南邮半导体器件物理(双语)

合集下载

《半导体材料与器件》双语教学课程内容建设探讨

《半导体材料与器件》双语教学课程内容建设探讨

《半导体材料与器件》双语教学课程内容建设探讨作者:叶尚辉,周舟来源:《科技视界》 2015年第29期《半导体材料与器件》双语教学课程内容建设探讨叶尚辉周舟(南京邮电大学,江苏南京 210023)[摘要]本文针对当前大学本科教育课程体系——光电子专业的基础课程,即《半导体材料与器件》双语教学课程的内容建设做了有益的探讨,对课程内容的构建、内容组织、内容编译提出了几点做法。

[关键词]半导体材料与器件;双语教学;课程内容0引言随着信息时代的发展,对光电子专业类人才的需求也越来越大。

大学教育作为培养人才的重要基地,承担了越来越重要的角色;向社会输送高素质的人才,要求对光电子专业课程体系教学不断更新改革,赋予其新时代的内涵。

目前,还没有一本合适的教材能满足这个要求。

另外,在教学方法上也缺乏行之有效的方法。

1课程内容的构建半导体材料与器件这门课,应该涉及到半导体材料与半导体器件两个方面的内容,现有的教材在内容构建上往往偏重半导体材料,或是偏重半导体器件,很少能兼顾两者的材料与器件的平衡。

图1为现有邓志杰等编的《半导体材料》的内容构建示意图,明显偏重于材料,对器件部分只做了简单的概述,如图1所示。

类似的教材还有杨树人等编的《半导体材料》。

由刘思科等编的《半导体物理学》这门课则大篇幅的介绍半导体物理相关的知识,而对半导体材料涉及较少。

同样,由Dieter K. Schroder 编写的《Semiconductor Material and Device Characterization, Third Edition》则大部分内容介绍器件特性,而对材料方面的相关知识介绍很少。

同样,佛罗里达大学的Franky So教授编著的《Organic Electronics Materials Processing Devices and Applications》则侧重于器件加工制备,Robert F. Pierret等编著的《Semiconductor Device Fundamentals》则侧重于器件特性原理。

(完整版)半导体物理与器件物理

(完整版)半导体物理与器件物理
Semiconductor Physics and Device Physics
工学 (08)
0808 电气工程 080801 电机与电气 080802 电力系统及其自动化 080803 高电压与绝缘技术 080804 电力电子与电力传动 080805 电力理论与新技术
0809 电子科学与技术(注:可授予 工学、理学学位) 080901 物理电子学 080902 电路与系统 080903 微电子学与固体电子学 080904 电磁场与微波技术
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
ห้องสมุดไป่ตู้
Semiconductor Physics and Device Physics
半导体及其基本特性
什么是半导体?
固体材料:绝缘体、半导体、导体 (其它:半金属,超导体)
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
半导体概要
微电子学
固态电子学分支之一
微电子学
光电子学
研究在固体(主要是半导体〕材料上构成的微小 型化器件、电路及系统的电子学分支学科
在学科分类中,微电子学既可以属于理学(071202 ),也可 以属于工学(080903 微电子学与固体电子学 )

