函数的表示方法导学案(无答案) 新人教版
人教版新课程《3.4 函数的应用(一)》导学案(2套)

3.4 函数的应用(一)1.能够利用给定的函数模型或建立函数模型解决实际问题;2.经历建立函数模型解决实际问题的过程,提高综合运用数学知识和方法解决实际问题的能力。
1.教学重点:建立函数模型解决实际问题;2.教学难点:选择适当的方案和函数模型解决实际问题。
1.一次函数、反比例函数、二次函数、幂函数的解析式分别是什么?一次函数:;反比例函数:;二次函数:;幂函数:。
一、探索新知例1 .设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元).(1)求y关于x的函数解析式;(2)如果小王全年的综合所得由189600元增加到249600元,那么他全年应缴纳多少综合所得个税?例2 一辆汽车在某段路程中的行驶速率v(单位:km/h)与时间t(单位:h)的关系如图1所示,(1)求图1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.1.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.3.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费多少元;(2)当x⩾100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?这节课你的收获是什么?参考答案:知识梳理:一次函数:)0(≠+=k b kx y 反比例函数:)0(≠=k x k y二次函数:)0(2≠++=a c bx ax y 幂函数 )(为常数ααx y = 学习过程:例题解析见教材93页例1.,94页例2. 达标检测1.【解析】 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,∴0.12a =270,解得a =2 250. ∴每台彩电的原价为2 250元. 【答案】 2 2502.【解析】 L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500,当Q =300时,L (Q )的最大值为2 500万元. 【答案】 2 500【新教材】3.4 函数的应用(一)(人教A 版)1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.一、预习导入阅读课本93-94页,填写。
九年级数学上册 第22章 第24课时 二次函数复习导学案2

二次函数 学习目标 复习二次函数的基础知识学生自主活动材料一、耐心填一填,一锤定音!1.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.2.请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .3.函数42-=x y 的图象与y 轴的交点坐标是________.4.抛物线y = ( x – 1)2 – 7的对称轴是直线 ..5.二次函数y =2x 2-x -3的开口方向_____,对称轴_______,顶点坐标________.6.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx +c =0(a ≠0)的解是_______.7.用配方法把二次函数y =2x 2+2x -5化成y =a (x -h )2+k 的形式为___________.8.抛物线y =(m -4)x 2-2mx -m -6的顶点在x 轴上,则m =______.9.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相同,则此函数关系式______.10.如图1,直角坐标系中一条抛物线经过网格点A 、B 、C ,其中,B 点坐标为)4,4(,则该抛物线的关系式__________.图1二、精心选一选,慧眼识金!11.抛物线y =-2(x -1)2-3与y 轴的交点纵坐标为( )(A )-3 (B )-4 (C )-5 (D)-112.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-413.抛物线y =21x 2,y =-3x 2,y =x 2的图象开口最大的是( ) (A) y =21x 2 (B)y =-3x 2 (C)y =x 2 (D)无法确定 14.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)1615.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)16.过点(1,0),B(3,0),C(-1,2)三点的抛物线的顶点坐标是( )(A)(1,2) B(1,32) (C) (-1,5) (D)(2,41-) 17. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A )a +c (B )a -c (C )-c (D )c18. 在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则当物体经过的路程是88米时,该物体所经过的时间为( )(A)2秒 (B) 4秒 (C)6秒 (D) 8秒19.如图2,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH 的面积为s,AE为x,则s关于x的函数图象大致是()图2(A)(B)(C)(D)20.抛物线y=ax2+bx+c的图角如图3,则下列结论:①abc>0;②a+b+c=2;③a>21;④b<1.其中正确的结论是()(A)①②(B)②③(C)②④三、用心做一做,马到成功!21. 已知一次函()()2322++++-=mxmxmy的图象过点(0,5)⑴ 求m的值,并写出二次函数的关系式;⑵ 求出二次函数图象的顶点坐标、对称轴.22.已知抛物线2y ax bx c=++经过(-1,0),(0,-3),(2,-3)三点.⑴求这条抛物线的表达式;⑵写出抛物线的开口方向、对称轴和顶点坐标.23.有一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如图4所示).⑴请你直接写出O、A、M三点的坐标;⑵一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?24. 甲车在弯路作刹车试验,收集到的数据如下表所示:速度x(千米/小时)0 5 10 1520 25…刹车距离y(米)0 2 6 …请用上表中的各对数据(x,y)作为点的坐标,在图5所示的坐标系中画出甲车刹车距离y(米)与(2)在一个限速为40千米/时的弯路上,甲、乙两车相向速度x(千米/时)的函数图象,并求函数的解析式。
人教版八年级下册数学导学案设计:19.1.1.2函数(无答案)

课题:19.1.1.2函数课型: 新授课 主备人: 审核人:班级: 姓名: 使用时间:【【【【课前测一测】】】】1.汽车以80千米/小时的速度匀速行驶,行驶路程为s 千米,行驶时间为t 小时,用含t 的式子表示s 得_______________________;在这个问题中,_______________是变量,___________是常量.2.在圆的的周长公式C=2πR 中,变量是_____________,常量是___________.3.用100元去购买单价为8元的书,则剩余的钱y (元)与买这种书的本数x 之间的关系是( )A. y=8x B . y=8x-100 C. y=100-8x D. y=8x+1004.有一种树苗,刚栽下去时树高2m ,以后每年生长0.4m ,假设x 年后树的高度为y 米.⑴写出y 与x 的关系式;⑵上述问题中哪些是变量?哪些是常量?⑶5年后树高为多少?解:(1)(2)(3)【【【【学习目标】】】】1.经过回顾思考认识变量中的自变量与函数.2.进一步理解掌握确定函数关系式.3.会确定自变量取值范围.学习重点:进一步掌握确定函数关系的方法;确定自变量的取值范围.学习难点:认识函数、领会函数的意义.【【【【新知导学及疑难解答】】】】阅读课本思考并完成下列问题:1、完成课本归纳.2、函数的定义一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是 ,y 是x 的 .注意:在一个变化过程中有两个变量 x 、y ,如果说y 与x 的函数关系,那么就说 y 是 x 的函数,x是 自变量. 3、函数值已知y 是x 的函数,如果当x=a 时,y=b ,那么b•叫做当自变量的值为a 时的函数值. 例:已知S=x(5-x),则 是 的函数,当x=3时,S= ,即x=3时的函数值为 .4、自变量的取值范围(1)阅读课本98例1,思考例题中是如何确定自变量x 的取值范围的?(2)确定自变量的取值范围,一要考虑 ;还要考虑 .(3)求下列函数自变量的取值范围①xy -=43②x y -=3 ③x y -=31④33x y -=【【【【课堂练习】】】】1、油箱中有油 30kg ,油从管道中匀速流出,1 小时流完,求油箱中剩余油量 Q (kg )与流出时间 t (分钟)间的函数关系式为 ,自变量的范围是 .当 Q =10kg 时,t= .2、x= 时,函数 y =3x-2 与函数 y =5x+1 有相同的函数值.3、已知三角形底边长为 4,高为 x ,三角形的面积为 y ,则 y 与 x 的函数关系式为 .4、若 y 与 x 的关系式为 y =30x-6,当 x =3 时,y 的值为5、汽车由北京驶往相距 120 千米的天津,它的平均速度是 30 千米/时,则汽距天津的路程 S (千米)与行驶时间 t (时)的函数关系及自变量的取值范围( )A .S=120-30t (0≤t ≤4)B .S=30t (0≤t ≤4)C .S=120-30t (t>0)D .S=30t (t=4)6、弹簧挂上物体后会伸长,测得一弹簧的长度 y (cm )与所挂物体的质量 x (kg )有如下关系:(1)请写出弹簧总长 y (cm )与所挂物体质量 x (kg )之间的函数关系式.(2)当挂重 10 千克时弹簧的总长是多少?【【【【自我总结】】】】1、利用导学案认真阅读课本后,我的收获是:我的疑惑是:2、学完这节课后,我的收获是:我还有疑惑是:【【【【布置作业】】】】。
七年级数学上册2-1整式导学案1(无答案)(新版)新人教版

