5,则∠2=∠5∵∠1+∠2=180°∴∠1+∠5=180°∴AB∥CD,∴∠3=∠4又∵∠3=110°∴∠4=110°解题规律:先判断AB∥CD,再运用平行线的性质定理.8.因为AB∥CD所以∠EAB=∠ECD又因为∠1=∠2而∠EAM=∠EAB-∠1∠ACN=∠ACD-∠2即∠EAM=∠ACN所以AM∥CN(同位角相等,两直线平行).解题技巧:判断AM∥CN,①可证∠EAM=∠ECN,②证∠MAC+∠ACN=180°,都能达到目的.有理数的减法课后作业1.比-1小3的数是( )A .-4B .-2C .2D .42.若两个数绝对值之差为0,则这两个数( )A .相等B .互为相反数C .两数均为0D .相等或互为相反数3.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >04.比-1 ℃低2 ℃的温度是____℃.5.今年高考第一天,漳州最低气温25 ℃,最高气温33 ℃,则这天温差是________℃.6.从-1中减去-712与-58的和,所列算式为________________,所得的差为________________.7.计算|12-1|=________.8.若a <0,b >0,则a -b________0.9.计算:(1)(-5.4)-(+61320)-114;(2)(-23)-(-23)-(+34);(3)(-523)-(-323)-(-223)-(+2.5);(4)(+756)-(-118)-(-716)-(-2178).10.某一矿井如图所示,以地面为准,A 点的高度是3米,B ,C ,D 三点的高度分别是-10米,-20米,-30米.问:(1)最低高度比最高高度低多少米?(2)你试着用折线统计图表示A ,B ,C ,D 四点的高度变化情况.11.用有理数的减法解答下列问题:(1)在数轴上,A ,B 两点表示的有理数分别为-312和4.5,求A ,B 两点间的距离; (2)某地白天最高气温是20 ℃,夜间最低气温是零下15 ℃,该地夜间气温比白天气温最多低多少摄氏度?(3)物体位于地面上空2米处,下降3米后又下降5米,最后物体在地面之下多少米处?中考链接(2012·山西)计算:-2-5的结果是( )A .-7B .-3C .3D .7参考答案课后作业1.A -1-3=-4.2.D 两个数绝对值之差为0,则这两个数相等或互为相反数.3.C 由条件可知m<0,n>0,故mn<0.4.-3 5.8 6.-1-(-712-58) 5247.12 8.<9.解:(1)-13.3(2)-34(3)-116(4)38原式=⎣⎢⎡⎦⎥⎤756-⎝ ⎛⎭⎪⎫-716+⎝ ⎛⎭⎪⎫118+2178=15+23=38.10.(1)33米 3-(-30)=33(米).(2)11.解:(1)8;(2)35℃;(3)6米.中考链接A -2-5=-7。
天津市【人教版】2019年春七年级数学下册:配套精品导学案全集-第6章
第六章 实数6.1 平方根第1课时 算术平方根:1.掌握算术平方根的意义和求法以及实际应用,培养合作探究. 合作交流,经历从平方运算到求算数平方根的演变过程,体并会用算术平方根解决实际问题... :算术平方根的意义和求法.:运用算术平方根解决一些简单的实际问题.( )2=100,( )2=49,( )2=,( )2=0.01,( )2=0.0025. 925二、新知预习1.一般的,如果一个 x 的平方等于a ,即 ,那么这个正数x 叫做 .规定:0的算术平方根是 .2.a 的算术平方根记为 ,读作 ,a 叫做 .3.被开方数越大,对应的算术平方根也 ,这个结论对所有正数都成立.三、自学自测1.9的算术平方根是( )2.的大小应是( )A.在9.1~9.2之间B.在9.2~9.3之间C.在9.3~9.4之间D.在9.4~9.5之间 3.求下列各数的算术平方根: (1)900;(2)1;(3)0.16.四、我的疑惑______________________________________________________________________________________________________________________________________________________1.