【部编北师大版七年级数学下册】《用尺规作三角形》同步测试
北师大版七年级下册数学 4.4 用尺规作三角形 同步练习(含答案)
4.4 用尺规作三角形同步练习一.选择题1.尺规作图是指()A.用量角器和刻度尺作图 B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图 D.用量角器和无刻度的直尺作图2.如图,两钢条中点连在一起做成一个测量工件,AB的长等于内槽宽A'B',那么判定△OAB≌△OA'B'的理由是()A.SSS B.SAS C.ASA D.AAS3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4. 如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS6.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理()A.SAS B.HL C.AAS D.ASA7.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第块.8.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD=a,EH=b,则四边形风筝的周长是.9.用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是.10.如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB= ;(2)分别以、为圆心,以为半径画弧,两弧交于C点;(3)连接、,则△ABC就是所求作的三角形.11.作图题的书写步骤是、、,而且要画出和结论,保留.12.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.13.如图,已知△ABC,用尺规作出△ABC的角平分线BD.(保留作图的痕迹,不写作法)14.如图所示,要测量河两岸相对的两点A,B的距离,因无法直接量出A,B两点的距离,请你设计一种方案,求出A,B的距离,并说明理由.15.数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图所示,A、B、C、D分别固定在以O为公共端点的四根木条上,且OA=OB=OC=OD,E、F可以在中间的两根木条上滑动,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠FOD.一.选择题1.【答案】C;【解析】尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.2.【答案】B;【解析】∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OB′=OA,∵∠AOB=A′OB′,∴△AOB≌△A′OB′.所以AB的长等于内槽宽A'B',用的是SAS的判定定理.3.【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.4.【答案】C;【解析】根据已知所给条件,结合图形中隐含的公共边条件,可以得到A、B、D中的三角形是可以全等,唯有C答案中的两个三角形不能全等,所以答案为C.5.【答案】D;【解析】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角角边”定理作出完全一样的三角形.故选D.6.【答案】C ;【解析】作出图形,利用“角角边”证明全等三角形的判定即可.二.填空题7.【答案】2;【解析】解:1、3、4块玻璃不同时具备包括一条完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.8.【答案】2a+2b;【解析】△DEH和△DFH中ED=FD,∠EDH=∠FDH,DH=DH∴△DEH≌△DFH∴EH=FH=b又∵ED=FD=a,EH=b∴该风筝的周长=2a+2b.9.【答案】SAS;【解析】用尺规做直角三角形,已知两直角边.可以先画出两条已知线段和确定一个直角,作图的依据为SAS.10.【答案】a;A;B;2a;AC,BC;【解析】作法:(1)作一条线段AB=a;(2)分别以A、B为圆心,以 2a为半径画弧,两弧交于C点;(3)连接AC、BC,则△ABC就是所求作的三角形.11.【答案】已知、求作、作法,图形,作图痕迹;【解析】作图题的书写步骤是已知、求作、作法,而且要画出图形和结论,保留作图痕迹.12. 【答案】75°.【解析】如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°.三.解答题13. 【解析】解:如图:14.【解析】解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.15. 【解析】证明:在△AOE和△COE中,,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,同理∠COE=∠FOD,∴∠AOE=∠EOF=∠FOD.。
北师大版七年级数学下册4.4用尺规作三角形同步测试
用尺规作三角形同步测试一、选择题1.△ABC内部有一点P,且点P到边AB、AC、BC的距离都相等,那么这个点是〔〕。
A.三条角平分线的交点B.三边高线的交点C.三边中线的交点D.三边中垂线的交点2.∠AOB,用尺规作一个角∠A’O’B’等于角∠AOB的作图痕迹如下列图,那么判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是〔〕A.SAS B.ASA C.AAS D.SSS3.用尺规作一个直角三角形,使其两条直角边分别等于线段时,实际上就是的条件是〔〕A.三角形的两条边和它们的夹角B.三角形的三边C.三角形的两个角和它们的夹边D.三角形的三个角4.:∠AOB作法:〔1〕作射线O'A'.〔2〕以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.〔3〕以点O'为圆心,以OC长为半径作弧,交O’A'于C'.〔4〕以点C'为圆心,以CD长为半径作弧,交前弧于D'.〔5〕经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是〔〕A.平分角B.作一个角等于角B.C.作一个三角形等于三角形 D.作一个角的平分线5.△ABC,利用直尺和圆规,根据以下要求作图〔保存作图痕迹,不要求写作法〕,并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;作线段BD的垂直平分线交AB于点E,交BC于点F.由⑴、⑵可得:线段EF与线段BD的关系为()D.互相垂直平分A.相等B.垂直C.垂直且相等6.一个角的平分线的尺规作图的理论依据是〔〕A.SAS B.SSS C.ASA D.AAS7.用尺规作图,三边作三角形,用到的根本作图是〔〕A.作一个角等于角B.作直线的垂线C.作一条线段等于线段D.作角的平分线8.用直尺和圆规作一个角等于角,如图,能得出∠A′O′B′=∠AOB的依据是〔〕A.〔SAS〕B.〔SSS〕C.〔ASA〕D.〔AAS〕9.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作ACP、BCP之角平分线,分别交AB于D、E,那么D、E即为所求. (乙)作AC、BC之中垂线,分别交AB于D、E,那么D、E即为所求.那么A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确。
