电子设计毕业设计-串联式多谐振荡器-之二
多谐震荡电路课程设计报告报告

多谐震荡电路一.设计过程:(1)由老师下发的课程设计资料先了解到要做的是什么,有一个明确的目标。
在通过图书馆和互联网查找相关资料文献等,对此设计的实验有一个理论知识上的铺垫与巩固。
(2)根据设计实验指导书了解实验所需的实验电子器件的功能和工作原理以及实验所用的电路原理图。
(3)设计电路图。
此设计实验主要由555定时器芯片和74LS90芯片构成。
通过参考文献的帮助,了解到555定时器芯片和74LS90芯片各引脚的功能与使用方法,并根据震荡频率公式f=1.4/( R1 +2R2)C及周期大小为1000Hz计算出所需的电容与电阻的阻值大小范围,选取适当的电子元件。
(4)根据实际试验操作,考虑到频率过大,因此要降低频率,要用一个分频器进行分频,使频率降低10倍。
(5)考虑到实验要求计数,因此还需要利用74LS90芯片设计出计数器。
(6)电路设计出后就是进行仿真实验。
在Multisim9上进行所设计的实验的仿真操作,在仿真过程中会反映出实验设计里的一些问题,针对所出问题一一进行调试改进。
(7)最后在数字电子实验室进行实际电路搭接。
通过数字电子电路实验箱搭接自己所设计的电路图,并调试,以输出所需要的正确结果。
二.EDA软件介绍和仿真过程(1)EDA软件介绍EDA在通信行业(电信)里的另一个解释是企业数据架构,EDA给出了一个企业级的数据架构的总体视图,并按照电信企业的特征,进行了框架和层级的划分。
EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的EDA工具软件可大致可分为芯片设计辅助软件、可编程芯片辅助设计软件、系统设计辅助软件等三类。
目前进入我国并具有广泛影响的EDA软件是系统设计软件辅助类和可编程芯片辅助设计软件:Protel、Altium Designer、PSPICE、multiSIM10(原EWB的最新版本)、OrCAD、PCAD、LSIIogic、MicroSim、ISE、modelsim、Matlab等等。
多谐振荡器电路

多谐振荡器电路多谐振荡器电路是一种基本电路,它可以产生多个频率的正弦波信号。
这个电路在许多电子设备中都有应用,比如射频通信、音频设备和电子乐器等。
在本文中,我们将深入探讨多谐振荡器电路的原理和应用。
多谐振荡器电路的原理是通过负反馈将输出信号反馈到输入端,从而使电路自激振荡。
具体来说,这个电路由一个放大器、一个带通滤波器和一个反馈回路组成。
放大器将输入信号放大,然后经过带通滤波器滤掉非所需频率的信号,反馈回路将一部分输出信号反馈到输入端,从而产生自激振荡。
多谐振荡器电路可以产生多个频率的正弦波信号,这是因为带通滤波器的通带宽度不同。
通带宽度越大,就能通过更多的频率信号,因此产生的正弦波信号频率也就越多。
当电路中有多个带通滤波器时,每个滤波器的通带宽度不同,就能产生更多的频率信号。
多谐振荡器电路的应用非常广泛。
在射频通信中,多谐振荡器电路可以产生多个频率的信号,用于调制和解调信号。
在音频设备中,多谐振荡器电路可以产生不同的音调,用于制作音乐。
在电子乐器中,多谐振荡器电路可以产生多种音效,用于增加音乐的表现力和创造性。
多谐振荡器电路不仅能产生正弦波信号,也可以产生其他波形的信号。
通过改变反馈回路中的元件,可以改变电路的振荡特性,从而产生不同的波形信号。
比如,当反馈回路中采用正反馈时,电路会产生方波信号;当反馈回路中采用反相器时,电路会产生方波信号等。
多谐振荡器电路的设计需要考虑许多因素,比如功率、频率、稳定性和噪声等。
在实际应用中,需要根据具体的需求进行设计和优化。
同时,需要注意电路中的元件选型和布局,以确保电路的性能和可靠性。
多谐振荡器电路是一种基本电路,它可以产生多个频率的正弦波信号,广泛应用于射频通信、音频设备和电子乐器等领域。
对于电子爱好者来说,深入了解多谐振荡器电路的原理和应用,有助于提高电路设计和调试的能力。
多谐振荡器电路的安装教学设计