填空:(看谁算得又对又快)(1) 一个数的算术平方根是3,则这个数是.(2) 一个自然数的算术平方根为a,则这个自然数是;和这个自然数相邻的下一个自然数是.(3)81的算术平方根为.(4)2的算术平方根为.2.求下列各数的算术平方根:(1)169; (2)4964; (3) 0.0001.3.下列式子表示什么意义?你能求出它们的值吗?例4下列式子表示什么意义?你能求出它们的值吗?4.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会议室的地面,每块地板砖的边长是多少?5.【拓展题】已知|x+2y|+73)5(2=+-+zyx,求x-3y+4z的值.温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:。
【推荐】七年级数学下册第六章实数6.1平方根学案新版新人教版.doc
Word文档,精心制作,可任意编辑平方根学习目标1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.学习过程:复习提问是2的算术平方根1.下列说法中不正确的是() A.2B.2的平方根是2C.2的算术平方根是22.0的算术平方根是 0.25的算术平方根是引入新课平方等于4的数有几个,它们是多少?3的平方等于9,平方等于9的数还有吗?是多少?自主学习合作探究一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫算术平方根。
表达式为:若x2=a,那么x叫做a的平方根. 记作:正数a有两个平方根,它们互为相反数例如:(±4)2 =16,则+4和-4都是16的平方根;即16的平方根是±4; 4是16的算术平方根.小组比赛展示探究结果例3求下列各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11教材想一想课堂小结平方根与算术平方根关系2.正数的平方根的互为相反数一分钟记忆:平方根的定义及性质反馈检测 : 1.下列说法中不正确的是( ) A.2-是2的平方根 B.2是2的平方根C.2的平方根是2D.2的算术平方根是22.41的平方根是( ) A.161 B.81 C.21 D.21±3.下列各式中,正确的个数是( )① 3.09.0= ②34971±= ③23-的平方根是-3 ④()25-的算术平方根是-5⑤67±是36131的平方根A.1个B.2个C.3个D.4个二、填空题4. 如果某数的一个平方根是-6,那么这个数为________.5.如果正数m 的平方根为1x +和3x -,则m 的值是 .6.16的算术平方根是 的平方根是 .三、解答题 求下列各式的值。
⑴225 ⑵0004.0- ⑶4112± ⑷ ()21.0-- 布置作业习题2.4教学反思教师反思:加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.。
精品学案:6_1_2 算术平方根的估算
人教版七年级数学下册《第六章 实数》导学案课题:6.1.2 算术平方根的估算◆【学习目标】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.3.会用计算器求一个数的算术平方根.◆【学习重、难点】学习重点: 夹值法及估计一个(无理)数的大小.学习难点:掌握算术平方根的估算及比较两个带根号的数大小的方法.◆【学习过程】第一环节 自主学习旧知链接: (1)8表示的意义是 ;(2)16和0的算术平方根分别是 、 . (3)=36 ; =--)4( .新知自研:1.自研课本P41—P44页的内容. 2.完成导学案自研自探的内容.自学指导:导入新课:我们生活中的数有整数、有限小数、无限循环小数都是能够直接表示出来的数,有没有这样的数,它无限且不循环而又能准确的表达出来?【学法指导1】自研课本第41-42页探究上面的内容,思考:1. 自制两个面积为1dm 2的正方形,并按课本中的方法沿着对角线裁开,拼成一个面积为2dm 2的大正方形, 你能求出这个大正方形的边长吗?依据是什么?3. 