七年级数学下册4.4用尺规作三角形同步练习3北师大版(new)
《用尺规作三角形》一、选择——基础知识运用1.一个角的平分线的尺规作图的理论依据是( )A.SAS B.SSS C.ASA D.AAS2.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线3.已知∠AOB,用尺规作一个角∠A’O'B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A.SAS B.ASA C.AAS D.SSS 4.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三边C.三角形的两个角和它们的夹边D.三角形的三个角5.利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A.已知三条边B.已知三个角C.已知两角和夹边D.已知两边和夹角二、解答-—知识提高运用6.作图:画一个三角形与△ABC全等,保留作图痕迹。
7.已知线段BC=2,用尺规作△ABC,使∠A=45°,你能作出多少个满足条件的三角形?8.如图,已知a和∠α,用尺规作一个三角形ABC,使AB=AC=2a,∠BAC=180°-∠α。
9.尺规作图:小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想办法用尺规作图画一个出来,并说明,你的理由.10.作图:求作一个三角形,使它的两边分别为a和2a,其夹角为∠α.(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法)11.利用尺规,用三种不同的方法作一个是三角形与已知直角三角形ABC全等,并简要说明理由。
参考答案一、选择—-基础知识运用1.【答案】B【解析】连接NC,MC,在△ONC和△OMC中,∵ ON=OM ,NC=MC,OC=OC ,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选:B。
七年级数学下册第四章三角形4.4用尺规作三角形同步测试新版北师大版
4.4用尺规作三角形一、单项选择题(共10 题;共 20 分)1. 如图,在△ ABC 中,分别以点 A 和点 B 为圆心,大于AB长为半径画弧,两弧订交于点M、 N,连结 MN,交 BC于点 D,交 AB于点 E,连结 AD.若△ ABC的周长等于 16,△ ADC的周长为 9,那么线段 AE的长等于()A. 3B. 3.5C. 5D.72.在△ ABC中, AB=AC,∠ A=80°,进行以下操作:①以点 B 为圆心,以小于AB长为半径作弧,分别交BA、BC于点 E、 F;②分别以E、 F 为圆心,以大于EF 长为半径作弧,两弧交于点M;③作射线BM交 AC于点 D,则∠ BDC的度数为()A. 100°B. 65 °C. 75°D. 105°3. 作一个角等于已知角用到下边选项的哪个基本领实()A. SSSB. SASC. ASAD. AAS4.如图,在△ ABC 中,∠ C=90°,∠ CAB=50°,按以下步骤作图:①以点 A 为圆心,小于 AC长为半径画弧,分别交 AB、 AC于点 E、F;②分别以点E、 F 为圆心,大于EF 长为半径画弧,两弧订交于点G;③作射线AG,交 BC边于点 D.则∠ ADC的度数为()A. 40°B.55° C. 65°D. 75°5. 以下图,是用直尺和圆规作一个角等于已知角的表示图,则说明∠A′O′B′=∠AOB的依照是()A. SASB.SSSC. AASD. ASA6. 如图,在△ ABC 中,∠ C=90°,∠ B=32°,以 A 为圆心,随意长为半径画弧分别交AB, AC于点M和N,再分别以M,N 为圆心,大于法:①AD是∠ BAC的均分线;②CD是△ ADC的高;③点 D 在 AB的垂直均分线上;④∠ ADC=61°.此中正确的有()MN的长为半径画弧,两弧交于点P,连结AP并延伸交BC于点D,则以下说A. 1个B. 2 个C. 3个 D. 4 个7. 如图,已知在Rt△ABC中,∠ ABC=90°,点D是 BC边的中点,分别以B、C 为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线 PD交 AC于点 E,连结 BE,则以下结论:①ED⊥BC;②∠ A=∠EBA;③ EB 均分∠ AED;④ ED= AB中,必定正确的选项是()A.①②③B.①②④C.①③④D.②③④8. 如图,在△ ABC 中,∠ C=90°,∠ B=30°,以 A 为圆心,随意长为半径画弧分别交AB、 AC于点M和N,再分别以M、 N 为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延伸交BC于点D,则以下说法中正确的个数是()①作出 AD的依照是SAS;③点 D 在 AB的中垂线上;②∠ ADC=60°④ S△DAC: S△ABD=1: 2.A. 1B.2C. 3D.49.已知∠ AOB,求作射线 OC,使 OC均分∠ AOB.①画射线 OC即为所求;②以点 O为圆心,适合长为半径画弧,交 OA 于点 M,交OB于点 N;③分别以点M、N 为圆心,大于MN的长为半径画弧,两弧在∠AOB 的内部订交于点C,则上边作法的合理次序为()A.②③①B.③①②C.③②①D.②①③10. 以下尺规作图,能判断AD是△ ABC边上的高是()A. B. C.D.二、填空题(共 5 题;共 5 分)11. 用直尺和圆规作一个角等于已知角获得两个角相等的依照是________ .12. 画线段 AB;延伸线段 AB到点 C,使 BC=2AB;反向延伸 AB到点 D,使 AD=AC,则线段CD=________AB.13. 如图,作一个角等于已知角,其尺规作图的原理是________ (填 SAS,ASA, AAS, SSS).14. 如图, AB∥CD,以点 A 为圆心,小于 AC长为半径作圆弧,分别交AB,AC于 E, F 两点,再分别以E、F 为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交 CD于点 M.若∠ ACD=120°,则∠ MAB 的度数为 ________.15. 如图,在△ ABC 中,∠ C=90°,∠ B=20°,以A 为圆心,随意长为半径画弧分别交AB、AC于点 M和 N,再分别以M、 N 为圆心,大于 MN的长为半径画弧,两弧交于P,连结 AP 并延伸交 BC于点 D,则∠A DB=________ .三、解答题(共 3 题;共 25 分)16. 在△ ABC中, F 是 BC上一点, FG⊥AB,垂足为 G.(1)过 C点画 CD⊥AB,垂足为 D;(2)过 D点画 DE//BC,交 AC于 E;(3)说明∠ EDC=∠GFB 的原因 .17.如图,已知∠ AOB=20°.(1)若射线 OC⊥OA,射线 OD⊥OB,请你在图中画出全部切合要求的图形;(2)请依据( 1)所画出的图形,求∠ COD 的度数.18. 如图,已知△ ABC 中, AB=2, BC=4( 1)画出△ ABC 的高 AD和 CE;( 2)若 AD=,求CE的长.四、作图题(共 3 题;共 35 分)19.如图,平面上有四个点 A,B, C, D,依据以下语句绘图.(1)画直线 AB;(2)作射线 BC;(3)画线段 CD;(4)连结 AD,并将其反向延伸至 E,使 DE=2AD;(5)找到一点 F,使点 F 到 A, B, C,D 四点距离和最短.20.如图,已知四个点 A、 B、C、 D,依据以下要求绘图:①画线段 AB;②画∠ CDB;③找一点P,使 P 既在直线AD上,又在直BC上.线21. 如图,电信部门要在S 区修筑一座电视信号发射塔.依照设计要求,发射塔到两个城镇A, B 距离一定n 的距离也一定相等.发射塔应修筑在什么地点?在图上标出它的地点。