半导体器件物理与工艺+施敏++答案

半导体器件物理与工艺+施敏++答案

Solutions Manual to Accompany SEMICONDUCTOR DEVICESPhysics and Technology2nd EditionS. M. SZEUMC Chair ProfessorNational Chiao Tung UniversityNational Nano Device LaboratoriesHsinchu, TaiwanJohn Wiley and Sons, IncNew York. Chicester / Weinheim / Brisband / Singapore / TorontoContentsCh.1 Introduction--------------------------------------------------------------------- 0 Ch.2 Energy Bands and Carrier Concentration-------------------------------------- 1 Ch.3 Carrier Transport Phenomena-------------------------------------------------- 7 Ch.4p-n Junction--------------------------------------------------------------------16 Ch.5 Bipolar Transistor and Related Devices----------------------------------------32 Ch.6 MOSFET and Related Devices-------------------------------------------------48 Ch.7 MESFET and Related Devices-------------------------------------------------60 Ch.8 Microwave Diode, Quantum-Effect and Hot-Electron Devices---------------68 Ch.9Photonic Devices-------------------------------------------------------------73 Ch.10 Crystal Growth and Epitaxy---------------------------------------------------83 Ch.11 Film Formation----------------------------------------------------------------92 Ch.12 Lithography and Etching------------------------------------------------------99 Ch.13 Impurity Doping---------------------------------------------------------------105 Ch.14 Integrated Devices-------------------------------------------------------------113CHAPTER 21. (a) From Fig. 11a, the atom at the center of the cube is surround by fourequidistant nearest neighbors that lie at the corners of a tetrahedron. Therefore the distance between nearest neighbors in silicon (a = 5.43 Å) is1/2 [(a /2)2 + (a 2/2)2]1/2 = a 3/4 = 2.35 Å.(b) For the (100) plane, there are two atoms (one central atom and 4 corner atoms each contributing 1/4 of an atom for a total of two atoms as shown in Fig. 4a)for an area of a 2, therefore we have2/ a 2 = 2/ (5.43 × 10-8)2 = 6.78 × 1014 atoms / cm 2Similarly we have for (110) plane (Fig. 4a and Fig. 6)(2 + 2 ×1/2 + 4 ×1/4) /a 22 = 9.6 × 1015 atoms / cm 2,and for (111) plane (Fig. 4a and Fig. 6)(3 × 1/2 + 3 × 1/6) / 1/2(a 2)(a23) =2232a= 7.83 × 1014 atoms / cm 2.2. The heights at X, Y, and Z point are ,43,41and 43.3. (a) For the simple cubic, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere.4 Maximum fraction of cell filled= no. of sphere × volume of each sphere / unit cell volume = 1 × 4ð(a /2)3 / a 3 = 52 %(b) For a face-centered cubic, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere. The fcc also contains half a sphere at each of the six faces for a total of three spheres. The nearest neighbor distance is 1/2(a 2). Therefore the radius of each sphere is 1/4 (a 2).4 Maximum fraction of cell filled= (1 + 3) {4ð[(a /2) / 4 ]3 / 3} / a 3 = 74 %.(c) For a diamond lattice, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere, 1/2 of a sphere at each of the six faces for a total of three spheres, and 4 spheres inside the cell. The diagonal distancebetween (1/2, 0, 0) and (1/4, 1/4, 1/4) shown in Fig. 9a isD =21222222+ + a a a = 34a The radius of the sphere is D/2 =38a4 Maximum fraction of cell filled= (1 + 3 + 4)33834a π/ a 3 = ð3/ 16 = 34 %.This is a relatively low percentage compared to other lattice structures.4. 1d = 2d = 3d = 4d = d 1d +2d +3d +4d = 01d • (1d +2d +3d +4d ) = 1d • 0 = 021d +1d •2d +1d •3d + 1d •4d = 04d 2+ d 2 cos è12 + d 2cos è13 + d 2cos è14 = d 2 +3 d 2 cos è= 04 cos è =31−è= cos -1 (31−) = 109.470 .5. Taking the reciprocals of these intercepts we get 1/2, 1/3 and 1/4. The smallest three integers having the same ratio are 6, 4, and 3. The plane is referred to as (643) plane.6. (a) The lattice constant for GaAs is 5.65 Å, and the atomic weights of Ga and Asare 69.72 and 74.92 g/mole, respectively. There are four gallium atoms and four arsenic atoms per unit cell, therefore4/a 3 = 4/ (5.65 × 10-8)3 = 2.22 × 1022 Ga or As atoms/cm 2,Density = (no. of atoms/cm 3 × atomic weight) / Avogadro constant = 2.22 × 1022(69.72 + 74.92) / 6.02 × 1023 = 5.33 g / cm 3.(b) If GaAs is doped with Sn and Sn atoms displace Ga atoms, donors are formed, because Sn has four valence electrons while Ga has only three. The resulting semiconductor is n -type.7. (a) The melting temperature for Si is 1412 ºC, and for SiO 2 is 1600 ºC. Therefore,SiO 2 has higher melting temperature. It is more difficult to break the Si-O bond than the Si-Si bond.(b) The seed crystal is used to initiated the growth of the ingot with the correctcrystal orientation.(c) The crystal orientation determines the semiconductor’s chemical and electricalproperties, such as the etch rate, trap density, breakage plane etc.(d) The temperating of the crusible and the pull rate.8. E g (T ) = 1.17 – 636)(4.73x1024+−T T for Si∴ E g ( 100 K) = 1.163 eV , and E g (600 K) = 1.032 eVE g (T ) = 1.519 –204)(5.405x1024+−T T for GaAs∴E g ( 100 K) = 1.501 eV, and E g (600 K) = 1.277 eV .9. The density of holes in the valence band is given by integrating the product N (E )[1-F (E )]d E from top of the valence band (V E taken to be E = 0) to the bottom of the valence band E bottom :p = ∫bottomE 0N (E )[1 – F (E )]d E (1)where 1 –F(E) = ()[]{}/kT1 e/1 1F E E −+− = []1/)(e1−−+kTE EF If E F – E >> kT then1 – F (E ) ~ exp ()[]kT E E F −− (2)Then from Appendix H and , Eqs. 1 and 2 we obtainp = 4ð[2m p / h 2]3/2∫bottomE 0E 1/2 exp [-(EF – E ) / kT ]d E (3)Let x a E / kT , and let E bottom = ∞−, Eq. 3 becomesp = 4ð(2m p / h 2)3/2(k T)3/2exp [-(E F / kT )]∫∞− 0x 1/2e x d xwhere the integral on the right is of the standard form and equals π / 2.4 p = 2[2ðm p kT / h 2]3/2 exp [-(E F / kT )]By referring to the top of the valence band as E V instead of E = 0 we have,p = 2(2ðm p kT / h 2)3/2 exp [-(E F – E V ) / kT ]orp = N V exp [-(E F –E V ) / kT ]where N V = 2 (2ðm p kT / h 2)3 .10. From Eq. 18N V = 2(2ðm p kT / h 2)3/2The effective mass of holes in Si is m p = (N V / 2) 2/3 ( h 2 / 2ðkT ) = 3236192m 101066.2××−()()()30010381210625623234−−××..π = 9.4 × 10-31 kg = 1.03 m 0.Similarly, we have for GaAsm p = 3.9 × 10-31 kg = 0.43 m 0.11. Using Eq. 19(()C VV C N NkTE E E i ln 22)(++== (E C + E V )/ 2 + (3kT / 4) ln32)6)((n p m m (1)At 77 KE i = (1.16/2) + (3 × 1.38 × 10-23T ) / (4 × 1.6 × 10-19) ln(1.0/0.62) = 0.58 + 3.29 × 10-5 T = 0.58 + 2.54 × 10-3 = 0.583 eV.At 300 KE i = (1.12/2) + (3.29 × 10-5)(300) = 0.56 + 0.009 = 0.569 eV.At 373 KE i = (1.09/2) + (3.29 × 10-5)(373) = 0.545 + 0.012 = 0.557 eV.Because the second term on the right-hand side of the Eq.1 is much smallercompared to the first term, over the above temperature range, it is reasonable to assume that E i is in the center of the forbidden gap.12. KE =()())(/)( / d d e C F top C F topCE E x kTE E C E E kT E E C E E C EeE E EE E E E −≡−−−−−−−∫∫= kT ∫∫∞−∞− 021 023d e d e x x x x x x= kTΓ Γ2325 = kTππ505051...×× = kT 23.13. (a) p = mv = 9.109 × 10-31 ×105 = 9.109 × 10-26 kg–m/sλ = p h = 2634101099106266−−××..= 7.27 × 10-9m = 72.7 Å(b) n λ=λp m m 0= 06301.