课题:多谐振荡器电路的安装【设计思路】《电子基本线路与安装》是电子电工专业的核心课程。
以实施项目教学法的要求进行编写。
该书是20XX年浙江省高职考试电子专业指定教材。
根据高职考试改革方案,从今年起,学生的高职考试增加了技能高考环节。
通过本课程的学习,旨在培养学生专业知识的应用能力。
使学生能学会应用电子基础、电子技术的相关理论知识进行电路创新实验,培养实践技能。
授课班级是高三年级电子专业高职考班级,该班学生的具有一定的理论学习能力和专业动手能力,但缺乏良好的学习习惯,专业知识学习不是很扎实,再加上动手操作方面,学生的个体差异较大,所以教学具有一定的难度。
针对教材的性质和学生学情特点,在教学过程中,我主要结合多媒体技术辅助教学。
在引入环节,通过生活中应用实例的讲解,激发学生兴趣;教学中,通过将教学内容细化成若干个教学任务,引导学生开展合作式学习。
学生则运用观察法、实验法和讨论法开展学习。
【教学目标】知识目标:1、了解多谐振荡器电路的结构、工作方式;能力目标:1、了解NE555集成电路芯片结构、功能;2、掌握多谐振荡器电路的正确安装、调试;情感目标:养成科学严谨的学习态度,学会与他人沟通、合作,提高学生的职业素养【教学任务】1、创设情景,引入新课2、讲授新课(1)NE555芯片功能介绍(2)认识多谐振荡器电路(3)多谐振荡器电路安装3、归纳总结4、作业布置【课时】3课时【教学流程】环节一:引入环节二:讲授新课一、NE555芯片结构、功能1地GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vc各脚功能:Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地。
Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。
触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。
Pin 3 (输出)-当时间周期开始555的输出输出脚位,移至比电源电压少1.7伏的高电位。
多谐振荡器设计报告

多谐振荡器设计报告一、实验要求产生矩形波的频率可以通过电压控制,实现压控振荡。
并且在电压调整的过程中波形不会出现振荡、过冲、毛刺等不稳定现象,能够稳定地产生方波。
设计报告中应该包括电路截图、仿真截图、仿真分析等实验数据。
二、多谐振荡器相关简介随着电子产业的发展以及要求,各种稳定的波形产生器成为不可缺少的一部分,而方波是其中比较有代表性的一个波形。
方波在各个行业及日常生活中得到了广泛的应用,如电路中的定时器、分频器、脉冲信号发生器等都需要方波产生电路。
而多谐振荡器则是一种在接通电源后,就能产生一定频率和一定幅值矩形波的自激振荡器,常作为脉冲信号源。
由于多谐振荡器在工作过程中没有稳定状态,故又称为无稳态电路。
尽管多谐振荡器有多种电路形式,但它们都具有以下结构特点:电路由开关器件和反馈延时环节组成。
开关器件可以是逻辑门、电压比较器、定时器等,其作用是产生脉冲信号的高、低电平。
反馈延时环节一般为RC电路,RC电路将输出电压延时后,恰当地反馈到开关器件输入端,以改变其输出状态。
三、实验方案确定本次实验是通过施密特触发器与晶体管来构成多谐振荡器电路的开关器件,RC电路来构成反馈延时环节,再加入电压控制部分实现振荡频率的控制。
四、实验内容1、施密特触发器的制作a、原理图简要分析。
电路主要部分为Q2管与Q3管两个导向器相连,再在输入与输出两个端口加上Q1管与Q4管构成的射极跟随器进行隔离,从而得到更好的频率特性,使输出的波形不会出现毛刺、过冲、振荡等不稳定现象,并且在压控电路中不会对其它部分有较大影响。
其电路图如下:b、施密特电路调试。
为了使电路能够很好地工作,分析原理图可知,电路的上下门限电压由电阻RC1、RC2、RE决定,而射极跟随器的射极电阻RE1与RE2主要影响电路的输入与输出阻抗,同时对电路的频率特性也有一定的影响。
因此,在电路仿真调试的过程可以有目的性的进行元器件参数设置。
电路调试的截图如下:根据调试的参数对电阻值进行设置,再仿真可以得到如下电路仿真波形:c、施密特触发器原件制作。
多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。
本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。
掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。
一、多谐振荡器双闪灯电路功能介绍图1 多谐振荡器双闪灯成品图多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。
完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。
掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。
该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。
二、原理图图2 多谐振荡器双闪灯原理图三、工作原理本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。
在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。
1、电容器的识别电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是:1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。
本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。
电容上标有耐压值上25V,容量是10μF。
2、三极管的识别三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。
其作用是把微弱信号放大成幅值较大的电信号,也用作无触点开关,俗称开关管。
实验报告-多谐振荡器