北师大版七年级(下)数学4.4用尺规作三角形同步检测(原创)
北师大版七年级(下)数学4.4用尺规作三角形同步检测(原创)学校:___________姓名:___________班级:___________考号:___________一、单选题1.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP V V ≌的根据是( )A .SASB .ASAC .AASD .SSS 2.用尺规作图,已知三边作三角形,用到的基本作图是( )A .作一个角等于已知角B .作一条线段等于已知线段C .作已知直线的垂线D .作角的平分线3.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS 4.下列属于尺规作图的是( )A .用量角器画∠AOB 的平分线OPB .利用两块三角板画15°的角C .用刻度尺测量后画线段AB =10cmD .在射线OP 上截取OA =AB =BC =a5.尺规作图的画图工具是( )A .刻度尺、量角器B .三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规6.根据下列条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=8 B.∠A=60°,∠B=45°,AB=4C.∠C=90°,AB=6 D.AB=4,BC=3,∠A=30°的作图痕迹,则此作图的已知条件是()7.如图是作ABCA.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角8.如图,用尺规作出∠OBF=∠AOB,所画痕迹¼MN是()A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧二、填空题9.作三角形用到的基本作图是:(1)___________________________;(2)_______________________________;10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P,连接AP、BP 并分别延长,使PC=PA,PD=PB,连接CD.测得CD 长为9 m,则池塘宽AB 为_____m.11.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.12.在ABC V 中给定下面几组条件:①BC=4cm ,AC=5cm ,∠ACB=30°;②BC=4cm ,AC=3cm ,∠ABC=30°;③BC=4cm ,AC=5cm ,∠ABC=90°;④BC=4cm ,AC=5cm ,∠ABC=120°.若根据每组条件画图,则ABC V 能够唯一确定的是___________(填序号).三、解答题13.如图所示,已知线段AB ,∠α,∠β,分别过A 、B 作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)14.已知:线段a ,α∠,求作:ABC △,使AB AC a ==,B α∠=∠.15.已知:线段a ,∠α.求作:等腰△ABC ,使其腰长AB 为a ,底角∠B 为∠α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.16.已知三条线段a .b .c ,如图.用尺规作出△ABC ,使BC =a ,AC =b ,AB =c .(不写作法,保留作图痕迹)17.如图,已知线段AB,利用尺规作图,作出一个以线段AB 为边的等边三角形ABC .(保留作图痕迹,不写作法)18.用圆规、直尺作图,不写作法,但要保留作图痕迹.一个缺角的三角形残片如图所示,请你利用尺规画一个与它一样的(全等的)三角形.19.尺规作图,保留必要的作图痕迹.已知ABC ∆,求作DEF ∆,使DEF ABC ∆≅∆.20.如图,已知△ABC(1)作△ACD ,使△ACD 与△ACB 在AC 的异侧,并且△ACD ≌△ACB (要求:尺規作图、保留作图痕迹,不写作法);(2)连接BD ,交AC 于O ,试说明OB =OD .参考答案1.D【解析】解:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,即OC=OD ;以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,即CP=DP ;再有公共边OP ,根据“SSS”即得△OCP ≌△ODP .故选D .2.B【解析】【分析】根据作一条线段等于已知线段即可解决问题.【详解】已知三边作三角形,用到的基本作图是作一条线段等于已知线段,故选B .【点睛】本题考查基本作图,解题的关键是熟练掌握五种基本作图.3.D【解析】【分析】根据尺规作图得到OD O D ''=,OC O C ''=,CD C D ''=,根据三条边分别对应相等的两个三角形全等与全等三角形的性质进行求解.【详解】由尺规作图知,OD O D ''=,OC O C ''=,CD C D ''=,由SSS 可判定COD C O D '''≅V V ,则A O B AOB '''∠=∠,故选D .【点睛】本题考查基本尺规作图,全等三角形的判定与性质,熟练掌握全等三角形的判定定理:SSS 和全等三角形对应角相等是解题的关键.4.D【解析】根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选D.5.D【解析】【分析】根据尺规作图的定义可知.【详解】尺规作图的工具是指没有刻度的直尺、圆规.故选D6.B【解析】【分析】判断一个三角形是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形则并不是唯一存在,可能有多种情况存在. 【详解】A.因为AC,BC,AB的长不满足三角形三边关系,所以A选项不能确定一个三角形;B. ∠A,∠B的公共边是AB,根据三角形全等的判定ASA可以确定一个三角形,故B选项能唯一确定一个三角形;C. 只有一个角一条边,故C选项不能唯一确定一个三角形;D. ∠A不是AB和BC边的夹角,故D选项不能唯一确定一个三角形,故选:B.【点睛】本题主要考查了三角形的确定问题,熟练掌握三角形的三边关系等相关问题是解决本题的关键.7.C【解析】【分析】∆的作图痕迹,可得此作图的条件.