圆柱螺旋压缩弹簧计算
圆柱螺旋压缩(拉伸)弹簧的设计计算
圆柱螺旋压缩(拉伸)弹簧的设计计算
一、圆柱螺旋压缩(拉伸)弹簧的设计原理
1、圆柱螺旋压缩(拉伸)弹簧原理
圆柱螺旋压缩(拉伸)弹簧是一种特殊的弹簧,其结构设计使用了螺
旋结构,螺旋结构的形状是一个圆柱形的圆柱螺纹。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行压缩(拉伸)力作用时,弹簧
的整个螺旋节在不同的力矩作用下会产生相应的弹性变形,从而使得弹簧
的中心轴变长,以缩短弹簧的长度。
2、圆柱螺旋压缩(拉伸)弹簧特性
圆柱螺旋压缩(拉伸)弹簧具有对同直径和外径的小变化具有很强的
适应性的特性,同时,压缩(拉伸)力也有必要时可以根据弹性变形率来
改变。
圆柱螺旋压缩(拉伸)弹簧的压缩(拉伸)受力分布差异,当进行
压缩(拉伸)力作用时,弹簧的整个螺旋节在不同的力矩作用下会产生相
应的弹性变形,从而使得弹簧的中心轴变长,从而缩短弹簧的长度。
此外,这种弹簧具有紧凑结构,能够有效地减少设备装置内的多余空间,重量轻,由于采用细小的钢、不锈钢、铜或其它有良好装配性的金属等材料,具有
良好的耐磨性、耐腐蚀性和耐臭氧性等性能。
弹簧计算公式
mm mm mm mm N mm N mm mm
自由高度 H0 总圈数 n1 压并高度 Hb 弹簧展开长度 L 有效圈数 n 稳定性
mm mm mm
H0=n*t+1.5*d n1=n+2 Hb=(n+1.5)*d L=PI*D*n1/cos(a) 设计给定/初次估算 两端固定(H0/D<5.3)
次序 数据 状态 参考 622 4 16 83 777.5 4 OK 1.4038 648.44 99.76 6.5 6 OK 6.8104 OK 695.67 6.9734 869.58 8.7168 286.96 2.8765 38.027 42.123 0 7.5 748.2 7.5 748.2 37.5 37.5 OK 7 99.76 5 (Pp1)/弹簧刚度P’ 6 Q2/单边弹簧个数 6.9734 8 自然长度-弹簧孔深度 1 2 3 4
t=(H0-1.5*d)/n (一般 t=D/3~D/2)
a=arc tan(t/pi/D)(一般5~9) Pn=Pi*d*d*d*[Tp]/8/K/D Fn=Pn/P' Pj=PI*POWER(d,3)*Tj/8/K/D Fj=Pj/P' P1=(1/3~1/2)Pj F1=P1/P' Hn=H0-Fn H1=H0-F1 设计给定 设计给定 Pp1=P'*Ff1 Ffn=Ff1+h Ppn=P'*Ffn Hhn=H0-Ffn Hh1=H0-Ff1
项目 弹簧许用应力[Tp] 弹簧直径 d 弹簧中径 D 切变模量 G Tj 旋绕比 C 曲度系数 K 单圈弹簧刚度 Pd' 弹簧刚度 P' 有效圈数 n 节距 t 螺旋角 a 最大工作载荷 Pn 最大工作负荷下的变形 Fn 工作极限负荷 Pj 工作极限负荷下的变形 Fj 最小工作负荷 P1 最小工作负荷变形 F1 最大工作载荷下高度 Hn 最小工作载荷下高度 H1 实际工作行程 h 实际最小工作负荷变形 Ff1 实际最小工作负荷 Pp1 实际最大工作负荷的变形 Ffn 实际最大工作载荷 Ppn 实际最大工作载荷下高度 Hhn 实际最小工作载荷下高度 Hh1 端部并紧磨平,支撑圈1圈
圆柱螺旋压缩弹簧计算公式
圆柱螺旋压缩弹簧计算
公式
-CAL-FENGHAI.-(YICAI)-Company One1
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1 D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d压缩弹簧长细比b b=H0/D2 b在1~的范围内选取自由高度或长度H0 H0≈pn+~2)d(两端并紧,磨平)H0≈pn+(3~d(两端并紧,不磨平) H0=nd+钩环轴向长度工作高度或长度H1,H2,…,Hn Hn=H0-λn Hn= H0+λn λn--工作变形量有效圈数n 根据要求变形量按式(16-11)计算n≥2总圈数n1 n1=n+(2~(冷卷)n1=n+~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈节距p p=~D2 p=d 轴向间距δ δ=p
