函数的零点和方程的根经典练习题

合集下载

函数与方程-高考真题复习-高考复习

函数与方程-高考真题复习-高考复习

设m(x)=-x3+3xx2+a1x-a,x∈(0,1),1a>0x,
则m(0)=-a<0,m(1)=2>0⇒m(0)·m(1)<0,
又m(x)的图象在(0,1)上连续不断,
∴m(x)在(0,1)上有零点,
则h(x)在(0,1)上有零点.
因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
2.(2014山东,8,5分)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是 ( )
A.
0,
1 2
B.
1 2
,1
C.(1,2)
D.(2,+∞)
答案 B f(x)=
x 3
1, x,
x如图2,,作出y=f(x)的图象,其中A(2,1),则kOA= x 2.
同时要满足
y
(x
2)在2 , x>2时有两个不同的解,即x2-5x+8-b=0有两个大于2的不同实根,令
y b2 x2
h(x)=x2-5x+8-b,需
h(2) 0,

h
5 2
0,
2 b 解 0得, <b<2.
8
25 4
b
0,
7 4
综上所述,满足条件的b的取值范围是 <b<2,故7选D.
4
y 2 x,

Δ1
Δ2Байду номын сангаас
a2 a2
4a 8a
∴04,<a<8. 0,
情况二:

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。

高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

课时分层作业二十三方程的根与函数的零点(30分钟60分)一、选择题(每小题5分,共30分)1。

已知函数f(x)=若f(f(0))=4a,则实数a等于()A。

B. C.2D。

9【解析】选C。

由题知f(0)=2,f(2)=4+2a,由4+2a=4a,解得a=2。

2.设函数f(x)=,若f(m)=3,则实数m的值为()A。

—2 B。

8 C.1 D.2【解析】选D。

因为当0<x〈2时,log2x<1,所以由f(m)=3得m ≥2,所以m2-1=3,解得m=2。

3.函数y=f(x)在区间[1,4]上的图象是连续不断的曲线,且f(1)·f(4)〈0,则函数y=f(x)()A。

在(1, 4)内至少有一个零点B.在(1,4)内至多有一个零点C。

在(1,4)内有且只有一个零点D.在(1, 4)内不一定有零点【解析】选A。

由已知y=f(x)的图象在区间[1,4]上是连续不断的曲线,且f(1)·f(4)〈0,故在(1,4)内至少有一零点.4。

函数f(x)=—x3—3x+5的零点所在的大致区间是()A.(-2,0)B。

(0,1) C.(1,2)D。

(2,3)【解析】选C。

因为函数f(x)=—x3-3x+5是单调递减函数,又因为f(1)=—13—3×1+5=1>0,f(2)=—23-3×2+5=-9〈0,所以函数f(x)的零点必在区间(1,2)上,故必存在零点的区间是(1,2).5.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则有()A.f(x1)〈0,f(x2)<0B.f(x1)〈0,f(x2)>0C.f(x1)〉0,f(x2)<0D.f(x1)>0,f(x2)〉0【解析】选B。

因为x〉1时,y=2x,y=都是增函数,所以f(x)=2x+在(1,+∞)上是增函数,所以有且只有一个零点x0,根据零点存在性定理及函数增减性知,f(x1)<0,f(x2)〉0。

(必修第一册)函数的零点与方程的解(同步练习)(含解析)

(必修第一册)函数的零点与方程的解(同步练习)(含解析)

4.5.1函数的零点与方程的解一、单选题1.以下函数在区间(0,12)上必有零点的是( ) A .y =12xB .y =143x -C .y =ln (x +45)D .y =2x +12.若曲线224,43,x x ay x x x a ⎧->=⎨-+≤⎩与x 轴有且只有2个交点,则实数a 的取值范围是( )A .12a ≤≤B .3a ≥C .12a ≤≤或3a ≥D .12a ≤<或3a ≥3.函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若f (a )=f (b )=f (c )且a ,b ,c 互不相等,则abc 的取值范围是( )A .(1,10)B .(10,12)C .(5,6)D .(20,24)4.设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1)B .(1,2)C .(2,e )D .(e ,3)5.定义在R 上的奇函数()f x 满足:当0x >时,()20212021log xf x x =+,则在R 上方程()0f x =的实根个数为( ) A .1B .3C .2D .2021二、多选题 6.在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是( ) A .y =﹣2xB .y =x ﹣6C .y =3xD .y =x 2﹣3x +47.已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x <D.1223+≥+x x 8.已知函数2ln ,0,()=4,0.x x f x x x x >⎧⎨--≤⎩关于x 的方程()0f x t -=的实数解个数,下列说法正确的是( )A .当0t ≤时,方程有两个实数解B .当4t >时,方程无实数解C .当04t <<时,方程有三个实数解D .当4t =时,方程有两个实数解 三、填空题9.若函数f (x )=x 2-ax +1在区间1(,3)2上有零点,则实数a 的取值范围是________.10.已知函数()y f x =在区间[]16,上的图像是一段连续的曲线,且有如下的对应值表:设函数y f x =在区间16,上零点的个数为,则的最小值为________. 11.方程22x x +=的根为a ,方程2log 2x x +=的根为b ,则a b +=__________四、解答题12.已知函数()|1|||f x x x a =+-+.若方程()f x x =有三个不同的解,求实数a 的取值范围.13.已知函数1122()log (2)log f x x x =-+.(1)求函数()f x 的定义域; (2)求函数()f x 的零点.14.若函数()221,1log ,1x x f x x x ⎧-+≤=⎨>⎩.(1)在所给的坐标系内画出函数()f x 图像;(2)求方程()f x m =恰有三个不同实根时的实数m 的取值范围.参考答案1.C 【分析】根据题意,依次分析选项中函数在区间(0,12)上有没有零点,综合即可得答案. 【详解】根据题意,依次分析选项:对于A :,y =12x 0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符对于B ,y =143x -x 0,12)单调递增,且有y >0恒成立,在区间(0,12)上没有零点,不符合题意;对于C ,y =ln (x +45),当x =15时,y =ln1=0,区间(0,12)上有零点,符合题意;对于D ,y =2x +1,在区间(0,12)单调递增,且y >0恒成立,在区间(0,12)上没有零点,不符合题意. 故选:C . 2.D 【分析】作出函数24x y =-与243y x x =-+的图象,对参数分类讨论,得出结论.【详解】作出函数24x y =-与243y xx =-+的图象,令240x y =-=,即2x =,故()2,0B ,令2430y x x =-+=,即1x =或3x =,故1,0A 或()3,0C ,当1a <时,只有B 一个零点;当12a ≤<时,有A ,B 两个零点;当23a ≤<时, 有A 一个零点;当3a ≥时,有A,C 两个零点;综上,实数a 的取值范围是:12a ≤<或3a ≥, 故选:D.【分析】先画出分段函数的图象,根据图象确定字母a 、b 、c 的取值范围,再利用函数解析式证明ab =1,最后数形结合写出其取值范围即可 【详解】解:函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩的图象如图:∵f (a )=f (b )=f (c )且a ,b ,c 互不相等 ∵a ∵(0,1),b ∵(1,10),c ∵(10,12)∵由f (a )=f (b )得|lg a |=|lg b |,即﹣lg a =lg b ,即ab =1 ∵abc =c由函数图象得abc 的取值范围是(10,12) 故选:B .4.A 【分析】通过等价转化,把函数的零点转化为函数y =f (x )与y =g (x )图象交点的横坐标,然后画出函数的图象,通过图象即可判断出零点所在的区间. 【详解】函数h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,即为函数y =f (x )与y =g (x )图象交点的横坐标, 画出函数y =f (x )与y =g (x )的图象,从图象可知它们仅有一个交点A ,且交点横坐标的范围为()0,1.故选:A.【分析】当0x >时,作出函数2021x y =,2021log y x =-的示意图,由图象交点个数得到方程根的个数,再根据奇函数图象的对称性以及(0)0f =,即可求出方程所有根的个数. 【详解】①当0x >时,令()0f x =,即20212021log xx =-,在同一坐标系中作出函数12021xy =,22021log y x =-的示意图,如下图:函数12021xy =为单调增函数,22021log y x =-为单调减函数,可知两个图象有且只有一个交点P ,横坐标记为0x . 即0x >时方程()0f x =有且只有一个实根0x , ②因为函数()f x 是定义在R 上的奇函数, 所以当0x <时,方程()0f x =也有一个实根0x -,③又∵()f x 是R 上的奇函数,(0)0f =,∵即0也是方程()0f x =的根, 综上所述,方程()0f x =有3个实根. 故选:B. 6.AC 【分析】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,依次计算即可. 【详解】横纵坐标相等的函数即y x =,与y x =有交点即存在完美点,对于A,2y x y x =⎧⎨=-⎩,解得00x y =⎧⎨=⎩,即存在完美点()0,0,对于B,6y x y x =⎧⎨=-⎩,无解,即不存在完美点,对于C,3y x y x =⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩,(对于D,234y x y x x =⎧⎨=-+⎩, 24x x x -+=,即2240x x -+=,解得2(2)44120∆=--⨯=-<,即不存在完美点, 故选:AC. 7.ABD 【分析】函数2()log (1)(0)=-->f x x m m 即为函数函数2log (1)y x =-,y m =,交点的横坐标,作出函数图像,根据图像,易判断A ;根据()12()0f x f x ==,化简整理即可判断B ; 结合基本不等式将和化为积的形式即可判断C ; 利用整体代换结合基本不等式即可判断D. 【详解】解:令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=, 令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标,作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=, 所以12(1)(1)1x x --=,即()12120x x x x -+=, 所以12111x x +=,故B 正确;因为12x x +≥,所以()121212x x x x x x -+≤-120x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误; ()21121212122112233x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=当且仅当21122x x x x =,即21x 时,取等号,故D 正确. 故选:ABD. 8.CD 【分析】方程()0f x t -=即()f x t =,作出函数()f x 的简图,数形结合可得结果. 【详解】方程()0f x t -=即()f x t =,作出函数()f x 的简图,由图可知:当0t <时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解;当0t =时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故A 错误;当4t >时,函数()y f x =的图象与直线y t =有1个交点,即方程()0f x t -=有1个实数解,故B 错误; 当04t <<时,函数()y f x =的图象与直线y t =有3个交点,即方程()0f x t -=有3个实数解,故C 正确; 当4t =时,函数()y f x =的图象与直线y t =有2个交点,即方程()0f x t -=有2个实数解,故D 正确. 故选:CD.9.102,3⎡⎫⎪⎢⎣⎭【分析】通过参变分离,转化为1a x x =+在1(,3)2上有解,转化为求函数t =x +1x ,x ∵1(,3)2的值域. 【详解】由题意知方程ax =x 2+1在1(,3)2上有解,即1a x x =+在1(,3)2上有解.设t =x +1x ,x ∵1(,3)2,则t 的取值范围是102,3⎡⎫⎪⎢⎣⎭,所以实数a 的取值范围是102,3⎡⎫⎪⎢⎣⎭.故答案为:102,3⎡⎫⎪⎢⎣⎭.10.3 【分析】根据函数零点存在定理,判断函数值的符号,即可判断函数零点个数. 【详解】解:由题意,因为()()230f f <,()()450f f <,()()560f f <,所以根据函数零点存在性定理,在区间(2,3)和(4,5)及(5,6)内至少有一个零点,故函数()y f x =在区间[]16,上的零点至少有3个,即n 的最小值为3, 故答案为:3. 11.2 【分析】利用方程的根于函数图象的交点之间的关系,结合指数函数和对数函数互为反函数的关系,作出图象即可求解【详解】a 是方程22x x +=的根,就是2x y =和2y x =-图象交点的横坐标;b 是方程2log 2x x +=的根,就是2log y x =和2y x =-图象交点的横坐标;在同一坐标系中画出函数2x y =,2log y x =,2y x =-的图象,如图所示:由图可知,a 是2x y =和2y x =-图象交点A 的横坐标,b 是2log y x =和2y x =-图象交点B 的横坐标,因为2x y =与2log y x =互为反函数, 所以图象关于直线y x =对称, 故点A ,B 也关于直线y x =对称, 所以点A ,B 为(),A a b ,(),B b a , 而点A ,B 又在2y x =-上, 所以2b a =-,2a b =-, 即2a b +=, 所以2a b +=, 故答案为:2 12.10a -<<. 【分析】用分离参数法变形方程为1a x x x =-++,引入函数()1g x x x x =-++,作出函数()g x 的图象,由图象与直线y a =有三个交点可得结论. 【详解】方程()f x x =可化为1a x x x =-++,设()1g x x x x =-++,则1,0()1,101,1x x g x x x x x -≥⎧⎪=---≤<⎨⎪+<-⎩,函数图象如下:由图象知()y g x =的图象与直线y a =有三个交点时,10a -<<. 13.(1)(0,2);(2)1. 【分析】(1)根据真数大于0即可. (2)令()0f x =即可. 【详解】(1)由已知可得200x x ->⎧⎨>⎩,解得02,()x f x <<∴的定义域为(0,2).(2)()()()212log 20,2f x x x x =-+∈,,由()0f x =得221x x -+=,即2210x x -+=,解得1x =, ()f x ∴的零点是1.14.(1)图象见解析;(2)01m <<. 【分析】(1)结合二次函数的图象与性质,对数函数的图象与性质利用描点法作函数的图象,(2)观察()f x 图象,根据()y f x =的图象与y m =的图象有三个交点确定m 的范围.【详解】 (1)作图如下:11(2)方程()f x m =有3个解等价于函数()y f x =的图象与y m =的图象有三个交点, 观察图象可得01m <<.。