观察ABC【详解】∆的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,解:观察ABC故已知条件为:两角及夹边,故选C.【点睛】本题主要考查三角形作图及三角形全等的相关知识.8.D【解析】分析:根据题意,所作出的是∠OBF=∠AOB ,,根据作一个角等于已知角的作法,¼MN是以点E 为圆心,DC 为半径的弧. 故选D .9. 作一个角等于已知角 作一条线段等于已知线段【解析】试题解析:作三角形用到的基本作图是:(1). 作一个角等于已知角(2). 作一条线段等于已知线段故答案为:(1). 作一个角等于已知角(2). 作一条线段等于已知线段.10.9【解析】【分析】这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD .【详解】解:在△APB 和△DPC 中PC PA APB CPD PB PD =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△DPC (SAS );∴AB=CD=9米(全等三角形的对应边相等).故池塘宽AB 为9m ,故答案为:9.【点睛】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.11.6【分析】先根据题意分别画出各线段,再结合图形利用线段的和差即可得出答案.【详解】(1)画线段AB;(2)延长线段AB到点C,使BC=2AB;(3)反向延长AB到点D,使AD=AC;由图可知,BC=2AB,AD=AC=3AB,故CD=6AB.故答案为6.【点睛】本题只要根据题意画出图形,根据各线段的长可直接解答,比较简单.12.①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.13.答案见解析【解析】分析:根据作一个角等于已知角的方法,分别以A、B为顶点,作图即可.本题解析:如图所示:14.答案见解析【解析】∠=,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径试题分析:首先作ABCα画弧即可得出C的位置.试题解析:如图所示:△ABC即为所求.15.见解析【解析】【分析】①作一底角∠B为∠α;②在∠B的一边上截取AB=a;③以点A为圆心,AB长为半径画弧,与∠B的另一边相交于点C,连接BC,△ABC就是所求的等腰三角形ABC.【详解】如图所示,△ABC即为所求.16.见解析.【解析】【分析】作线段BC=a,以点B为圆心,c为半径画弧,再以点C为圆心,b为半径画弧两弧的交点就是点A的位置,连接AB,AC即可.【详解】解::如图所示:【点睛】此题考查作图-复杂作图,解题关键在于熟练掌握作图法则17.答案见解析【解析】【分析】分别以A和B两点为圆心,以AB为半径画弧,两弧相加的点即为C点,连接AC和BC,即可得出答案.【详解】解:【点睛】本题考查的是尺规作图,需要熟练掌握等边三角形的性质.18.见解析.【解析】【分析】根据ASA即可作图.【详解】如图所示,△CDE即为所求.【点睛】此题主要考查尺规作图,解题的关键是熟知全等三角形的判定方法. 19.见解析.【解析】【分析】分别作出三边等于已知三角形的三边即可.【详解】步骤如下:;(1)画线段EF BC(2)分别以E、F为圆心,线段AB,AC为半径画弧,两弧交于点D;就是所求作的三角形.(3)连结线段DE、DF,DEF【点睛】此题考查作图-复杂作图,解题关键在于掌握知识点:三边对应相等的两三角形全等.20.(1)如图所示,△ACD即为所求;见解析;(2)见解析.【解析】【分析】根据全等三角形的性质即可作图根据全等三角形的定义即可证明【详解】(1)如图所示,△ACD即为所求;(2)如图所示,∵△ACD≌△ACB,∴∠BAO=∠DAO,AB=AD,又∵AO=AO,∴△ABO≌△ADO(SAS),∴BO=DO.【点睛】本题考查全等三角形,熟练掌握全等三角形的性质及定义是解题的关键.。
新北师大版数学七下同步练习 用尺规作三角形
4用尺规作三角形测试时间:30分钟一、选择题1.利用尺规作图作出的三角形不唯一的是()A.已知三边B.已知两边及其夹角C.已知两角及其夹边D.已知两边及其中一边的对角1.答案D2.已知三边作三角形,所用到的知识是()A.作一个角等于已知角B.在射线上截取一条线段等于已知线段C.平分一个已知角D.作一条直线的垂线2.答案B已知三边作三角形实际上就是作线段等于已知线段.3.已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,作法合理的顺序为()a,AC=b,AD=m.△延长CD到点B,使BD=CD;△连接AB;△作△ADC,使DC=12A.△△△B.△△△C.△△△D.△△△3.答案A根据已知条件,能够确定的三角形是△ADC,故先作△ADC,使a,AC=b,AD=m;再延长CD到点B,使BD=CD;连接AB,即可得△ABC,故选A.DC=124.如图所示,用尺规作图作△AOB的平分线的方法如下:以O为圆心,任意长为半径画弧,分别CD长为半径画弧,两弧交于点P,连接OP,交OA,OB于点C,D,再分别以点C,D为圆心,大于12则射线OP为△AOB的平分线.由作法得△OCP△△ODP,其根据是()A.SASB.ASAC.AASD.SSS14.答案D根据作图可以看出:OC=OD,CP=DP,又OP=OP,所以可以根据“SSS”来说明△OCP△△ODP,故选D.5.如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以作出个.()A.2B.4C.6D.85.答案B6.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明△A'O'B'=△AOB的依据是()A.SSSB.SASC.ASAD.AAS6.答案A由作法知,OC=OD=O'C'=O'D',CD=C'D'.由SSS可知,△OCD△△O'C'D',从而说明△A'O'B'=△AOB,故选A.二、填空题7.我们知道只要三角形的三边长度确定了,那么它的形状和大小是固定不变的,这说明三角形具有性;作一个三角形,使它与已知三角形全等的理论依据有.7.答案稳定;SSS、SAS、ASA、AAS8.已知一条线段作等边三角形,使其边长等于已知线段的长,则作图的依据是.8.答案SSS三、解答题9.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a、c,△β(如图).求作:△ABC,使BC=a,AB=c,△ABC=△β.29.解析如图所示.10.已知:如图,线段a和△α.求作:△ABC,使AB=AC=a,△BAC=△α.10.解析作法:(1)作△MAN=△α;(2)在射线AM,AN上分别截取AB=a,AC=a;(3)连接BC,则△ABC即为所求,如图.11.如图,已知线段a,求作△ABC,使AB=2a,BC=3a,AC=4a.(写出作法)11.解析作法:(1)作线段CA=4a;(2)分别以C、A为圆心,3a、2a为半径画弧,两弧相交于点B;(3)连接AB、CB.△ABC就是所求作的三角形.如图.3412.如图所示,小明在纸上作了一个三角形,不料被墨水污染了一部分,请你作一个与他作的完全一样(全等)的三角形.12.解析 作法:(1)作△DA'E=△A; (2)在射线A'D 上截取线段A'B'=AB;(3)以B'为顶点,B'A'为一边,作△A'B'F=△B,B'F 交A'E 于点C'.△A'B'C'就是所求作的三角形.如图所示.13.已知,如图:△α,线段c.求作:△ABC,使△A=△α,AB=2c,AC=3c.(保留作图痕迹,不写作法)13.解析 如图,△ABC 即为所求.。