由1.42=1.96,1.52=2.25从而得到:1.4<2<1.5是因为 ;那么我们比较一个带根号的数和一个有限数的大小就是比较 如:;4.归纳估计一个有理数的算术平方根的近似值的方法.5.无限不循环小数指 .6.是否所有的带根号的数都是无限不循环小数?请举例说明..【自研自探】1.例2用计算器求算术平方根有条件的课后求.2.猜想:≈1.414 , ≈1.732 ; ≈2.236.3.4= ,400= ,40000= ,4000000= ,04.0= ,0004.0= .由上面的结果可以发现被开方数与它的算术平方根的规律是:被开方数的小数点向右每移动 位,它的算术平方根的小数点就向右移动 位;被开方数的小数点向左每移动 位,它的算术平方根的小数点就向左移动 位. 由上面的规律填空:5≈2.236则05.0≈ ; 500≈ .4.由b a 可以得到 .5. 25表示 ;25≈ .(保留两位小数)【例题导析】自研课本43页例3,思考:1.如果能够裁出小长方形,长和宽必须满足什么条件: .2.长宽比为3:2如何设未知数? .3.本题的等量关系为: .4.50的整数部分为 ,为什么?因为 ;那么长方形纸片长503整数部分大于 ,所以5.你还其它的方法比较503和20的大小方法吗?第二环节 合作探究·启迪智慧对子学习相互检查导学内容的完成书写情况并给出等级评定.小组群学在小组长的带领下:A.近似值的推理过程、无理数、带根号的数的大小比较方法;B. 3、5近似值及被开方数扩大(缩小)100的情况;C.能否裁剪及比较长宽与纸片边长的大小及带根号数的比较方法;D.在组长的主持下,根据本组的展示内容学科组长做好分工,完成版面设计,做好展示前的预演. 第三环节展示提升·质疑评价方案预设1:主题:2有多大?①制作2个面积1平方分米拼一个面积为2的正方形,表示出对角线的长和边长;①推算2近似值的过程;(解读一个步骤,其它类比)①无理数概念、比较大小的方法.方案预设2:主题:自研自探①、3、5的近似值;①通过实例总结被开方数扩大(缩小)的关系;表示的意义及近似值.方案预设3:主题:例题3导析①经历“猜想”→“操作”→“探究”→“总结”的过程展示例3;①分析例3的解题思路,再现例3的解题过程于展示板,分析结果的实际意义.第四环节自主测评·追求卓越1.学生总结交流本节课的学习收获,进行课堂小结.2.安排学生爬板下面习题,其他同学独立完成.【自主测评】1、与51最接近的整数是()A.8B.7C.6D.52、已知2≈1.414,20≈4.472,求2.0≈;200≈;02.0≈;2000≈;3、若两个连续整数x,y满足x<23<y,则x+y的值是()A.5B.7C.9D.114、(拓展题)通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5 .【随堂笔记】1、≈,≈,≈;2、用计算器求一个正有理数的算术平方根的方法:大多数计算器都有键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON键开机,再按键、、=,即可显示“算术平方根”.3、被开方数的小数点向右每移动位,它的算术平方根的小数点就向右移动位;被开方数的小数点向左每移动位,它的算术平方根的小数点就向左移动位.。
七年级数学下册第六章实数6、1平方根第3课时平方根习题新版新人教版
(3)114649; 解:因为±11232=114649, 所以114649的平方根为±1123,算术平方根为1123. (4)0.
解:0 的平方根为 0,算术平方根为 0.
答案显示
提示:点击 进入习题
21 见习题 22 见习题
答案显示
1.一般地,如果一个数的平方等于 a,那么这个数叫做 a 的 __平__方__根____或___二__次__方__根___.这就是说,如果 x2=a,那么 x 叫做 a 的__平__方__根__,可表示为 x=__±___a___.
2.(2020·烟台) 4 的平方根是( C ) A.2 B.-2 C.±2
当 2m-6=-(m-2)时,解得 m=83. 所以这个数为 2m-6=2×83-6=-23. 综上可得,这个数为 2 或-23. 王老师看后说小张的解法是错误的.你知道为什么吗?请改
正.