高中数学方程的根与函数的零点练习题及答案

高中数学方程的根与函数的零点练习题及答案

高中数学方程的根与函数的零点练习题及答案高中数学方程的根与函数的零点练习题及答案一、选择题1.已知函数f(x)在区间[a,b]上单调,且f(a)f(b)0则方程f(x)=0在区间[a,b]上()A.至少有一实根 B.至多有一实根C.没有实根 D.必有唯一的实根[答案] D2.已知函数f(x)的图象是连续不断的,有如下的x、f(x)对应值表:x 1 2 3 4 5 6f(x) 123.56 21.45 -7.82 11.57 -53.76 -126.49函数f(x)在区间[1,6]上的零点至少有()A.2个 B.3个C.4个 D.5个[答案] B3.(2013~2014山东淄博一中高一期中试题)对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则f(x)在(a,b)上()A.一定有零点 B.可能有两个零点C.一定有没有零点 D.至少有一个零点[答案] B[解析] 若f(x)的'图象如图所示否定C、D若f(x)的图象与x轴无交点,满足f(a)0,f(b)0,则否定A,故选B.4.下列函数中,在[1,2]上有零点的是()A.f(x)=3x2-4x+5 B.f(x)=x3-5x-5C.f(x)=lnx-3x+6 D.f(x)=ex+3x-6[答案] D[解析] A:3x2-4x+5=0的判别式0,此方程无实数根,f(x)=3x2-4x+5在[1,2]上无零点.B:由f(x)=x3-5x-5=0得x3=5x+5.在同一坐标系中画出y=x3,x[1,2]与y=5x+5,x[1,2]的图象,如图1,两个图象没有交点.f(x)=0在[1,2]上无零点.C:由f(x)=0得lnx=3x-6,在同一坐标系中画出y=lnx与y=3x-6的图象,如图2所示,由图象知两个函数图象在[1,2]内没有交点,因而方程f(x)=0在[1,2]内没有零点.D:∵f(1)=e+31-6=e-30,f(2)=e20,f(1)f(2)0.f(x)在[1,2]内有零点.5.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是()A.-1和16 B.1和-16C.12和13 D.-12和-13[答案] B[解析] 由于f(x)=x2-ax+b有两个零点2和3,a=5,b=6.g(x)=6x2-5x-1有两个零点1和-16.6.(2010福建理,4)函数f(x)=x2+2x-3,x0-2+lnx,x0的零点个数为()A.0 B.1C.2 D.3[答案] C[解析] 令x2+2x-3=0,x=-3或1;∵x0,x=-3;令-2+lnx=0,lnx=2,x=e20,故函数f(x)有两个零点.二、填空题7.已知函数f(x)=x+m的零点是2,则2m=________.[答案] 14[解析] ∵f(x)的零点是2,f(2)=0.2+m=0,解得m=-2.2m=2-2=14.8.函数f(x)=2x2-x-1,x0,3x-4,x>0的零点的个数为________.[答案] 2[解析] 当x0时,令2x2-x-1=0,解得x=-12(x=1舍去);当x>0时,令3x-4=0,解得x=log34,所以函数f(x)=2x2-x-1,x0,3x-4,x>0有2个零点.9.对于方程x3+x2-2x-1=0,有下列判断:①在(-2,-1)内有实数根;②在(-1,0)内有实数根;③在(1,2)内有实数根;④在(-,+)内没有实数根.其中正确的有________.(填序号)[答案] ①②③[解析] 设f(x)=x3+x2-2x-1,则f(-2)=-1<0,f(-1)=1>0,f(0)=-1<0,f(1)=-1<0,f(2)=7>0,则f(x)在(-2,-1),(-1,0),(1,2)内均有零点,即①②③正确.三、解答题10.已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么?[解析] 因为f(-1)=2-1-(-1)2=-12<0,f(0)=20-02=1>0,而函数f(x)=2x-x2的图象是连续曲线,所以f(x)在区间[-1,0]内有零点,即方程f(x)=0在区间[-1,0]内有解.11.判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=-8x2+7x+1;(2)f(x)=x2+x+2;(3)f(x)=x2+4x-12x-2;(4)f(x)=3x+1-7;(5)f(x)=log5(2x-3).[解析] (1)因为f(x)=-8x2+7x+1=-(8x+1)(x-1),令f(x)=0,解得x=-18或x=1,所以函数的零点为-18和1.(2)令x2+x+2=0,因为=12-412=-70,所以方程无实数根,所以f(x)=x2+x+2不存在零点.(3)因为f(x)=x2+4x-12x-2=x+6x-2x-2,令x+6x-2x-2=0,解得x=-6,所以函数的零点为-6.(4)令3x+1-7=0,解得x=log373,所以函数的零点为log373.(5)令log5(2x-3)=0,解得x=2,所以函数的零点为2.12.(2013~2014北京高一检测)已知二次函数y=(m+2)x2-(2m+4)x+(3m+3)有两个零点,一个大于1,一个小于1,求实数m 的取值范围.[解析] 设f(x)=(m+2)x2-(2m+4)x+(3m+3),如图,有两种情况.第一种情况,m+2>0,f1<0,解得-2<m<-12.第二种情况,m+2<0,f1>0,此不等式组无解.综上,m的取值范围是-2<m<-12.。

新人教A版必修1 3.1.1 方程的根与函数的零点

新人教A版必修1    3.1.1  方程的根与函数的零点

)
解析:易知 f(x)在其定义域上为增函数. 3 ∵f(6)=lg 6- <0, 2 9 f(7)=lg 7- <0, 7 9 f(8)=lg 8- <0, 8 f(9)=lg 9-1<0, 9 f(10)=lg 10- >0, 10 ∴f(9)· f(10)<0,∴零点在区间(9,10)内.
答案:D
+1=0 -2x+1
Δ= 0
(1,0)
x2=1
方程
对应 判别 方程 函数 式 的根
函数的图象
图象与x轴 交点坐标 无交点
x2- f(x)=
2x+
x2-
Δ= 无实
3=0 2x+3 2x-4 f(x)=
-8
数根
x= 2
(2,0)
=0
2x-4
问题2:方程的根与对应函数的图象有何关系? 提示:方程的根是使函数值等于零的自变量值, 也就是函数图象与x轴交点的横坐标.
函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图象是 连续不断 的 f(b)<0 ,那么,函数y=f(x)在区间 一条曲线,并且有 f(a)·
(a,b)内有零点,即存在c∈(a,b),使得 f(c)=0 ,这个c 也就是方程f(x)=0的根.
1.函数的零点是一个实数,当自变量取该值 时,其函数值等于零. 2.根据函数零点的定义可知,函数f(x)的零
[精解详析]
(1)∵f(x)=-x2-2x+3
=-(x+3)(x-1),
∴方程-x2-2x+3=0的两根分别是-3和1. 故函数的零点是-3,1. (2)∵f(x)=x4-1=(x2+1)(x+1)(x-1), ∴方程x4-1=0的实数根是-1或1.

方程的根与函数的零点(最终版)

方程的根与函数的零点(最终版)

10
8
6
函数图象
方程的根
7
x2 2x 36 0
5
f
(x)
x2
4
2x
3
3
2
1
4
-3
2
-1
1
2
1
2
8
6
3 -3
4 -4
y5
x1 3
x2 1
2x 1 0
f ( x) 5 2x 1
4
3
2
4
6
1
8
10
4
2 15
0
1
2
3
4
2 10
4
x0
函数图象与x轴 的交点坐标
(-3, 0) (1, 0)
(0, 0)
例二、已知函数 y f (x) 是R上的连续函数,观
察下表,判断函数在哪些区间内一定存在零点, 并简述理由。
x123456789
f(x) 0.2 0.4 -0.4 -0.3 1 6 8 -3 -1
例三、试判断函数 f (x) ex x 4是否有零点, 若有,有几个?
解:因为 f (1) e 3 0 且 f (2) e2 2 0 所以函数在区间(1, 2) 存在零点;
零点:对于函数 y f (x),我们把使 f (x)=0的 实数x叫做函数 y f (x)的零点。
代数方面:零点就是方程 f (x)=0 的实根 图形方面:零点就是函数 y f (x) 的图象
与x轴交点的横坐标
判断方程 f (x) 0 是否有实根 判断函数 y f (x) 的图象与x轴是否有交点
判断函数 y f (x) 是否有零点
1
f (x) x2 x 6

函数的零点与方程的解(经典导学案及练习答案详解)

函数的零点与方程的解(经典导学案及练习答案详解)