× 72.7 = 1154 Å .14. From Fig. 22 when n i = 1015 cm -3, the corresponding temperature is 1000 / T = 1.8.So that T = 1000/1.8 = 555 K or 282 .15. From E c – E F = kT ln [N C / (N D – N A )]which can be rewritten as N D – N A = N C exp [–(E C – E F ) / kT ]Then N D – N A = 2.86 × 1019 exp(–0.20 / 0.0259) = 1.26 × 1016 cm -3or N D = 1.26 × 1016 + N A = 2.26 × 1016 cm -3A compensated semiconductor can be fabricated to provide a specific Fermi energy level.16. From Fig. 28a we can draw the following energy-band diagrams:17. (a) The ionization energy for boron in Si is 0.045 eV. At 300 K, all boronimpurities are ionized. Thus p p = N A = 1015 cm -3n p = n i 2 / n A = (9.65 × 109)2 / 1015 = 9.3 × 104 cm -3.The Fermi level measured from the top of the valence band is given by:E F – E V = kT ln(N V /N D ) = 0.0259 ln (2.66 × 1019 / 1015) = 0.26 eV(b) The boron atoms compensate the arsenic atoms; we havep p = N A – N D = 3 × 1016 – 2.9 × 1016 = 1015 cm -3Since p p is the same as given in (a), the values for n p and E F are the same as in (a). However, the mobilities and resistivities for these two samples are different.18. Since N D >> n i , we can approximate n 0 = N D andp 0 = n i 2 / n 0 = 9.3 ×1019 / 1017 = 9.3 × 102 cm -3From n 0 = n i exp−kT E E i F ,we haveE F – E i = kT ln (n 0 / n i ) = 0.0259 ln (1017 / 9.65 × 109) = 0.42 eV The resulting flat band diagram is :19.Assuming complete ionization, the Fermi level measured from the intrinsic Fermi level is 0.35 eV for 1015 cm -3, 0.45 eV for 1017 cm -3, and 0.54 eV for 1019cm -3.The number of electrons that are ionized is given byn ≅ N D [1 – F (E D )] = N D / [1 + e ()T k E E F D /−− ]Using the Fermi levels given above, we obtain the number of ionized donors as n = 1015 cm -3 for N D = 1015 cm -3n = 0.93 × 1017 cm -3 for N D = 1017 cm -3n = 0.27 × 1019 cm -3 for N D = 1019 cm -3Therefore, the assumption of complete ionization is valid only for the case of 1015 cm -3.20. N D +=kT E E F D e /)(16110−−+ =135016e 110.−+ = 1451111016.+= 5.33 × 1015 cm -3The neutral donor = 1016 – 5.33 ×1015 cm -3 = 4.67 × 1015 cm -34 Theratio of +DD N N O = 335764..= 0.876 .CHAPTER 31. (a) For intrinsic Si, µn = 1450, µp = 505, and n = p = n i = 9.65×109We have 51031.3)(11×=+=+=p n i p n qn qp qn µµµµρ Ω-cm(b) Similarly for GaAs, µn = 9200, µp = 320, and n = p = n i = 2.25×106We have 81092.2)(11×=+=+=p n i p n qn qp qn µµµµρ Ω-cm.2. For lattice scattering, µn ∝ T -3/2T = 200 K, µn = 1300×2/32/3300200−− = 2388 cm 2/V-s T = 400 K, µn = 1300×2/32/3300400−− = 844 cm 2/V-s.3. Since21111µµµ+=∴500125011+=µ µ = 167 cm 2/V-s.4. (a) p = 5×1015 cm -3, n = n i 2/p = (9.65×109)2/5×1015 = 1.86×104 cm -3µp = 410 cm 2/V-s, µn = 1300 cm 2/V-s ρ =pq p q n q p p n µµµ11≈+ = 3 Ω-cm(b) p = N A – N D = 2×1016 – 1.5×1016 = 5×1015 cm -3, n = 1.86×104 cm -3µp = µp (N A + N D ) = µp (3.5×1016) = 290 cm 2/V-s,µn = µn (N A + N D ) = 1000 cm 2/V-s ρ =pq p q n q p p n µµµ11≈+ = 4.3 Ω-cm(c) p = N A (Boron) – N D + N A (Gallium) = 5×1015 cm -3, n = 1.86×104 cm -3µp = µp (N A + N D + N A ) = µp (2.05×1017) = 150 cm 2/V-s,µn = µn (N A + N D + N A ) = 520 cm 2/V-s ρ = 8.3 Ω-cm.5. Assume N D − N A >> n i , the conductivity is given byσ ≈ qn µn = q µn (N D − N A )We have that16 = (1.6×10-19)µn (N D − 1017)Since mobility is a function of the ionized impurity concentration, we can use Fig. 3 along with trial and error to determine µn and N D . For example, if we choose N D = 2×1017, then N I = N D + + N A - = 3×1017, so that µn ≈ 510 cm 2/V-s which gives σ = 8.16.Further trial and error yieldsN D ≈ 3.5×1017 cm -3andµn ≈ 400 cm 2/V-swhich givesσ ≈ 16 (Ω-cm)-1.6. )/( )( 2n n bn q p n q i p p n +=+=µµµσFrom the condition d σ/dn = 0, we obtainbn n i / =Thereforeb b b n q n b b bn qìi p i i p i m 21 )1(1)/( +=++=µρρ.7. At the limit when d >> s, CF =2ln π= 4.53. Then from Eq. 16226.053.410501011010433=×××××=××=−−−CF W I V ρ Ω-cm From Fig. 6, CF = 4.2 (d/s = 10); using the a/d = 1 curve we obtain 78.102.4105010226.0)/(43=×××=⋅⋅=−−CF W I V ρ mV.8. Hall coefficient,7.42605.0)101030(105.2106.1101049333=××××××××==−−−−W IB A V R z H H cm 3/C Since the sign of R H is positive, the carriers are holes. From Eq. 2216191046.17.426106.111×=××==−H qR p cm -3Assuming N A ≈ p , from Fig. 7 we obtain ρ = 1.1 Ω-cm The mobility µp is given by Eq. 15b 3801.11046.1106.1111619=××××==−ρµqp p cm 2/V-s.9. Since R ∝ ρ and p n qp qn µµρ+=1, hence pn p n R µµ+∝1From Einstein relation µ∝D 50//==p n p n D D µµpA n D nD N N N R .R µµµ+=15011We have N A = 50 N D .10. The electric potential φ is related to electron potential energy by the charge (− q )φ = +q1(E F − E i )The electric field for the one-dimensional situation is defined asE (x ) = −dx d φ=dx dE q i1n = n i exp−kT E E i F = N D (x )HenceE F − E i = kT lni D n )x (N dx )x (dN )x (N q kT (x) D D1 −=E.11. (a) From Eq. 31, J n = 0 anda qkT e N e a N q kT n dx dnDx ax axnn+=−==−− )(- - )(00µE(b) E (x ) = 0.0259 (104) = 259 V/cm.12. At thermal and electric equilibria, 0)()(=+=dxx dn qD x n q J nn n E µ xN N LN N N D LN N L xN N N D dx x dn x n D x L L n n L L n nn n )( ))((1)()(1)(000000−+−−=−−+−=−=µµµE000 0n ln )(D -N ND x N N LN N N V L n n L L Lµµ−=−+−=∫.13. 1116610101010=××==∆=∆−L p G p n τ cm -3151115101010≈+=∆+=∆+=n N n n n D no cm -3.cm 101010)1065.9(3-111115292≈+×=∆+=p N n p D i 14. (a)815715101021010511−−=××××=≈t th p p N νστ s 48103109−−×=×==p p p D L τ cm20101021010167=×××==−sts s th lr N S σν cm/s (b) The hole concentration at the surface is given by Eq. 67.cm 10 2010103201011010102)10(9.65 1)0(3-98481781629≈ ×+××−×+××=+−+=−−−−lr p p lr p L p no n S L S G p p τττ15. pn qp qn µµσ+=Before illuminationnon no n p p n n == ,After illumination,G n n n n p no no n τ+=∆+=Gp p p p p no no n τ+=∆+=.)( )()]()([G q p q n q p p q n n q p p n no p no n no p no n τµµµµµµσ+=+−∆++∆+=∆16. (a) diff ,dxdp qD J pp −== − 1.6×10-19×12×410121−××1015exp(-x /12)= 1.6exp(-x /12) A/cm 2(b) diff,drift ,p total n J J J −== 4.8 − 1.6exp(-x /12) A/cm 2(c) En n qn J µ=drift , Q ∴ 4.8 − 1.6exp(-x /12) = 1.6×10-19×1016×1000×E E = 3 − exp(-x /12) V/cm.17. For E = 0 we have022=∂∂+−−=∂∂xp D p p t p np p no n τat steady state, the boundary conditions are p n (x = 0) = p n (0) and p n (x = W ) =p no .Therefore[]−−+=p p no n non L W L x W p p p x p sinh sinh )0()([]−=∂∂−===p ppno n x npp L W L D p p q xp qD x J coth )0()0(0[]−=∂∂−===p p pno n Wx np p L W L D p p q xpqD W x J sinh 1)0()(.18. The portion of injection current that reaches the opposite surface by diffusion isgiven by)/cosh(1)0()(0p p p L W J W J ==α26105105050−−×=××=≡p p p D L τ cm98.0)105/10cosh(1220=×=∴−−αTherefore, 98% of the injected current can reach the opposite surface.19. In steady state, the recombination rate at the surface and in the bulk is equalsurface,surface ,bulk,bulk ,p n p n p p ττ∆=∆so that the excess minority carrier concentration at the surface∆p n , surface = 1014⋅671010−−=1013 cm -3The generation rate can be determined from the steady-state conditions in the bulkG = 6141010− = 1020 cm -3s -1From Eq. 62, we can write22=∆−+∂∆∂p p p G x p D τThe boundary conditions are ∆p (x = ∞) = 1014 cm -3 and ∆p (x = 0) = 1013 cm -3Hence ∆p (x ) = 1014(p L x e /9.01−−)where L p = 61010−⋅= 31.6 µm.20.The potential barrier heightχφφ−=m B = 4.2 − 4.0 = 0.2 volts.21. The number of electrons occupying the energy level between E and E +dE isdn = N (E )F (E )dEwhere N (E ) is the density-of-state function, and F (E ) is Fermi-Dirac distribution function. Since only electrons with an energy greater than m F q E φ+ and having a velocity component normal to the surface can escape the solid, the thermionic current density isdE e E v hm qv J kT E E x q E x F m F )(21 323)2(4−−∞+∫∫==φπwhere x v is the component of velocity normal to the surface of the metal. Since the energy-momentum relationship)(2122222z y x p p p mm P E ++==Differentiation leads to mPdP dE =By changing the momentum component to rectangular coordinates,zy x dp dp dp dP P =24πHencezmkTp y mkT p x x mkT mE p p zy x p mkTmE p p p x dp e dp e dp p e mhq dp dp dp e p mhq J zy f x x x f z y x 22 2)2( 3 p p 2/)2(322200y 2222 2−∞∞−−∞∞−−−∞∞∞−∞=∞−∞=−++−∫∫∫∫∫∫== where ).