北师大版七年级下册数学4.4用尺规作三角形同步测试(无答案)
北师大版七年级下册数学 4.4 用尺规作三角形同步测试(无答案)一、选择题1.已知三边作三角形,用到的基本作图是()A. 作一个角等于已知角B平.分一个已知角C. 在射线上截取一线段等于已知线段D.作一条直线的垂线2.作一个角等于已知角用到下边选项的哪个基本领实()A. SSSB. SASC. ASAD. AAS3.尺规作图作∠ AOB 的均分线以下:以O 为圆心,随意长为半径画弧交OA、 OB 于 C、 D,再分别以点C、D 为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,连结 CD,则以下结论必定正确的个数有()个.①∠ AOP=∠BOP;② OC=PC;③ OA∥ DP;④ OP 是线段 CD 的垂直均分线.A.1B.2C.3D.44.如图,已知∠ AOB.小明按以下步骤作图:( 1)以点 O 为圆心,适合长为半径画弧,交OA 于 D,交 OB 于点 E.(2)分别以 D, E 为圆心,大于DE 的长为半径画弧,两弧在∠ AOB 的内部订交于点 C.(3)画射线 OC.依据上述作图步骤,以下结论正确的选项是()1 / 7A. 射线 OC 是∠ AOB 的均分线B线.段 DE 均分线段 OCC. 点 O 和点 C 对于直线DE对称D. OE=CE5.请认真察看用直尺和圆规作一个角∠A′ O′等B于′已知角∠AOB 的表示图,要说明∠D′ O′∠C′=DOC,需要证明△ D′O′≌△C′ DOC,则这两个三角形全等的依照是()A. 边边边B. 边角边C. 角边角D. 角角边6.在△ ABC中,按以下步骤作图:①分别以A,B 为圆心,大于AB 的长为半径画弧,订交于两点M , N;②作直线MN 交 AC 于点 D,连结 BD.若 CD=BC,∠ A=35°,则∠ C=()A.40 °B.50 °C.60 °D.70 °7.如图,点 C 在∠ AOB 的边 OB 上,用尺规作出了∠BCN=∠ AOC,作图印迹中,弧FG是()A. 以点 C 为圆心, OD 为半径的弧B. 以点 C 为圆心, DM 为半径的弧C. 以点 E 为圆心, OD 为半径的弧D. 以点 E为圆心, DM 为半径的弧8.如图,在△ ABC中,∠ C=90°,∠ CAB=50°,按以下步骤作图:①以点 A 为圆心,小于AC 长为半径画弧,分别交AB、 AC 于点 E、 F;②分别以点E、 F 为圆心,大于EF 长为半径画弧,两弧订交于点G;③作射线AG,交 BC 边于点 D.2 / 7则∠ ADC的度数为()A.40 °B.55C.65°D.75°°9.如图,已知△ ABC,∠ ABC=2∠ C,以 B 为圆心随意长为半径作弧,交BA、 BC 于点 E、 F,分别以 E、 F 为圆心,以大于EF 的长为半径作弧,两弧交于点P,作射线 BP 交 AC 于点,则以下说法不正确的选项是()A. ∠ADB=∠ ABCB. AB=BDC. AC=AD+BD∠ABD=.∠ BCD二、填空题10.如图,四边形ABCD中, AD∥ BC.①画线段CE⊥AB,垂足为E,画线段 AF⊥ CD,垂足为F;②比较以下两组线段的大小:(用“>”或“<”或“=填”空)CE________ CA,点 C到 AB 的距离 ________点 A 到 CD 的距离.11.如图,给出了过已知直线AB 外一点 P,作已知直线AB 的平行线CD的方法,其依照是________ .3 / 712.以下图,已知∠AOB,求作射线OC,使 OC 均分∠ AOB,作法的合理次序是________ .(将①②③重新摆列)①作射线OC;②以 O 为圆心,随意长为半径画弧交OA、OB 于 D、 E;③分别以D、 E 为圆心,大于DE 的长为半径作弧,在∠AOB 内,两弧交于点C.13.如图,在△ ABC中,分别以点 A 和点 B 为圆心,大于AB 的长为半径画弧,两弧订交于点M、N,作直线 MN ,交 BC 于点 D,连结 AD.若△ ADC的周长为 16,AB=12,则△ ABC的周长为 ________.14.数学活动课上,同学们环绕作图问题:“如图,已知直线l 和 l 外一点 P,用直尺和圆规作直线PQ,使PQ⊥ l 于点 Q.”此中一位同学作出了以下图的图形.你以为他的作法的原因有________.15.如上以下图,求作一个角等于已知角∠AOB.作法:( 1 )作射线O′B′;( 2)以 ________ 为圆心,以 ________ 为半径画弧,交OA 于点 C,交 OB 于点 D;( 3)以 ________ 为圆心,以 ________ 为半径画弧,交O′B于′点 D′;4 / 7( 4)以点 D′为圆心,以 ________ 为半径画弧,交前面的弧于点C′;( 5)过 ________ 作射线 O′A.′∠ A′O′就B′是所求作的角.16.如图,在△ ABC中,按以下步骤作图:①分别以B, C 为圆心,以大于BC 的长为半径作弧,两弧订交于M, N 两点;②作直线MN 交 AB 于点 D,连结 CD,若 CD=AC,∠ B=25°,则∠ ACB的度数为 ________ .三、作图题17.已知∠ ABC,点 P 在射线 BA 上,请依据“同位角相等,两直线平行”,利用直尺和圆规,过点P 作直线PD 平行于 BC。
4.4用尺规作三角形-北师大版七年级数学下册同步练习
用尺规作三角形同步练习1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中不正确的是()A.AD是∠BAC的平分线 B.∠ADC=60°C.点D在AB的中垂线上 D.S△DAC:S△ABD=1:32.尺规作图的工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺、圆规3.如图,已知E是平行四边形ABCD对角线AC上的点,连接DE.(1)过点B在平行四边形内部作射线BF交AC于点F,且使∠CBF=∠ADE(要求:用尺规作图,保留作图痕迹,不写作法与证明)(2)连接BE,DF,判断四边形BFDE的形状并证明.4.如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM.②连接BE并延长交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.5.已知△ABC,求作△DEF,使△DEF≌△ABC(尺规作图,保留作图痕迹)。