§2.9函数的零点与方程的解学习目标1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(√)教材改编题1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1234567f(x)-4-2142-1-3在下列区间中,函数f(x)必有零点的区间为()A.(1,2) B.(2,3) C.(5,6) D.(5,7)答案 BCD解析 由所给的函数值表知, f (1)f (2)>0,f (2)f (3)<0,f (5)f (6)<0, f (5)f (7)<0,∴f (x )在区间(2,3),(5,6),(5,7)内各至少有一个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________.答案 -2,e解析 ⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________. 答案 (3,6)解析 设f (x )=2x +x , ∴f (x )在(1,2)上单调递增, 又f (1)=3,f (2)=6, ∴3<k <6.题型一 函数零点所在区间的判定例1 (1)(多选)(2022·菏泽质检)函数f (x )=e x -x -2在下列哪个区间内必有零点( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 AD解析 f (-2)=1e 2>0,f (-1)=1e -1<0,f (0)=-1<0,f (1)=e -3<0, f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0, 所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 答案 D解析 f (x )的定义域为{x |x >0}, f ′(x )=13-1x =x -33x,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增, 又f ⎝⎛⎭⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝⎛⎭⎫1e ,1内无零点.又f (e)=e3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x -3+x , 当x →0时,f (x )→-∞,f (1)=-2, 又∵f (2)=log 32-1<0, f (3)=log 33-3+3=1>0, 故f (2)·f (3)<0,故方程log 3x =3-x 在区间(2,3)上有解,即利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是(2,3).(2)已知2<a <3<b <4,函数y =log a x 与y =-x +b 的交点为(x 0,y 0),且x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 依题意x 0为方程log a x =-x +b 的解, 即为函数f (x )=log a x +x -b 的零点, ∵2<a <3<b <4,∴f (x )在(0,+∞)上单调递增, 又f (2)=log a 2+2-b <0, f (3)=log a 3+3-b >0, ∴x 0∈(2,3),即n =2. 题型二 函数零点个数的判定例2 (1)(2022·绍兴模拟)若函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且x ∈[-1,1]时,f (x )=1-x 2,已知函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0,则函数h (x )=f (x )-g (x )在区间[-6,6]内的零点个数为( )A .14B .13C .12D .11 答案 C解析 因为f (x +1)=-f (x ),所以函数y =f (x )(x ∈R )是周期为2函数, 因为x ∈[-1,1]时,f (x )=1-x 2,所以作出它的图象,则y =f (x )的图象如图所示.(注意拓展它的区间)再作出函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0的图象,容易得出交点为12个.(2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案 6解析 令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2.故f (x )共有6个零点. 教师备选函数f (x )=2x |log 2x |-1的零点个数为( ) A .0 B .1 C .2 D .4 答案 C解析 令f (x )=0,得|log 2x |=⎝⎛⎭⎫12x ,分别作出y =|log 2x |与y =⎝⎛⎭⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝⎛⎭⎫12x的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为( ) A .6 B .7 C .8 D .9 答案 B解析 令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0, 因为函数的最小正周期为2, 所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( ) A .3 B .7 C .5 D .6 答案 B解析 根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图:由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为 7. 题型三 函数零点的应用命题点1 根据函数零点个数求参数例3 (2022·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤0,1x ,x >0,若关于x 的方程f (x )-a (x +3)=0有四个不同的实根,则实数a 的取值范围是( ) A .(-∞,4-23) B .(4+23,+∞) C .[0,4-23] D .(0,4-23)答案 D解析 画出f (x )的函数图象,设y =a (x +3),该直线恒过点(-3,0), 结合函数图象,若y =a (x +3)与y =-x 2-2x 相切,联立得x 2+(a +2)x +3a =0, Δ=(a +2)2-12a =0, 得a =4-23(a =4+23舍), 若f (x )=a (x +3)有四个不同的实数根, 则0<a <4-2 3.命题点2 根据函数零点范围求参数例4 (2022·北京顺义区模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 答案 B解析 由f (x )=3x -1+ax x =0,可得a =3x -1x,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时, g (x )=3x -1x <3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝⎛⎭⎫0,43. 因此实数a 的取值范围是⎝⎛⎭⎫0,43. 教师备选1.函数f (x )=xx +2-kx 2有两个零点,则实数k 的值为________.答案 -1解析 由f (x )=xx +2-kx 2=x ⎝⎛⎭⎫1x +2-kx ,函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0.即方程1x +2-kx =0有且只有一个非零实根.显然k ≠0,即1k=x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k>-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k=-1,即k =-1时满足条件. 当1k <-1时,函数y =x 2+2x 的图象与直线y =1k无交点,不满足条件. 2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0, 解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3 (1)(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A .0 B.13 C.12 D .1答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与直线y =b 有三个不同的交点, 当x ≤0时,f (x )=(x +1)e x , 则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减,在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,x →-∞时,f (x )→0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与直线y =b 有三个不同的交点,则b ∈(0,1]. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为( )A.⎝⎛⎭⎫-53,0 B.⎝⎛⎭⎫-∞,-53∪(0,+∞) C.⎝⎛⎦⎤-∞,-53∪(0,+∞) D.⎣⎡⎭⎫-53,0 答案 D解析 由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧f (1)<0,f (3)≥0,即⎩⎪⎨⎪⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎡⎭⎫-53,0.课时精练1.函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 由题意知,f (x )=x 3-⎝⎛⎭⎫12x -2,f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,2 C.⎝⎛⎭⎫2,52 D.⎝⎛⎭⎫52,3 答案 A解析 取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32, 因为f ⎝⎛⎭⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝⎛⎭⎫1,32. 3.(2022·武汉质检)若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 答案 D解析 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有实数解,即a =x +1x 在⎝⎛⎭⎫12,3上有解, 设t =x +1x,x ∈⎝⎛⎭⎫12,3, 则t 的取值范围是⎣⎡⎭⎫2,103. 所以实数a 的取值范围是⎣⎡⎭⎫2,103. 4.若函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为( ) A .[-3,0)B .[-1,0)C .[0,1)D .[-3,+∞)答案 A 解析 因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.5.(2022·重庆质检)已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案 B解析 f (x )=⎝⎛⎭⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.6.(2022·北京西城区模拟)若偶函数f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的根的个数是( )A .2B .3C .4D .多于4答案 C解析 f (x )=log 3|x |的解的个数,等价于y =f (x )的图象与函数y =log 3|x |的图象的交点个数,因为函数f (x )满足f (x +2)=f (x ),所以周期T =2,当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,在同一平面直角坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是( )A .1B .2C .4D .6答案 ABC解析 由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π], 在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y =k 与y =f (x )的图象交点个数可能为0,1,2,3,4.8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .g (x )=x 2-x -3C .f (x )=12x +1D .f (x )=|log 2x |-1答案 BCD解析 选项A ,若f (x 0)=x 0,则02x =0,该方程无解,故A 中函数不是“不动点”函数;选项B ,若g (x 0)=x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故B 中函数是“不动点”函数;选项C ,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故C 中函数是“不动点”函数; 选项D ,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故D 中函数是“不动点”函数.9.若函数f (x )=x 3+ax 2+bx +c 是奇函数,且有三个不同的零点,写出一个符合条件的函数:f (x )=________.答案 x 3-x (答案不唯一)解析 f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案 (1,2)解析 画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案 ⎣⎡⎭⎫2e 2,1e 解析 ∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e2, f (x )=ln x (x >1),f ′(x )=1x, 设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e. 则直线y =ax 的斜率a ∈⎣⎡⎭⎫2e 2,1e .12.(2022·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2=________. 答案 1解析 x 1,x 2分别是函数y =e x ,函数y =ln x 与函数y =1x的图象的交点A ,B 的横坐标,所以A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案 B解析 令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案 12 解析 当x ≤0时,x +1=0,x =-1,由f (x )=-1,可得x +1=-1或log 2x =-1,∴x =-2或x =12;当x >0时,log 2x =0,x =1,由f (x )=1,可得x +1=1或log 2x =1,∴x =0或x =2;∴函数y =f (f (x ))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为() A .(0,1) B.⎝⎛⎭⎫14,1C.⎝⎛⎭⎫14,+∞ D .(1,+∞)答案 C解析 因为|x |x +4=kx 2有四个实数解,显然,x =0是方程的一个解,下面只考虑x ≠0时有三个实数解即可.若x >0,原方程等价于1=kx (x +4),显然k ≠0,则1k =x (x +4).要使该方程有解,必须k >0,则1k +4=(x +2)2,此时x >0,方程有且必有一解;所以当x <0时必须有两解,当x <0时,原方程等价于-1=kx (x +4),即-1k=x (x +4)(x <0且x ≠-4),要使该方程有两解, 必须-4<-1k<0, 所以k >14. 所以实数k 的取值范围为⎝⎛⎭⎫14,+∞. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案 ⎝⎛⎦⎤1e ,4e 2解析 由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝⎛⎦⎤1e ,4e 2.。

函数的零点与方程根的关系

函数的零点与方程根的关系

函数的零点与方程根的关系
函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.
【解法】
求方程的根就是解方程,把所有的解求出来,一般要求的是二次函数或者方程组,这里不多讲了.我们重点来探讨一下函数零点的求法(配方法).
例题:求函数f(x)=x4+5x3﹣27x2﹣101x﹣70的零点.
解:∵f(x)=x4+5x3﹣27x2﹣101x﹣70
=(x﹣5)•(x+7)•(x+2)•(x+1)
∴函数f(x)=x4+5x3﹣27x2﹣101x﹣70的零点是:5、﹣7、﹣2、﹣1.
通过这个题,我们发现求函数的零点常用的方法就是配方法,把他配成若干个一次函数的乘积或者是二次函数的乘积,最后把它转化为求基本函数的零点或者说求基本函数等于0时的解即可.
【考查趋势】
考的比较少,了解相关的概念和基本的求法即可.
第1页共1页。