实验报告-多谐振荡器韶关学院仿真实验报告册仿真实验课程名称:数字电⼦技术实验仿真仿真实验项⽬名称:基于555定时器的多谐振荡器的设计仿真类型(填■):(基础□、综合□、设计■)院系:物理与机电⼯程学院专业班级:13电⼦(2)班姓名:学号:指导⽼师:刘堃完成时间:成绩:⼀、实验⽬的1、熟悉555集成时基电路的电路结构、⼯作原理及其特点;掌握555集成时基电路的基本应⽤。
2、掌握Multisim10软件在数字电⼦技术实验中的应⽤。
⼆、实验设备Multisim10软件。
三、实验原理(1)555定时器集成芯⽚555是⼀种能够产⽣时间延迟和多种脉冲信号的控制电路,是数字、模拟混合型的中规模集成电路。
芯⽚引脚排列如图1所⽰,内部电路如图2所⽰。
电路使⽤灵活、⽅便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,⼴泛应⽤于信号的产⽣、变换、控制与检测。
它的内部电压标准使⽤了三个5 kΩ的电阻,故取名555电路。
电路类型有双极型和CMOS型两⼤类,两者的⼯作原理和结构相似。
⼏乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。
555和7555是单定时器,556和7556是双定时器。
双极型的555电路电源电压为+5 V ~ +15 V,输出的最⼤电流可达200 mA;CMOS 型的电源电压是+3 V~+18 V。
555内部电路有两个电压⽐较器、基本RS触发器和放电开关管T。
⽐较器的参考电压由三只5 kΩ的电阻分压提供,⽐较器A1同相端参考电平为CCV32、⽐较器A2的反相端参考图1 555芯⽚引脚排列图图2 555定时器内部电路电平为CC V 31。
A 1和A 2的输出端控制RS 触发器状态和放电管开关状态。
当输⼊信号超出CCV 32时,⽐较器A 1翻转,触发器复位,555的输出端○脚输出低电平,开关管导通,电路充电。
多谐振荡电路课程设计

多谐振荡电路课程设计一、课程目标知识目标:1. 学生能理解多谐振荡电路的基本原理,掌握其组成元件及功能。
2. 学生能掌握多谐振荡电路的频率计算方法,并运用相关公式进行简单计算。
3. 学生能了解多谐振荡电路在实际应用中的优缺点,如电子音乐设备、无线通信等领域。
技能目标:1. 学生能通过实验操作,搭建并测试多谐振荡电路,观察其振荡现象。
2. 学生能运用所学知识,分析多谐振荡电路的故障原因并进行排除。
3. 学生能运用多谐振荡电路设计简单的电子电路,提高实际操作能力。
情感态度价值观目标:1. 学生通过学习多谐振荡电路,培养对电子科学的兴趣,增强探索精神。
2. 学生在小组合作中,学会沟通、协作,培养团队意识。
3. 学生能关注多谐振荡电路在科技发展中的应用,认识到科技对社会进步的重要性。
课程性质:本课程为电子技术基础课程,旨在让学生了解多谐振荡电路的基本原理和实际应用,培养其实践操作能力和科技创新意识。
学生特点:本课程针对高中年级学生,他们对电子技术有一定的基础知识,具备一定的实验操作能力,但对多谐振荡电路的了解较为有限。
教学要求:结合学生特点,注重理论与实践相结合,强调实验操作和实际应用,提高学生的动手能力和创新思维。
在教学过程中,关注学生的个体差异,激发学生的学习兴趣,培养其科学素养。
通过课程学习,使学生达到以上设定的课程目标,为后续电子技术课程打下坚实基础。
二、教学内容本课程教学内容主要包括以下三个方面:1. 多谐振荡电路基本原理:- 振荡电路的定义、分类及基本工作原理。
- 多谐振荡电路的组成元件:放大器、反馈网络、正反馈与负反馈。
- 多谐振荡电路的频率计算公式及其推导。
2. 多谐振荡电路的实验操作:- 搭建多谐振荡电路实验装置,观察振荡现象。
- 测试不同参数对振荡频率、幅值等特性的影响。
- 故障分析与排除,提高实际操作能力。
3. 多谐振荡电路的应用与拓展:- 多谐振荡电路在电子音乐设备、无线通信等领域的应用案例分析。
如何设计一个简单的多谐振荡器电路