(220m F x q E m p φ+= Since 21 2=−∞∞−∫a dx eax π, the last two integrals yield (2ðmkT )21.The first integral is evaluated by setting u mkTmE p Fx =−222 .Therefore we have mkTdpp du xx = The lower limit of the first integral can be written as kT q mkT mE q E m m F m F φφ=−+22)(2 so that the first integral becomes kTq u ktq mm e mkT du e mkT φφ−−∞=∫ / Hence−==−kTq T A eT h qmk J mkTq mφπφexp 42*232.22. Equation 79 is the tunneling probability 110234193120m 1017.2)10054.1()106.1)(220)(1011.9(2)(2−−−−×=××−×=−=h E qV m n β []6121001019.3)220(241031017.2sinh(201−−−×=−××××××+=T .23. Equation 79 is the tunneling probability[]403.0)2.26(2.24)101099.9sinh(61)10(1210910=−×××××+=−−−T ()[]()912999108.72.262.24101099.9sinh 61)10(−−−−×=−×××××+=T .19234193120m 1099.9)10054.1()106.1)(2.26)(1011.9(2)(2−−−−×=××−×=−=hE qV m n β24. From Fig. 22As E = 103 V/sνd ≈ 1.3×106 cm/s (Si) and νd ≈ 8.7×106 cm/s (GaAs)t ≈ 77 ps (Si) and t ≈ 11.5 ps (GaAs)As E = 5×104 V/sνd ≈ 107 cm/s (Si) and νd ≈ 8.2×106 cm/s (GaAs)t ≈ 10 ps (Si) and t ≈ 12.2 ps (GaAs).cm/s105.9m/s 109.5 101.9300101.382 22 velocity Thermal 25.643123-0×=×=××××===−m kT m E v thth For electric field of 100 v/cm, drift velocitythn d v v <<×=×==cm/s 1035.110013505E µ For electric field of 104 V/cm.th n v ≈×=×=cm/s 1035.110135074E µ.The value is comparable to the thermal velocity, the linear relationship betweendrift velocity and the electric field is not valid.CHAPTER 41. The impurity profile is,space charge per unit area in the p -side must equal the total positive space charge per unit area in the n -side, thus we can obtain the depletion layer width in the n -side region:141410321088.0××=××n W Hence, the n -side depletion layer width is:m0671µ.W n =The total depletion layer width is 1.867 µm.We use the Poisson ’s equation for calculation of the electric field E (x).In the n -side region,()V/cm108640)100671(1031006710m 067134144×−===×−××=∴××−=⇒==+=⇒=−−.)x (.x qx .N qK ).x (K x N q )x (N q dx d n maxsn D sn D sn D s E E E E E E εεµεεIn the p -side region, the electrical field is:()()()V/cm10864010802108020m 8023242242×−===×−××=∴×××−=⇒=−=+×=⇒=−−.)x (.x a qx .a qK ).x (K ax q )x (N q dx d p maxsp s'p 'sp A s E E E EE E εεµεεThe built-in potential is:()()()V 52.0 0 0=−−=−=∫∫∫−−−−nn ppx side n x x x side p bi dx x dx x dx x V E E E.2. From ()∫−=dx x V bi E, the potential distribution can be obtainedWith zero potential in the neutral p -region as a reference, the potential in the p -side depletion region is()()()[]()(()()×−×−××−= ×−×−−=×−××−=−=−−−−−∫∫34243114243 0242108.032108.03110596.7108.032108.0312 108.02 x x x x qadx x a q dx x x V sxxs p εεEWith the condition V p (0)=V n (0), the potential in the n -region is()×−×−××−= ×+×−××−=−−−−734277342141098.010067.1211056.41098.010067.121103x x x x q x V s n εThe potential distribution isDistance p-region n-region-0.80.000-0.70.006-0.60.022-0.50.048-0.40.081-0.30.120-0.20.164-0.10.2110.2590.2594133330.10.3057885330.20.3476037330.30.3848589330.40.4175541330.50.4456893330.60.4692645330.70.4882797330.80.5027349330.90.51263013310.5179653331.0670.518988825Potentia l DistributionD i s t a nce (um)P o t e n t i a l (3. The intrinsic carriers density in Si at different temperatures can be obtained by using Fig.22 inChapter 2 :Temperature (K)Intrinsic carrier density (n i )250 1.50×1083009.65×109350 2.00×10114008.50×10124509.00×10135002.20×1014The V bi can be obtained by using Eq. 12, and the results are listed in the following table.T niVbi (V)250 1.500E+080.7773009.65E+90.717350 2.00E+110.6534008.50E+120.4884509.00E+130.3665002.20E+140.329Thus, the built-in potential is decreased as the temperature is increased.The depletion layer width and the maximum field at 300 K areV/cm. 10476.11085.89.1110715.910106.1m9715.010106.1717.01085.89.112241451519max151914×=××××××===××××××==−−−−−s D D bis W qN qN V W εµεE18162/11818141952/1max 10110755.1 10101085.89.1130106.121042 .4DDD D D A D A sRN N N N N N N N qV +=×⇒+×××××=×⇒+≈−−ε.E We can select n-type doping concentration of N D = 1.755×1016 cm -3 for the junction.5. From Eq. 12 and Eq. 35, we can obtain the 1/C 2 versus V relationship for doping concentration of1015, 1016, or 1017 cm -3, respectively.For N D =1015 cm -3,()()()V V N qåV V C B s bi j−×=×××××−×=−=−−837.010187.110108.8511.9101.60.837221161514192For N D =1016 cm -3,()()()V V N qåV V C B s bi j−×=×××××−×=−=−−896.010187.110108.8511.9101.60.896221151614192For N D =1017 cm -3,()()()V V N qåV V C s bi j −×=×××××−×=−=−−956.010187.110108.8511.9101.60.95622114171419B2When the reversed bias is applied, we summarize a table of 2j C 1/ vs V for various N D values asfollowing,V N D =1E15N D =1E16N D =1E17-4 5.741E+165.812E+155.883E+14-3.5 5.148E+165.218E+155.289E+14-3 4.555E+164.625E+154.696E+14-2.5 3.961E+164.031E+154.102E+14-2 3.368E +163.438E+153.509E+14-1.5 2.774E +162.844E+152.915E+14-1 2.181E +162.251E+152.322E+14-0.5 1.587E+161.657E+151.728E+149.935E+151.064E+151.134E+14Hence, we obtain a series of curves of 1/C 2 versus V as following,The slopes of the curves is positive proportional to the values of the doping concentration.1/C ^2 vs V-4.5-4-3.5-3-2.5-2-1.5-1-0.5Applied Volta ge1/C ^The interceptions give the built-in potential of the p-n junctions.6. The built-in potential is()V5686.01065.9106.180259.01085.89.111010ln 0259.0328ln 323919142020322=×××××××××××= =−−i s bi n q kT a q kT V εFrom Eq. 38, the junction capacitance can be obtained ()()()3/12142019-3/125686.0121085.89.1110101.612−×××××=−==−R R bi s s j V V V qa W C εεAt reverse bias of 4V, the junction capacitance is 6.866×10-9 F/cm 2.7. From Eq. 35, we can obtain()()22221jsR bi D B s bi jC q V V N N q V V C εε−=⇒−=We can select the n-type doping concentration of 3.43×1015cm -3.8. From Eq. 56,16915151571515108931065902590020exp 1002590020exp 1010101010exp exp ×=××−+ ×××=−+−=−=−−−−......n kT E E kT E E N U G it i p i t n tth n p σσυσσand()3152814192cm 10433)10850(108589111061422−−−−×=⇒×××××××=≅⇒>>.N ....C q V N V V d j s R D bi R εQ()m 266.1cm 1066.1210106.1)5.0717.0(1085.89.11225151914µε=×=××+××××=+=−−−A bi s qN V V W Thus2751619A/cm 10879.71066.121089.3106.1−−×=×××××==qGW J gen .9. From Eq. 49, and Di noN n p 2=We can obtain the hole concentration at the edge of the space charge region,()3170259.08.01629)0259.08.0(2cm 1042.2101065.9−×=×==ee N n p D i n .10. ()()()1/−=−+=kTqV s p n n p eJ x J x J J V. 017.0195.010259.00259.0=⇒−=⇒−=⇒V e e J J VVs11. The parameters aren i = 9.65×109 cm -3D n = 21 cm 2/secD p =10 cm 2/sec τp0=τn0=5×10-7 secFrom Eq. 52 and Eq. 54()()()3150259.07.0297192/cm 102.511065.910510106.1711−−−×=⇒−××××××=⇒−××=−=D DkT qV D i po p kT qV p no p n p N e N e N n D q e L p qD x J a τ()()()3160259.07.0297192/cm 10278.511065.910521106.12511−−−×=⇒−××××××=⇒−××=−=−A A kT qV A i no n kTqV npon p n N e N e N n D q eL n qD x J a τWe can select a p-n diode with the conditions of N A = 5.278×1016cm -3 and N D =5.4×1015cm -3.12. Assume ôg =ôp =ôn = 10-6 s, D n = 21 cm 2/sec, and D p = 10 cm 2/sec(a) The saturation current calculation.From Eq. 55a and p p p D L τ=, we can obtain+=+=002011n n Ap p D i np n pn p s D N D N qn L n qD L p qD J ττ()2126166182919A/cm 1087.6102110110101011065.9106.1−−−−×=+×××=And from the cross-sectional area A = 1.2×10-5 cm 2, we obtainA 10244.81087.6102.117125−−−×=×××=×=s s J A I .(b) The total current density is −=1kt qV s e J J ThusA.10244.8110244.8A 1051.41047.510244.8110244.8170259.07.0177.0511170259.07.0177.0−−−−−−−×=−×=×=×××=−×=e I e I VV。