-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展开长度螺旋角α α=arctg(p/πD 2) 对压缩螺旋弹簧,推荐α=5°~9°质量ms ms= γ为材料的密度,对各种钢,γ=7700kg/ ;对铍青铜,γ=8100kg/。
圆柱螺旋弹簧一般计算公式
1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
DIN 圆柱螺旋压缩弹簧计算和设计
5.1 静负荷和准静负荷 静负荷为: 不随时间变化的负荷 准静负荷为: 随时间变化但位移应力很小,以致可忽略的负荷(标准值:位移应力达 0.1 × 连续行程疲劳强度) 随时间变化,而且位移应力较大,但负载循环数达到 104 的负荷
5.2 动负荷 弹簧的动负荷为: 随时间变化,负载循环数超过 104,位移应力超过 0.1 × 连续行程疲劳强度的负荷,且在以下情
第 2 页 DIN 2089 第一部分
2 理论压缩弹簧图
弹力
弹簧行程
弹簧长度
图 1. 理论压缩弹簧图 根据 DIN 2095 和 DIN 2096 第 1、2 部分描绘和制作压缩弹簧并给出试验图。
DIN 2089 第一部分 第 3 页
3 常用符号、单位和名称
常用符号 单位
名称
a0
mm 无负荷弹簧上有效弹簧圈之间的内侧距离
8 计算公式……………………………………5 9.1 在闭塞长度上的允许剪应力 …………12
8.1 弹性功………………………………………5 9.2 在静或准静负荷时的允许剪应力………12
8.2 弹性力………………………………………5 9.3 动负荷时的允许位移应力………………18
1 应用范围
该标准适用于直径不变的圆形簧丝和棒构成,且具有线性特性曲线的圆柱形螺旋压力弹簧的计 算和设计,而且这些弹簧的主要负荷处于弹性轴上,其质量规范在 DIN2095 和 DIN2096 第 1 和第 2 部分中已有规定。因此适用以下极限值:
Kn
τKh τKH(…) τKU(…) τKO(…)
τzul τSt
N/mm2 N/mm2 N/mm2
N/mm2
N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2
圆柱螺旋压缩弹簧计算
圆柱螺旋压缩弹簧计算1.圆柱螺旋压缩弹簧的计算原理:圆柱螺旋压缩弹簧的计算原理基于胡克定律和弹性力学理论。
胡克定律指出,在弹性范围内,弹簧的变形量与外力之间存在线性关系。
根据弹性力学理论,圆柱螺旋压缩弹簧的变形量与载荷、弹簧材料的物理性质以及弹簧的几何尺寸相关。
2.弹性系数的计算:弹簧的弹性系数是指单位变形量产生的弹力大小,通常用牛顿/米(N/m)表示。
对于圆柱螺旋压缩弹簧,其弹性系数的计算公式为:K=(Gd^4)/(8D^3n)其中,K为弹性系数,G为剪切模量,d为线径,D为弹簧直径,n为弹簧的有效圈数。
3.刚度系数的计算:弹簧的刚度系数是指单位载荷产生的变形量大小,通常用米/牛顿(m/N)表示。
对于圆柱螺旋压缩弹簧,其刚度系数的计算公式为:C=1/K其中,C为刚度系数,K为弹性系数。
4.变形量的计算:ΔL=(F*L)/(n*Gd^4/8D^3)其中,ΔL为变形量,F为外力大小,L为弹簧的自由长度,n为弹簧的有效圈数,G为剪切模量,d为线径,D为弹簧直径。
5.实例分析:假设有一个圆柱螺旋压缩弹簧,其线径为10mm,弹簧直径为50mm,有效圈数为10,剪切模量为80GPa,弹簧的自由长度为100mm。
现在对该弹簧进行计算。
首先计算弹性系数K:K=(80*10^9Pa*(10/1000)^4)/(8*(50/1000)^3*10)≈8.025N/m然后计算刚度系数C:C=1/K≈0.1249m/N最后计算变形量ΔL:假设外力F为100NΔL = (100N * 100mm) / (10 * (80 * 10^9 Pa * (10 / 1000)^4) / (8 * (50 / 1000)^3))综上所述,圆柱螺旋压缩弹簧的计算涉及弹性系数、刚度系数和变形量的计算。