如何设计一个简单的多谐振荡器电路多谐振荡器是一种电路,能够产生多种频率的振荡信号。
它在电子领域有着广泛的应用,比如在无线通信、音频放大和音乐合成等方面。
设计一个简单的多谐振荡器电路需要考虑一些关键因素,如选择适当的元器件和确定合适的工作参数。
本文将介绍如何设计一个简单的多谐振荡器电路。
首先,我们需要选择合适的元器件。
一个基本的多谐振荡器电路通常包括一个放大器和一个反馈网络。
放大器可以是单管或双管放大器,选择合适的放大器是设计中的第一步。
反馈网络通常包括电容和电感元件,可以选择合适的数值以实现所需的频率响应。
其次,确定电路的工作参数。
多谐振荡器可以产生多个频率的振荡信号,我们需要确定这些频率的范围和间隔。
这取决于电路中使用的元器件和反馈网络的参数。
通过调整这些参数,我们可以实现所需的频率响应。
设计电路的关键是选择合适的反馈网络。
反馈网络决定了电路的振荡频率和增益。
常见的反馈网络包括RC网络、LC网络和LCR网络。
选择合适的网络取决于所需的频率响应和振荡器的性能要求。
最后,我们需要进行电路的调试和优化。
在实际的电路设计中,可能会出现电路不稳定或振荡频率不准确的情况。
这时需要通过调整元器件数值或更换元器件来优化电路性能。
可以使用示波器和频谱分析仪等仪器来帮助调试和优化电路。
总结起来,设计一个简单的多谐振荡器电路需要选择适当的元器件、确定合适的工作参数和选择合适的反馈网络。
通过调试和优化,可以获得所需的振荡频率和性能。
设计过程中需要注意电路的稳定性和可靠性,确保电路能够长时间稳定地工作。
只有经过仔细的设计和调试,才能实现一个简单而有效的多谐振荡器电路。
如何设计和调试电子电路中的多谐振荡器

如何设计和调试电子电路中的多谐振荡器在电子电路设计中,振荡器是一种非常重要的电路元件,它能产生稳定的信号波形,广泛应用于通信、计算机、无线电、音频等领域。
多谐振荡器是一种特殊类型的振荡器,它可以同时产生多个频率的信号。
本文将介绍如何设计和调试电子电路中的多谐振荡器。
一、多谐振荡器的原理多谐振荡器的原理是通过多个谐振电路并联组成的,每个谐振电路都可以产生一个特定频率的信号。
这些谐振电路之间通过耦合方式相互联系,使得它们能够同时振荡,并产生多个频率的信号。
二、电路设计步骤1. 确定振荡器类型:根据具体应用需求,确定使用的多谐振荡器类型,例如相位移振荡器、LC谐振振荡器等。
2. 选择谐振电路:根据所需频率范围,选择合适的谐振电路,常见的包括LC谐振电路、RC谐振电路、谐振晶体等。
3. 确定频率范围和数量:根据应用需求和系统设计要求,确定多谐振荡器所要覆盖的频率范围和需要产生的频率数量。
4. 耦合方式选择:确定不同谐振电路之间的耦合方式,常见的耦合方式有电感耦合、电容耦合和变压器耦合等。
5. 根据谐振电路的特性参数,计算设计电路的元件数值,例如电感、电容、电阻等数值。
6. 绘制电路图:使用电子设计软件或手绘方式绘制多谐振荡器的电路图。
7. PCB设计:根据电路图设计PCB板,保证电路板的布局合理、信号传输良好。
8. 元器件选择:根据设计要求选择适合的元器件,包括电感、电容、晶体管等。
9. 元器件焊接:将选好的元器件焊接到PCB板上。
10. 电路调试:使用示波器等测试设备,对多谐振荡器进行电路调试,检查振荡器是否在设计的频率范围内正常工作。
11. 优化与改进:根据实际测试结果,对电路进行优化和改进,以满足系统的要求。
三、电路调试技巧1. 调整电路增益:通过调整电路的增益,使得振荡器能够产生稳定的振荡信号。
2. 调整谐振电路参数:根据需要调整谐振电路的参数,例如电感、电容等,以满足所要求的频率特性。
3. 降低电路噪声:通过优化电路布局和减小元器件的串扰,降低振荡器的噪声水平。
多谐振荡器