作法:6.尺规作图:学校决定在植物园内开辟一块梯形土地ABCD 培植草皮(如图),AD ∥BC.其中MN 是园林里的一条主水管,点B 、点C 在MN 上.如今要在BC 上的P 点接一条与BC 垂直的水管 ,并在这条新接水管的某处安置喷淋器E ,喷淋器位于草坪内,且到AB 、BC 的距离相等.请你运用尺规作图,在原图中帮助确定点E 的位置.(要求:不写已知、求作及作法;保留作图痕迹)7.按要求用尺规作图(只保留作图痕迹,不必写出作法)(1)在图(1)中作出∠ABC 的平分线;(2)在图(2)中作出△DEF 的外接圆O .8.如图,已知E 是平行四边形ABCD 的边AB 上的点,连接DE .(1)在∠ABC 的内部,作射线BM 交线段CD 于点F ,使∠CBF=∠ADE ;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE ≌△CBF .9.已知四边形ABCD 是平行四边形(如图),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.●C B M NP DA AB C(1)利用尺规作出△A ˊBD.(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE.10.如图,已知△ABC .只用直尺(没有刻度的尺)和圆规,求作一个△DEF ,使得△DEF ∽△ABC ,且EF=12BC .(要求保留作图痕迹,不必写出作法)11.如图,在△ABC 中,已知∠B=∠C(1)尺规作图:作底角∠ABC 的平分线BD ,交AC 于点D (作图不写作法,但保留作图痕迹);(2)猜想:“若∠A=36°,则△ABD 和△BDC 都是等腰三角形”。
北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(3)
北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.选择题(共10小题)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 3.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.6.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧7.如图,作已知∠AOB的平分线OC,合理的顺序是()①作射线OC;②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.A.①②③B.②①③C.②③①D.③②①8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧9.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS 10.小明在计算三角形面积时需要作出最长边的垂线段,下列作法正确的是()A.B.C.D.二.填空题(共10小题)11.如图,∠C=90°,根据作图痕迹可知∠ADC=°.12.下面是“作已知角的平分线”的尺规作图过程.已知:∠AOB.求作:射线OE,使OE平分∠AOB.作法:如图,(1)在射线OB上任取一点C;(2)以点O为圆心,OC长为半径作弧,交射线OA于点D;(3)分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;(4)作射线OE.所以射线OE就是所求作的射线.请回答:该作图的依据是.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.16.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.17.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.18.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有.19.如图,用直尺和圆规作一个角等于已知角,能得出的依据是.20.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1mm,不要求写作法).三.解答题(共30小题)21.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB、射线DC;(2)延长线段DA至点E,使AE=AB(保留作图痕迹);(3)若AB=4cm,AD=2cm,求线段DE的长.22.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.23.如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是cm.(精确到0.1cm)24.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD25.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.26.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)27.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.28.按照下列要求画图并作答:如图,已知△ABC.(1)画出BC边上的高线AD;(2)画∠ADC的对顶角∠EDF,使点E在AD的延长线上,DE=AD,点F在CD的延长线上,DF=CD,连接EF,AF;(3)猜想线段AF与EF的大小关系是:;直线AC与EF的位置关系是:.29.用尺规作出△ABC的中线AD.30.如图,已知△ABC中,∠ACB>∠ABC,用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹)31.如图,已知∠AOB,求作∠ECF,使∠ECF=∠AOB.(要求:尺规作图,保留作图痕迹,不写作法)32.如图,平面上有三点A、B、C,(1)按下列要求画出图形:①、画直线AB;②、画射线AC;③连接BC;(2)写出图中有哪几条线段;(3)指出图中有几条射线,并写出其中能用字母表示的射线(不再添加字母).33.拿起圆规和直尺,耐心做一做,不写作法,保留作图痕迹.已知线段a、b,作线段AB=2a﹣b(要求:保留作图痕迹)34.(1)在方格纸上过点P作线段AB的平行线l;(2)在方格纸上以AB为边画一个正方形;(3)填空:若图中小方格的面积为1cm2,则(2)中所作正方形的面积=cm2.35.如图,已知△ABC,请作出该三角形的外接圆⊙O(要求尺规作图,保留作图痕迹,不要写作图过程).36.如图,在同一个平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.37.如图,已知△ABC,请你作出AC边上的高和BC边上的高.38.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)39.读句画图并填空:如图,点P是∠AOB外一点,根据下列语句画图,(1)过点P,作线段PC⊥OB,垂足为C;(2)过点P,作直线PD∥OB,交OA于D;(3)结合所作图形,若∠O=50°,则∠ADP=°.40.按要求用尺规作图并填空(保留作图痕迹):如图,点P是∠AOB边OA上一点.过点P作直线PC∥BO.你的作图方法使PC∥BO 的依据是.41.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.42.