根据弹簧的几何尺寸、材料性质和外力大小,可以通过相应的计算公式得到这些参数,从而进行弹簧的设计和选择。
弹簧设计计算
项目 最小工作载荷P1 最大工作载荷Pn 工作行程h 弹簧中径D 弹簧直径d 原 弹簧类别 始 条 端部结构 件 旋绕比C 曲度系数K 弹簧材料 材料极限切应力 材料切变模量 初算弹簧刚度P' 工作极限载荷Pj 单位 N N mm mm mm 公式及数据 2000 7570 170 80 14 III类 端部并紧、磨平,两端支承圈各1圈 C= 5.714285714 K= 1.266715909 60Si2Mn MPa τj= 740 MPa G= 79000 N/mm P'= 32.76470588 N Pj= 7868.763643 P1= Pn= h= D= d= fj= 10.62006597 P'd= 740.9335938 n= 22.613772 取 n= n1= 30 P‘= 26.46191406 Fj= t= H0= D2= D1= α= L= H1= Hn= Hj= h= 下限 上限 b= 297 24.61 710.08 取H0= 94 66 5.592578199 7576 634.42 423.93 412.64 210.49 0.25 0.96 81、根据弹簧套筒内径以及旋绕比C 5~8初步确定 弹簧直径与中径; d 3 j 2、由极限载荷公式 Pj 8DK 可知,极限载荷 只由中径、直径以及材料有关,与施加的外力无关 。故一旦中径、直径以及材料确定后,弹簧的极限 载荷就是一定值; 3、根据 弹簧的工作范围为20%~80%初步确定最小工作载荷 以及最大工作载荷;最小工作载荷应大于推动侧护 板所需要的力; 4、根据以上 最终验算结果,对以上各值进行调整
工作极限载荷下的 mm 单圈变形量fj 单圈弹性刚度P'd N/mm 有效圈数n 圈 总圈数n1 圈 N/mm 参 数 弹簧刚度P’ 计 算 工作极限载荷下的 变形量Fj mm 节距t mm 自由度高H0 mm 弹簧外径D2 mm 弹簧内径D1 mm 螺旋角α (°) 展开长度L mm 最小载荷时高度H1 mm 最大载荷时高度Hn mm 极限载荷时高度Hj mm mm 验 算 实际工作行程h 工作范围 高径比b
圆柱螺旋压缩弹簧计算公式
圆柱螺旋压缩弹簧计算公式
弹簧常量(Spring Constant)是指单位压缩或拉伸长度下所储存的能量。
它是衡量弹簧刚性和柔性的重要指标。
圆柱螺旋压缩弹簧的弹簧常量可以通过以下公式计算:
k=(Gd^4)/(8D^3n)
其中,k为弹簧常量,G为弹簧材料的剪切模量,d为弹簧线圈的直径,D为弹簧线圈的平均直径,n为弹簧线圈的总数。
F = kx
其中,F为受到的力,k为弹簧常量,x为弹簧的位移。
Fmax = kxmax
其中,Fmax为最大力,k为弹簧常量,xmax为允许的最大位移。
Lmax = Ln - (D/2 + d/2 + c)
其中,Lmax为最大压缩长度,Ln为弹簧线圈的总长度,D为弹簧线圈的平均直径,d为弹簧线圈的直径,c为线圈间的缝隙。
x_max = (Ln - L0) / n
其中,x_max为最大位移,Ln为弹簧线圈的总长度,L0为弹簧的初始长度,n为弹簧线圈的总数。
S=F/x
其中,S为刚度,F为受到的力,x为位移。
E = (1/2)kx^2
其中,E为弹性能量,k为弹簧常量,x为位移。
以上就是关于圆柱螺旋压缩弹簧的计算公式。
通过这些公式,我们可以准确地计算弹簧的性能参数,为机械设计提供依据,并确保弹簧在实际使用中能够正常工作。
当然,在实际设计中,还需要考虑许多其他因素,如疲劳寿命、可靠性和安全系数等,并结合实际应用需求进行综合设计。
弹簧计算
′
13.73239437
mm
= +d
5.068
自由高度H0
mm
H0=nt+1.5d
75.452
弹簧外径D2
mm
D2=D+d
19
弹簧内径D1
mm
D1=D-d
13
mm
最小载荷时的高
度H1
mm
最大载荷时的高
度Hn
mm
极限载荷时的高
度Hj
mm
实际工作行程h
mm
工作区范围
高径比 b
Fj=nfj
α =
π
πD1
=
1
1 = 0 −
′
′
= 0 −
′
= 0 −
h=H1-Hn
1
; ;
0
=
根据机械设计手册表查得标准
值
14
取标准值