2 = ln
一、门电路组成的多谐振荡器
(3)则输出波形振荡周期为T:
= 1 + 2 = ln4 ≈ 1.4
图6-18 多谐振荡器波形图
二、石英晶体振荡器
由逻辑门组成的多谐振荡器电路较简单,但由于振荡器中电路的转换电
平UTH容易受电源电压和温度变化的影响,在电路状态临近转换时电容的充、
数字电子技术基础
多谐振荡器
小知识
多谐振荡器是一种自激振荡器,在接通电源以后,不需
要外加触发信号,便能自动地产生矩形脉冲。因为矩形
波中含有丰富的高次谐波分量,所以习惯上又把矩形波
振荡器称为多谐振荡器。该电路的特点是只有两个暂稳
态,没有稳定状态,高低电平的切换自动进行,所以也
被称为无稳态电路。前面所说的触发器和时序电路中的
电容C通过逻辑门G1、G2的导通电路放电,则uI逐渐下降。当uI下降到UTH时,迅速使uO1跳
变为高电平UOH,uO跳变为低电平UOL。电路回到第一暂稳态,电源又经逻辑门G1、G2的导
通电路对电容C充电,又重复上述过程。因此,电路便不停地在两个暂稳态之间反复振荡。
翻转。
一、门电路组成的多谐振荡器
2、波形图分析
放电已经比较缓慢。在这种情况下转换电平微小的变化或轻微的干扰都会严
重影响振荡周期,造成电路状态转换时间的提前或滞后,最终使得由普通门
电路构成的多谐振荡器振荡频率不稳定。而在数字系统中,矩形脉冲信号常
用作时钟信号来控制和协调整个系统的工作,控制信号频率不稳定会直接影
响整个系统的运行,所以在对频率稳定性有较高要求时,必须采取稳频措施。
C2的比值,其中C1还可对振荡频率进行微调。G1输出端加反相器G2,用以改善输出波形
多谐振荡器

①第一暂稳态
接通电源瞬间G3 抢先导通,输出0。
t t t
本页完 继续
vI3
1.4V
多谐振荡器 ①第一暂稳态
二、频率可调的环形 vI3下降 振荡器 ⑴电路形式 vO1vI2 1 vO2 R vI3 RS 1 vO(vO3) ⑵工作过程及波形分 v 1 I1 第一暂稳 G1 G2 G3 析 态波形。 0 0 0 1 1 1 ①第一暂稳态 + +C 设接通电源的瞬间, G1对C充电 v ( v ) O I1 各门电路动作,设G3抢 先导通,输出低电平。 t vO1 (vI2 ) 显然,第一暂稳态维 持至vI3下降到VT时。 t v O2 同时,第一暂稳态的 时 间 T1 的 长 短 由 RC 和 t v I3 G1 、 G2 的 输 出 电 阻 决 定。 1.4V t T1 本页完 继续
vI3
1.4V t t
G3翻转
T1
T2
本页完 继续
多谐振荡器 进入第二周期
二、频率可调的环形 振荡器 ⑴电路形式 ⑵工作过程及波形分 vI1 1 vO1vI2 1 vO2 R vI3 RS 1 此时电流的方 G1 G2 G3 析 1 0 0 1 向再次相反。 ①第一暂稳态 - + ②第一次翻转 -C + vO (vI1) ③第二暂稳态 ④第二次翻转 vO1 (vI2 ) 电路进入第二个周期 的循环。
G2
G3翻转
vI1
0 1
vO (vI1)
G1
1 + +C -
0 0
G3
1
vO(vO3)
0 1
vO1 (vI2 ) vO2
C两端电压不能 突变,所以 vI3 的电 t 势比0还低,为负值。 亦作为“0”。
多谐振荡器

多谐振荡器在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。
这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。
本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。
集成555定时器555定时器是一种多用途的单片中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。
因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。
目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。
通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。
一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。
555定时器工作的电源电压很宽,并可承受较大的负载电流。
双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。
一.555定时器的电路结构与工作原理1.555定时器内部结构:(1)由三个阻值为5k Ω的电阻组成的分压器;(2)两个电压比较器C 1和C 2: v +>v -,v o =1;v +<v -,v o =0。
(3)基本RS 触发器;(4)放电三极管T 及缓冲器G 。
2.工作原理。
当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 31。
(1)当v I1>cc V 32,v I2>cc V 31时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发器被置0,放电三极管T 导通,输出端v O 为低电平。
信号发生电路多谐振荡器电路设计