解:小张将求出的 m 的值代入这个数的算术平方根 2m-6 中求 解,求出的不是这个数. 当 m=4 时,这个数为(2m-6)2=4; 当 m=83时,2m-6=2×83-6=-23<0,不符合题意. 所以这个数为 4.
19.若 m 是 169 的正的平方根,n 是 121 的负的平方根.求:
(1)m+n 的值; 解:因为 132=169,所以 m=13.
因为(-11)2=121,所以 n=-11.
所以 m+n=13+(-11)=2. (2)(m+n)2 的平方根. 解:因为(m+n)2=4=(±2)2,
所以(m+n)2 的平方根是±2.
A. 22=2
B. 22=±2
新人教版数学七年级下册第六章《实数》全章教案
5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题
师
生
互
动
归
纳
新
知
问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授
教
学
目
标
知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。
尝
试
应
用
问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。
6.1平方根(导学案)
第六章 实数第一课时:6.1平方根(一)【学习目标】1.经历算术平方根概念的形成过程,了解算术平方根的概念.2.学会求某些正数(完全平方数)的算术平方根并会用符号表示.【学习重点】算术平方根的概念. 【学习难点】算术平方根的概念. 【学习过程】 一、学前准备写出下列数的平方=21 ;=22 ;=23 ;=24 ;=25 ;=26 ;=27 ;=28 ;=29 ;=210 ;=211 ;=212 ;=213 ;=214 ;=215 ;=216 ;=217 ;=218 ;=219 ;=220 ;=225 ;二、探索思考算术平方根的概念: a 的算术平方根记为 ,读作 ,a 叫做 据算术平方根的概念可知:a 是 数是 数练习一: 1.填空:(1)因为_____2=64,所以64的算术平方根是______=______; (2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________. 2.求下列各式的值:=______;=______;=______;______;______;=______. 按被开放数从小到大排列可以发现:被开方数越大,对应的算术平方根3、2的算术平方根是 ,10的算术平方根是 ,36的算术平方根是4、辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?三、典例分析例:已知:023=-++y x,求yx 的算术平方根。
四、当堂反馈1、若一个数的算术平方根等于它本身,这个数是2、如果2a-18=0,那么a 的算术平方根是 . 3、、下列数没有算术平方根的是()A.0B.-1C.10D.1024有意义,则x 的取值范围是( )A .x ≥0B .0x <C .0x ≠D .0x> 5、填空并记住下列各式:_______,_______,_____________________,_______,_______,___________ ___,=625 ;6、若x 、y 为实数,且 5+x +|y-2|=0,求x+y 的值五、学习反思第二课时:6.1平方根(二)【学习目标】1.2不循环小数的特点.2.会估计带根号的数的大小。
2019年春七年级数学下册第六章实数6.1平方根第2课时用计算器求一个正数的算术平方根课件(新版)新人教版
1 应地扩大(或缩小)到原来的10倍 10 .
归类探究
类型之一 利用计算器求一个正数的算术平方根 用计算器求下列各式的值: (1) 6 241;(2) 5.89.
解:(1)依次按键 6 2 4 1 =,
解: (1) 9×9+19=10; (2) 99×99+199=100; (3) 999×999+1 999=1 000; (4) 9 999×9 999+19 999=10 000, (5) 99…9×99…9+199…9 =10…0.
n个 9
n个 9
n个 9
n个 0
内部文件1 的小正方形剪拼成一个面积为 2 的大正方形吗?你知 道大正方形的边长是多少吗?你有几种拼法?
知识管理
1.估算法
方 定 注 法:通过一系列不足近似值和过剩近似值来估计一个数的大小. 义:小数位数无限,且小数部分不循环的小数叫做无限不循环小数. 意:(1)π 是无限不循环小数;
2019年春人教版数学七年级下册课件
6.1 平方根
第2课时 用计算器求一个正数的算术平方根
第六章
实数
6.1 平方根 第2课时 用计算器求一个正数的算术平方根
学习指南 知识管理
归类探究
当堂测评
分层作业
学习指南
教学目标
[教用专有]
1.利用计算器求一个正数的算术平方根. 2.用估算的方法求一个正数的算术平方根.