75
12.1875
节距t
展开长度 L
根据机械设计手册表查得
16
mm
(°)
弹簧类别Ⅱ时 Pj≥1.25Pn
弹簧类别Ⅲ时 Pj≥Pn
195
′
= ′
工作载荷下的变
形量Fj
螺旋角α
算
N/mm
碳素弹簧钢丝C级
− 1
′ =
14.2
ℎ
N
单圈刚度 P'd
验
1000000
工作极限载荷Pj
所选弹簧 工作极限载荷Pj
数据
工作极限载荷下
的单圈变形量fj
28.952
5.763193109
螺旋弹簧数据计算
项目 最小工作载荷P1 最大工作载荷Pn 工作行程h 弹簧外径D2 弹簧类别 端部结构 弹簧材料 单位 N N mm mm 公式及数据 60 240 45 N=10^3-10^6 D2的选择范畴 次数 端部并紧,磨平,两端支承圈各一圈 碳素弹簧钢丝C级
原始条件
初算弹簧刚度P' 工作极限载荷Pj
工作极限载荷下的变 mm 参数计算 形量Fj mm 节距t mm 自由高度Ho mm 弹簧外径D2 mm 弹簧内径D1 (°) 螺旋角α mm 展开长度L mm 最小载荷时的高度H1 mm 最大载荷时的高度Hn mm 极限载荷时的高度Hj mm 实际工作行程h 工作范围 高径比b 注:红色部分为输出数据;绿色部分为输入参数;
N/mm
4 300
涉及参数(根据Pj与D条件可以从机械设计表格查出) 弹簧材料直径d及弹簧 d(材料直径) D(材料中径) 中径D与有关参数
1 2
Pj
3 1.25 3.5
有效圈数n 总圈数n1
弹簧d/P' 加上底支承圈
3.333333333 4.5 4 7.5 3 1 32.49479994 46.53608201 -10.5 -64.5 -82.5 54 0.2 3.75
0.8
如果b小于2.6可不进行稳定
例
公式及数据
D2的选择范畴
紧,磨平,两端支承圈各一圈 碳素弹簧钢丝C级
件可以从机械设计表格查出) fj(工作极限载 P'd(单圈刚 荷下的单圈变 度) 形量)
3 5 1.5
然后参考表格 取值
根据数据圆整
如果b小于2.6可不进行稳定性验算
圆柱螺旋压缩(拉伸)弹簧的设计计算
圆柱螺旋压缩(拉伸)弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式质量m sm s=γ为材料的密度,对各种钢,γ=7700kg/;对铍青•(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。
弹簧在安装时,通常预加一个压力F min,使它可靠地稳定在安装位置上。
F min称为弹簧的最小载荷(安装载荷)。
在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。
F max为弹簧承受的最大工作载荷。
在F max作用下,弹簧长度减到H2,其压缩变形量增到λmax。
λmax与λmin的差即为弹簧的工作行程圆柱螺旋压缩弹簧的特性曲线h,h=λmax-λmin。
F lim为弹簧的极限载荷。
在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。
圆柱螺旋压缩弹簧计算公式
圆柱螺旋压缩弹簧计算公式圆柱螺旋压缩弹簧是机械中常用的一种元件,可以用于各种机械装置中,用于提供压缩力、缓冲力和储能等功能。
圆柱螺旋压缩弹簧的设计和计算公式一般包括弹簧刚度、载荷、工作长度、自由长度等参数的计算。
下面将详细介绍圆柱螺旋压缩弹簧的计算公式。
1.弹簧刚度:弹簧刚度是指弹簧在单位长度内所产生的载荷与该长度内的变形之比,用符号C表示,其单位为N/mm。
弹簧刚度可以通过几何参数和材料的弹性模量来计算。
若弹簧线直径为d,弹簧线直径外形半径为D,圈数为n,弹簧长度为L,则弹簧刚度C的计算公式为:C=(Gd^4)/(8D^3n)其中,G为弹簧材料的剪切模量,d和D的单位为mm,n为无量纲。
2.载荷:载荷是指施加在弹簧上的力或重量,用符号F表示,其单位为N。
载荷的大小会影响到弹簧的变形和工作性能。
3.工作长度:工作长度是指弹簧在工作状态下的长度,也称为工作高度,用符号H表示,其单位为mm。
工作长度的大小与弹簧的刚度和载荷有关。
4.自由长度:自由长度是指弹簧在无外力作用时的长度,用符号L0表示,其单位为mm。