信号发生电路多谐振荡器电路设计一、引言多谐振荡器是一种能够产生多个频率的电路,常用于通信、音频处理等领域。
在信号发生电路中,多谐振荡器电路设计是一个重要的部分。
本文将详细介绍多谐振荡器电路设计的相关知识。
二、基本原理1. 振荡器的基本原理振荡器是一种能够产生周期性信号的电路。
其基本原理是通过正反馈使得输出信号在经过放大后再次输入电路,从而形成自激振荡。
2. 多谐振荡器的原理多谐振荡器是指能够同时产生多个频率的振荡器。
其原理是利用LC谐振电路中不同频率下的共振条件不同,通过合适地选择元件参数和拓扑结构来实现。
三、元件选择1. 选取合适的晶体管晶体管是多谐振荡器中最常用的放大元件之一。
选取合适的晶体管需要考虑其最高工作频率、噪声系数等因素。
2. 选择合适的LC元件LC元件包括电感和电容,它们共同构成了谐振回路。
在多谐振荡器中,需要选择多个不同频率下的LC元件。
四、电路设计1. 基于反馈电容的多谐振荡器电路设计该电路采用了反馈电容来实现正反馈。
其基本拓扑结构为基极共接式,具体参数需要根据所需频率进行调整。
2. 基于反馈电感的多谐振荡器电路设计该电路采用了反馈电感来实现正反馈。
其基本拓扑结构为集电极共接式,具体参数需要根据所需频率进行调整。
3. 基于双T网络的多谐振荡器电路设计该电路采用了双T网络来实现正反馈。
其基本拓扑结构为基极共接式或集电极共接式,具体参数需要根据所需频率进行调整。
五、仿真与测试1. 仿真在完成多谐振荡器的设计后,可以通过仿真软件对其进行验证。
常用的仿真软件包括LTspice、ADS等。
2. 测试完成仿真后,需要对实际制作的电路进行测试。
常用的测试仪器包括示波器、频谱分析仪等。
六、总结与展望多谐振荡器电路设计是信号发生电路中的重要部分。
本文介绍了多谐振荡器的基本原理、元件选择、电路设计以及仿真和测试等方面的内容。
未来,随着技术的不断进步,多谐振荡器在通信、音频处理等领域中的应用将会越来越广泛。
什么是多谐振荡器如何设计一个多谐振荡器电路

什么是多谐振荡器如何设计一个多谐振荡器电路什么是多谐振荡器?如何设计一个多谐振荡器电路多谐振荡器(Multi-Harmonic Oscillator)是一种能够产生多种频率的信号的电路或设备。
它可以同时输出多个谐波频率的正弦波或方波,并且这些频率之间是按照一定的数学关系相互关联的。
设计一个多谐振荡器电路需要考虑多种因素,包括所需的谐波频率范围、稳定性要求、输出功率等。
下面将介绍一个常见的多谐振荡器电路设计。
【1. 介绍振荡器电路的基本原理】多谐振荡器电路一般由能产生振荡信号的振荡器核心部分和滤波电路两部分组成。
振荡器核心负责生成多个谐波频率的信号,而滤波电路则用于滤除不需要的谐波分量。
【2. 振荡器核心的选取】常见的多谐振荡器核心包括 RC 型振荡器、LC 型振荡器和晶体振荡器等。
根据所需谐波频率的范围和稳定性要求,选择合适的振荡器核心。
【3. 确定谐波频率】根据设计需求确定所需的谐波频率范围和步进值。
谐波频率一般是基准频率的整数倍,比如 2 倍、3 倍、4 倍等。
【4. 振荡器电路的设计】根据振荡器核心的特性和所需谐波频率的范围,设计振荡器电路的元件数值和拓扑结构。
可采用共射电路、共集电路、共基电路或组合电路等。
【5. 滤波电路的设计】为了滤除不需要的谐波分量,设计并接入适当的滤波电路,如低通滤波器或带通滤波器。
滤波器的参数应根据需要进行调整,以实现对指定谐波频率的滤波功能。
【6. 输出信号的处理】通过适当的放大电路和输出接口,将多谐振荡器电路的输出信号处理成符合使用要求的电平和形态。
【7. 电路的调试和优化】在完成设计和组装后,对多谐振荡器电路进行调试和优化。
通过测量和测试,对电路进行参数调整和组件更换,以达到所需的输出性能和稳定性。
总结起来,多谐振荡器是一种能够产生多种频率信号的电路或设备,在无线通信、音频信号处理等领域有着广泛的应用。
设计一个多谐振荡器电路需要考虑振荡器核心的选择、谐波频率的确定、振荡器和滤波电路的设计等因素,并进行调试和优化,以满足所需的输出性能和稳定性要求。
多谐振荡器电路