分层作业
1.用计算器求 2 019 的算术平方根时,下列四个键中,必须按的键是( C ) A. sin B. cos C. D. ∧ 4 ·5 - 0 ·5 ÷2 = ,相应的算式是
新人教版七年级下数学第六章实数导学案
面积=1面积=2面积=46.250.62562506250062.5课题:6.1.2 平方根(2)【学习目标】1.通过由正方形面积求边长,让学生经历2的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器和平方根表求算术平方根. 【学习重点】感受无理数. 【学习难点】感受无理数. 【自主学习】1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是____,即36=_____; (2)因为(____)2=964,所以964的算术平方根是___,即964=_____; (3)因为_____2=0.81,所以0.81的算术平方根是___,即0.81=_____;(4)因为_____2=0.572,所以0.572的算术平方根是____,即20.57=_____.【合作探究一】1. 这个正方形的面积等于4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?2. 这个正方形的面积等于1,它的边长等于多少?用算术平方根来说这个正方形边长和面积的关系?3. 这个正方形的面积等于2,它的边长等于什么?4. 4= ,1= ,那么2等于多少呢?求2等于多少,怎么求?提示:①2在哪两个整数之 ②2在哪两个一位小数之间? ③2在哪两个两位小数之间?5.2= ,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?【合作探究二】1、查平方根表(或用计算器计算)填表:… … …25…规律:被开方数的小数点每向右(或向左)移动 位, 则它的算术平方根的小数点向右(或左)移动 位。
跟踪练习:1.3≈1.732利用你发现的规律说出近似值,(1)03.0= 300= 30000= ;(2)你能根据3的值说出30是多少吗?2.已知:217.5=2.284,7.521=22.84,填空:①05217.0= 52170= ②若x =0.02284,则x=【合作探究三】比较大小①8 10 ②50 7 ③32 23 ④ 5.0 ⑤ 1【例题精讲】例1、小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁出一块面积为300 cm 2的长方形纸片,使它的长宽之比为3:2,她不知能否裁得出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版七年级数学下册 6 实数 6.1 平方根导学案3(新版)新人教版
学习目标1、了解平方根的概念,会求某些正数(完
全平方数)的平方根。
2、知道正数有两个平方根,它们互为相反
数,0的平方根是0,负数没有平方根。
【重点】平方根的概念。
【难点】归纳有关平方根的结论。
时间
分配
合作交流展示20分、纠错讲析总结5分、检测15分
学习过程
学案(学习过程)导案(学法指导)
一、基本训练,巩固旧知
1、填空:如果一个的平方等于a,那么这个叫做a的算术平方根,
记作。
2、填空:
(1)面积为16的正方形,边长==;
(2)面积为15的正方形,边长=≈(利用计算器求值,精确到
0.01)。
3、填空:
(1)因为 1.72=2.89,所以 2.89的算术平方根等于,即 2.89
=;
(2)因为1.732=2.9929,所以3的算术平方根约等于,即3≈。
二、预习新知
1、什么是平方根呢?思考这么一个问题:如果一个正数的平方等于9,这个
正数是多少?。
如果一个数的平方等于9,这个数又是多少?32=9 ()=9,也就是和
是9的平方根。
2、我们再来看几个例子.
平方根的概念与算术平方根的概念是类似的,
平方根的定义:。
3、平方根概念与算术平方根概念只有一点点区别,你知道是哪一点点区别?
答: .