七年级数学上册2-1整式导学案1(无答案)(新版)新人教版
能用代数式表示实
归纳的能力.
通过列式表示实际问题中的数量关系,
1
)列车在冻土地段行驶时,
)在西宁到拉萨路段,列车通过非冻土地段所
图片展示预习问题,提问学生回答。
上面这种用含有字母的式子来表示量,就是我们今天要学习请同学们认真阅读教材
用含有字母的式子表示数量关系有什么优点?从运算的角度看这两个例题列出式子有什么不同?
1 / 2
语言表述转化为数学式子。
列数学式子首先要弄清语言。
1,2,3,4
课本第
2 / 2。
河北省高碑店市第三中学人教版高一数学必修四 1.2任意角的三角函数(导学案,无答案)

【课题】:任意三角函数【课型】:复习课【学习目标】:1、我能理解:三角函数的概念及三角函数在各个象限内的符号2、我能叙述:三角函数的概念及三角函数在各个象限内的符号3、我能运用:利用三角函数定义及决问题【学习重难点】:定义的运用【学法指导】:通过让学生观察、思考、交流、讨论、发现问题解决问题.一、知识梳理:【自主学习】:(课前预习)1、三角函数定义:任意角的三角函数的定义如图所示,以任意角α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系.设P(x,y)是任意角α终边上不同于坐标原点的任意一点.其中,r=OP=x2+y2>0.定义:叫做角α的余弦,记作cos α,即;叫做角α的正弦,记作sin α,即;叫做角α的正切,记作tan α,即 .2.正弦、余弦、正切函数值在各象限的符号.3、特殊角的三角函数之二、知识运用:【自主学习】例1、求35π的正弦、余弦和正切值. 练习:求67π的三个三角函数值.例2、已知角α的终边经过点P (-3,-4),求角α的正弦、余弦和正切值. 练习:已知角α的终边经过点P (53,-54),求sin α-cos α的值。
【合作探究】:变式:1.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,求实数a 的取值范围是 。
2、角β终边在直线y=x 3上,求βcos例3、若sin αtan α>0且ααtan cos <0,则角α在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限【小组展示】:1.sin585°的值为 ( ) A .-22B.22 C .-32D.322、已知角α的终边经过点(sin65π,cos 65π),则角α的最小正值为( )A 、65π B 、35π C 、 611π D 、32π 3、角α的终边过点P (-1,2),则cos2α=( )A 、-54 B 、-53 C 、53 D 、-552【课堂检测】:1、设集合A={小于90°的角},B={第一象限的角},则A ∩B 等于( )A.{小于90°的角}B.{0°~90°的角}C.{第一象限的角}D.以上都不对 2、若为第二象限角,则下列各式恒小于0的是( )A 、ααcos sin +B 、ααsin tan +C 、sin α-cos αD 、sin α-tan α【作业】:1、已知角α的终边经过点P(θθcos 4,cos 3-), 其中),2(ππθ∈,则αsin =____.2、已知角θ的终边经过点P(4,y),且θsin =-552,则 y=____.3、已知角α的终边经过点P(-3,y)(y ≠0),且αsin =y 43,求ααtan cos 、. 【收获和质疑】:。
山东省冠县第一中学人教版高中数学必修一导学案《1-2-1 函数的表示法(二)》 Word版无答案

函数的概念 一、学习目标通过丰富实例,使同学建立起函数概念的背景,体会函数是描述变量之间依靠关系的重要数学模型,能用集合与对应的语言来刻画函数,培育同学的抽象概括力量,体会对应关系在刻画函数概念中的作用;了解构成函数的三个要素,会求一些简洁函数的定义域和值域;了解区间的概念,体会区间表示集合的意义与作用,会推断两个函数是否相等.重点:函数概念的理解,函数的三要素;难点:函数概念及符号)(x f y =的理解 二、学问回顾(你已做好学问预备了吗?你肯定还记得以下学问吧!) 1. 函数在学校是怎样定义的? 2.填表函数一次函数二次函数反比例函数0>a0<a解析式 X 的范围 Y 的范围三、预习自学(自主学习课本15~19 页,了解本节学问点) 1.函数的概念:(结合课本实例,形成函数概念)设B A 、.是两个 的 ,假如依据某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数. 记作A x ∈.2.函数的三要素:在函数()x f y =中,其中x 叫 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 的值 叫做 ,函数值的集合(){}A x x f ∈|叫做函数的 ,那么值域是集合B 的 .(留意:函数的定义域与函数的值域都是以集合的形式呈现的) 、 和 是函数的三个构成要素.3.区间的概念?如何用区间表示数集?(规定,符号)4.相等函数 : 四、探究合作(师生互动,合作探究,分组呈现,点拨提升!) 问题:下面哪些能构成集合A 到集合B 的函数 (1)某位同学的几次考试状况如下:序号(数) 1 2 3 4 5 6 分数909390因病缺考9892集合{}{},92,98,93,90,6,5,4,3,2,1==B A 能否构成集合A 到集合B 的函数? (2)高一(6)班的同学组成集合A ,教室里的座椅组成集合B ,每一位同学都有唯一的一个座椅,班上还有空椅子.这能否算作一个集合A 到集合B 的函数的例子? 思考:1.理解函数B A f →:的概念你认为应把握哪几个关键词?2.函数的构成要素有哪些?一个函数必需具备全部要素吗?这些要素之间有什么关系?3.你认为若要判定两个函数相等,至少要满足什么条件?4.符号()x f 是什么意思?()()x f a f 与有什么区分?5.函数的图像既可以是连续的曲线,也可以是直线、折线、离散的点等等。
人教版八年级下册数学 函数的三种表示方法(导学案)

19.1.2 函数的图象第2课时函数的三种表示方法一、新课导入1.导入课题上节课我们学习了函数图象的意义和画图象的方法,这节课我们结合实例来总结画函数图象的一般步骤.2.学习目标(1)能用描点法画函数的图象.(2)能从函数图象上看出函数与自变量的变化规律.(3)知道函数的三种表示方法及它们的优缺点.3.学习重、难点重点:用描点法画函数的图象,从函数图象上读取信息.难点:从图象中说明函数的增减情况.二、分层学习1.自学指导(1)自学内容:P77例3.(2)自学时间:10分钟.(3)自学要求:比照上节画S= x2(x>0) 的图象的过程画函数(1)、(2)的图象,并归纳画函数图象有哪些基本步骤.(4)自学参考提纲:①用描点法画函数图象的一般步骤是什么?②当点在图象上时,点的坐标满足什么条件?③从图象的升降可以知道函数值随自变量怎样变化?④完成P79练习题.(在下图中分别画第1,3题的图象)2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生能否从画图象的方法中总结出画函数图象的一般步骤,是否理解图象升降与y 随 x的变化情况的关系.②差异指导:对学习中存在的疑点进行针对性指导.(2)生助生:相互交流,帮助矫正错误.4.强化(1)用描点法画函数的图象的一般步骤.(2)展示练习的答案,并点评.(3)从图象的升降看函数的增减性.1.自学指导(1)自学内容:P80到P81的例4.(2)自学时间:8分钟.(3)自学方法:认真阅读例2解答过程,理解并明确函数的三种表示方法.(4)自学参考提纲:①函数的三种表示方法分别指的是什么方法?②图象上的点的坐标(x,y)与函数关系式有何联系?③完成P81的练习题.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:巡视课堂,收集学生在自学中存在的问题,遇到的困难.②差异指导:对个别学生存在的疑点进行点拨、引导.(2)生助生:相互交流,帮助矫正错误.4.强化(1)总结函数的三种表示方法的优缺点.(2)展示练习的答案,并点评.(3)展示本节所学知识点和数学思想方法.三、评1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑.2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、成效及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课的重点是函数的三种表示方法:解析式法、列表法和图象法。
人教A版(2019)高中数学必修第一册 3 函数的表示法(二)导学案(无答案)