人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题

人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题

3.1.1 方程的根与函数的零点1.函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.比如,由于方程f(x)=lg x=0的解是x=1,所以函数f(x)=lg x的零点是1.辨误区函数的零点不是点我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,因此函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.【例1】函数f(x)=x2-1的零点是( )A.(±1,0) B.(1,0)C.0 D.±1解析:解方程f(x)=x2-1=0,得x=±1,因此函数f(x)=x2-1的零点是±1.答案:D2函数零点(或零点个数)正比例函数y=kx(k≠0)一个零点0反比例函数kyx=(k≠0)无零点一次函数y=kx+b(k≠0)一个零点b k -二次函数y=ax2+bx+c(a≠0Δ>0两个零点-b±Δ2aΔ=0一个零点-b2aΔ<0无零点指数函数y=a x(a>0,且a≠1)无零点对数函数y=log a x(a>0,且a≠1)一个零点1幂函数y=xαα>0一个零点0α≤0无零点【例2( )A.0 B.1 C.2 D.1或2解析:∵b2=ac,∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2.又∵abc≠0,∴b≠0.因此Δ<0.故函数f(x)=ax2+bx+c的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f(x)=0有实根⇔函数f(x)的图象与x轴有交点⇔函数f(x)有零点.【例3-1】若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.解析:因为函数f(x)=x2+ax+b的零点就是方程x2+ax+b=0的根,故方程x2+ax +b=0的根是2和-4,可由根与系数的关系求a,b的值.解:由题意,得方程x2+ax+b=0的根是2和-4,由根与系数的关系,得2(4), 2(4),ab+-=-⎧⎨⨯-=⎩即2,8.a b =⎧⎨=-⎩(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联 Δ>0 Δ=0 Δ<0二次函数 f (x )=ax 2+ bx +c (a >0) 的图象图象与x 轴交点 (x 1,0),(x 2,0) (x 0,0) 无交点方程f (x )=0的根 x =x 1,x =x 2 x =x 0 无实数根函数y =f (x )的零点x 1,x 2 x 0 无零点式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x=0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3. 故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F(x)=f(x)-g(x)的零点就是方程F(x)=0即方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象的交点的横坐标.这样,我们就将函数F(x)的零点问题转化为函数f(x)与g(x)图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=24122x xx+--.解析:分别解方程f(x)=0得函数的零点.解:(1)解方程f(x)=x2+7x+6=0,得x=-1或-6.故函数的零点是-1,-6.(2)解方程f(x)=1-log2(x+3)=0,得x=-1.故函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26.故函数的零点是log26.(4)解方程f(x)=24122x xx+--=0,得x=-6.故函数的零点为-6.辨误区忽略验根出现错误本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f(x)=ln x-11x-的零点的个数是( )A.0 B.1 C.2 D.3解析:在同一坐标系中画出函数y=ln x与11yx=-的图象如图所示,因为函数y=ln x与11yx=-的图象有两个交点,所以函数f(x)=ln x-11x-的零点个数为2.答案:C,5.判断零点所在的区间零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1)当函数y=f(x)同时满足:①函数的图象在区间[a,b]上是连续曲线;②f(a)·f(b)<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 错解 错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在区间[1,4]上没有零点,即零点个数为0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在区间(1,2.5)内有一个零点;又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在区间(2.5,4)内有一个零点.∴函数在区间[1,4]内有两个零点. 错因分析对于错解一,是错误地类比了零点存在性定理,注意当f (a )·f (b )>0时,区间(a ,b )内的零点个数是不确定的;对于错解二,注意当f (a )·f (b )<0时,区间(a ,b )内存在零点,但个数是不确定的.正解由x 2-5x +6=0,得x =2或x =3,所以函数f (x )=x 2-5x +6在区间[1,4]上的零点个数是2.【例5-2】函数f (x )=lg x -x的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0. ∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10). 答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔ca<0.④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0.(2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程x 1,x 2中有且仅有一个在区间 (k 1,k 2)内f (k 1)·f (k 2)<0或f (k 1)=0,k 1<12<22k k b a +-或f (k 2)=0,12<22k k b a+-<k 2.__________________________________________________________________ __________________________________________________________________ __________________________________________________________________【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意.(2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1). 若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1].点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时, (1)方程有一根; (2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根.(2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.。

方程的根与函数的零点经典练习及答案

方程的根与函数的零点经典练习及答案

[基础巩固]1.(多选)下列图象表示的函数有零点的是( )解析 观察图象可知A 选项中图象对应的函数没有零点.答案 BCD2.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0,的零点个数为( ) A .0B .1C .2D .3 解析 解法一 令f (x )=0,得⎩⎪⎨⎪⎧ x ≤0x 2+2x -3=0或⎩⎪⎨⎪⎧x >0ln x =2, ∴x =-3或x =e 2,应选C.解法二 画出函数f (x )的图象可得,图象与x 轴有两个交点,则函数f (x )有2个零点. 答案 C3.设x 0是方程ln x +x =4的解,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 设函数f (x )=ln x +x -4,则函数f (x )的图象是一条连续不断的曲线.f (1)=ln 1+1-4=-3<0,f (2)=ln 2-2<0,f (3)=ln 3-1>0,f (4)=ln 4>0,所以f (2)·f (3)<0,所以x 0∈(2,3).答案 C4.函数f (x )=ln x -x 2+2x +5的零点个数为________.解析 令ln x -x 2+2x +5=0得ln x =x 2-2x -5,画图可得函数y =ln x 与函数y =x 2-2x -5的图象有2个交点,即函数f (x )的零点个数为2.答案 25.若f (x )=x +b 的零点在区间(0,1)内,则b 的取值范围为________.解析 ∵f (x )=x +b 是增函数,又f (x )=x +b 的零点在区间(0,1)内,∴⎩⎪⎨⎪⎧ f (0)<0,f (1)>0.∴⎩⎪⎨⎪⎧b <0,1+b >0.∴-1<b <0. 答案 (-1,0)6.判断方程log 2x +x 2=0在区间⎣⎡⎦⎤12,1内有没有实数根?为什么?解析 设f (x )=log 2x +x 2,先设该方程有实数根,∴f ⎝⎛⎭⎫12=log 212+⎝⎛⎭⎫122=-1+14=-34<0, f (1)=log 21+1=1>0,∴f ⎝⎛⎭⎫12·f (1)<0. ∵函数f (x )=log 2x +x 2的图象在区间⎣⎡⎦⎤12,1上是连续的,∴f (x )在区间⎣⎡⎦⎤12,1内有零点,即方程log 2x +x 2=0在区间⎣⎡⎦⎤12,1内有实根.[能力提升]7.已知f (x )为奇函数,且该函数有三个零点,则三个零点之和等于( )A .0B .1C .-1D .不能确定解析 因为奇函数的图象关于原点对称,所以若f (x )有三个零点,则其和必为0.答案 A8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≤0,-2+ln x ,x >0,若函数y =f (x )-k 有三个零点,则实数k 的取值范围为( )A .(-2,-1]B .[-2,-1]C .[1,2]D .[1,2)解析 函数y =f (x )-k 有三个零点,即y =f (x )与y =k 有三个交点,f (x )的图象如上,由图象可得-2<k ≤-1.故选A .答案 A9.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析 函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数的图象只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),当直线y =x +a 与y 轴的交点(0,a )在(0,1)的上方时一定有两个交点.所以a >1.答案 (1,+∞)10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围.(1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内.解析 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧ (-2a )2-16≥0,f (1)=5-2a >0,a >1,解得2≤a <52. (2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f (1)=5-2a <0,解得a >52. (3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧ f (0)=4>0,f (1)=5-2a <0,f (6)=40-12a <0,f (8)=68-16a >0,解得103<a <174. [探索创新]11.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)解析 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示.由图可知,-a≤1,解得a≥-1,故选C. 答案 C。

方程的根与函数的零点

方程的根与函数的零点

对应学生用书P 116基础达标一、选择题1.下列图象表示的函数中没有零点的是( )解析:观察图象可知A 中图象表示的函数没有零点. 答案:A2.函数f (x )=x 2+4x +4在区间[-4,-1]上的零点情况是( ) A .没有零点 B .有一个零点 C .有两个零点D .有无数多个零点解析:函数f (x )=x 2+4x +4=(x +2)2有唯一零点-2∈[-4,-1]. 答案:B3.(2010·福建高考)函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0-2+ln x ,x >0的零点个数为( )A .0B .1C .2D .3解析:由⎩⎪⎨⎪⎧x 2+2x -3=0x ≤0得x =-3,由⎩⎪⎨⎪⎧-2+ln x =0x >0得x =e 2,故有两个零点. 答案:C4.已知函数f (x )=x 3-x -1仅有一个正零点,则此零点所在的区间是( ) A .(3,4) B .(2,3) C .(1,2)D .(0,1)解析:利用零点存在性定理,判断零点存在的区间.由于f (0)=-1<0,f (1)=-1<0,f (2)=5>0,f (3)=23>0,f (4)=59>0,所以f (1)f (2)<0,故选C.答案:C5.若已知f (a )<0,f (b )>0,则下列说法中正确的是( ) A .f (x )在(a ,b )上必有且只有一个零点 B .f (x )在(a ,b )上必有正奇数个零点 C .f (x )在(a ,b )上必有正偶数个零点D .f (x )在(a ,b )上可能有正偶数个零点,也可能有正奇数个零点,还可能无零点 解析:若f (x )的图象不连续则可能没有零点,若f (x )在该区间有零点则可能有正偶数个零点,也可能有正奇数个零点.故应选D.答案:D答案:C 二、填空题7.函数f (x )=x 2-4x -2的零点是________.解析:本题易认为函数的零点有两个,即由x 2-4=0求出x =±2,事实上x =2不在函数的定义域内.答案:-28.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的最小区间为________.解析:令f (x )=,f (0)=1-2=-1<0,f (1)=2.72-3=-0.28<0,f (2)=7.39-4=3.39>0,f (3)=20.09-5=15.09>0,由于f (1)·f (2)<0,所以根据表格原方程的一个根所在的最小区间为(1,2).答案:(1,2)9.已知函数f (x )的图象是不间断的,且有如下的x ,f (x )的对应值表:解析:由f (-2)·f (-1.5)<0,f (-0.5)·f (0)<0,f (0)·f (0.5)<0可知,函数f (x )在区间[-2,2]内至少有3个零点.答案:3 三、解答题10.判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-8x 2+7x +1; (2)f (x )=x 2+x +2; (3)f (x )=3x +1-7;(4)f (x )=log 5(2x -3).解:(1)因为f (x )=-8x 2+7x +1=-(8x +1)(x -1),令f (x )=0可解得x =-18或x =1,所以函数的零点为-18和1.(2)令x 2+x +2=0,因为Δ=12-4×1×2=-7<0,所以方程无实数根,所以f (x )=x 2+x +2不存在零点.(3)令3x +1-7=0,解得x =log 373,所以函数的零点是log 373.(4)令log 5(2x -3)=0,解得x =2,所以函数的零点是2.11.已知m ∈R 时,函数f (x )=m (x 2-1)+x -a 恒有零点,求a 的范围. 解:当m =0时,f (x )=x -a , a ∈R 时,f (x )有零点; 当m ≠0时,Δ=12-4m (-a -m )=4m 2+4am +1≥0恒成立, 则有16a 2-16≤0. 解得-1≤a ≤1综上所述,当m =0时,a ∈R ; 当m ≠0时,-1≤a ≤1.创新题型12.试判断函数f (x )=x 5-1x-2存在几个零点?解:因为f (1)=-2<0,f (2)=32-12-2>0,且函数f (x )=x 5-1x -2的图象在区间(1,2)上不间断,所以函数f (x )在(1,2)上必存在零点,又可证函数f (x )在(0,+∞)上是单调增函数,所以函数f (x )在(0,+∞)上只有一个零点;因为f (-13)=-135+3-2>0,f (-1)=-2<0,且函数f (x )=x 5-1x -2的图象在区间(-1,-13)上不间断,所以函数f (x )在(-1,-13)上必存在零点,又可证函数f (x )在(-∞,0)上是单调增函数,所以函数f (x )在(-∞,0)上只有一个零点.综上所述,原函数存在两个零点.。

考点04 函数的零点与方程的根(解析版)

考点04 函数的零点与方程的根(解析版)