多谐振荡器电路多谐振荡器电路是一种常见的电子电路,用于产生频率稳定的正弦波输出。
它由一个积极反馈环路组成,通过不同的元件组合来实现振荡。
多谐振荡器电路通常用于各种电子设备中,如无线电发射机、音频设备和信号发生器等。
多谐振荡器电路的核心是谐振电路,它能够在特定频率下产生稳定的振荡。
谐振电路由电感和电容组成,通过它们之间的相互作用来实现振荡。
在多谐振荡器电路中,谐振电路的频率可以通过调节电容或电感的数值来调节。
在多谐振荡器电路中,还会加入放大器来增强振荡信号的幅度。
放大器的设计需要考虑稳定性和线性度,以确保输出信号的质量。
另外,为了实现多频段的振荡,多谐振荡器电路还会采用多个谐振电路并行工作,每个谐振电路对应一个特定的频率段。
多谐振荡器电路的工作原理是通过反馈回路实现信号的自激振荡。
当信号通过谐振电路后,放大器将信号放大并送回到谐振电路中,形成闭环反馈。
这种反馈机制使得谐振电路在特定频率下产生稳定的振荡信号。
多谐振荡器电路还可以通过控制元件的参数来实现频率调节。
例如,通过改变电容或电感的数值,可以实现振荡频率的调节。
此外,还可以通过控制放大器的增益来调节输出信号的幅度。
在实际应用中,多谐振荡器电路可以用于各种频率要求不同的场合。
例如,在无线电发射机中,需要产生不同频率的信号来传输不同的信息;在音频设备中,需要产生稳定的音频信号来驱动扬声器;在信号发生器中,需要产生各种频率的信号来测试电路性能。
总的来说,多谐振荡器电路是一种功能强大的电子电路,可以应用于各种领域。
通过合理设计和调节,可以实现稳定的振荡输出,并满足不同应用场合的需求。
希望通过本文的介绍,读者对多谐振荡器电路有更深入的了解,进一步探索其在电子领域的应用。
多谐振荡器电路

多谐振荡器电路多谐振荡器电路是一种常见的电子电路,用于产生稳定的振荡信号。
多谐振荡器电路通常由放大器、反馈网络和谐振电路组成,能够在不同频率下产生正弦波振荡信号。
在现代电子设备中,多谐振荡器电路被广泛应用于无线通信、射频调谐、音频处理等领域。
多谐振荡器电路的工作原理是利用放大器和反馈网络之间的正反馈来实现振荡。
正反馈会使放大器输出的信号再次输入到放大器的输入端,从而形成一个闭环系统。
在闭环系统中,反馈网络会选择性地增强某一频率的信号,从而使系统产生稳定的振荡。
多谐振荡器电路可以实现在多个频率下稳定振荡,因此被称为多谐振荡器。
多谐振荡器电路的设计需要考虑多个因素,如放大器的增益、反馈网络的频率特性、谐振电路的品质因数等。
在设计过程中,工程师需要根据具体的应用需求选择合适的元器件和参数,以确保电路能够稳定地工作在目标频率下。
此外,还需要考虑电路的稳定性、抗干扰能力以及功耗等因素,以提高电路的性能和可靠性。
多谐振荡器电路在无线通信中起着重要作用。
无线通信系统需要稳定的振荡信号作为载波信号,用于传输数据和语音。
多谐振荡器电路可以产生不同频率的振荡信号,满足不同频段的通信需求。
在射频调谐中,多谐振荡器电路可以实现频率的精确调谐,使无线电设备能够在不同频率下正常工作。
多谐振荡器电路还被广泛应用于音频处理领域。
在音频设备中,多谐振荡器电路可以产生稳定的音频信号,用于音乐播放、语音识别等应用。
多谐振荡器电路还可以实现音频信号的合成和处理,为用户提供更加优质的音频体验。
总的来说,多谐振荡器电路是一种重要的电子电路,具有广泛的应用前景。
通过合理设计和优化,多谐振荡器电路可以在不同领域发挥重要作用,为现代电子设备的性能和功能提供支持。
在未来的发展中,多谐振荡器电路将继续发挥重要作用,推动电子技术的进步和创新。
5.2.4-多谐振荡器概述