自由长度的大小与弹簧线直径、圈数和线径外径有关。
根据载荷、工作长度和自由长度,可以计算出弹簧的变形量。
变形量是指弹簧在工作状态下相对于自由状态下的变化长度,用符号δ表示,其单位为mm。
5.弹簧力:弹簧力是指弹簧在工作状态下所产生的力,用符号Fspring表示,其单位为N。
弹簧力可以通过弹簧刚度和变形量的乘积来计算。
Fspring = C * δ其中C为弹簧刚度,δ为变形量。
综上所述,圆柱螺旋压缩弹簧的计算公式包括弹簧刚度、载荷、工作长度、自由长度和弹簧力等参数的计算公式。
这些参数的计算可以帮助工程师根据具体的需求来选择和设计合适的圆柱螺旋压缩弹簧,以满足机械装置的要求。
圆柱螺旋压缩弹簧设计计算
% 圆柱螺旋压缩弹簧设计计算% M文件中的表16-3和表16-5见参考文献[1]% 已知条件:最小和最大弹簧载荷、工作行程、剪切弹性模量、许用应力、最小内径F1=500;F2=1200;h=60;G=7.85e4;sigma=1420;D1_min=50;% 1-按照强度条件确定弹簧丝直径% 由于弹簧丝材料强度与它的直径相关,需要采用试算法ds=input(' 试选弹簧丝直径(mm) ds = ');sigma_b=input(' 按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = ');tau_p=0.45*sigma_b;fprintf(' 许用剪切应力tau_p = %3.4f MPa \n',tau_p);Cj=D1_min/ds+1;fprintf(' 计算弹簧指数Cj = %3.4f \n',Cj);C=input(' 按照表16-5,选择弹簧指数C = ');Kq=(4*C-1)/(4*C-4)+0.615/C;fprintf(' 计算曲度系数Kq = %3.4f \n',Kq);dj=sqrt(8*Kq*F2*C/(pi*tau_p));fprintf(' 计算簧丝直径dj = %3.4f mm \n',dj);if dj>dsdisp ' 不安全,需要重选弹簧丝直径'elsedisp ' 安全'd=ds; % 确定弹簧丝直径end第1次试算:试选弹簧丝直径(mm) ds = 6按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = 1420许用剪切应力tau_p = 639.0000 MPa计算弹簧指数Cj = 9.3333按照表16-5,选择弹簧指数C = 9计算曲度系数Kq = 1.1621计算簧丝直径dj = 7.0721 mm不安全,需要重选弹簧丝直径第2次试算:试选弹簧丝直径(mm) ds = 7按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = 1370许用剪切应力tau_p = 616.5000 MPa计算弹簧指数Cj = 8.1429按照表16-5,选择弹簧指数C = 8计算曲度系数Kq = 1.1840计算簧丝直径dx = 6.8520 mm安全% 2-按照刚度条件确定弹簧工作圈数Kj=(F2-F1)/h;fprintf(' 计算弹簧刚度Kj = %3.4f N/mm \n',Kj);nj=G*d/(8*C^3*Kj);fprintf(' 计算弹簧圈数nj = %3.4f \n',nj);n=input(' 选取弹簧工作圈数n = ');n2=input(' 选取弹簧支承圈数n2 = ');n1=n+n2;fprintf(' 弹簧总圈数n1 = %3.4f \n',n1);% 计算弹簧的刚度和变形量Kp=G*d/(8*C^3*n);f1=F1/Kp;f2=F2/Kp;fprintf(' 弹簧实际刚度Kp = %3.4f N/mm \n',Kp);fprintf(' 弹簧最小变形量f1 = %3.4f mm \n',f1);fprintf(' 弹簧最大变形量f2 = %3.4f mm \n',f2);计算结果:计算弹簧刚度Kj = 11.6667 N/mm计算弹簧圈数nj = 11.4990选取弹簧工作圈数n = 12选取弹簧支承圈数n2 = 2弹簧总圈数n1 = 14.0000弹簧实际刚度Kp = 11.1796 