§3.1.2 函数的表示法(二)【探究学习】分段函数的表示例1画出函数y=|x|的图象定义:像y=|x|这样的,对于自变量x的不同的取值范围,有着不同的对应关系的函数通常称为_________ 【知识应用】变式1画出函数y=|x-2|的图象变式2画出函数y=|x2-1|的图象变式3画出函数y=|x-1|(x+1)的图象例2给定函数f(x)=x+1,g(x)=(x+1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},例如,当x=2时,M(2)=max{f(2),g(2)}=max{3,9}=9 请分别用图像法和解析法表示函数M(x) 练习1.给定函数f(x)=-x+1,g(x)=(x-1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},请分别用图像法和解析法表示函数m(x)例3设函数()22,1,122,2x xf x x xx x+≤-⎧⎪=-<<⎨⎪≥⎩,(1)求()32,2f f f⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)若f(x)=3,求x的值.练习2.已知f(x)=⎩⎪⎨⎪⎧x2,-1≤x≤1,1,x>1或x<-1.(1)画出f(x)的图象;(2)若f(x)≥14,求x的取值范围;(3)求f(x)的值域.例4.某市招手即停公共汽车的票价按下列规则制定(1)5km以内(含5km),票价2元;(2)5km以上,每增加5km,票价增加1元(不足5km 按5km算)如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,并画出图像.【小结】【作业】作业本3837-P。
新人教版七年级上册数学导学案(全册)

七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
九年级数学下册28.1锐角三角函数余弦正切导学案(新人教版)

28.1锐角三角函数(余弦,正切)【学习目标】1.我能感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
2.我能根据余弦、正切的概念,正确进行计算。
学习重点:理解余弦、正切的概念。
学习难点:熟练运用锐角三角函数的概念进行有关计算。
导学过程: 一、自主学习1、我们是怎样定义直角三角形中一个锐角的正弦的?如图1,在Rt △ABC 中,∠C =90°,锐角A________________叫 做∠A 的正弦,记作________。
即SinA=________=________。
2、(1)如图2,在Rt △ABC 中,∠C=90°,求sinA= ,sinB = 。
(2)如图3,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且 AB =5,BC =3,则sin ∠BAC=_______;sin ∠ADC=_______。
二、合作交流探究与展示 问题11)一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图,任意画R t △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么B A C A AB AC ''''与有什么关系?你能解释一下吗?2)如图在Rt △ABC 中,∠C=90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是确定的。
我们把 叫做∠A 的余弦,记作 ,即 ; 把 叫做∠A 的正切,记作 ,即 。
3)锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数。
问题2如图,在Rt △ABC 中,∠C=90°,AB=8,BC=6,求sinA,cosA ,tanA 的值。
∠A的邻边b∠A的对边a 斜边c CBAB CAB610图1图2图3三、课堂检测(1、2、3题为必做题;4、5题为选做题。
一次函数的图象与性质(第二课时)(导学案)-八年级数学下册同步备课系列(人教版)

人教版初中数学八年级下册19.2.4一次函数的图象与性质导学案一、学习目标:1.会画一次函数的图象,能根据一次函数的图象理解一次函数的增减性;2.能灵活运用一次函数的图象与性质解答有关问题.重点:会用两点法画出正比例函数和一次函数的图象,并能结合图象说出正比例函数和一次函数的性质.难点:能运用性质、图象及数形结合思想解决相关函数问题.二、学习过程:课前自测1.什么是一次函数?请写出两个一次函数的解析式.2.什么叫正比例函数?从解析式上看,正比例函数与一次函数有什么关系?3.正比例函数有哪些性质?是怎样得到这些性质的?自主学习任务1.画出函数y=-6x与y=-6x+5的图象.解:思考:比较右边两个函数的图象的相同点与不同点,填出你的观察结果:这两个函数的图象形状都是____.并且倾斜程度____.函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点________,即它可以看作由直线y=-6x向___平移____个单位长度而得到的.思考:比较两个函数解析式,你能说出两个函数的图象有上述关系的道理吗?联系任务1,考虑一次函数y=kx+b(k≠0)的图象是什么形状,它与直线y=kx (k≠0)有什么关系?一次函数y=kx+b(k≠0)的图象也是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx向上(或向下)平移______个单位长度而得到的.________________________;_______________________.任务2.画出函数y=2x-1与y=-0.5x+1的图象.解:合作探究1探究:画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1的图象,由它们联想:一次函数解析式y=kx+b(k,b是常数,k≠0)中,k的正负对函数图象有什么影响?一般选取与x轴的交点__________与y轴的交点________.【归纳】当k>0时,直线y=kx+b从左向右_______;当k<0时,直线y=kx+b 从左向右_______.由此可知,一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:________________________;_______________________.典例解析例1.在平面直角坐标系中,若将一次函数y=2x+m−2的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.−4B.4C.−1D.1【针对练习】1.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x−2D.y=2x−32.在平面直角坐标系中,将直线l1:y=−2x−2平移后得到直线l2:y=−2x+4,则下列平移作法中,正确的是()A.将直线l1向上平移6个单位B.将直线l1向上平移3个单位C.将直线l1向上平移2个单位D.将直线l1向上平移4个单位例2.已知一次函数y=(m+3)x+5+m,y随x的增大而减小,且与y轴的交点在y轴的正半轴上,则m的取值范围是()A.m>−5B.m<−3C.−5<m<−3D.以上都不对【针对练习】已知一次函数y=kx−b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0例3.已知关于x的一次函数y=m−2x+2+m的图象上两点A(x1,y1),B(x2,y2),若x1<x2时,y1>y2,则m的取值范围是()A.m>2B.m>−2C.m<2D.m<−2【针对练习】1.已知点A x1,y1,B x2,y2,C x3,y3三点在直线y=7x+14的图像上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y12.已知A x1,y1,B x2,y2是关于x的函数y=(m−1)x图象上的两点,当x1<x2时,y1<y2,则m的取值范围是()A.m>0B.m<0C.m>1D.m<1合作探究2探究:根据一次函数的图象判断k,b的正负,并说出直线经过的象限:【归纳】典例解析例4.已知一次函数y=a+8x+6−b.(1)a,b为何值时,y随x的增大而增大?(2)a,b为何值时,图象过第一、二、四象限?(3)a,b为何值时,图象与y轴的交点在x轴上方?例5.已知一次函数y=m+4x+m+2的图象不经过第二象限,则m的范围_________________.例6.一次函数y=mx+n与正比例函数y=mnx(mn≠0)的图象在同一坐标系中不可能是()达标检测1.下列一次函数中,y随x增大而增大的是()A.y=-x-1B.y=0.3xC.y=-x+1D.y=-x2.若b>0,则一次函数y=-x+b的图象大致是()3.将直线y=2x向下平移2个单位所得直线解析式是()A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)4.点(3,y1),(-2,y2)都在直线y=12x+b上,则y1、y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较5.已知y=mx n+2-m是y关于x的一次函数,下列说法正确的是()A.函数图象与y轴交于点(0,-1)B.函数图象不经过第四象限C.函数图象与x轴交于点(1,0)D.y随x的增大而增大6.两个一次函数y1=ax+b和y2=bx+a(a≠b)在同一直角坐标系中的图象可能是()7.直线y=-3x-6与x轴交点坐标是________,与y轴交点坐标是________,y 随x的增大而_______.8.已知一次函数y=-2x+3,当0≤x≤5时,函数y的最大值是_____.9.直线y=6x-5向上平移3个单位,则平移后的直线与y轴的交点坐标是_______.10.函数y=kx-4的图象平行于直线y=-2x,则k=_____.11.把直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得直线的解析式为_____________.12.如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,...按其所示放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2025的横坐标是___________.13.已知一次函数y=2x-4.(1)画出它的图象;(2)写出函数图象与x轴、y轴交点的坐标;(3)求这条直线与两坐标轴所围成的三角形面积.14.已知一次函数y=ax-a+1(a为常数,且a≠0).(1)若点(-12,3)在该函数的图象上,求a的值;(2)若当-1≤x≤2时,函数有最大值2,求a的值.15.已知直线l:y=12x-2,点A的坐标为(5,3),将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值.。
人教版高中数学全套教案导学案高中数学 (1.2.1 任意角的三角函数)教案 新人教A版必修4