南邮专业英语单词

南邮专业英语单词

第一篇chaotic 混沌的chaos 混乱/混沌solitons 光孤子sampling interval取样间隔attractor吸引子embedding dimension嵌入维数logistic map逻辑图fluid dynamical model流体动力学模型single longitudinal or transverse-mode 单纵模或单横模resonator configuration谐振腔构造circular cavity环形腔complex envelope复数包络Ikeda attractor/map 池田吸引子/图correlation dimension相关维数generalised non-linear Schrödinger equation (GNLSE)广义非线性薛定谔方程stimulated brillouin scattering (SBS)受激布里渊散射distributed optical feedback分布式光反馈Stokes emission phenomenon斯托克斯辐射现象(吸收与辐射峰有斯托克斯位移) modulatiion depths调制深度repeaterless long distance communications无中继长距离通信dynamics动力学spatio-temporal chaos时空的混沌optical turbulence光动乱/湍流diffraction衍射dipoles双极子on the fly 动态的第二篇LAN(local area network)局域网Industrial-Scientific-Medical (ISM) bands工业,科学,医疗(ISM)频段Interference干涉FCC(Federal Communications Commission,美国联邦通信委员会)Infrared红外的Multipath fading多路衰退Multipath dispersion多路色散Infrared transceivers红外收发器optical filtering光学滤波器shot noise散弹噪声radio-frequency射频line of sight (LOS)视线field of view (FOV)视场diffusion lens扩散棱镜intensity modulation强度调制Poisson process泊松过程additive white Gaussian noise (AWGN)加性高斯白噪声impulse response 脉冲响应single sided power spectral density单边功率谱密度harmonics谐波International Electrotechnical Commission (IEC)国际电工委员会maximum permissible exposure (MPE)最大允许照射intrabeam viewing光束内视light emitting diode (LED)发光二极管laser diode (LD)激光二极管focal length焦距pre-amplifier前置放大器Single-element receivers 单元素接收器Coherent optical communication相干光通信on-off keying (OOK) 开关键控duty cycle占空比filter滤波器sampling instant采样时刻threshold detector阈值检测器phase locked loop锁相环packet error rate (PER) 包误码率common-mode rejection共模抑制第三篇Quantum dots量子点size quantization effects 量子尺寸效应up-conversion上变频self-organized growth自组织生长holographic process全息过程ground state基态catastrophic optical mirror damage(COMD) 严重光学镜面损伤Semiconductor optical amplifiers (SOAs)半导体光放大器cross gainmodulation交叉增益调制renormalization重正化Edge-emitting lasers边发射激光器Vertical cavity surface-emitting lasers垂直腔面发射激光器distributed feedback 分布式反馈(DFB)distributed Bragg reflective 分布式布拉格反射DBR激光器electroluminescence电致荧光Raman amplifiers拉曼放大器第四篇Solar Cells太阳能电池hydrogenated amorphous silicon (a-Si:H)氢化非晶硅Staebler-Wronski effect (SWE) Staebler-Wronski效应transparent conductive oxide (TCO)透明导电氧化物indium tin oxide(ITO)铟锡氧化物ohmic contact欧姆接触thermal evaporation热蒸发RF(radio frequency)sputtering射频溅射glow discharge technique辉光放电技术vacuum chamber真空室photovoltaic inactive光电的不活跃conversion efficiency转换效率air mass 大气质量zenith angle天顶角short circuit current短路电流open circuit voltage开路电压maximum power point最大功率点fill factor填充因子conversion efficiency转换效率Tandem 串联第五篇modular system 模块化系统routing路由选择actuators驱动器polymer-based optical waveguides基于聚合物光波导pitch节距beam propagation method (BPM)光束传播法Bosch process罗伯特·博世过程volume current method体电流法finite difference time domain (FDTD)时域有限差分法directional coupler定向耦合器multimode interference (MMI)多模干涉bandpass filter带通滤波器mode adaptation模式适应plasmonic waves等离激元波surface plasmon polaritons(SPPs)表面等离(子体)激元polarization controlled (PC)偏振控制eye diagram眼图第六篇architecture结构codec编解码器reduced instruction set computer(RISC)精简指令集计算机memory hierarchy organisation内存层次结构组织motion estimation(ME)运动估计direct memory access-based data transfers直接内存访问数据传输prototyping原型机制造Discrete cosine transform(DCT)离散余弦变换Codec profiling编解码程序概要分析inverse discrete cosine transform(IDCT)非连续反余弦变换quarter common intermediate format 四分之一通用中间格式〈176×144像素〉Million Instructions Per Second(MIPS)每秒百万条指令memory management unit (MMU)内存管理单元Wavelet transformation小波变换direct memory access(DMA)存储器直接存取full-search block-matching全搜索块匹配sum of absolute differences (SAD)绝对差总和phase阶段cell 单元ease简化densely centred uniform P-search密集中心统一P-搜索(DCUPS)macroblock (MB)宏模块device high speed (DHS) optimised高速优化的设备(DHS)device low leakage (DLL) optimised 低泄漏优化的装置(DLL)第七篇emitter-coupled logic (ECL)射极耦合逻辑quantum mechanics量子力学Complementary Metal-Oxide-Semiconductor Transistor(CMOS)互补型金属氧化物半导体artificial neural networks人工神经网络ballistic transistors弹道晶体管(可用石墨烯做)nanocrystals纳米晶体nanoclusters纳米簇decoherence退相干resonant-tunneling hot electron transistor (RHET)共振隧穿热电子晶体管(RHET)heterostructure transistors 异质结晶体管quantum well laser diodes量子阱激光二极管quantum box量子盒(点/箱)quantum dot lasers 量子点激光器photonic memory devices光子存储器设备high electron mobility transistor(HEMT)高电子迁移率晶体管low thermal budget oxides 低温堆积氧化物reliability figures of merit 可靠性灵敏值thresholdless lasers 无阈值激光器break-even distance盈亏平衡距离Integrated Services Digital Network (ISDN)综合业务数字网(ISDN)static fatigue strength静疲劳强度wall-plug efficiency电光转换效率polymer optical fiber (POF)聚合物光纤(POF)refractive index profile折射率分布图optoelectronic multichip module (OE-MCM)光电多芯片组件(OE-MCM)total internal reflection (TIR)全内反射(TIR)micro-solder bumps微焊料凸块erbium-doped optical amplifier (EDOA)掺铒光放大器(EDOA)Holographic memory全息存储器spatial light modulator (SLM)空间光调制器(SLM)index perturbations (the hologram)(折射率)指数(索引)微扰(全息图)Laser beam welding激光束焊接Laser beam microwelding (LBM)激光束微型焊接(LBM)第八篇Global System for Mobile communication(GSM)全球移动通信系统 cellular phone蜂窝电话wavelength-division-multiplexed (WDM)波分复用on-off keying开关键控Erbium-doped fiber amplifiers (EDFA)掺饵光纤放大器direct-detection differential phase-shift keying (DPSK) 直接检测差分相移键控(DPSK)reconfigurable optical add/drop multiplexer (ROADM)可重构的光分/插(上行/下行)复用器(ROADM)phase-modulated相位调制的Homodyne crosstalk同频串扰cross-phase modulation (XPM)交叉相位调制(XPM)self-phase modulation (SPM)自相位调制(SPM)arrayed-waveguide grating ( AWG) 阵列波导光栅(AWG)micro-electromechanical systems (MEMS)微机电系统(MEMS)第九篇Cadence and Synopsys design tools Cadence和Synopsys设计工具包Layout版图routing布线/工艺路线technology工艺submicron亚微米的DLX多元未饱和型指令集结构(deluxe缩写:豪华的,高级的)ring oscillator环形振荡器。

半导体器件物理施敏答案

半导体器件物理施敏答案

半导体器件物理施敏答案【篇一:施敏院士北京交通大学讲学】t>——《半导体器件物理》施敏 s.m.sze,男,美国籍,1936年出生。

台湾交通大学电子工程学系毫微米元件实验室教授,美国工程院院士,台湾中研院院士,中国工程院外籍院士,三次获诺贝尔奖提名。

学历:美国史坦福大学电机系博士(1963),美国华盛顿大学电机系硕士(1960),台湾大学电机系学士(1957)。

经历:美国贝尔实验室研究(1963-1989),交通大学电子工程系教授(1990-),交通大学电子与资讯研究中心主任(1990-1996),国科会国家毫微米元件实验室主任(1998-),中山学术奖(1969),ieee j.j.ebers奖(1993),美国国家工程院院士(1995), 中国工程院外籍院士 (1998)。

现崩溃电压与能隙的关系,建立了微电子元件最高电场的指标等。

施敏院士在微电子科学技术方面的著作举世闻名,对半导体元件的发展和人才培养方面作出了重要贡献。

他的三本专著已在我国翻译出版,其中《physics of semiconductor devices》已翻译成六国文字,发行量逾百万册;他的著作广泛用作教科书与参考书。

由于他在微电子器件及在人才培养方面的杰出成就,1991年他得到了ieee 电子器件的最高荣誉奖(ebers奖),称他在电子元件领域做出了基础性及前瞻性贡献。

施敏院士多次来国内讲学,参加我国微电子器件研讨会;他对台湾微电子产业的发展,曾提出过有份量的建议。

主要论著:1. physics of semiconductor devices, 812 pages, wiley interscience, new york, 1969.2. physics of semiconductor devices, 2nd ed., 868 pages, wiley interscience, new york,1981.3. semiconductor devices: physics and technology, 523 pages, wiley, new york, 1985.4. semiconductor devices: physics and technology, 2nd ed., 564 pages, wiley, new york,2002.5. fundamentals of semiconductor fabrication, with g. may,305 pages, wiley, new york,20036. semiconductor devices: pioneering papers, 1003 pages, world scientific, singapore,1991.7. semiconductor sensors, 550 pages, wiley interscience, new york, 1994.8. ulsi technology, with c.y. chang,726 pages, mcgraw hill, new york, 1996.9. modern semiconductor device physics, 555 pages, wiley interscience, new york, 1998. 10. ulsi devices, with c.y. chang, 729 pages, wiley interscience, new york, 2000.课程内容及参考书:施敏教授此次来北京交通大学讲学的主要内容为《physics ofsemiconductor device》中的一、四、六章内容,具体内容如下:chapter 1: physics and properties of semiconductors1.1 introduction 1.2 crystal structure1.3 energy bands and energy gap1.4 carrier concentration at thermal equilibrium 1.5 carrier-transport phenomena1.6 phonon, optical, and thermal properties 1.7 heterojunctions and nanostructures 1.8 basic equations and exampleschapter 4: metal-insulator-semiconductor capacitors4.1 introduction4.2 ideal mis capacitor 4.3 silicon mos capacitorchapter 6: mosfets6.1 introduction6.2 basic device characteristics6.3 nonuniform doping and buried-channel device 6.4 device scaling and short-channel effects 6.5 mosfet structures 6.6 circuit applications6.7 nonvolatile memory devices 6.8 single-electron transistor iedm,iscc, symp. vlsi tech.等学术会议和期刊上的关于器件方面的最新文章教材:? s.m.sze, kwok k.ng《physics of semiconductordevice》,third edition参考书:? 半导体器件物理(第3版)(国外名校最新教材精选)(physics of semiconductordevices) 作者:(美国)(s.m.sze)施敏 (美国)(kwok k.ng)伍国珏译者:耿莉张瑞智施敏老师半导体器件物理课程时间安排半导体器件物理课程为期三周,每周六学时,上课时间和安排见课程表:北京交通大学联系人:李修函手机:138******** 邮件:lixiuhan@案2013~2014学年第一学期院系名称:电子信息工程学院课程名称:微电子器件基础教学时数: 48授课班级: 111092a,111092b主讲教师:徐荣辉三江学院教案编写规范教案是教师在钻研教材、了解学生、设计教学法等前期工作的基础上,经过周密策划而编制的关于课程教学活动的具体实施方案。