N/mm弹簧最小变形量f1 = 44.7243 mm弹簧最大变形量f2 = 107.3383 mm% 3-弹簧稳定性校核D2=C*d;fprintf(' 弹簧中径D2 = %3.4f mm \n',D2);delta=input(' 选取相邻两圈弹簧丝间隙系数delta = ');t=(1+delta)*d+f2/n; % 圆柱螺旋压缩弹簧fprintf(' 弹簧节距t = %3.4f mm \n',t);Y=input(' 选取弹簧端部结构类型Y = '); % 弹簧端部结构类型:1或是2if Y==1H0=n*t+(n2-0.5)*d;elseif Y==2H0=n*t+(n2+1)*d;endfprintf(' 弹簧自由高度H0 = %3.4f mm \n',H0);b=H0/D2;fprintf(' 弹簧高径比 b = %3.4f \n',b);% 采用3次样条插值确定圆柱螺旋弹簧不稳定系数CbDBZC=input(' 选取弹簧端部支承类型DBZC = '); % 弹簧端部支承类型:1、2、3 switch DBZCcase 1 % 1-弹簧两端固定支承bx=[5.3 5.4 5.5 5.75 6 6.5 7 7.5 8 8.5 9 10];Cby=[0.80 0.65 0.60 0.45 0.40 0.325 0.265 0.225 0.19 0.165 0.145 0.125];case 2 % 2-弹簧一端固定、一端自由支承bx=[3.7 3.85 4 4.5 5 5.5 6 6.5 7 8 9 10];Cby=[0.80 0.60 0.50 0.31 0.24 0.20 0.17 0.15 0.13 0.105 0.08 0.075];case 3 % 3-弹簧两端自由支承bx=[2.6 2.8 3 3.5 4 4.5 5 5.5 6 7 8 9 10];Cby=[0.8 0.5 0.4 0.27 0.21 0.15 0.12 0.09 0.075 0.05 0.04 0.03 0.025]; endCb=interp1(bx,Cby,b,'spline'); % 3次样条插值fprintf(' 弹簧不稳定系数Cb = %3.4f \n',Cb);% 绘制圆柱螺旋弹簧不稳定系数Cb线图plot(bx,Cby,'ro',bx,Cby);grid on;xlabel('\bf\it b');ylabel('\bf\it Cb');title('\bf 弹簧不稳定系数线图');switch DBZCcase 1gtext('\bf 1-弹簧两端固定支承')case 2gtext('\bf 2-弹簧一端固定、一端自由支承')case 3gtext('\bf 3-弹簧两端自由支承')endFc=Cb*Kp*H0;fprintf(' 弹簧稳定临界载荷Fc = %3.4f N \n',Fc);if Fc<F2disp ' 弹簧工作不稳定,需要改变参数或是加装导向装置'elsedisp ' 弹簧工作稳定'end计算结果:弹簧中径D2 = 56.0000 mm选取相邻两圈弹簧丝间隙系数delta = 0.15弹簧节距t = 16.9949 mm选取弹簧端部结构类型Y = 1弹簧自由高度H0 = 214.4383 mm弹簧高径比 b = 3.8293选取弹簧端部支承类型DBZC = 3弹簧不稳定系数Cb = 0.2278弹簧稳定临界载荷Fc = 546.0792 N弹簧工作不稳定,需要改变参数或是加装导向装置。
汽车用螺旋弹簧设计和制造知识概述
可参照表3计算:
总圈数n1
n+1.5 n+2 n+2.5 n+2 n+2.5
自有高度H0 nt+d
nt+1.5d nt+2d nt+3d nt+3.5d
端部形式
两端圈磨平 两端圈不磨
压缩弹簧的典型图样
以下两种表达方式皆可:
弹簧技术要求含:
1. 总圈数 2. 工作圈数 3. 绕制方向 4. 表面处理 5. 制造技术条件 6. 设计计算参数
C
旋绕比
K
应力修正系数
K 4C 1 0.615
t
弹簧节距
4C 4 C
mm
F1 Ip
弹簧安装时的予加载荷 N 材料截面极惯性矩 , 圆形截面为
Ip
d 4
32
mm4
圆柱螺旋压缩弹簧的计算公式
1. 载荷 F 与变形 f 的简化计算式:
f
FD3n
4GI p