任意角的三角函数1.2.1 任意角的三角函数整体设计教学分析学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念、图象和性质,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题.本节以锐角三角函数为引子,利用单位圆上点的坐标定义三角函数.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.三角函数的研究中,数形结合思想起着非常重要的作用.利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.三维目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符.2.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.3.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.4.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义,终边相同的角的同一三角函数值相等.教学难点:用角的终边上的点的坐标来刻画三角函数;三角函数符;利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.课时安排2课时教学过程第1课时导入新课思路 1.我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三角形内角和为180°,那么sin200°的值还是三角形中200°的对边与斜边的比值吗?类比角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.思路 2.教师先让学生看教科书上的“思考”,通过这个“思考”提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义,从而为定义任意角的三角函数奠定基础.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数. 推进新课新知探究提出问题问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题②:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?活动:教师提出问题,学生口头回答,突出它是以锐角为自变量,边的比值为函数值的三角函数,教师并对回答正确的学生进行表扬,对回答不出来的同学给予提示和鼓励.然后教师在黑板上画出直角三角形.教师提示:前面我们对角的概念已经进行了扩充,并且学习了弧度制,知道了角的集合与实数集是一一对应的,在此基础上,我们来研究任意角的三角函数.教师在直角三角形所在的平面上建立适当的坐标系,画出角α的终边;学生给出相应点的坐标,并用坐标表示锐角三角函数.图1如图1,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b.根据初中学过的三角函数定义,我们有sin α=OP MP =r b ,cos α=OP OM =r a ,tan α=OP MP =ab . 讨论结果:①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数.②sin α=OP MP =rb ,cos α=OP OM =r a ,tan α=OM MP =a b . 提出问题问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?活动:教师先让学生们相互讨论,并让他们动手画画图形,看看从图形中是否能找出某种关系来.然后提问学生,由学生回答教师的问题,教师再引导学生选几个点,计算一下对应的比值,获得具体认识,并由相似三角形的性质来证明.最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化.此时sin α=OPMP =b,cos α=OP OM =a,tan α=OM MP =a b . 在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.这样,上述P 点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示.同样地,我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y;(2)x 叫做α的余弦,记作cos α,即cos α=x; (3)x y 叫做α的正切,记作tan α,即tan α=xy (x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.教师出示定义后,可让学生解释一下定义中的对应关系.教师应指出任意角的正弦、余弦、正切的定义是本节教学的重点.用单位圆上点的坐标表示任意角的三角函数,与学生在锐角三角函数学习中建立的已有经验有一定的距离,与学生在数学必修一的学习中建立起来的经验也有一定的距离.学生熟悉的函数y=f(x)是实数到实数的一一对应,而这里给出的三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就给学生的理解造成一定的困难.教师在教学中可以在学生对锐角三角函数已有的几何直观认识的基础上,先建立直角三角形的锐角与第一象限角的联系,在直角坐标系中考查锐角三角函数,得出用角的终边上点的坐标(比值)表示锐角三角函数的结论,然后再“特殊化”引出用单位圆上点的坐标表示锐角三角函数的结论.在此基础上,再定义任意角的三角函数.在导学过程中教师应点拨学生注意,尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质.教师可以引导学生通过分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么.特别注意α既表示一个角,又是一个实数(弧度数).“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.值得注意的是:(1)正弦、余弦、正切、余切、正割、余割都是以角为自变量,以比值为函数值的函数.(2)sin α不是sin 与α的乘积,而是一个比值;三角函数的记是一个整体,离开自变量的“sin”“tan”等是没有意义的.讨论结果:①这三个比值与终边上的点的位置无关,根据初中学过的三角函数定义,有sin α=OP MP =rb ,cos α=OP OM =r a , tan α=OP MP =a b . 由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.②能.提出问题问题①:学习了任意角,并利用单位圆表示了任意角的三角函数,引入一个新的函数,我们可以对哪些问题进行讨论?问题②:根据三角函数的定义,正弦、余弦、正切的定义域、值域是怎样的?活动:教师引导学生结合在数学必修一中的有关函数的问题,让学生回顾所学知识,并总结回答老师的问题,教师对学生总结的东西进行提问,并对回答正确的学生进行表扬,回答不正确或者不全面的学生给予提示和补充.教师让学生完成教科书上的“探究”,教师提问或让学生上黑板板书.按照这样的思路,我们一起来探究如下问题:请根据任意角的三角函数定义,先将正弦、余弦、正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符填入图3中的括内. 三角函数定义域 sin αcos αtan α图3教师要注意引导学生从定义出发,利用坐标平面内点的坐标的特征得定义域、函数值的符等结论.对于正弦函数sin α=y,因为y 恒有意义,即α取任意实数,y 恒有意义,也就是说sin α恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tan α=x y ,因为x=0时,xy 无意义,即tan α无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,xy 恒有意义,即tan α恒有意义,所以正切函数的定义域是α≠2π +k π(k∈Z ).(由学生填写下表) 三角函数定义域 sin αR cos αR tan α {α|α≠2π+k π,k∈Z } 三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示);同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.从而完成上面探究问题.即“一全正,二正弦,三正切,四余弦”.讨论结果:①定义域、值域、单调性等.②y=sin α与y=cos α的定义域都是全体实数R ,值域都是[-1,1].y=tan α的定义域是{α|α≠2π +k π(k∈Z )},值域是R . 应用示例思路1例1 已知角α的终边经过点P 0(-3,-4),求角α的正弦、余弦和正切值.活动:教师留给学生一定的时间,学生独立思考并回答.明确可以用角α终边上任意一点的坐标来定义任意角的三角函数,但用单位圆上点的坐标来定义,既不失一般性,又简单,更容易看清对应关系.教师要点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注意α角的任意性.如图4,设α是一个任意角,P(x,y)是α终边上任意一点,点P 与原点的距离r=22y x +>0,那么:图4①r y 叫做α的正弦,即sin α=ry ; ②r x 叫做α的余弦,即cos α=rx ; ③x y 叫做α的正切,即tan α=x y (x≠0). 这样定义三角函数,突出了点P 的任意性,说明任意角α的三角函数值只与α有关,而与点P 在角的终边上的位置无关,教师要让学生充分思考讨论后深刻理解这一点. 解:由已知,可得OP 0=22)4()3(-+-=5.图5如图5,设角α的终边与单位圆交于点P(x,y).分别过点P 、P 0作x 轴的垂线MP 、M 0P 0,则|M 0P 0|=4,|MP|=-y,|OM 0|=3,|OM|=-x,△OMP∽△OM 0P 0,于是sin α=y=1y =||||OP MP -=||||000OP P M -=54-; cos α=x=1x =||||OP OM -=||||00OP OM -=53-;tan α=x y =a cos sin =34. 点评:本例是已知角α终边上一点的坐标,求角α的三角函数值问题.可以先根据三角形相似将这一问题化归到单位圆上,再由定义得解.变式训练求35π的正弦、余弦和正切值.图6解:在平面直角坐标系中,作∠AOB=35π,如图6. 易知∠AOB 的终边与单位圆的交点坐标为(21,23-), 所以sin 35π=23-,cos 35π=21,tan 35π=3-. 例2 求证:当且仅当下列不等式组成立时,角θ为第三象限角.⎩⎨⎧><.0tan ,0sin θθ 活动:教师引导学生讨论验证在不同的象限内各个三角函数值的符有什么样的关系,提示学生从三角函数的定义出发来探究其内在的关系.可以知道:三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的;同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.证明:我们证明如果①②式都成立,那么θ为第三象限角.因为①sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能位于y 轴的非正半轴上;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.反过来请同学们自己证明.点评:本例的目的是认识不同位置的角对应的三角函数值的符,其条件以一个不等式出现,在教学时要让学生把问题的条件、结论弄清楚,然后再给出证明.这一问题的解决可以训练学生的数学语言表达能力.变式训练(2007北京高考)已知cos θ·tan θ<0,那么角θ是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角答案:C例3 求下列三角函数值: (1)sin390°;(2)cos 619π;(3)tan(-330°). 活动:引导学生总结终边相同角的表示法有什么特点,终边相同的角相差2π的整数倍,那么这些角的同一三角函数值有何关系?为什么?引导学生从角的终边的关系到角之间的关系再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z .利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”. 解:(1)sin390°=sin(360°+30°)=sin30°=21; (2)cos 619π=cos(2π+67π)=cos 67π=23-; (3)tan(-330°)=tan(-360°+30°)=tan30°=33. 点评:本题主要是对诱导公式一的考查,利用公式一将任意角都转化到0—2π范围内求三角函数的值.思路2例1 已知角α的终边在直线y=-3x 上,则10sin α+3sec α=.活动:要让学生独立思考这一题目,本题虽然是个填空题,看似简单但内含分类讨论思想,可以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生要引导其思路的正确性.并适时地点拨学生:假如是个大的计算题应该怎样组织步骤.解:设角α终边上任一点为P(k,-3k)(k≠0),则 x=k,y=-3k,r=22(-3k)k +=10|k |.(1)当k>0时,r=10k ,α是第四象限角,sin α=r y =kk 103-=10103-,sec α=x r =k k 10=10,∴10sin α+3sec α=10×10103-+310=-310+310=0. (2)当k<0时,r=k 10-,α为第二象限角,sin α=r y =kk 103--=10103,sec α=x r =k k 10-=10-, ∴10sin α+3sec α=10×10103+3×(10-)=310-310=0. 综合以上两种情况均有10sin α+3sec α=0.点评:本题的解题关键是要清楚当k>0时,P(k,-3k)是第四象限内的点,角α的终边在第四象限;当k<0时,P(k,-3k)是第二象限内的点,角α的终边在第二象限内,这与角α的终边在y=-3x 上是一致的.变式训练设f(x)=sin 3πx,求f(1)+f(2)+f(3)+…+f(72)的值. 解:∵f(1)=sin3π=23,f(2)=sin 32π=23,f(3)=sin π=0, f(4)=sin 44π=23-,f(5)=sin 35π=23-,f(6)=sin2π=0, ∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.而f(7)=sin 37π=sin 3π,f(8)=sin 38π=sin 32π,…,f(12)=sin 312π=sin2π, ∴f(7)+f(8)+f(9)+f(10)+f(11)+f(12)=0.同理f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=0,…,f(67)+f(68)+…+f(72)=0, ∴f(1)+f(2)+f(3)+…+f(72)=0.求函数y=a sin +tan α的定义域.活动:让学生先回顾求函数的定义域需要注意哪些特点,并让学生归纳出一些常见函数有意义的要求,根据函数有意义的特征来求自变量的范围.对于三角函数这种特殊的函数在解三角不等式时要结合三角函数的定义进行.求含正切函数的组合型三角函数的定义域时,正切函数本身的定义域往往被忽略,教师提醒学生应引起注意这种情况.同时,函数的定义域是一个集合,所以结论要用集合形式表示.解:要使函数y=a sin +tan α有意义,则sin α≥0且α≠k π+2π(k∈Z ). 由正弦函数的定义知道,sin α≥0就是角α的终边与单位圆的交点的纵坐标非负. ∴角α的终边在第一、二象限或在x 轴上或在y 轴非负半轴上,即2k π≤α≤π+2k π(k∈Z ).∴函数的定义域是{α|2k π≤α<2π+2k π或2π+2k π<α≤(2k+1)π,k∈Z }.点评:本题的关键是弄清楚要使函数式有意义,必须sin α≥0,且tan α有意义,由此推导出α的取值范围就是函数的定义域.变式训练求下列函数的定义域:(1)y=sinx+cosx;(2)y=sinx+tanx; (3)y=xx x tan cos sin +;(4)y=x sin +tanx. 解:(1)∵使sinx,cosx 有意义的x∈R ,∴y=sinx+cosx 的定义域为R .(2)要使函数有意义,必须使sinx 与tanx 有意义.∴有⎪⎩⎪⎨⎧+≠∈2ππk x R x ∴函数y=sinx+tanx 的定义域为{x |x≠k π+2π,k∈Z }. (3)要使函数有意义,必须使tanx 有意义,且tanx≠0. ∴有⎪⎩⎪⎨⎧≠+≠πππk x ,k x 2(k∈Z ),∴函数y=xx x tan cos sin +的定义域为{x |x≠2πk ,k∈Z }. (4)当sinx≥0且tanx 有意义时,函数有意义, ∴有⎪⎩⎪⎨⎧+≠+≤≤2x ,1)(2k 2k ππππk x (k∈Z ). ∴函数y=sinx +tanx 的定义域为[2k π,2k π+2π)∪(2k π+2π,(2k+1)π](k∈Z ). 知能训练课本本节练习.解答: 1.sin 67π=21-;cos 67π=23-;tan 67π=33 点评:根据定义求某个特殊角的三角函数值.2.sin θ=135;cos θ=1312-;tan θ=125-. 点评:已知角α终边上一点的坐标,由定义求角α的三角函数值.3. 角α0° 90° 180° 270° 360° 角α的弧度数 0 2π Π 23π 2πsinα0 1 0 -1 0cosα 1 0 -1 0 1tanα0 不存在0 不存在0点评:熟悉特殊角的三角函数值,并进一步地理解公式一.4.当α为钝角时,cosα和tanα取负值.点评:认识与三角形内角有关的三角函数值的符.5.(1)正;(2)负;(3)零;(4)负;(5)正;(6)正.点评:认识不同位置的角对应的三角函数值的符.6.(1)①③或①⑤或③⑤;(2)①④或①⑥或④⑥;(3)②④或②⑤或④⑤;(4)②③或②⑥或③⑥.点评:认识不同象限的角对应的三角函数值的符.7.(1)0.874 6;(2)3;(3)0.5;(4)1.点评:求三角函数值,并进一步地认识三角函数的定义及公式一.课堂小结本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.本节课我们重点讨论了两个内容,一是三角函数在各象限内的符,二是一组公式,两者的作用分别是:前者确定函数值的符,后者将任意角的三角函数化为0°到360°角的三角函数,这两个内容是我们日后学习的基础,经常要用,请同学们熟记.作业课本习题1.2A组题1—9.设计感想关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”.这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.在学习本节的过程中可以与初中学习的三角函数定义进行类比、学习.理解任意角三角函数的定义不但是学好本节内容的关键,也是学好本章内容的关键.在教学中,教师应该充分调动学生独立思考和总结的能力,以巩固对知识的理解和掌握.教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数定义进行求值时,应特别强调要注意横向联系,即不仅仅能求出该值,还要善于观察该值与其他三角函数值之间的联系,找出规律来求解.(设计者:房增凤)第2课时导入新课思路 1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样的相依关系呢?思路 2.(复习导入)我们研究了三角函数在各象限内的符,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来.推进新课新知探究提出问题问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用几何中的方法来表示,应怎样表示呢?问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段?活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP 的长度为|y|,它们都只能取非负值. 当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段:如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向),规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x.如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y 轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y.引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有sin α=r y =1y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线.类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义和相似三角形的知识,就有tan α=x y =OAAT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.讨论结果:①能.②被看作带有方向的线段叫做有向线段.提出问题问题①:怎样把三角函数线与有向线段联系在一起?问题②:正弦线、余弦线、正切线在平面直角坐标系中是怎样规定的?当角α的终边变化时,它们有什么变化?活动:师生共同讨论,最后一致得出以下几点:(1)当角α的终边在y 轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x 轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x 轴的公共点为起点.(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.正弦线、余弦线、正切线统称为三角函数线.讨论结果:①略.②略.示例应用思路1例1 如图7,α,β的终边分别与单位圆交于点P,Q,过A(1,0)作切线AT,交图7射线OP 于点T,交射线OQ 的反向延长线于T′,点P 、Q 在x 轴上的射影分别为点M 、N,则sin α=______________,cos α=______________,tan α=______________,sin β=______________,cos β=______________,tan β=______________.活动:根据三角函数线的定义可知,sin α=MP,cos α=OM,tan α=AT,sin β=NQ,cos β =ON,tan β=AT′.答案:MP OM AT NQ ON AT′点评:掌握三角函数线的作法,注意用有向线段表示三角函数线时,字母的书写顺序不能随意颠倒.变式训练利用三角函数线证明|sin α|+|cos α|≥1.解:当α的终边落在坐标轴上时,正弦(或余弦)线变成一个点,而余弦(或正弦)线的长等于r,所以|sin α|+|cos α|=1.当角α终边落在四个象限时,利用三角形两边之和大于第三边有|sin α|+|cos α|=|OM |+|MP |>1,∴|sin α|+|cos α|≥1.例2 在单位圆中画出适合下列条件的角α的终边或终边所在的范围,并由此写出角α的集合:(1)sin α=21;(2)sin α≥21. 活动:引导学生画出单位圆,对于(1),可设角α的终边与单位圆交于A(x,y),则sin α=y,所以要作出满足sin α=21的终边,只要在单位圆上找出纵坐标为21的点A,则OA 即为角α的终边;对于(2),可先作出满足sin α=21的角的终边,然后根据已知条件确定角α的范围.图8。
最新人教版初中九年级数学上册《二次函数y=ax的图象和性质》导学案