作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.43.已知∠AOC,请用尺规作图的方法作出该角的角平分线.44.已知:∠AOB,点P在OA上,请以P为顶点,P A为一边作∠APC=∠O.(不写作法,但必须保留作图痕迹)45.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)46.如图,C是线段AB外一点,用圆规和直尺画图.(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.47.已知∠AOB,点P在OA上,请以P为顶点,P A为一边作∠APC=∠O(不写作法,但必须保留作图痕迹)问:(1)PC与OB一定平行吗?答:(2)简要说明理由:48.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)49.已知∠AOB,用直尺和圆规作图:(1)作∠AOB的平分线;(2)过∠AOB边OA上一点P分别作边OA、OB的垂线.(不写作法,保留作图痕迹)50.利用尺规作图(保留作图痕迹即可):如图,在射线BC上,作线段BD,使BD=2AB;以点D为顶点,射线DC为一边,作∠EDC(两种情况),使∠EDC=∠ABC.北师大新版七年级下学期《4.4 用尺规作三角形》2019年同步练习卷参考答案与试题解析一.选择题(共10小题)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:∵四个选项中只有AD⊥BC,∴C正确.故选:C.【点评】本题考查的是作图﹣基本作图,熟记三角形高线的定义是解题的关键.2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3【分析】利用基本作图对三个图形的作法进行判断即可.【解答】解:根据基本作图可判断图1中AD为∠BAC的平分线,图2中AD为BC边上的中线,图3中AD为∠BAC的平分线.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理和等腰三角形的性质.3.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP【分析】直接利用线段垂直平分线的性质得出AP=BP,进而利用三角形外角的性质得出答案.【解答】解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.【点评】此题主要考查了基本作图,正确得出AP=BP是解题关键.4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.5.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】此题考查了作图﹣基本作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.6.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】根据作一个角等于已知角的步骤即可得.【解答】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.7.如图,作已知∠AOB的平分线OC,合理的顺序是()①作射线OC;②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.A.①②③B.②①③C.②③①D.③②①【分析】根据角平分线的尺规作图的步骤解答即可得.【解答】解:作已知∠AOB的平分线OC,合理的顺序是:②在OA、OB上分别截取ON,OM,使ON=OM;③分别以N,M为圆心,以大于NM为半径画弧,两弧在∠AOB内交于点C.①作射线OC;故选:C.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握利用尺规作图作角平分线的步骤.8.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧【分析】根据作一个角等于已知角的作法即可得出结论.【解答】解:先以点A为圆心,以任意长为半径画弧,分别交AC,AB于点Q,P;再以点E为圆心,AQ的长为半径画弧,交AC于点G,再以点G为圆心,PQ的长为半径画弧.故选:D.【点评】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.9.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【分析】先证明三角形全等,再利用全等的性质证明角相等.【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.【点评】本题考查作图﹣基本作图、全等三角形的判定和性质,解题的关键是灵活应用所学知识解决问题,属于基础题.10.小明在计算三角形面积时需要作出最长边的垂线段,下列作法正确的是()A.B.C.D.【分析】根据最长边上的高在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上即可得.【解答】解:最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上,故选:C.【点评】本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部;当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部;当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.二.填空题(共10小题)11.如图,∠C=90°,根据作图痕迹可知∠ADC=70°.【分析】根据作图痕迹可知:AD平分∠CAB,再由直角三角形性质可得∠CAB的度数,最后由三角形的外角可得结论.【解答】解:∵∠C=90°,∠B=50°,∴∠CAB=40°,由作图痕迹可知:AD平分∠CAB,∴∠DAB=20°,∴∠ADC=∠DAB+∠B=20°+50°=70°,故答案为:70.【点评】本题考查了基本作图﹣角平分线,三角形外角的性质和直角三角形的性质,熟练掌握角平分线的基本作图是关键.12.下面是“作已知角的平分线”的尺规作图过程.已知:∠AOB.求作:射线OE,使OE平分∠AOB.作法:如图,(1)在射线OB上任取一点C;(2)以点O为圆心,OC长为半径作弧,交射线OA于点D;(3)分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;(4)作射线OE.所以射线OE就是所求作的射线.请回答:该作图的依据是四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线..【分析】依据作图痕迹可得四边形OCED是菱形,再根据菱形的性质,即可得到OE平分∠AOB.【解答】解:如图所示,连接DE,CE,∵OD=DE=EC=OC,∴四边形OCED是菱形(四条边都相等的四边形是菱形),∴OE平分∠AOB(菱形的每一条对角线平分一组对角),故答案为:四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.