1 门电路组成的多谐振荡器
1)电路组成及工作原理
G1
1
υI
C
R G1
1
υO1
υO2
(a)门电路组成多谐振荡器
1 门电路组成的多谐振荡器
υI
VDD +ΔV+
VTH
O -ΔV-
t
υO2
VDD
T1 第一 暂稳态
T2 第二 暂稳态
O
t1
t1
t
CMOS门电路组成的多谐振荡器波形图
1 门电路组成的多谐振荡器
VCC
R1
8
7
4 3 υO
R2 6
555
2
C υC
1
5
0.01µF
2 555定时器组成的多谐振荡器
电容上的电压υC与输出υO的波形图如图
υC
2 3
V
CC
1 3
V CC
O
t
υO
t1
t2
O T
t
2 555定时器组成的多谐振荡器
当电源接通时,电容C开始充电,电压上升,当电 压υC上升至2/3VCC时,555定时器内部触发器被复位, TD开始导通,此时输出υO为低电平,电容C开始通过电 阻R2及TD放电,致使电容电压υC开始下降,当υC下降 至1/3VCC时,555定时器内部触发器又被置1,输出υO 为高电平。
(2)第二暂稳态T2的计算
(1)第一暂稳态T1的计算
τ=RC,T1=t2-t1,υI(0+)=-ΔV-≈0V,υI(∞)=VDD, 由RC电路的瞬态相应分析可得
T1
RC
ln VDD VDD VTH
(2)第二暂稳态T2的计算
t2作为时间起点,τ=RC,υI(0+)=VDD+ΔV+≈VDD,
课题多谐振荡器PPT课件

第3页/共14页
图26-2
V 6 UCC LED2 2 T 0 4 3 1 3Rc2 F 0 2 u 充 9 7 C i 4 K 7 1 4Rb1 b I K 7 4Rb2 F 4 1 u 1 1 1 T 7 0 C c 4 9双稳态初始状态示意图 I LED1 0 3 3Rc1 放 i
图26-4 b
V 6 UCC 放 i 2 T F 1 u C 7 4 K 7 4Rb1 K 7 4Rb2 F 2 u 7 C (b)C1放电回路等效示意图 4 1 T
电子技能实训教程
电子技能实训教程
• 电路经上述过程电路状态翻转,进入第二暂稳态,并重复上述过程形成振荡。
• 三、器材准备
• 1.元件清单 • NPN型三极管两个即9013、或9014,电阻330Ω两只,47KΩ两只,电
电子技能实训教程
图26-1
第1页/共14页
V 6 UCC 4 1 LED2 2 0 T9 0 3 3Rc2 F u 2 7 4C K 7 4Rb1 F uK 1 77 4C4Rb2 LED1 4 01 1 30 3Rc1T9
电子技能实训教程
• 2.电路的工作原理是;由于电路对称的,可 以从任一暂稳态开始分析。设电路的原始状 态为T1饱和、T2截止,此时C1充满电,T1 的饱和是靠Rb1提供的基流来维持的,C2放 电使T2基极为负压而截止,如图26-2所示
第13页/共14页
感谢您的观看!
第14页/共14页
4.第一暂稳态;随上述C2的放电,T2管的负压 逐渐减小当C2放完电后,电源UCC经 Rb2对C2进行反向充电,于是T2基极电 压逐渐上升,当T2基极电压上升约0.7V 时T2退出截止进入放大,集电极电压下 降,经C1的耦合,使T1退出饱和进入放 大,再由放大进入截止如图26-4所示
实用电子电路设计和制作13多谐振荡器-PPT文档资料

主要技术指标
输出信号频率:1Hz 输出信号占空比:50%
3.2 多谐振荡器
555定时器构成的多谐振荡器 集成运放构成的多谐振荡器 晶振构成的多谐振荡器
555定时器的功能
集成555定时器是一种电路结构简单、使用方
便灵活、用途广泛的多功能中规模集成电路。只需
在外部配接适当的阻容元件,便可组成施密特触发
T = tw1+ tw2 ≈0.7(R1+2R2)C
tw2≈0.7R2C
t R R W 1 1 2 D T R 2 R 1 2
集成运放构成的多谐振荡器
R
uC
C
un
∞ +
R3 R1 VZ R2
+
△
-
u0
up
±Uz
R 2 T 2 RC ( 12 ) R 1
方波信号发生器
555定时器和集成运放构成的多 谐振荡器的特点
频率精确、稳定
能够按照电路原理图在面包板上搭接实用电路。 熟练使用万用表、示波器进行电路参数的测试。 能够对制作完成的电路进行调试以满足设计要求。
3.1 明确任务,制定计划,安排 进度
项目名称 脉冲信号产生电路的设计与制作 学时 8学时
3.1 明确任务,制定计划,安排进度
背景描述
脉冲信号产生电路有很多种,本项目比较各种脉冲 信号产生电路的特点,选择性价比较高的电路,利 用晶体振荡器、计数器、门电路、等元器件构成脉 冲信号产生电路,为数字钟提供满足要求的脉冲信 号。
x
1 V CC 3 1 V CC 3 1 V CC 3
2 V CC 3 2 V CC 3
1