22.1.2二次函数y=ax2的图象和性质一、新课导入1.导入课题:问题1:用描点法画函数图象的一般步骤是什么?问题2:我们学过的一次函数的图象是什么图形?那么,二次函数的图象会是什么样的图形呢?这节课我们画最简单的二次函数y=a x2的图象.板书课题:二次函数y=a x2(a≠0)的图象.2.学习目标:(1)用描点法画二次函数y=a x2的图象,知道抛物线y=a x2是轴对称图形,知道抛物线y=a x2的开口方向与a的符号有关.(2)能根据图象说出抛物线y=a x2的开口方向、对称轴、顶点坐标,能根据a的符号说出顶点是抛物线的最高点还是最低点.3.学习重、难点:重点:画二次函数y=a x2的图象,理解抛物线的相关概念.难点:画二次函数y=a x2的图象.二、分层学习1.自学指导:(1)自学内容:教材第29页到第31页的“思考”.(2)自学时间:10分钟.(3)自学方法:数形结合.(4)自学参考提纲:①画出函数y=x2的图象.x…-3 -2 -1 0 1 2 3 …y=x2…9 4 1 0 1 4 9 …②二次函数y=a x2+b x+c的图象是抛物线是轴对称图形,抛物线与对称轴的交点叫做抛物线的顶点.③函数y=x2的图象开口向上,对称轴是y轴,顶点坐标是(0,0),顶点是图象的最低点.④在①中的坐标系中画出函数y=12x2与y=2x2的图象,观察所画三个图象,说明它们有哪些共同点和不同点.⑤由④,说明二次函数y=a x2(a>0)的图象的形状、对称轴、开口方向、顶点.二次函数y=a x2(a>0)的图象是抛物线,对称轴是y轴,开口向上,顶点是(0,0).2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否熟练地用描点法画出函数的图象,能否观察图象得到所需的结论.②差异指导:根据学情对学习有困难的学生进行个别或分类指导,对列表取值进行指导.(2)生助生:生生互动交流、研讨.4.强化:(1)交流学习成果:展示画图效果,总结a>0时二次函数y=a x2的图象的相关性质.(2)总结:①二次函数的图象是抛物线,一般地,二次函数y=a x2+b x+c的图象就叫做抛物线y=a x2+b x+c,抛物线是轴对称图形,对称轴与抛物线的交点叫做抛物线的顶点.②抛物线y=a x2关于y轴对称,抛物线y=a x2的对称轴是y轴,顶点是原点(0,0).③a>0时,抛物线y=a x2的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小.1.自学指导:(1)自学内容:探究y=a x2(a<0)的图象特点.(2)自学时间:8分钟.(3)自学方法:画图,从开口方向、对称轴、顶点、开口大小等方面观察图象,寻找它们的共同特点.(4)探究提纲:①完成探究,回答这些抛物线异同点:共同点:开口都向下,对称轴是y轴,顶点是(0,0).不同点:x2的系数的绝对值越大,抛物线的开口越小.②总结a<0时,抛物线y=a x2的性质.当a<0时,抛物线a x2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点,a 越小,抛物线的开口越小.③观察前面所画的六条抛物线,你能说说抛物线y=a x2与y=-a x2有何关系吗?抛物线y=a x2与y=-a x2关于x轴对称.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生画图和识图的情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)交流:a<0时二次函数y=a x2的图象的性质.(2)强调a的符号对二次函数y=a x2的图象的开口方向的影响,|a|的大小对二次函数y=a x2的图象的开口大小的影响.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些技能?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动性,小组交流与回答问题的情况,学习效果等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是让学生在经历动手操作、探究归纳的过程中,逐步获取图象传达的信息,熟悉图象语言,进而形成函数思想.(时间:12分钟满分:100分)一、基础巩固(70分)1.(15分)抛物线y=2x2的开口向上,对称轴是y轴,顶点坐标是(0,0).2.(15分)已知下列二次函数①y=-x2;②y=35x2;③y=15x2;④y=-4x2;⑤y=4x2.(1)其中开口向上的是②③⑤(填序号);(2)其中开口向下且开口最大的是①(填序号);(3)有最高点的是①④(填序号).3.(20分)分别写出抛物线y=4x2与y=-14x2的开口方向、对称轴及顶点坐标.解:抛物线y=4x2的开口向下,对称轴为y轴,顶点坐标(0,0).抛物线y=-14x2的开口向下,对称轴为y轴,顶点坐标(0,0).4.(20分)在同一直角坐标系中画出下列函数的图象:y=13x2;y=-13x2.解:列表:…-3-2-10123…y=13x2 (34)3130 13433…x …-3 -2 -1 0 1 2 3 …y=-13x2…-3 -43-130 -13-43-3 …作图如图所示.二、综合应用(20分)5.(20分)已知一次函数y=a x+b和二次函数y=a x2,其中a≠0,b<0,则下面选项中,图象可能正确的是(C)三、拓展延伸(10分)6.(10分)m 为何值时,函数-m my mx=2的图象是开口向下的抛物线?解:由题意得,,m m m ⎧-=⎨<⎩220解得m=-1∴当m=-1时,函数-m my mx=2的图象是开口向下的抛物线.。
新人教版八年级数学上册全册导学案(137页)