考点04 函数的零点与方程的根一、单选题1.已知函数f(x)的图像是连续且单调的,有如下对应值表:则函数f(x)的零点所在区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)【答案】B【解析】【分析】根据函数f(x)的图像是连续且单调的,(2)(3)0f f ⋅<,即得解. 【详解】因为函数f(x)的图像是连续且单调的,(2)(3)10f f ⋅=-<,所以函数f(x)的零点所在区间是(2,3).故选:B【点睛】方法点睛:判断一个连续函数的零点所在的区间,一般直接利用零点存在性定理解答,即找到区间(,)a b ,且()()0f a f b <即得解.2.函数()34xf x x =+的零点所在的区间是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)【答案】B【解析】【分析】结合题中选项,分别计算函数值,根据函数零点存在性定理,即可得出结果.【详解】易知函数()34xf x x =+是增函数,且1(1)430f --=-+<,()010f =>, 由函数零点存在性定理可得,函数()34xf x x =+的零点所在的区间是(1,0)-. 故选:B.【点睛】方法点睛:在判定函数零点所在区间时,一般根据函数零点存在性定理来判断,要求学生要熟记零点存在性定理;另外,在根据判断函数零点时,有时也需要结合函数单调性进行判断.3.函数()ln 26f x x x =+-的零点一定位于区间( )A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】【分析】函数()f x lnx 2x 6=+-在其定义域上连续,同时可判断f (2)<0,f (3)>0;从而可得解.【详解】函数f (x )=lnx 2x 6+-在其定义域上连续,f (2)=ln 2+2•2﹣6=ln2﹣2<0,f (3)=ln3+2•3﹣6=ln3>0;故函数()f x lnx 2x 6=+-的零点在区间(2,3)上,故选B .【点睛】本题考查了函数的零点存在定理,对数函数的性质与计算,熟记定理,准确计算是关键,属于基础题.4.方程2221,(0)x x a a -=+>的解的个数是( )A .1B .2C .3D .4 【答案】B【解析】【分析】 将题意转化为22y x x =-的图象与21y a =+的图象交点的个数即可得结果. 【详解】∵0a >,∴211a +>.而22y x x =-的图象如图,∴22y x x =-的图象与21y a =+的图象总有两个交点, 即方程2221,(0)x x a a -=+>的解的个数是2,故选:B.【点睛】本题主要考查了方程根的问题,利用数形结合思想是解题的关键,属于基础题. 5.已知函数2log ,0()2,0x x x f x x >⎧=⎨≤⎩,且关于x 的方程()0f x a -=有两个实根,则实数a 的取值范围为( ) A .(0,1] B .(0,1) C .[0,1] D .(0,)+∞【答案】A【解析】【分析】当0x ≤时,021x <≤,当0x >时,2log x R ∈,由题意可得,函数()y f x =与直线y a =有两个交点,数形结合求得实数a 的范围.【详解】当0x ≤时,021x <≤,当0x >时,2log x R ∈.所以,由图象可知当要使方程()0f x a -=有两个实根,即函数()y f x =与直线y a =有两个交点,所以,由图象可知01a <≤,故选:A .【点睛】本题主要考查函数的零点与方程的根的关系,体现了数形结合的数学思想,属于基础题.6.一元二次方程02=+-k kx x 一根大于0,一根小于0,则实数k 的取值范围为( )A .()0,4B .(,0)(4,)-∞+∞C .(,0)-∞D .(4,)+∞【答案】C【解析】【分析】利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】解:方程02=+-k kx x 一根大于0,一根小于0,即函数()2f x x kx k =-+与x 轴有两个交点,且位于0的两侧,所以只需()00f <可得k 0<.故选:C .【点睛】本题考查函数的零点与方程根的关系,属于基础题.7.若函数()f x 是定义在R 上的偶函数,对任意x ∈R ,都有()()2f x f x -=,且当[]0,1x ∈时,()31x f x =-,若函数()()()()log 21a g x f x x a =-+>在区间()1,3-上恰有3个不同的零点,则实数a的取值范围是( )A .(]3,5B .()3,5C .D . 【答案】C【解析】【分析】判断出()f x 的周期,由()g x 在区间()1,3-上的零点个数,结合图象列不等式,由此求得a 的取值范围.【详解】函数()f x 是定义在R 上的偶函数,可求得[]1,0x ∈-,函数()()31x f x f x -=-=-,()()2f x f x -=,即周期为2,又由函数()()()()log 21a g x f x x a =-+>在区间()1,3-恰有3个不同的零点,即函数()y f x =与()log 2a y x =+的图象在区间()1,3-上有3个不同的交点,又由()()132f f ==,则满足()log 122a +<且()log 322a +≥a <≤.故选:C【点睛】本小题主要考查函数的奇偶性、周期性,考查函数零点,属于中档题.8.若函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩,则函数()()2g x f f x ⎡⎤⎣⎦=-的零点个数为( ) A .3B .4C .5D .6【答案】B【解析】【分析】 ()()2g x f f x ⎡⎤⎣⎦=-的零点即方程()2f f x =⎡⎤⎣⎦的根,设()t f x =,则()2f t =,先解方程()2f t =的根t ,再根据图像数形结合()t f x =的解的个数即可.【详解】 函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩,()()2g x f f x ⎡⎤⎣⎦=-的零点即()2f f x =⎡⎤⎣⎦的根, 设()t f x =,则()2f t =,先解方程()2f t =的根t ,再计算()t f x =的解. 2t <时|21|2t -=得2log 3t =;2t ≥时321t =-得52t =. 如图所示,函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩的图像,方程()2()log 31,3f x =∈和方程()5()1,32f x =∈各有两个解,即方程()2f f x =⎡⎤⎣⎦共有4个解,故()()2g x f f x ⎡⎤⎣⎦=-的零点有4个.故选:B.【点睛】本题考查了函数的零点个数,考查了数形结合思想,属于中档题.二、多选题9.已知集合{}2320A x tx x =-+=中至多有一个元素,则t 的值可以是()A .0B .1C .2D .3【答案】ACD【解析】【分析】对t 分成0t =和0t ≠两种情况进行分类讨论,由此确定正确选项.【详解】当0t =时,2320,3x x -+==,23A ⎧⎫=⎨⎬⎩⎭符合题意.当0t ≠时,9980,8t t ∆=-≤≥,所以2,3t =符合.故选:ACD【点睛】本小题主要考查根据一元二次方程根的个数求参数.10.已知函数()2x f x e x =--,则下列区间中含()f x 零点的是( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】AD【解析】【分析】 计算出各端点处的函数值,若两端一正一负即可判断出存在零点.【详解】22(2)220f e e ---=+-=>,11(1)1210f e e ---=+-=-<,0(0)0210f e =--=-<,1(1)1230f e e =--=-<,22(2)2240f e e =--=->,根据零点的存在性定理可知()2,1--和()1,2存在零点.故选:AD.【点睛】本题考查零点的存在性定理,属于基础题.11.已知函数())3f x x π=+,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f x 在[0,]π上有三个零点C .当56x π=时,函数()f x 取得最大值D .为了得到函数()f x 的图象,只要把函数())3f x x π=+图象上所有点的横坐标变为原来的2倍(纵坐标不变)【答案】AC【解析】【分析】根据各选项分别进行讨论,从而得出结论.【详解】A 选项,根据周期公式22T ππ==,故A 正确; B 选项,画出函数图象,根据图象可知函数()f x 在[0,]π上有两个零点,故B 错误; C 选项,画出函数图象,根据图象可知当56x π=时,函数()f x 取得最大值,故C 正确;D 选项,为了得到函数()f x 的图象,只要把函数())3f x x π=+图象上所有点的横坐标变为原来的12倍(纵坐标不变),故D 错误.故选:AC.【点睛】 本题考查余弦型三角函数的知识点,涉及到函数的周期零点以及函数的图象等,属于基础题型.12.已知函数()243,1ln 2,1x x x f x x x ⎧+-≤=⎨+>⎩,则函数()()()10g x f x ax a =-->的零点个数可能为( )A .0B .1C .2D .3【答案】BCD【解析】【分析】根据题意,得到函数()g x 的零点即是函数()y f x =与直线()10y ax a =+>图像交点的横坐标,画出()243,1ln 2,1x x x f x x x ⎧+-≤=⎨+>⎩的大致图像如下,结合函数图像,即可得出结果.【详解】由()()10g x f x ax =--=可得()1f x ax =+,则函数()g x 的零点即是函数()y f x =与直线()10y ax a =+>图像交点的横坐标,画出()243,1ln 2,1x x x f x x x ⎧+-≤=⎨+>⎩的大致图像如下,由ln 2y x =+得1y x '=,所以曲线ln 2y x =+在点()1,2处的切线斜率为11x k y ='==,此时的切线方程为21y x -=-,即1y x =+,恰好过点()0,1,又直线()10y ax a =+>也过点()0,1,所以由图像可得,当1a =时,直线1y ax =+与函数()y f x =的图像有两个交点;即函数()g x 有两个零点;当1a >时,直线1y ax =+只与函数()y f x =在1x <的图像有一个交点,即函数()g x 有一个零点; 当01a <<时,直线1y ax =+与函数()y f x =有三个不同的交点,即函数()g x 有三个零点; 综上,函数()()()10g x f x ax a =-->的零点个数可能为1,2,3.故选:BCD.【点睛】本题主要考查判定函数零点的个数问题,利用数形结合的方法求解即可,涉及导数的方法求曲线的切线方程,属于常考题型.第II 卷(非选择题)三、填空题13.用二分法研究函数f(x)=x 3+3x -1的零点时,第一次计算得f(0)<0,f(0.5)>0,第二次应计算f(x 1),则x 1=________.【答案】0.25【解析】【分析】由零点存在定理得零点在(0,0.5)上,区间中点即为下一步要计算的自变量的值.【详解】∵f(0)·f(0.5)<0,∴f(x)在区间(0,0.5)内有零点. 又∵00.52+=0.25, ∴第二次应计算f(0.25),即x1=0.25.故答案为:0.25.【点睛】本题考查二分法,掌握二分法的概念是解题基础.在确定零点在区间(,)a b 上后,接着可计算2+⎛⎫ ⎪⎝⎭a b f ,即区间中点处的函数值.14.函数2()log (1)f x x =-的零点为_____________.【答案】2【解析】【分析】令2()log (1)0f x x =-=,解方程即可.【详解】令2()log (1)0f x x =-=,即11x -=,解得:2x =,故答案为:2【点睛】本题主要考查函数零点的求解,属于基础题.15.已知()f x 是R 上的奇函数,且当0x >时,()22x f x x =-,则函数()f x 在R 上的零点的个数是______.【答案】5【解析】【分析】由函数的零点,在0x >时,令220x x -=求零点,根据奇函数的对称性及性质可得其它的零点,即可知()f x 在R 上的零点的个数.【详解】0x >时,令220x x -=,解得2x =,4x =;根据奇函数的对称性,当0x <时,()f x 的零点是2x =-,4x =-;又()00=f ,所以()f x 在R 上共有5个零点.故答案为:5.【点睛】本题考查了函数的零点,应用了奇函数的性质:关于原点对称且()00=f ,属于基础题.16.函数2log ,1,()(1),1,x x f x f x x ≥⎧=⎨+<⎩若方程()f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是_________.【答案】(,2)-∞【解析】【分析】根据题意,画出函数图像,利用数形结合法,分别画出()f x 与y x m =-+的图像即可求解【详解】令()g x x m =-+,画出()f x 与()g x 的图像,平移()g x 的图像,当直线经过(1,1)时,只有一个交点,此时2m =,向右移,不再符合条件,故2m <故答案为:(),2-∞【点睛】本题考查函数图像的交点问题,主要考查学生数形结合的能力,属于中档题;四、解答题17.已知关于x 的方程()22210x k x k --+=有两个实数根12,x x . (1)求k 的取值范围;(2)若12121x x x x +=-,求k 的值.【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)-3. 【解析】【分析】(1)依题意,得0∆≥,解出即可;(2)由韦达定理得,()1221x x k +=-,212x x k =,再根据第一问的结论代入即可求出答案.【详解】解:(1)依题意,得()22414480k k k ∆=--=-≥,解得12k ≤, ∴k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦; (2)由韦达定理得,()1221x x k +=-,212x x k =, 由12k ≤得,()12210x x k +=-<, ∴由12121x x x x +=-得,()12121x x x x -+=-,即()2211k k --=-,即()()310k k +-=, 解得3k =-,或1k =(舍),∴3k =-.【点睛】本题主要考查一元二次方程的应用,属于基础题.18.已知函数()22f x x x =-,x ∈R .(Ⅰ)在给定的直角坐标系内作出函数()f x 的图象(不用列表);(Ⅱ)由图象写出函数()f x 的单调区间,并指出单调性(不要求证明);(Ⅲ)若关于x 的方程()f x t =有3个不相等的实数根,求实数t 的值(只需要写出结果).【答案】(Ⅰ)图象见解析;(Ⅱ)(],1-∞-减函数:()1,0-增函数;()0,1减函数;[)1,+∞增函数;(Ⅲ)0t =.【解析】【分析】(Ⅰ)0x ≥时,2()2f x x x =-,作出二次函数的图象,再把它关于y 轴对称,即可得()f x 的图象,(Ⅱ)根据单调性与图象的关系写出单调区间;(Ⅲ)由直线y t =与函数()f x 的图象有三个交点可得.【详解】(Ⅰ)如图所示:(Ⅱ)(],1-∞-减函数:()1,0-增函数;()0,1减函数;[)1,+∞增函数.(Ⅲ)0t =.19的近似值(精确度0.1).【答案】1.4375.【解析】【分析】x =,则33x =.令()33f x x =-,()33f x x =-的零点,利用二分法求出函数的零点的近似值,即可得解.【详解】解:x =,则33x =.令()33f x x =-,()33f x x =-的零点,因为()120f =-<,()250f =>,所以可取初始区间()1,2,用二分法计算.列表如下:由于1.5 1.43750.06250.1-=<, 1.4375. 【点睛】本题考查二分法的应用,关键是合理构造函数将问题转化,属于基础题.20.已知函数()121x a f x =+-(a 为常数)是奇函数 (1)求a 的值;(2)函数2()()log g x f x k =-,若函数()g x 有零点,求参数k 的取值范围.【答案】(1)2a =;(2)1(0,)(2,)2+∞. 【解析】【分析】(1)利用()()0f x f x 列方程,化简求得a 的值.(2)令()0g x =,转化为221log 21x k +=-,求得2121x +-的值域,由此列不等式,解不等式求得k 的取值范围.【详解】(1)函数()f x 的定义域为(,0)(0,)-∞+∞,根据奇函数的定义,应有(,0)(0,),()()0x f x f x ∀∈-∞+∞-+=, 即1102121x x a a -+++=--, 即()22021212x x x x a a -⋅++=--⋅,2201221x x x a a ⋅++=--, 22021xx a a -⋅+=-,()122021x x a -+=-, 20,2a a -==.所以()2121x f x =+-, (2)22()1log 21x g x k =+--, 令()0g x =,得22221log 0,1log 2121x x k k +-=+=-- ()211,0(0,)x -∈-⋃+∞,那么2(,2)(0,)21x ∈-∞-+∞-, ()f x 的值域为(,1)(1,)-∞-+∞,所以2log k ∈(,1)(1,)-∞-+∞,即2log 1k <-或2log 1k > 解得:102k <<或2k >. 所以参数k 的取值范围是1(0,)(2,)2+∞. 【点睛】本小题主要考查函数的奇偶性,考查函数的值域、零点等知识.21.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+. (Ⅰ)求函数()f x 的解析式;(Ⅱ)讨论函数()()g x f x mx =-零点的个数.【答案】(Ⅰ)2241,0()0,041,0x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩;(Ⅱ)答案见解析.【解析】【分析】(Ⅰ)当0x <时,0x ->,运用已知区间上的解析式和奇函数的定义,结合()00f =,可得所求解析式; (Ⅱ)首先判断()g x 为奇函数,考虑0x =时显然成立;0x >时,由参数分离和对勾函数的图象,对m 讨论可得所求零点个数.【详解】(Ⅰ)当0x <时,0x ->,()()241f x x x -=-++,∵()f x 是奇函数,()()f x f x -=-,∴0x <时,()()241f x f x x x =--=---, 当0x =时,()00f =,∴2241,0()0,041,0x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩.(Ⅱ)易知()()g x f x mx =-为奇函数,令()0g x =,则()f x mx =,当0x =时,显然()0g x =,无论m 取何值,0x =均为函数()g x 的零点,当0x >时,由()f x mx =,得14m x x=+-, 当2m =-时,函数()g x 在()0,∞+有一个零点;当2m >-时,函数()g x 在()0,∞+有两个零点;当2m <-时,函数()g x 在()0,∞+无零点,根据奇函数的对称性可得,当2m =-时,函数()g x 在()0,∞+有3个零点;当2m >-时,函数()g x 在()0,∞+有5个零点;当2m <-时,函数()g x 在()0,∞+有1个零点.【点睛】本题考查函数的奇偶性的定义和运用:求解析式,同时考查函数的零点个数问题,注意运用分类讨论思想和对称性,考查化简运算能力、推理能力,属于中档题.22.已知函数()2()0f x ax bx c a =++≠满足(1)()2f x f x x +-=,且(0)1f =.(1)求函数()f x 的解析式;(2)讨论方程()f x m x =在1,42x ⎡⎤∈⎢⎥⎣⎦的解的个数. 【答案】(1)2()1f x x x =-+;(2)当134m >或1m <时,无解; 当31324m <≤或1m =时,一个解; 当312m <≤时,两个解.【解析】【分析】(1)根据待定系数法求函数解析式即可得答案;(2)结合(1)得()11f x m x x x ==+-,令11,421(),g x x x x ⎡⎤∈⎢⎥⎣=+⎦-,将问题转化为函数y m =与11,421(),g x x x x ⎡⎤∈⎢⎥⎣=+⎦-公共点的个数,再根据数形结合思想求解即可. 【详解】(1)函数()2()0f x ax bx c a =++≠, (0)1f =,所以1c =,221112()()()()()f x f x a x b x c ax bx c ax a b +-=++++-++=++,(1)()2f x f x x +-=,即220a a b =⎧⎨+=⎩,11a b =⎧⎨=-⎩所以2()1f x x x =-+; (2)()11f x m x x x==+-, 令11,421(),g x x x x ⎡⎤∈⎢⎥⎣=+⎦-, 根据对勾函数单调性可得1,12x ⎡⎤∈⎢⎥⎣⎦单调递减,[]1,4x ∈单调递增,1313(),(1)1,(4)224g g g === 方程()f x m x =在1,42x ⎡⎤∈⎢⎥⎣⎦的解的个数, 即函数y m =与11,421(),g x x x x ⎡⎤∈⎢⎥⎣=+⎦-公共点的个数, 11,421(),g x x x x ⎡⎤∈⎢⎥⎣=+⎦-函数图象:所以根据图象得:当134m>或1m<时,无解;当31324m<≤或1m=时,一个解;当312m<≤时,两个解【点睛】本题考查待定系数法求解析式,方程的解的个数,考查化归转化思想和数形结合思想,是中档题.。