8FD3n Gd 4
8FC 3n Gd
2. 载荷与应力的计算式:
除此之外,喷丸处理还可消除弹簧表面的 疵点、脱碳(严重降低弹簧的疲劳强度) 和微小缺陷,从而消除或减少了疲劳源。
应当指出,喷丸后的弹簧长度会变短,制定 工艺时应予以考虑。喷丸处理和强化处理 可同时在重要弹簧上采用,譬如悬架弹簧。
弹簧的表面处理
1.弹簧的金属保护层: 镀锌处理:锌在干燥空气中较安定,不变化。在 潮湿空气中会产生一层氧化锌白色薄膜,它可阻 止弹簧继续遭受腐蚀,可用于弹簧在一般大气条 件下防腐。凡是与硫酸、盐酸和苛性钠相接触的 弹簧则不宜用镀锌处理。 镀锌后的弹簧还可经钝化处理,藉以进一步提高 保护性能和增加美观。 镀锌层厚一般在6-24微米范围内选取。
弹簧参数、尺寸及计算公式
弹簧参数、尺寸及计算公式弹簧参数及尺寸一、小型圆柱螺旋拉伸弹簧尺寸及参数1、弹簧的工作图及形式1.1 工作图样的绘制按GB4459、4规定。
1.2 弹簧的形式分为A型和B型两种。
2、材料弹簧材料直径为0.16~0.45mm,并规定使用GB4357中B组钢丝或YB(T)11中B组钢丝。
采用YB(T)11中B组钢丝时,需在标记中注明代号“S”。
3、制造精度弹簧的刚度、外径、自由长度按GB1973规定的3级精度制造。
如需按2级精度制造时,加注符号“2”,但钩环开口尺寸均按3级精度制造。
4、旋向弹簧的旋向规定为右旋。
如需左旋应在标记中注明“左”。
5、钩环开口弹簧钩环开口宽度a为0.25D~0.35D。
注:D为弹簧中径。
6、表面处理6.1采用碳素弹簧钢丝制造的弹簧,表面一般进行氧化处理,但也可进行镀锌、镀镉、磷化等金属镀层及化学处理。
其标记方法应按GB1238的规定。
6.2采用弹簧用不锈钢丝制造的弹簧,必要时可对表面进行清洗处理,不加任何标记。
7、标记7.1标记的组成弹簧的标记由名称、型式、尺寸、标准编号、材料代号(材料为弹簧用不锈钢丝时)以及表面处理组成。
规定如下:7.2标记示例例1:A型弹簧,材料直径0.20mm,弹簧中径3.20mm,自由长度8.80mm,左旋,刚度、外径和自由长度的精度为2级,材料为碳素弹簧钢丝B组,表面镀锌处理。
标记:拉簧A0.20*3.20*8.80-2左GB1973.2——89-D-Zn例2:B型弹簧,材料直径0.40mm,弹簧中径5.00mm,自由长度17.50mm,右旋,刚度、外径和自由长度的精度为3级,材料为弹簧用不锈钢丝B组。
标记:拉簧B0.40*5.00*17.50 GB1973.2--89-S8、计算依据标准中的计算采用如下基本公式:切应力(N/mm²):τ=(8PDK)/(πd³)变形量(mm):F=(8PD³n)/ Gd4弹簧钢度(N/mm):P′=P/ F=(Gd4)/(8D³n)曲度系数:K =(4C-1)/(4C-4)+ (0.615)/C旋转比:C =D/d 自由长度(mm):H。
弹簧计算
0.558347292
570 (选用第三类65Mn)fj单圈变形量 Nhomakorabea18.8
Pd'单圈刚度 28.6
0.992122898
Fn/Fj
压缩弹簧
圆柱螺旋压缩弹簧计算 最小工作载荷P1;N 最大工作载荷Pn;N 工作行程h;mm 弹簧外径D2;mm 弹簧类别 端部结构 弹簧材料 初算弹簧刚度P';N/mm 工作极限载荷Pj;N 弹簧材料直径d及弹簧中径D与有关参数 有效圈数n;圈 总圈数n1;圈 弹簧刚度P';N/mm 工作极限载荷下的变形量Fj 节距t;mm 自由高度H0;mm 弹簧外径D2 弹簧内径D1 螺旋角α;度 弹簧展开长度L;mm 最小载荷时的高度H1;mm 最大载荷时的高度Hn;mm 极限载荷下的高度Hj;mm 实际工作行程;mm 工作区范围 高径比b 3/4d 1/2t+3/4d 100 300 20 70 N=103次以下 端部并紧、磨平,支承圈1圈 65MN 10 330 d材料直径 D中径 5 60 3 标准 5 9.533333333 56.4 23.8 78.9 65 55 7.196252081 949.960734 69.51048951 48.53146853 45.38461538 20.97902098 0.186115764 F1/Fj 1.315 3.75 15.65 80 cosα Pj工作极限载荷 537.3 2.86 弹簧许用应力Mpa C=D/d,(5~8)