新人教版八年级数学上册全册导学案第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若y=(b-2)x2+4是二次函数,则__b≠2__.探究2某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是(A)A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y=-x2,y=-12x2和y=-2x2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0.解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y 随x 的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y =ax 2与y =-ax 2的图象之间有何关系?2.已知函数y =ax 2经过点(-1,3).(1)求a 的值;(2)当x<0时,y 的值随x 值的增大而变化的情况.3.二次函数y =-2x 2,当x 1>x 2>0,则y 1与y 2的关系是__y 1<y 2__.4.二次函数y =ax 2与一次函数y =-ax(a ≠0)在同一坐标系中的图象大致是( B )点拨精讲:1.二次函数y =ax 2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y =ax 2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是(C)A.(4,4)B.(1,-4)C.(2,2) D.(0,4)2.抛物线y=x2-16与x轴交于B,C两点,顶点为A,则△ABC的面积为__64__.点拨精讲:与x轴的交点的横坐标即当y等于0时x的值,即可求出两个交点的坐标.3.画出二次函数y=x2-1,y=x2,y=x2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1抛物线y=ax2与y=ax2±c有什么关系?解:(1)抛物线y=ax2±c的形状与y=ax2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2) 3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y=ax2+c的图象与函数y=5x2+1的图象关于x轴对称,则a=__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P33~34“探究”与“思考”,掌握y=a(x-h)2与y=ax2之间的关系,理解并掌握y=a(x-h)2的相关性质,完成填空.画函数y=-12x2、y=-12(x+1)2和y=-12(x-1)2的图象,观察后两个函数图象与抛物线y=-12x2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y=a(x-h)2的顶点坐标为(h,0),对称轴为直线x=h.当a>0时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,抛物线有最低点,函数y有最小值;当a<0时,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小,抛物线有最高点,函数y有最大值.抛物线y=ax2向左平移h个单位,即为抛物线y =a(x +h)2(h>0);抛物线y =ax 2向右平移h 个单位,即为抛物线y =a(x -h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟) 1.教材P 35练习题;2.抛物线y =-12(x -1)2的开口向下,顶点坐标是(1,0),对称轴是x =1,通过向左平移1个单位后,得到抛物线y =-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象. 点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y =x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.不画图象,回答下列问题:(1)函数y=3(x-1)2的图象可以看成是由函数y=3x2的图象作怎样的平移得到的?(2)说出函数y=3(x-1)2的图象的开口方向、对称轴和顶点坐标.(3)函数有哪些性质?(4)若将函数y=3(x-1)2的图象向左平移3个单位得到哪个函数图象?点拨精讲:性质从增减性、最值来说.2.与抛物线y=-2(x+5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y=2(x+5)2.3.对于函数y=-3(x+1)2,当x>-1时,函数y随x的增大而减小,当x=-1时,函数取得最大值,最大值y=0.4.二次函数y=ax2+bx+c的图象向左平移2个单位长度得到y=x2-2x+1的图象,则b=-6,c=9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.2.能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2+k的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2+k的图象.难点:能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2+k的平移规律.一、自学指导.(10分钟)自学:自学课本P35~36“例3、例4”,掌握y=a(x-h)2+k与y=ax2之间的关系,理解并掌握y=a(x-h)2+k的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟 1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填写下表:解析式 开口方向 对称轴 顶点坐标 y =-2x 2 向下 y 轴 (0,0) y =12x 2+1 向上 y 轴 (0,1) y =-5(x +2)2 向下 x =-2 (-2,0) y =3(x +1)2-4向上x =-1(-1,-4)点拨精讲:解这类型题要将不同形式的解析式统一为y =a(x -h)+k 的形式,便于解答. 探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y=-12x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y=-12(x-1)2+2,∴a=-12,h=1,k=2;(2)函数y=-12(x-1)2+2与y=-12x2的图象如图;(3)观察y=-12(x-1)2+2的图象可知,当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小;(4)由y=-12(x-1)2+2的图象可知,对于一切x的值,y≤2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y=-2x2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y=-2(x-3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y=2x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y=2x2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y=2(x-1)2-3.4.已知A(1,y1),B(-2,y2),C(-2,y3)在函数y=a(x+1)2+k(a>0)的图象上,则y1,y2,y3的大小关系是y2<y3<y1.点拨精讲:本节所学的知识是:二次函数y=a(x-h)2+k的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(1)1.会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法. 3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空. 总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c化成y =a(x -h)2+k的形式,则h =-b2a ,k =4ac -b 24a;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b2a 时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象. 点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y=14x2-3x+21;(2)y=-3x2-18x-22.解:(1)y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.(2)y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.点拨精讲:第(2)小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2用总长为60 m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l =15时,场地的面积S 最大(S 的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.y =-2x 2+8x -7的开口方向是向下,对称轴是x =2,顶点坐标是(2,1);当x =2时,函数y 有最大值,其值为y =1.2.已知二次函数y =ax 2+2x +c(a ≠0)有最大值,且ac =4,则二次函数的顶点在第四象限.3.抛物线y =ax 2+bx +c ,与y 轴交点的坐标是(0,c),当b 2-4ac =0时,抛物线与x 轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a ,0);当b 2-4ac >0时,抛物线与x轴有两个交点,交点坐标是(-b±b 2-4ac2a ,0);当b 2-4ac<0时,抛物线与x 轴没有交点,若抛物线与x 轴的两个交点坐标为(x 1,0),(x 2,0),则y =ax 2+bx +c =a(x -x 1)(x -x 2).点拨精讲:与y 轴的交点坐标即当x =0时求y 的值;与x 轴交点即当y =0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x 轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x 轴的两个交点坐标时,可先用交点式:y =a(x -x 1)(x -x 2),x 1,x 2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y=ax2+bx+c,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y=a(x-h)2+k,把另一点坐标代入式中,可求出解析式;若知道抛物线与x轴的两个交点(x1,0),(x2,0),可设函数的关系式为y=a(x-x1)(x-x2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y=4x2-mx+2,当x<-2时,y随x的增大而减小;当x>-2时,y随x 的增大而增大,则当x=1时,y的值为22.点拨精讲:可根据顶点公式用含m的代数式表示对称轴,从而求出m的值.2.抛物线y=-x2+6x+2的顶点坐标是(3,11).3.二次函数y=ax2+bx+c的图象大致如图所示,下列判断错误的是(D)A.a<0B.b>0C.c>0D.ac>0第3题图第4题图第5题图4.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为(A)A.0 B.-1 C.1 D.2点拨精讲:根据二次函数图象的对称性得知图象与x轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a-b+c的值.5.如图是二次函数y=ax2+3x+a2-1的图象,a的值是-1.点拨精讲:可根据图象经过原点求出a的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有 a(2-3)(2+1)=9, ∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y=ax2+bx+c;2.顶点式y=a(x-h)2+k;3.交点式y=a(x-x1)(x-x2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.2二次函数与一元二次方程(1)1.理解二次函数与一元二次方程的关系.2.会判断抛物线与x轴的交点个数.3.掌握方程与函数间的转化.重点:理解二次函数与一元二次方程的关系;会判断抛物线与x轴的交点个数.难点:掌握方程与函数间的转化.一、自学指导.(10分钟)自学:自学课本P43~45.自学“思考”与“例题”,理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点情况,会利用二次函数的图象求对应一元二次方程的近似解,完成填空.总结归纳:抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.二次函数的图象与x轴的位置关系有三种:当b2-4ac>0时,抛物线与x轴有两个交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac<0时,抛物线与x轴有0个交点.这对应着一元二次方程ax2+bx+c=0根的三种情况:有两个不等的实数根,有两个相等实数。
广东省阳东广雅中学八年级数学下册《函数零点》导学案(无答案) 新人教版