高一数学方程的根与函数的零点练习题(附答案)

高一数学方程的根与函数的零点练习题(附答案)

高一数学方程的根与函数的零点练习题(附答案)数学是日常生活和进一步学习必不可少的基础和工具。

以下是查字典数学网为大家整理的高一数学方程的根与函数的零点练习题,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

一、选择题1.已知函数f(x)在区间[a,b]上单调,且f(a)f(b)0则方程f(x)=0在区间[a,b]上()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根[答案] D2.已知函数f(x)的图象是连续不断的,有如下的x、f(x)对应值表:x123456f(x)123.5621.45-7.8211.57-53.76-126.49函数f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个[答案] B3.(2019~2019山东淄博一中高一期中试题)对于函数f(x)=x2+mx+n,若f(a)0,f(b)0,则f(x)在(a,b)上()A.一定有零点B.可能有两个零点C.一定有没有零点D.至少有一个零点[答案] B[解析] 若f(x)的图象如图所示否定C、D若f(x)的图象与x轴无交点,满足f(a)0,f(b)0,则否定A,故选B.4.下列函数中,在[1,2]上有零点的是()A.f(x)=3x2-4x+5B.f(x)=x3-5x-5C.f(x)=lnx-3x+6D.f(x)=ex+3x-6[答案] D[解析] A:3x2-4x+5=0的判别式0,此方程无实数根,f(x)=3x2-4x+5在[1,2]上无零点.B:由f(x)=x3-5x-5=0得x3=5x+5.在同一坐标系中画出y=x3,x[1,2]与y=5x+5,x[1,2]的图象,如图1,两个图象没有交点.f(x)=0在[1,2]上无零点.C:由f(x)=0得lnx=3x-6,在同一坐标系中画出y=lnx与y=3x-6的图象,如图2所示,由图象知两个函数图象在[1,2]内没有交点,因而方程f(x)=0在[1,2]内没有零点.D:∵f(1)=e+31-6=e-30,f(2)=e20,f(1)f(2)0.f(x)在[1,2]内有零点.5.若函数f(x)=x2-ax+b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是()A.-1和16B.1和-16C.12和13D.-12和-13[答案] B[解析] 由于f(x)=x2-ax+b有两个零点2和3,a=5,b=6.g(x)=6x2-5x-1有两个零点1和-16.6.(2019福建理,4)函数f(x)=x2+2x-3,x0-2+lnx,x0的零点个数为()A.0B.1C.2D.3[答案] C[解析] 令x2+2x-3=0,x=-3或1;∵x0,x=-3;令-2+lnx=0,lnx=2,x=e20,故函数f(x)有两个零点.二、填空题7.已知函数f(x)=x+m的零点是2,则2m=________.[答案] 14[解析] ∵f(x)的零点是2,f(2)=0.2+m=0,解得m=-2.2m=2-2=14.8.函数f(x)=2x2-x-1,x0,3x-4,x0的零点的个数为________. [答案] 2[解析] 当x0时,令2x2-x-1=0,解得x=-12(x=1舍去);当x0时,令3x-4=0,解得x=log34,所以函数f(x)=2x2-x-1,x0,3x-4,x0有2个零点.9.对于方程x3+x2-2x-1=0,有下列判断:①在(-2,-1)内有实数根;②在(-1,0)内有实数根;③在(1,2)内有实数根;④在(-,+)内没有实数根.其中正确的有________.(填序号)[答案] ①②③[解析] 设f(x)=x3+x2-2x-1,则f(-2)=-10,f(-1)=10,f(0)=-10,f(1)=-10,f(2)=70,则f(x)在(-2,-1),(-1,0),(1,2)内均有零点,即①②③正确. 语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

人教a版必修1学案:3.1.1方程的根与函数的零点(含答案)

人教a版必修1学案:3.1.1方程的根与函数的零点(含答案)