半导体(双语教学)桂电复习资料

半导体(双语教学)桂电复习资料

英文缩写MOS: metal- oxide semiconductor 金属氧化物半导体CVD:chemical vapor deposition 化学气相沉积ARC:anti-reflection coating 抗反射涂层MGS:metallurgical-grade silicon 冶金级硅IMD:inter metal dielectric 金属间介质CD:critical dimension 临界尺寸PECVD:plasma-enhanced CVD 等离子增强型CVDEGS:electronic-grade silicon 电子级硅EDA:electronic design automation 电子设计自动化PMD:pre-metal dielectric 金属前介质LED:light-emitting diode 发光二极管MFP:mean free path 平均自由行程SOG:spin-on glass 旋涂玻璃CMP:chemical mechanical polishing/planarization 化学机械抛光/研磨RIE:reactive ion etch 反应离子刻蚀MEMS:m icro-e lectro m echanical system 微机电系统PEB:post exposure bake 曝光后烘烤SOI:silicon-on-insulator 绝缘体上硅STI:shallow trench isolation 浅槽隔离RTA:rapid thermal annealing 快速热退火第四章1. Give two reasons why silicon is more commonly used than any other semiconductor material.(给出两个硅比其他半导体材料更常用的原因)①abundant, cheap (便宜丰富)②Silicon dioxide is very stable, strong dielectric, and it is easy to grow in thermal process.( 二氧化硅非常稳定而且有很强的介电性,在热处理过程中容易生长。

《有机半导体材料与器件》双语课程教学改革探讨

《有机半导体材料与器件》双语课程教学改革探讨

施教
3 考核方式的探索
加 大平时分所 占的 比例 现有 的考核方式 为 ( 3 0 %)平 时分 + ( 7 O %) 期末 考试 卷面分数 , 这不 利于公 平评价学生双语课 的成绩 , 因 为听、 说能力没有得到体现。 既然这样 , 就应该在平时 的表现中体 现出 来. 如. 可以将平时分提高到 4 0 %. 甚至 5 0 %, 将学生平时在课堂上 的 听、 说、 读、 写等表现情况也纳入平时分 的考 核中来 , 在双语课程考核 中. 增加这么一条 : 当然 . 平时分还应包括 出勤率 、 课 堂表现 、 习题 作业 完成情况等 . 一并纳入到平时分 的考核 中来 . 这样 的考核方式应该更 客观 、 有效。对于平 时的习题 , 任课 老师要做到及时评阅 , 及时发现问 题. 对错误之处要进行评述 , 习题必须 用英语表述 , 包括老师对习题的 评 阅. 也必须用英语 . 错误之处要用英语纠正 , 起到示范作用。
1 优质教学资源建设
合适 的教材是保证双语教学能够顺利进行的前提 . 拥有外 文原版 教材是 双语教学 的必要条件。 目 前, 在 国内找不到一本合适 的半导体 材料与器 件方面 的教材 : 相关 教材 , 如刘 恩科 等编著 的《 半导体物 理 学》 、 孟庆臣等编著 的《 半导体器件 物理》 、 田敬民编著 的《 半导 体物理 问题 与习题 》 , 邓志杰 等编 的《 半 导体材 料》 , 杨 树人 等编《 半 导体 材 料》 , 但能同时满足《 半导体材料与器件 》 教学要 的教材还没有。 通过对 网络 资料 搜 索 .我 们 找 到 了相 关 的 英文 原 版 教材 ( S e m i c o n d u c t o r M a t e i r a l s a n d D e v i c e C h a r a c t e i r z a t i o n ) ) .是 由 美 国 A i r z o n a S t a t e U n i v e r s i t y的 D i e t e r K . S c h m d e r 教授等著作的 .这本书系统地介绍 了 半导体材料与器件的基本参数 、 特性 、 测试仪器以及测试方法和原理 , 是一本优秀 的教材 , 先 后在美 国、 加拿大、 德国等地出版 。 在国内 , 尚未 有 出版发行 . 亦没有影印版可 以借鉴 。 另外 . 还有一些地道的英 文原版 教 材 .如 U n i v e r s i t y o f F l o i r d a的 F r a n k y S o等 编 著 的 ( O r g ni a c

南京邮电大学各院系专业介绍

南京邮电大学各院系专业介绍

南京邮电大学各院系专业介绍为方便09年报考南邮的学生了解本校专业,特在此贴上各专业的官方介绍所有信息均来自南邮官网(若有变动,以学校官网为准),顺序亦是如此~此帖仅作参考欢迎补充通信与信息工程学院通信工程专业(本科、四年制)本专业为国家特色专业建设点,江苏省首批品牌专业。

按照现代信息社会提出的人才要求,遵循“加强基础、拓宽专业、提高素质、培养能力”的原则,在学习通信工程专业主要骨干课程的基础上,培养通信网与交换、光纤通信、无线通信、计算机通信、电磁场与微波通信、设备制造和网络运营与管理的德、智、体、美全面发展的高级工程技术人才。

本专业是宽口径、广适应的电子信息类专业。

本专业学生主要学习通信领域中通信原理、交换、传输、网络、信号处理、计算机等基本理论和技术,掌握各类通信设备的基本原理、技术性能以及综合系统的组成、运行、管理等知识,并完成通信工程中必须的基本训练,本专业的学生按照教学计划修满规定的学分后,准予毕业,符合南京邮电大学全日制本科毕业生学士学位授予条件的可以授予工学学士学位。

主要课程有:电路分析基础、信号与系统、模拟电子电路、数字电路与系统、通信原理、数字信号处理、电磁场与传输理论、数据结构、微型计算机原理与接口技术、交换技术基础、通信网基础、光纤通信与数字传输等。

本专业学生继续深造的方向有通信与信息系统、信号与信息处理、电磁场与微波技术、计算机科学与技术等。

本专业的毕业生可以在通信及相关部门从事通信设备、通信系统和通信网的研究、设计、开发、运营和技术管理等工作。

网络工程专业(本科、四年制)本专业充分体现了通信的“全程全网”的概念,培养具备现代网络工程和网络系统运营、管理等方面的知识、素质和能力,具有较宽的系统专业知识,较强的计算机、外语能力和相关工程技术能力,能在国民经济各部门从事网络系统规划、设计、生产、运营、维护和评价工作的高级专门人才。

本专业学生主要学习通信和计算机网络方面的基本理论和基本知识,受到应用网络工程理论与方法分析和解决实际问题方面的基本训练,具有实际网络系统设计的初步能力。

P-N结

P-N结
对于p型中性区,假设 ND=0 和 p>>n 。 p 型 中 性 区相对于费米能级的静 电电势,在图中标示为 ψ p,可以由设定ND=n=0 及将结果p=NA代入式
Ei E F p ni exp( ) kT 1 kT NA p ( Ei EF ) x x p ln( ) 得到 q q ni
B
热平衡状态下的p-n结
能带图(band diagram) : p-n 结 形 成 之 前 ,p型和n型半导体 材料是彼此分离的, 其费米能级在p型材 料中接近价带边缘, 而在n型材料中则接 近导带边缘.p型材 料包含大浓度的空穴 而仅有少量电子,但 是n型材料刚好相反 。
南京邮电大学光电工程学院
d 0 2 dx
2
过渡区
即 ND N A p n 0
半导体器件物理
南京邮电大学光电工程学院
过渡区 x 0 未补偿的杂质离子 过渡区 过渡区 所造成的电荷密度 未补偿的杂质离 (c)空间电荷分布 所造成的电荷密 p-n结 9
热平衡状态下的p-n结
由于
ND N A p n 0
图3.6 硅和砷化镓的p端和n端突变结的内建电势和杂质浓度的
南京邮电大学光电工程学院
半导体器件物理
p-n结 14
耗尽区
耗尽区(abrupt junction)
为求解泊松方程式,必须知道杂质浓度分布.需要考虑 两种重要的例子,即突变结(abrupt junction)和线性缓变 结(1inearly graded junction). 突变结:如图,突变结是浅扩散或低能离子注入形成的p-n 结.结的杂质分布可以用掺杂浓度在n型和p型区之间突然 变换来近似表示.
半导体器件物理