一、【课前自主预习环节】预习课本86—88页内容,尝试回答以下问题问题1 从不同的角度看21y x =-,你有什么样的理解?问题2 在21y x =-中,令0y =,得0.5x =,你对0.5x =又有怎样的理解?你认为“零点”这个名字的实际意义是什么?问题3 对于一般函数y=f(x),你认为该如何定义它的零点呢?问题1:如何判断一元二次方程()200ax bx c a ++=≠,有无实根?问题2:如何判断二次函数()20y ax bx c a =++≠,的图象与x 轴有几个交点?问题3:与二次函数223y x x =--相应的一元二次方程是什么?这个二次函数的图象与x 轴的交点坐标是什么?相应的一元二次方程的两个根是什么?你能看出图象与x 轴的交点和相应的一元二次方程的根之间有什么关系吗?问题4:二次函数的图像与x 轴的交点和相应的一元二次方程根的关系可以推广到一般情况吗?问题5:什么是函数的零点?(零点的概念)问题6:函数的零点是一个点吗?函数()y f x =的零点,方程()0f x =的根,函数()y f x =的图象与x 轴交点的横坐标之间的关系是什么?问题7: 已知函数()221f x x x =--(1):判断函数零点的个数,并说明理由;(2):根据课本方法判断该函数在区间(2,3)上存在零点吗?在区间(-1,1)上是否存在零点?(3):回顾刚才两个问题的解决,你能用符号语言总结一下如何判断二次函数f(x)在区间(a,b)上是否存在零点?(4):上述结论对任意函数是否仍然成立?并验证:函数1,01,0x y x ≥⎧=⎨-<⎩在区间(-1,1)上存在零点吗?1y x=在区间(-1,1)上存在零点吗?。
(5):请同学们思考为什么此类函数对上述命题不成立,而对二次函数则是成立的呢?(6):你能补上合适的条件,使上述命题对推广的函数仍然成立吗?二.【课堂教学环节】※预习成果展示:1. 函数243y x x =-+的零点为 。
八年级数学下册 函数单元叶学案(无答案) 新人教版