第三章 函数的应用 §3.1 函数与方程3.1.1 方程的根与函数的零点自主学习1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数. 2.理解函数的零点与方程根的关系. 3.掌握函数零点的存在性的判定方法.1.对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的________.2.函数y =f (x )的零点就是方程f (x )=0的__________,也就是函数y =f (x )的图象与x 轴的交点的__________.3.方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有________⇔函数y =f (x )有________.4.函数零点的存在性的判定方法如果函数y =f (x )在[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )________0,那么y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )________0,这个c 也就是方程f (x )=0的根.对点讲练求函数的零点【例1】 求下列函数的零点:(1)f (x )=-x 2-2x +3; (2)f (x )=x 4-1; (3)f (x )=x 3-4x .规律方法 求函数的零点,关键是准确求解方程的根,若是高次方程,要进行因式分解,分解成多个因式积的形式且方程的另一边为零,若是二次方程常用因式分解或求根公式求解.变式迁移1 若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.判断函数在某个区间内是否有零点【例2】 (1)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3) C.⎝⎛⎭⎫1,1e 和(3,4) D .(e ,+∞)(2)f (x )=ln x -2x在x >0上共有________个零点.规律方法 这是一类非常基础且常见的问题,考查的是函数零点的判定方法,一般而言只需将区间端点代入函数求出函数值,进行符号判断即可得出结论,这类问题的难点往往是函数符号的判断,可运用函数的有关性质进行判断,同时也要注意该函数的单调性.变式迁移2 方程x 2-3x +1=0在区间(2,3)内根的个数为( ) A .0 B .1 C .2 D .不确定已知函数零点的特征,求参数范围【例3】 若函数f (x )=ax 2-x -1仅有一个零点,求实数a 的取值范围.变式迁移3 已知在函数f (x )=mx 2-3x +1的图象上其零点至少有一个在原点右侧,求实数m 的范围.1.函数f (x )的零点就是方程f (x )=0的根,但不能将它们完全等同.如函数f (x )=x 2-4x +4只有一个零点,但方程f (x )=0有两个相等实根.2.并不是所有的函数都有零点,即使在区间[a ,b ]上有f (a )·f (b )<0,也只说明函数y =f (x )在(a ,b )上至少有一个零点,但不一定唯一.反之,若f (a )·f (b )>0,也不能说明函数y =f (x )在区间(a ,b )上无零点,如二次函数y =x 2-3x +2在[0,3]上满足f (0)·f (3)>0,但函数f (x )在区间(0,3)上有零点1和2.3.函数的零点是实数而不是坐标轴上的点.课时作业一、选择题1.若函数f (x )唯一的零点在区间(1,3),(1,4),(1,5)内,那么下列说法中错误的是( ) A .函数f (x )在(1,2)或[2,3)内有零点 B .函数f (x )在(3,5)内无零点 C .函数f (x )在(2,5)内有零点D .函数f (x )在(2,4)内不一定有零点2.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(5,6) B .(3,4) C .(2,3) D .(1,2)3.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有4.已知f(x)是定义域为R的奇函数,且在(0,+∞)内的零点有1 003个,则f(x)的零点的个数为()A.1 003 B.1 004 C.2 006 D.2 0075.若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值()A.大于0 B.小于0 C.等于0 D.无法判断二、填空题6.二次函数f(x)=ax2+bx+c中,a·c<0,则函数的零点有________个.7.若函数f(x)=ax+b(a≠0)有一个零点是2,那么函数g(x)=bx2-ax的零点是__________.8.方程2ax2-x-1=0在(0,1)内恰有一个实根,则实数a的取值范围是____________.三、解答题9.判断下列函数在给定区间上是否存在零点.(1)f(x)=x2-3x-18,x∈[1,8];(2)f(x)=x3-x-1,x∈[-1,2];(3)f(x)=log2(x+2)-x,x∈[1,3].10.已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点.(1)若函数的两个零点是-1和-3,求k的值;(2)若函数的两个零点是α和β,求α2+β2的取值范围.第三章函数的应用§3.1函数与方程3.1.1方程的根与函数的零点答案自学导引1.零点2.实数根横坐标3.交点零点4.< = 对点讲练【例1】 解 (1)由于f (x )=-x 2-2x +3=-(x +3)(x -1). 所以方程-x 2-2x +3=0的两根是-3,1. 故函数的零点是-3,1. (2)由于f (x )=x 4-1=(x 2+1)(x +1)(x -1),所以方程x 4-1=0的实数根是-1,1, 故函数的零点是-1,1.(3)令f (x )=0,即x 3-4x =0,∴x (x 2-4)=0,即x (x +2)(x -2)=0. 解得:x 1=0,x 2=-2,x 3=2,所以函数f (x )=x 3-4x 有3个零点,分别是-2,0,2. 变式迁移1 解 ∵2,-4是函数f (x )的零点, ∴f (2)=0,f (-4)=0. 即⎩⎪⎨⎪⎧ 2a +b =-4-4a +b =-16,解得⎩⎪⎨⎪⎧a =2b =-8. 【例2】 (1)B (2)1解析 (1)∵f (1)=-2<0, f (2)=ln 2-1<0,∴在(1,2)内f (x )无零点,A 不对;又f (3)=ln 3-23>0,∴f (2)·f (3)<0,∴f (x )在(2,3)内有一个零点.(2)f (x )=ln x -2x在x >0上是增函数,且f (2)·f (3)<0,故f (x )有且只有一个零点.变式迁移2 B [令f (x )=x 2-3x +1,∴其对称轴为x =32,∴f (x )在(2,3)内单调递增,又∵f (2)·f (3)<0, ∴方程在区间(2,3)内仅有一个根.]【例3】 解 ①若a =0,则f (x )=-x -1,为一次函数,易知函数仅有一个零点; ②若a ≠0,则函数f (x )为二次函数,若其只有一个零点,则方程ax 2-x -1=0仅有一个实数根,故判别式Δ=1+4a =0,则a =-14.综上,当a =0或a =-14时,函数仅有一个零点.变式迁移3 解 (1)当m =0时,f (0)=-3x +1,直线与x 轴的交点为⎝⎛⎭⎫13,0,即函数的零点为13,在原点右侧,符合题意.图①(2)当m ≠0时,∵f (0)=1, ∴抛物线过点(0,1).若m <0,f (x )的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.图②若m >0,f (x )的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当9-4m ≥0即可,解得0<m ≤94,综上所述,m 的取值范围为 ⎝⎛⎦⎤-∞,94. 课时作业 1.C2.B [f (3)=log 33-8+2×3=-1<0, f (4)=log 34-8+2×4=log 34>0. 又f (x )在(0,+∞)上为增函数, 所以其零点一定位于区间(3,4).]3.C [若a =0,则f (x )=bx +c 是一次函数, 由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,如有两个零点,则必有f (1)·f (2)>0,与已知矛盾.故f (x )在(1,2)上有且仅有一个零点.]4.D [因为f (x )是奇函数,则f (0)=0,又在(0,+∞)内的零点有1 003个,所以f (x )在 (-∞,0)内的零点有1 003个.因此f (x )的零点共有1 003+1 003+1=2 007个.] 5.D [考查下列各种图象上面各种函数y =f (x )在(0,4)内仅有一个零点, 但是(1)中,f (0)·f (4)>0, (2)中f (0)·f (4)<0,(3)中f (0)·f (4)=0.] 6.2解析 ∵Δ=b 2-4ac >0,∴方程ax 2+bx +c =0有两个不等实根,即函数f (x )有2个零点.7.0,-12解析 由2a +b =0,得b =-2a ,g (x )=bx 2-ax =-2ax 2-ax ,令g (x )=0,得x =0或x =-12,∴g (x )=bx 2-ax 的零点为0,-12.8.(1,+∞)解析 令f (x )=2ax 2-x -1,a =0时不符合题意;a ≠0且Δ=0时,解得a =-18,此时方程为-14x 2-x -1=0,也不合题意;只能f (0)·f (1)<0,解得a >1.9.解 (1)方法一 ∵f (1)=-20<0,f (8)=22>0, ∴f (1)·f (8)<0.故f (x )=x 2-3x -18在[1,8]上存在零点.方法二 令x 2-3x -18=0,解得x =-3或x =6, ∴函数f (x )=x 2-3x -18在[1,8]上存在零点. (2)∵f (-1)=-1<0,f (2)=5>0, ∴f (-1)·f (2)<0.故f (x )=x 3-x -1在[-1,2]上存在零点. (3)∵f (1)=log 2(1+2)-1>log 22-1=0, f (3)=log 2(3+2)-3<log 28-3=0, ∴f (1)·f (3)<0.故f (x )=log 2(x +2)-x 在[1,3]上存在零点.10.解 (1)∵-1和-3是函数f (x )的两个零点,∴-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两个实数根. 则⎩⎪⎨⎪⎧-1-3=k -2,-1×(-3)=k 2+3k +5, 解得k =-2.(2)若函数的两个零点为α和β,则α和β是方程x 2-(k -2)x +k 2+3k +5=0的两根,∴⎩⎪⎨⎪⎧α+β=k -2,αβ=k 2+3k +5,Δ=(k -2)2-4×(k 2+3k +5)≥0.则⎩⎪⎨⎪⎧α2+β2=(α+β)2-2αβ=-k 2-10k -6,-4≤k ≤-43, ∴α2+β2在区间⎣⎡⎦⎤-4,-43上的最大值是18,最小值是509, 即α2+β2的取值范围为⎣⎡⎦⎤509,18.。

函数的零点练习题

函数的零点练习题

函数的零点(一)练习1、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是A.4B.3C.2D.12、函数12log )(2-+=x x x f 的零点必落在区间( ) A.⎪⎭⎫ ⎝⎛41,81 B.⎪⎭⎫ ⎝⎛21,41 C.⎪⎭⎫ ⎝⎛1,21 D.(1,2)3、数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是()A. ()41f x x =-B. ()2(1)f x x =-C. ()1x f x e =-D.)21ln()(-=x x f 4.若0x 是方程31)21(x x =的解,则0x 属于区间( )A .⎪⎭⎫ ⎝⎛1,32 .B .⎪⎭⎫ ⎝⎛32,21 .C .⎪⎭⎫ ⎝⎛21,31D .⎪⎭⎫ ⎝⎛31,0 5.若0x 是方程式lg 2x x +=的解,则0x 属于区间( )A .(0,1).B .(1,1.25).C .(1.25,1.75)D .(1.75,2)6.函数()x x f x 32+=的零点所在的一个区间是( ) A .()1,2--B .()0,1-C .()1,0D .()2,17.函数()2-+=x e x f x 的零点所在的一个区间是( ) A .()1,2--B .()0,1-C .()1,0D .()2,18.设函数,)12sin(4)(x x x f -+=则在下列区间中函数)(x f 不存在零点的是A .[]2,4--B .[]0,2-C .[]2,0D .[]4,29.已知0x 是函数()x x f x -+=112的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则A .()01<x f ,()02<x fB .()01<x f ,()02>x fC .()01>x f ,()02<x fD .()01>x f ,()02>x f10.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .111.函数()⎩⎨⎧>+-≤-+=0,ln 20,322x x x x x x f 的零点个数为( ) A .0 B .1 C .2 D .312、函数f(x)=x —cosx 在[0,+∞)内 ( )(A )没有零点 (B )有且仅有一个零点(C )有且仅有两个零点 (D )有无穷多个零点13.设m ,k 为整数,方程220mx kx -+=在区间(0,1)内有两个不同的根,则m+k 的最小值为(A )-8 (B )8 (C)12 (D) 1314、若函数a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围 是15、方程 96370x x -•-=的解是..16、已知函数)(x f y =和)(x g y =在]2,2[-的图象如下所示:给出下列四个命题:①方程0)]([=x g f 有且仅有6个根 ②方程0)]([=x f g 有且仅有3个根③方程0)]([=x f f 有且仅有5个根 ④方程0)]([=x g g 有且仅有4个根 其中正确的命题是.(将所有正确的命题序号填在横线上).17、已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程)0()(>=m m x f 在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=18.已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______19.方程223x x -+=的实数解的个数为.20.若函数()a x a x f x --=()1.0≠>a a 有两个零点,则实数a 的取值范围是。