南邮专业课参考教材

南邮专业课参考教材
826
数值分析(复试)
《数值分析》
李庆扬编
华中科技大学出版社
827
常微分方程(复试)
《常微分方程》(第二版)(前五章)
王高雄等编
高等教育出版社
828
量子力学(复试)
《量子力导论》(第二版)
曾谨言
北京大学出版社
829
物理化学(复试)
《物理化学》(上、下册)
傅献彩
高等教育出版社
830
高分子化学与物理
(复试)
846
面向对象程序设计
(加试)
C++面向对象程序设计教程(第二版)
陈维兴
清华大学出版社
847
复变函数(加试)
《复变函数论》(第三版)(前六章)
钟玉泉编
高等教育出版社
848
实变函数(加试)
《实变函数与泛函分析基础》(第二版)(实变部分)
程其襄等编
高等教育出版社
849
高级语言程序设计
(加试)
要求具备基本的程序设计能力,可任选一种常用的高级程序语言完成
专业课考试参考教材一览表考试科目代码601高等数学考试科目参考教材名称作者出版单位高等数学第5版数学分析第二版数学分析第二版通信原理第六版通信原理数字信号处理前五章信号与系统模拟电子技术基础光学16章光学16章固体物理基础大学物理学14册含热力光电张三慧主编普通物理13册激光原理现代化学原理上下810微机原理及应用微型计算机原理与接口技术112章数据结构使用c语言描述数据结构c语言描述数据结构pascal语言描述812自动控制原理自动控制原理第四版813计算机信息技术大学计算机信息技术教程814高等代数高等代数第四版815概率论概率论与数理统计816企业管理通信企业管理817系统分析与设计系统分析与设计现代西方经济学微观部分重点综合性大学使用的西方经济学教材均可819生物化学生物化学上下册第三版820半导体物理半导体物理第六版同济大学数学教研室陈纪修华东师范大学数学系编高等教育出版社樊昌信等张力军主编吴镇扬编沈元隆周井泉编黄丽亚杨恒新著吴强等编赵凯华编阎守胜同济大学出版社高等教育出版社602数学分析801通信系统原理国防工业出版社高教出版社高等教育出版社人民邮电出版社机械工业出版社中国科学技术出版社北京大学出版社北京大学出版社清华大学出版社高等教育出版社国防工业出版社高等教育出版社清华大学出版社人民邮电出版社西安电子科技大学出版社清华大学出版社科学出版社南京大学出版社802数字信号处理803信号与系统804模拟电子技术805光学806固体物理807普通物理程守珠著周炳琨等金若水等孙力娟主编陈慧南主编陈慧南主编严蔚敏吴伟民编胡寿松主编张福炎孙志挥808激光原理809大学化学811数据结构北京大学数学系编余锦华等编王良元主编郑会颂等编高鸿业编王镜岩主编刘恩科著高等教育出版社中山大学出版社北京邮电大学出版社东南大学出版社中国人名民大学出版社高等教育出版社电子工业出版社818微观经济学821电磁场理论复试电磁场与电磁波理论前七章徐立勤等科学出版社822网络安全复试网络安全原理与应用张世永主编科学出版社823操作系统复试操作系统教程孙钟秀费翔林等编著高等教育出版社824编译原理复试编译技术原理及其实现方法王汝传编成都科技大学出版社825计算机系统结构复试计算机系统结构张先俊等人民邮电出版社2006826数值分析复试827常微分方程复试常微分方程第二版前五章828量子力学复试量子力导论第二版829物理化学复试物理化学上下册8

半导体物理与器件物理

半导体物理与器件物理
半导体物理与器件物理
Semiconductor Physics and Device Physics
2019.4
Semiconductor Physics and Device Physics
主要教材:
《半导体物理学》,刘恩科,朱秉升,罗晋生,电子工业 出版社,2019年11月第7版
《半导体器件物理与工艺》,施敏著,赵鹤鸣,钱敏,黄 秋萍译,苏州大学出版社,2019年12月第1版
绪论:微电子、IC的发展历史
早期历史发展
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
ENIAC(1946)
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
Semiconductor Physics and Device Physics
半导体概要
微电子学研究领域
微电子学发展的特点
•半导体物理、材料、工艺
•半导体器件物理 •集成电路工艺 •集成电路设计和测试 •微系统,系统
向高集成度、高性能、 低功耗、高可靠性电路 方向发展
与其它学科互相渗透, 形成新的学科领域: 光 电集成、MEMS、生物 芯片
1990

【南邮考研辅导班】南邮集成电路工程专硕考研科目参考书考研大纲考研分数线报录比考研经验

【南邮考研辅导班】南邮集成电路工程专硕考研科目参考书考研大纲考研分数线报录比考研经验

【南邮考研辅导班】南邮集成电路工程(专业学位)考研科目参考书考研大纲考研分数线报录比考研经验一、南邮集成电路工程(专业学位)简介-启道1、《功率和射频集成电路》本方向结合我校特色和优势,开展超大规模专用集成电路与集成系统的设计、模拟、建模和测试技术研究。

研究方向包括新型集成功率器件与射频器件、功率驱动和电源管理集成电路、CMOS模拟集成电路、微传感器集成电路、光纤通信和射频集成电路、射频识别和微波集成电路等。

2、《半导体材料与器件》本方向对当前各种新型半导体材料的电学、光学和磁学特性开展研究,并在此基础上探讨各种新器件的设计和制造技术。

其主要方向包括:半导体纳米材料的制备与性能、化合物半导体材料与器件、自旋电子器件、硅基平板微腔光学器件、RTD 器件、硅基微纳电子器件及其可靠性。

3、《微机电系统》MEMS技术融合了微电子、材料学、力学等多门学科,在物联网时代有着广阔的应用前景。

本方向主要研究微机电系统新型器件的机理、工艺、检测、模型和可靠性,射频MEMS开关及其阵列、匹配网络和功能电路的设计、制作和封装。

二、南邮集成电路工程(专业学位)考研科目-启道三、南邮集成电路工程(专业学位)考研参考书-启道四、南邮集成电路工程(专业学位)考研大纲-启道804--《模拟电子技术》考试大纲一、基本要求《模拟电子技术》硕士研究生入学考试内容主要包括模拟电子电路的基本概念、基础理论和基本分析方法;考试命题注重测试考生对相关的基本概念、理论和技术的理解和应用的程度,强调基础性和综合性。

考生在平时学习相关课程和复习时应着重于对相关的基本概念、理论和技术的综合理解和应用,尤其应注意从不同方面和层次来体会和掌握相关的基本概念、理论和技术。

二、考试范围1、PN结与半导体二极管了解半导体的基本知识、 PN结的形成及特性、半导体二极管的特性;掌握普通二极管、特殊二极管(稳压管)的基本电路及其分析方法。

2、双极性晶体管及放大电路基础了解半导体三极管的特性、放大电路的频率响应。

[物理]半导体器件物理ppt

[物理]半导体器件物理ppt

V 0
(3) 当V > 0 且较大时,能带 E F 向下弯曲更严重.使表面Ei < EF。 在SiO2-Si的界面处形成负载流子 (电子)的堆积.
EC
Ei EF
Qm 0
x
EV
0
(b ) 耗 尽 时
qN AW
EC
Qm
np ni expEF (kTEi )
V 0
Ei EF
0
x
0
EV
qN AW
EF
xi
(c) 反 型 时
当半导体耗尽区宽度达到W时,半导体内的电荷为ρs= -qNAW,积分泊松方
程式可得距离x的函数的表面耗尽区的静电势分布:
Ψ
Ψs
1
x W
2
半导体表面 EC
表面电势Ψs为
Ψs
qNAW 2
2 s
此电势分布与单边的n+-p结相同。
q S
q
( S 0)
氧化层 xi
Eg
q B
Ei
EF
EV 半导体
当Ψs=ΨB时, ns=ps=ni ,可看作表面开始发生反型 当Ψs>ΨB时, ns > ps ,表面处于反型
表面载流子密度为:
半导体表面
ns ni ex pq(Ψk s TΨB
q S
q
( S 0)
ps ni ex p q(ΨB k T Ψs) 氧化层
xi
EC
Eg
q B
Ei
EF
EV 半导体
天津工业大学
现代半导体器件物理
MOSFET及相关器件 8
MOS二极管
对表面电势可以区分为以下几种情况: Ψs<0: 空穴积累(能带向上弯曲); Ψs =0: 平带情况; ΨB>Ψs>0:空穴耗尽(能带向下弯曲); Ψs=ΨB: 禁带中心,即ns=ps=ni(本征浓度); Ψs>ΨB: 反型(能带向下弯曲超过费米能级).

半导体物理基础课后习题--南邮

半导体物理基础课后习题--南邮
当 E = 102 V/m 时, t 8.3 10 8 s ;当 E = 107 V/m 时, t 8.3 10 13 s 。
2
Chapter 2
1. What are the differences between actual crystals and ideal crystals?
3 k k min k1 4

h 2 k1 ; 4m0
根据
dEv (k ) 6h 2 k 0 ,可以看出,对应价带能量极大值 Emax 的 k 值为:kmax = 0; dk m0 h 2 k12 h 2 k12 h2 ,所以 Eg Emin Emax 6m0 12m 0 48m0 a 2
2. Assume the lattice constant of one-dimensional crystal is a, the minimum value
of Ec ( k ) at conduction band and the maximum value of Ev ( k ) at valence band are
答:--Atoms are not fixed on the lattice. --Impurity The additional potential field makes the periodic potential field destruction. Impurity energy level Locates in the forbidden band. --Defects Point defects(vacancie,interstitial atom) Line defects(dislocation) Plane defects(fault,grain boundary) (1) 实际半导体中原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位 置附近振动; (2) 实际半导体材料并不是纯净的,而是含有若干杂质,即在半导体晶格中存在着与组成半 导体材料的元素不同的其他化学元素的原子; (3) 实际半导体晶格结构并不是完整无缺的, 而存在着各种形式的缺陷, 如点缺陷、 线缺陷、 面缺陷等。