课题第十四章一次函数
1
2
课 题 第十四章 一次函数
单元内容及知识结构
单元教学目标
1、知识与技能
(1)、了解常量、变量和函数的概念,了解函数的三种表示方法。
(2)、理解正比例函数和一次函数的概念,会画它们的图像,并掌握这些函数 的基本性质。
能利用这些函数分析和解决简单实际问题。
2、过程与方法 通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用
函数的观点加深对已经学过的方程(组)及不等式等内容的认识,构建和发 展和谐的知识体系。
3、情感、态度、价值观
培养学生用数形结合的思想看问题的能力。
教学重点
能够综合运用所学函数知识分析和解决实际问题。
课时安排 约需17课时
变化的世界 函 数
一次函数 一元一次方程 一元一次方程 二元一次方程组 课题学习
选择方案
图 像 性 质 应 用 再认识。
人教版八年级下册数学导学案设计:19.1.2函数图像(2)(无答案)

归纳:描点法画函数图像的一般步骤如下:
第一步:列表—表中给出一些的值及其对应的;
第二步:描点—在直角坐标系中,以自变量的值为坐标,相应的函数值为坐标,描出表格中数值对应的;
第三步:连线—按照横坐标由的顺序,把所描出的各点用
五、当堂检测
1、函数图像从左到右上升,说明随着x的增加,函数y的值;
如果从左到右下降,说明随着x的增加y的值(增加或者减小)。
2、函数y=ax+b的图像上有点(1,1)、(2,1),则a=,b=.
六、课堂小结
描点法画函数图像的一般步骤是。
七、布置作业
习题19.1第5、6题。
解(1)列出下表,并描点(x,y)连线(见第1题图)
x
…
-3
-2
-1
0
1
2
3
…
y
…
-0.5
0.5
1.5
2.5
…
解(2)列出下表,并描点连线(见第2题图)
x
…
1
1.5
2
2.5
3
3.5
4
4.5
5
6
…
y
…
6
3
2
1
…
(1)从函数(1)图像可以看出,该函数图像是一条,直线从左向右呈趋势,即当x由小变大时,y的值随之。
19.1.2函数的图像(2)
一、学习目标
1.会用描点法画出函数图象,能说出画函数图象的步骤;
2.会判断一个点是否Leabharlann 函数的图象上。二、温故知新
1、函数图象是坐标平面上以自变量的值为坐标、 以对应的为纵坐标的点组成的曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师
大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和
检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应
内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
函数的表示方法
【学习目标】
1、总结函数三种表示方法.
2、了解三种表示方法的优缺点.
3、会根据具体情况选择适当方法.
4、利用数形结合思想,据具体情况选用适当方法解决问题的能力.
【重点难点】
1、认清函数的不同表示方法,知道各自优缺点.
2、能按具体情况选用适当方法.
【自主学习】
1、函数的三种表示方法是什么?
2、你认为函数的三种表示方法各有什么优缺点。
根据自己的看法填表。
表示方法全面性准确性直观性形象性
列表法×∨∨×
解析式法∨∨××
图象法××∨∨从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.【合作探究】
一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时0 1 2 3 4 5 …
y/米10 10.05 10.10 10.15 10.20 10.25 …
1.由记录表推出这5小时中水位高度y(米)随时间t•(时)变化的函数解析式,并画出函数图象.
2.据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?
【能力检测】
1.用列表法与解析式法表示n边形的内角和m是边数n的函数.
2.用解析式与图象法表示等边三角形周长L 是边长a 的函数.
3、 甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x 秒后两车之间的距离为y 米.求y 随x (0≤x ≤100)变化的函数解析式,并画出函数图象.
【拓展延伸】
1.下表中的数据反映的函数解析式是___________.
2.我国北方人的标准体重y (kg)与其身高x (cm)有函数关系406.0-=x y ,根据解析式,把函数关系用列表法表示出来. 3、右图是函数)0(2>=x x S 的图象.而函数2x S =的自变量取值范围是所有实数,其图象是关于y 轴对称的,请你在右图中利用轴对称画出2x S =的图象.
小组评价: 教师评价:
【课后反思】
x -3 -2 -1 0 1 2 3 4
y 10 9 8 7 6 5 4 3
教学反思
1 、要主动学习、虚心请教,不得偷懒。
老老实实做“徒弟”,认认真真学经验,扎扎实实搞教研。
2 、要勤于记录,善于总结、扬长避短。
记录的过程是个学习积累的过程,总结的过程就是一个自我提高的过程。
通过总结,要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善。
3 、要突破创新、富有个性,倾心投入。
要多听课、多思考、多改进,要正确处理好模仿与发展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的基础上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格,弘扬工匠精神,努力追求自身教学的高品位。