方程的根与函数的零点练习题及答案解析

方程的根与函数的零点练习题及答案解析

方程的根与函数的零点练习题及答案解析王学忠 山东省临沂市沂水县第一中学教材版本:《普通高中课程标准实验教科书·数学1·必修·A 版》,人民教育出版社,2007年1月第二版课 题:§3.1.1方程的根与函数的零点教学目标:【知识与技能】了解函数零点的概念,理解方程的根与函数的零点的关系;理解图象连续的函数存在零点的判定方法,并能进行简单的应用。

【过程与方法】在探究方程的根与函数的零点的关系,图象连续的函数存在零点的判定方法中体会数形结合、函数与方程的数学思想,从特殊到一般的归纳思想。

【情感态度与价值观】在函数与方程的联系中体验数学中的转化思想的意义和价值;在教学中让学生体验探究的过程、发现的乐趣,培养学生的辨证思维。

教学重点:方程的根与函数的零点的关系;图象连续的函数存在零点的判定方法及应用。

教学难点:图象连续的函数存在零点的判定方法的理解。

教具准备:直尺 Powerpoint 2003课件 几何画板4.07课件学具准备:计算器教学方法:问题探究法教学过程设计:一、创设情境:问题引入:求方程01532=-+x x 的实数根。

变式:求方程01535=-+x x 的实数根。

数学史上,人们曾希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果,1824年挪威年仅22岁的数学家阿贝尔(N.H.Abel ,1802-1829)成功地证明了五次以上一般方程没有根式解。

五次以上的高次方程不能用代数运算来求解,我们就必须寻求新的角度——函数来解决这个方程的问题。

设计意图:从学生的认知冲突中,引发学生的好奇心和求知欲,推动问题进一步的探究。

通过对数学史的讲解,培养学生学习数学的兴趣,开门见山地提出利用函数思想解决方程根的问题。

二、新知探究:1.零点的概念:问题1:求方程0322=--x x 的实数根,并画出函数322--=x x y 的图象。

1-,3具有多重角色,它能够使这个方程成立,也能够使这个函数的函数值为0,它又是函数图象与x 轴两个交点的横坐标。

方程的根与函数的零点题型及解析

方程的根与函数的零点题型及解析

方程的根与函数的零点题型及解析1.求下列函数的零点1fx=x3+1;2fx=;3y=﹣x2+3x+4;4y=x2+4x+4.分析:根据函数零点的定义解fx=0,即可得到结论.解:1由fx=x3+1=0得x=﹣1,即函数的零点为﹣1;2由fx==0得x2+2x+1=0得x+12=0,得x=﹣1,即函数的零点为﹣1.3由y=﹣x2+3x+4=0,可得x﹣4x+1=0,所以函数的零点为4,﹣1;4y=x2+4x+4,可得x+22=0,所以函数的零点为﹣2.2.①求函数fx=2x+x﹣3的零点的个数;②求函数fx=log2x﹣x+2的零点的个数;③求函数的零点个数是多少分析:①由题意可判断fx是定义域上的增函数,从而求零点的个数;②由题意可得,函数y=log2x的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数y=lnx的图象与函数y=的图象只有一个交点,可得函数fx=lnx-1/x的零点个数.解:①∵函数fx=2x+x﹣3单调递增,又∵f1=0,故函数fx=2x+x﹣3有且只有一个零点②函数fx=log2x﹣x+2的零点的个数,即函数y=log2x的图象和直线y=x﹣2的交点个数,如图所示:故函数y=log2x的图象红色部分和直线y=x﹣2蓝色部分的交点个数为2,即函数fx=log2x﹣x+2的零点的个数为2;③函数fx=lnx-1/x的零点个数就是函数y=lnx的图象与函数y=1/x的图象的交点的个数,由函数y=lnx的图象与函数y=1/x的图象只有一个交点,如图所示,可得函数fx=lnx-1/x的零点个数是13.①已知方程x2﹣3x+a=0在区间2,3内有一个零点,求实数a的取值范围②已知a是实数,函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,求a的取值.③已知函数fx=x2﹣2ax+4在区间1,2上有且只有一个零点,求a的取值范围分析:①由已知,函数fx在区间2,3内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可;②若函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,则f0<0,f1>0,f2>0,f4<0,解得答案;③若函数fx=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数fx=x2﹣2ax+4有两个零点,进而f1f2<0,解得答案解:①若函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,则f0<0,f1>0,f2>0,f4<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈4,19/4;②∵令fx=x2﹣3x+a,它的对称轴为x=3/2,∴函数fx在区间2,3单调递增,∵方程x2﹣3x+a=0在区间2,3内有一个零点,∴函数fx在区间2,3内与x轴有一个交点,根据零点存在性定理得出:f2<0,f3>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数fx=x2﹣2ax+4只有一个零点,则△=4a2﹣16=0,解得:a=±2,此时函数的零点为±2不在区间1,2上,即函数fx=x2﹣2ax+4有两个零点,则f1f2<0,即5﹣2a8﹣4a<0,解得:a∈2,5/24.已知函数fx的图象是连续不断的,观察下表:函数fx在区间﹣2,2上的零点至少有几个分析:看区间端点值,只要在区间两端点处函数值异号,由零点存在性定理即可解决问题.解:由题中表得,f﹣2<0,f﹣1>0,f0<0,f1<0,f2>0,由零点存在性定理可得fx在区间﹣2,﹣1,﹣1,0,1,2上个有一个零点,故函数fx在区间﹣2,2上的零点至少有3个5.已知y=fx是定义在R上的函数,下列命题正确的是A.若fx在区间a,b上的图象是一条连续不断的曲线,且在a,b内有零点,则有fafb<0B.若fx在区间a,b上的图象是一条连续不断的曲线,且有fafb>0,则其在a,b内没有零点C.若fx在区间a,b上的图象是一条连续不断的曲线,且有fa fb<0,则其在a,b内有零点D.如果函数fx在区间a,b上的图象是一条连续不断的曲线,且有fafb<0,则其在a,b内有零点分析:据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.解:①y=x2,在﹣1,1内有零点,但是f﹣1f1>0,故A不正确,②y=x2,f﹣1f1>0,在﹣1,1内有零点,故B不正确,③若fx在区间a,b上的图象是一条连续不断的曲线,fa=﹣1,fb=1,在a,b恒成立有fx>0,可知满足fafb<0,但是其在a,b内没有零点.故C不正确.所以ABC不正确,故选D6.若y=fx在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是A.若fafb<0,不存在实数c∈a,b,使得fc=0;B.若fafb<0,存在且只存在一个实数c∈a,b,使得fc=0;C.若fafb>0,不存在实数c∈a,b,使得fc=0;D.若fafb>0,有可能存在实数c∈a,b,使得fc=0分析:画满足条件的函数图象排除不正确的选项解:首先,设函数y=fx在区间a,b上的图象如左图:图中满足fa·fb<0,有可能存在实数c ∈a,b使得fc=0,故A,B错误;其次,设函数y=fx在区间a,b上的图象如右图:图中满足fa·fb>0,有可能存在实数c∈a,b使得fc=0,故C错误;D正确.7.已知函数fx=mx2﹣3x+1的图象上其零点至少有一个在原点右侧,求实数m的取值范围分析:根据题意,二次函数的图象与x轴的交点至少有一个在原点的右侧,有两种情况,一是只有一个在右侧,二是两个都在右侧,分类讨论即可.解:1当m=0时,fx=﹣3x+1,直线与x轴的交点为1/3,0,即函数的零点为1/3,在原点右侧,符合题意;2当m≠0时,∵f0=1,∴抛物线过点0,1;若m<0时,fx的开口向下,如图所示;∴二次函数的两个零点必然是一个在原点右侧,一个在原点左侧,满足题意;若m>0,fx的开口向上,如图所示,要使函数的零点在原点右侧,当且仅当△=9﹣4m≥0,且>0即可,如图所示,解得0<m≤;综上,m的取值范围是﹣∞,9/48.函数y=fx的图象在a,b内是连续的曲线,若fafb>0,则函数y=fx在区间a,b内A.只有一个零点B.至少有一个零点C.无零点D.无法确定分析:可列举适当的函数图象,看图象与x轴的交点个数,将选项逐个排除,即可得到正确答案.解:如图1,有fafb>0,但函数y=fx的图象与x轴无交点,所以fx在区间a,b内无零点,可排除A,B,如图2,有fafb>0,但函数y=fx的图象与x轴只有一个交点,所以fx在区间a,b内有且只有一个零点,可排除C,综上知,函数y=fx在区间a,b内的零点个数无法确定.故答案为D9.若二次函数fx=x2+mx+3+2m1若函数fx有两个零点,其中一个零点小于0,另一零点大于5,求m的取值范围;2fx在区间1,7上有最大值22,求m的取值范围.分析:1利用二次函数的性质,函数的零点,列出不等式,即可求解m的范围.2利用二次函数的对称轴以及函数的最值,列出不等式求解即可.解:1二次函数fx=x2+mx+3+2m,开口向上,由图象可知则m<﹣4即m∈﹣∞,﹣4;2由题意可知或可得m=-10/3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的零点和方程的根经典练习题
1.函数2()41f x x x =--+的零点为( )
A
、12-+ B
、12-- C
、12
-± D 、不存在 2、函数32()32f x x x x =-+的零点个数为( )
A 、0
B 、1
C 、2
D 、3
3、函数()ln 26f x x x =+-的零点一定位于区间( ).
A. (1, 2)
B. (2 , 3)
C. (3, 4)
D. (4, 5)
4、已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x
的零点,则g (x 0)等于________
5、若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且当x ∈[0,1]时,f(x)=x ,则函数y =f(x)-log 3|x|的零点个数是
6、定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()|3|1(1)x x f x x x +≤<⎧=⎨--≥⎩,则函数1()()2
g x f x =-的所有零点之和为_____ 7、若方程0x a x a --=有两个实数解,则a 的取值范围是
8、已知函数f(x)=32,2(1),2x x x x ⎧≥⎪⎨⎪-<⎩
若关于x 的方程f(x)=k 有两个不同的实根,则实数k 的
取值范围是________.
9、已知f (x +1)=-f (x ),且f (x )是偶函数,当x ∈[0,1]时,f (x )=x 2.若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围为________.
10、设定义域为R 的函数⎩⎨⎧
--=x x x x f 2lg )(2)0()0(≤>x x ,若关于x 的函数 +=)(22x f y 1)(2+x bf 有8个不同的零点,则实数b 的取值范围是____________.
11、求证方程231
x x x -=
+在(0,1)内必有一个实数根.
12、已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.。

相关文档
最新文档