圆柱螺旋压缩(拉伸)弹簧的设计计算
圆柱螺旋压缩(拉伸)弹簧的设计计算(⼀)⼏何参数计算 普通圆柱螺旋弹簧的主要⼏何尺⼨有:外径D、中径D2、内径D1、节距p、螺旋升⾓α及弹簧丝直径d。
由下图圆柱螺旋弹簧的⼏何尺⼨参数图可知,它们的关系为: 式中弹簧的螺旋升⾓α,对圆柱螺旋压缩弹簧⼀般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但⽆特殊要求时,⼀般都⽤右旋。
圆柱螺旋弹簧的⼏何尺⼨参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺⼨计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺⼨(mm )计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺⼨(mm)计算公式参数名称及代号计算公式备注压缩弹簧拉伸弹簧中径D2D2=Cd按普通圆柱螺旋弹簧尺⼨系列表取标准值内径D1D1=D2-d外径D D=D2+d旋绕⽐C C=D2/d压缩弹簧长细⽐bb=H0/D2b在1~5.3的范围内选取⾃由⾼度或长度H0H0≈pn+(1.5~2)d(两端并紧,磨平)H0≈pn+(3~3.5)d(两端并紧,不磨平)H0=nd+钩环轴向长度⼯作⾼度或长度H1,H2,…,HnHn=H0-λn Hn=H0+λnλn--⼯作变形量有效圈数n根据要求变形量按式(16-11)计算n≥2总圈数n1n1=n+(2~2.5)(冷卷)n1=n+(1.5~2) (YII型热卷)n1=n拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐⽤1/2圈节距p p=(0.28~0.5)D2p=d 轴向间距δδ=p-d展开长度L L=πD2n1/cosαL≈πD2n+钩环展开长度螺旋⾓αα=arctg(p/πD2)对压缩螺旋弹簧,推荐α=5°~9°(⼆)特性曲线 弹簧应具有经久不变的弹性,且不允许产⽣永久变形。
因此在设计弹簧时,务必使其⼯作应⼒在弹性极限范围内。
在这个范围内⼯作的压缩弹簧,当承受轴向载荷P时,弹簧将产⽣相应的弹性变形,如右图a所⽰。
为了表⽰弹簧的载荷与变形的关系,取纵坐标表⽰弹簧承受的载荷,横坐标表⽰弹簧的变形,通常载荷和变形成直线关系(右图b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数
计
算
初算弹簧刚度P/
N/mm
工作极限载荷Pj
N
因是I类载荷:Pj≥1.67Pn
顾Pj=1.67×2200=3674
工作极限载荷下的
单圈变形量fj
mm
fj= =6.16
单圈弹性刚度P'd
N/mm
P'd =471.83
有效圈数n
圈
按照表11-2-10取标准值n=10.5
总圈数n1
圈
n1=10.5+2=12.5
弹簧刚度P/
N/mm
工作极限载荷下的变形量Fj
mm
Fj=nfj=10.5×6.16=64.68
节距t
mm
自由高度H0
mm
H0=nt+1.5d=10.5×14.16+1.5×8=160.68
取标准值H0=160
弹簧外径D2
mm
D2=D+d=44+8=52
弹簧内经D1
mm
D1=D-d=44-8=36
螺旋角a
(°)
展开长度L
mm
最小载荷时高度H1
mm
最大载荷时高度Hn
mm
极限载荷时高度Hj
mm
实际工作行程h
mm
h=H1-Hn=143.48-111.45=32.03≈32±1
技术要求:
1.工作圈数=10.5
2.总圈数n1=12.5
3.旋向为右旋
4.展开长度L=1735.67mm
5.硬度HRC45~50
圆柱螺旋压缩弹簧计算
项目
单位
公式及数据
原
始
条
件
最小工作载荷P1
N
P1=750
最大工作载荷Pn
N
Pn=2200
工作行程h
mm
h=32
端部结构
端部并紧、磨平,支承圈数为1圈
弹簧中径D
mm
44
弹簧直径d
mm
8
弹簧材料
60Si2Mn
旋绕比C
曲度系数K
mpa
材料极限切应力、材料切变模量
Тi= 471
G=78500