南邮光电子学(双语)复习要点综述

南邮光电子学(双语)复习要点综述

光电子学期末复习资料3423310196.63101.3810/9.1101.610B h J s k J K m kge C----=⨯=⨯=⨯=⨯绪论1、 光电子器件有哪些功能;Information generation, Information transfer, Information enhancement/amplification, Information manipulation, Information reception/detection, Information display2、 有用的光电子器件应该拥有的特性;High gain, Non-linear response, Input/output isolation, Tuability, High speed, Low power consumption, High power output, High temperature3、 电子器件和光电子器件的优缺点对比;Electronic devices:a. metallic inter-connects limit the inter-connectivity of the devices;b. difficult to transmit information over very long distances;c. external electromagnetic interference (EMI) effects;d. charged particles ’ scattering processOptoelectronic devices:a. Immunity to electromagneticb. Non-interference of two or more crossed beamsc. High parallelismd. High speed-high bandwidthe. special function devicef. wave nature of light for special devicesg. Nonlinear materialsh. Photonics-electronics coupling4、 光电子器件的应用范围;a. Optical communications: Cable TV , Longhaul communication, LAN communicationb. Data communication: Equipment control, Local area network, Factory automationc. Defense applications: Laser guided systems, Radard. Consumer electronics product: Compact disc, Laser printer, Night vision, thermal imaging, Video disc libraries5、 三个窗口波长;850nm, 1310nm, 1550nm6、光电子器件的发展趋势;WDM OEICTrend:a. high response speedb. wavelength division multiplexing technology (WDM)c. function devices: optical fiber LD , optical fiber amplifierd. optoelectronic integrated technology (OEIC)第一章1、光电子器件的工作机理,基于光和电磁场的相互作用;Optoelectronic device depends on the interactions of photons or electromagnetic field with semiconductors. Interaction:photon --- semiconductorElectromagnetic Field --- semiconductor2、光在半导体中的传播规律:按指数规律衰减;z=)0(()zeIIα-3、折射率实部、虚部;The real part of index⇒speed of lightThe imaginary of index⇒attenuation of light4、光的吸收和光的发射(画示意图);受激辐射和自发辐射比较;The stimulated emission is due to the initial photons present in the system and the emitted photons maintain phase coherent with the initial photons.The spontaneous emission comes from the perturbations and the emitted photons are incoherent with no phase relationship.5、直接带间跃迁和间接带间跃迁的物理图像、特点、吸收系数;特点:Vertical in k-space吸收系数:1/2()g A h E αυ=- , A is a constant特点:(1)Not vertical in k-space(2)Mediated by a phonon interaction or other scattering process (3)Second order process吸收系数:210))](([g E h T K K -+=υα0K is a constant 1()K T is a temperature dependent factor7、辐射的种类:辐射复合和非辐射复合,俄歇复合的两面性;Non-Radiative Recombination ------No emitting photons Radiative Recombination ------ emitting photons俄歇复合的两面性:(1)Auger processes are unimportant in semiconductors with bandgaps larger than 1.5eV(2)They become quite important in narrow bandgap materials and are thus a serious hindrance for the development of long wavelength lasers.(3)Auger processes could be mediated by defects. Deep levels in the bandgap can be involved in the Auger processes.(4)For high quality materials, these defect assisted processes are not important.8、粒子束反转时的自发辐射率;044ττpn R spon ==9、增益与费米分布函数之间的关系;))](1()([)(h h e e E f E f h g --∝υ10、俘获时间:CCHC 、CCHS ;nth t n nr N συτ1=,pth t pnr N συτ1=11、CCHC 的全称及示意图,并说明过程;全称:CCHC-----Conduction(electron) -- Conduction(electron) -- heavy hole -- Conduction(electron) Initial state: 2 electrons+1 hole Final state: hot electronAfter the scattering, an e-h pair is lost and one is left with a hot electron. The hot electron subsequently loses its excess energy by emitting phonons.12、俄歇复合率与n 之间的关系,俄歇复合率的计算及影响俄歇复合率的因素:带隙、温度等; 3Auger R Fn =带隙增加,俄歇复合率下降;温度升高,俄歇复合率上升。

热平衡时的能带和载流子浓度

热平衡时的能带和载流子浓度

II
III B

IV C

V N

VI
Al

Si

P

S

4 5 6
Zn

Ga

Ge

As

Se

Cd

In

Sn

Sb

Te

Hg

Pb

硅的优势:硅器件在室温下有较佳的特性;高品质的硅氧化 层可由热生长的方式产生,成本低;硅含量占地表的25%,仅 次于氧,储量丰富。
南京邮电大学光电工程学院 半导体器件物理
热平衡时的能带和载流子浓度 5
化合物(compound)半导体材料
类别: 二元化合物半导体:由两种元素组成。 三元化合物半导体:由三种元素组成。 多元化合物半导体:由三种及以上元素组成。 二元化合物半导体: IV-IV族元素化合物半导体:炭化硅(SiC); III-V族元素化合物半导体:砷化镓(GaAs)、磷化镓( GaP)、磷化铟(InAs)等; II-VI族元素化合物半导体:氧化锌(ZnO)、硫化锌(ZnS )、碲化镉(CdTe)等; IV-VI族元素化合物半导体:硫化铅(PbS)、硒化铅( PbSe)、碲化铅(PbTe)
南京邮电大学光电工程学院 半导体器件物理
热平衡时的能带和载流子浓度 10
基本晶体结构
几种常见基本晶胞: 简单立方晶格(simple cubic,sc):在立方晶格的每一个角落,都 有一个原子,且每个原子都有六个等距的邻近原子。长度 a 称为 晶格常数。在周期表中只有钚(polonium)属于简单立方晶格。 体心立方晶格 (body-centered,bcc) :除了角落的八个原子外 , 在 晶体中心还有一个原子。在体心立方晶格中,每一个原子有八个 最邻近原子。钠(sodium)及钨(tungsten)属于体心立方结构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

acceptor doping 受主杂质forbidden energy band 禁带allowed energy band 允带Hall effect 霍尔效应ambipolar diffusion coefficient 双极扩散系数high injection 大注入ambipolar mobility 双极迁移率hole 空穴
ambipolar transport 双极输运input characteristic curve 输入特征曲线
ambipolar transport equation 双极输运方程insulator 绝缘体:atomic bond 原子键intrinsic carrie 本征载流子
avalanche breakdown 雪崩击穿intrinsic Fermi level 本征费米能级
body-centered cubic lattice 体心立方ion implantation 离子注入boundary conditions 边界条件ionic bond 离子键boundary conditions 边界条件jane distribution 少子分布
built-in potential barrier 内建电势差/电

junction capacitance
结电容/势垒电

carrier drift 载流子漂移lattic 晶格
carrier generation 载流子的产生lattice scattering 晶格扩散carrier recombination 载流子的复合Law of conservation of mass 质量守恒定律charge neutrality 电中性law of mass action 质量作用定律compensated semiconductor 补偿半导体liner graded junction 线性缓变结complete ionization 完全电离Low level injection 小注入
conductivity 电导率Maxwell-Boltzmann approximation 麦克斯韦-波尔兹曼近似
contrast effect 衬偏效应metal 金属
covalent bond 共价键metal-semiconductor contact 金属半导体接触
crystal 晶体Miller indices 密勒指数crystal impurity 晶体杂质minority carrier diffusion length 少子扩散长度crystal orientation 晶向mobility ratio 迁移率cutoff frequency 截止频率Nonequilibrium carrier 非平衡载流子
Degenerate and Non degenerate Semiconductors 简并与非简并
半导体
Ohmic contact 欧姆接触
density of states function 状态密度函数one-sided junction 单边突变结diamond lattice 金刚石晶格onized impurity scattering 电离杂质散射diffuse 扩散on-uniform doping 非均匀参杂
diffusion capacitance 子扩散电容Pauli exclusion principle 泡利不相容原理
diffusion capacitance 扩散电容photon 光子
donor doping 施主杂质PN junction diode PN结二极管drift 漂移quanta 量子
drift current 漂移电流recombination rate 复合
drift velocity 漂移速度recombination rate 复合率
Einstein’s relation 爱因斯坦关系

resistivity 电阻率
electron diffusion coefficient 电子扩散系数rystal defect /imperfection 晶体缺陷
electron diffusion current 电子扩散电流Schottky diode 肖特基二极管electron effective mass 电子有效质量semiconductor 半导体Electronic source speed 电子源物速度simple cubic 简立方晶格
elemental semiconductor 元素半导体substrate 衬底
epitaxial layer 外延层surface states 表面态
Surface scattering 表面散射equation of continuity 连续性方程The semiconductor in equilibrium 平衡半导体excess carriers 过剩载流子The semiconductor in equilibrium 平衡半导体
excess electrons 过剩电子threshold voltage 阈值电压excess holes 过剩空穴trans conductance 跨导
excess minority carrier lifetime 过剩少子寿命until cell 单胞
extrinsic semiconductor 非本征半导体varactor diode 变容二极管face-centered cubic 面心立方velocity saturation 饱和速度Fermi energy 费米能级velocity saturation 饱和速度
Fermi-Dirac probability function 费米函数work function 功函数
Flat band voltage 平带电压Zener breakdown 齐纳击穿。

相关文档
最新文档