三、归纳总结
1、求下面各数的平方根:
x2 16 36 49 1
4
25
x
一、【知识回顾】:
通过练习检测,对上
一节的内容掌握程
度,以便于更好的接
收下一节新课。
二、【预习新知】:
主要将本节所学内
容以填空形式显现,
主要考查学生对教
材的自学驾驭能力
和知识迁移能力、运
用能力。
三、【归纳总结】:
以练习题的形式
承载本节课所学
的新知,让学生在
题中归纳,生生互
质,组内同质,达
(1)100; (2)0.25; (3)0; (4)-4;
从(3)、(4)知,0的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4. 从这个例题你能得出什么结论?正数有几个平方根?0有几个平方根?负数有几个平方根?
小组讨论并归纳:
正数有个平方根,它们互为。
其中正的平方根就是这个数的 .
0的平方根有个,0的平方根仍是 . 负数平方根
四、巩固提升
1.填空:
(1)因为()2=49,所以49的平方根是;
(2)因为()2=0,所以0的平方根是;
(3)因为()2=1.96,所以1.96的平方根是;
2.填空:
(1)121的平方根是,121的算术平方根是;
(2)0.36的平方根是,0.36的算术平方根是;
(3) 的平方根是8和-8,的算术平方根是8;
(4) 的平方根是3
5和
3
5
,的算术平方根是
3
5.
五、达标检测
1、教材P46.1、
2、
3、4.
2、绩优学案P38.巩固训练1、2、
3、4.四、【巩固提升】:本节新课涉猎问题以不同题型呈现,让学生自助展示,发表个人议论、依据、过程,其他同学适时指正、补充。
五、【达标检测】:在规定时间完成,教师巡视查看补讲点拨、批阅作业,其余由组内自评,组长参与其中,相互指正。
教学
反思
七年级数学学案
课题:6.1平方根(第3课时)
班级:姓名:
【学习目标】:
1、了解平方根的概念,会求某些正数(完全平方数)的平方根。
2、知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根。
【重点】平方根的概念。
【难点】归纳有关平方根的结论。
【学法指导】:自主学习,展示交流评价。
一、基本训练,巩固旧知
1、填空:如果一个 的平方等于a ,那么这个 叫做a 的算术平方根,记作 。
2、填空:
(1)面积为16的正方形,边长== ;
(2)面积为15的正方形,边长=≈ (利用计算器求值,精确到0.01)。
3、填空:
(1)因为1.72
=2.89,所以2.89的算术平方根等于 ,即 2.89= ;
(2)因为1.732
=2.9929,所以3的算术平方根约等于 ,即3≈ 。
二、预习新知
1、什么是平方根呢?思考这么一个问题:如果一个正数的平方等于9,这个正数是多少? 。
如果一个数的平方等于9,这个数又是多少?32
=9 ()=9,也就是 和 是9的平方根。
2、我们再来看几个例子.
平方根的概念与算术平方根的概念是类似的,
平方根的定义: 。
3、平方根概念与算术平方根概念只有一点点区别,你知道是哪一点点区别? 答: . 三、归纳总结
1、 求下面各数的平方根:
(1)100; (2)0.25; (3)0; (4)-4; 从(3)、(4)知,0的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-4. 从这个例题你能得出什么结论?正数有几个平方根?0有几个平方根?负数有几个平方根? 小组讨论并归纳:
正数有 个平方根,它们互为 。
其中正的平方根就是这个数的 . 0的平方根有 个,0的平方根仍是 . 负数 平方根 四、巩固提升 1.填空:
(1)因为( )2
=49,所以49的平方根是 ;
(2)因为( )2
=0,所以0的平方根是 ;
(3)因为( )2
=1.96,所以1.96的平方根是 ; 2.填空:
(1)121的平方根是 ,121的算术平方根是 ; (2)0.36的平方根是 ,0.36的算术平方根是 ;
x 2 16 36 49 1
425 x
(3) 的平方根是8和-8,的算术平方根是8;
(4) 的平方根是3
5和
3
5
,的算术平方根是
3
5.
欢迎您的下载,资料仅供参考!。