【点评】本题主要考查了基本作图依据菱形的性质,解题时注意:四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角.13.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB 的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB度数是解题关键.15.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为100°.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,故答案是:100.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG 是∠CAB平分线是解答此题的关键.16.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°故答案为:115°.【点评】本题主要考查了基本作图,解的关键是熟记角平分线的作法.17.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【分析】通过作图得到CA=CB,DA=DB,则可根据线段垂直平分线定理的逆定理判断CD为线段AB的垂直平分线.【解答】解:∵CA=CB,DA=DB,∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【点评】本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.18.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【分析】把过一点作已知直线的垂线转化为作已知线段的垂直平分线.【解答】解:他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.故答案为到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点评】本题考查了基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.19.如图,用直尺和圆规作一个角等于已知角,能得出的依据是SSS.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:在△ODC和△O′D′C′中,,∴△ODC≌△O′D′C′(SSS),故答案为:SSS.【点评】此题主要考查了基本作图,以及全等三角形的判定,关键是掌握作一个角等于已知角的方法.20.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长.(结果精确到1mm,不要求写作法).【分析】利用三角板的60度角作∠POQ=60°,然后利用刻度尺在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB;利用三角板的30度角即可作出∠AOB的平分线,然后利用刻度尺测量AC和OC的长.【解答】解:如图所示:测量得:AC=26 mm,OC=50 mm.【点评】本题考查了利用三角板作图,理解三角板的特点是关键.三.解答题(共30小题)21.如图,已知线段DA与B、C两点,用圆规和无刻度的直尺按下列要求画图并计算:(1)画直线AB、射线DC;(2)延长线段DA至点E,使AE=AB(保留作图痕迹);(3)若AB=4cm,AD=2cm,求线段DE的长.【分析】(1)根据几何语言画出对应几何图形;(2)利用圆规截取AE=AB;(3)计算DA和AE的和即可.【解答】解:(1)如图,直线AB、射线DC为所作;(2)如图,点E为所作;(3)DE=DA+AE=DA+AB=2+4=6,即线段DE的长为6cm.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.如图,点C是线段AB的中点.(1)尺规作图:延长AB到D,使BD=AB(不写作法,保留作图痕迹).(2)若AC=2cm,求AD的长.【分析】(1)在AB的延长线上截取BD=AB即可;(2)根据中点的定义先求出AB,再求出AD的长.【解答】解:(1)如图所示:(2)∵点C是线段AB的中点,AC=2cm,∴AB=4cm,∵BD=AB,∴AD=8cm.【点评】本题考查了作图﹣基本作图:作一条线段等于已知线段,线段中点的定义等知识,作出点D是解题的关键.23.如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是 1.5cm.(精确到0.1cm)【分析】(1)根据线段和射线的画法进行画图即可;(2)直线外一点到直线的垂线段的长度,叫做点到直线的距离.【解答】解:(1)如图所示:(2)根据测量可得,点B到直线AC的距离,大约是1.5cm,故答案为:1.5.【点评】本题主要考查了基本作图以及点到直线的距离.解决问题的关键是掌握线段和射线的概念.24.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD【分析】(1)直接利用过直线外一点作已知垂线的作法得出答案;(2)利用直角三角形的性质结合垂线的定义得出答案.【解答】(1)解:如图所示:AD即为所求;(2)证明:∵∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD是△ABC的高,AD⊥BC,∴∠CDA=90°,在Rt△CAD中,∠C+∠CAD=90°,∴∠C=∠BAD.【点评】此题主要考查了基本作图以及直角三角形的性质,正确掌握基本作图方法是解题关键.25.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.【分析】(1)根据角平分线的尺规作图可得;(2)连接OC、BC、AC,利用“SSS”证明△OAC≌△OBC可得.【解答】解:(1)如图,射线OC是∠MON的平分线,(2)证明:如图,连接OC、BC、AC,根据作法可得BC=AC,OA=OB,在△OAC和△OBC中,∵∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC,即射线OC是∠MON的平分线.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及全等三角形的判定与性质.26.如图,已知△ABC中,∠B>90°,请用尺规作出AB边的高线CD(请留作图痕迹,不写作法)【分析】延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB 的延长线于点M和点N,再作线段MN的垂直平分线CD即可.【解答】解:延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD,如下图所示:【点评】本题考查作图﹣基本作图,掌握作垂直平分线的基本步骤为解题关键.27.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.【分析】(1)以点C为顶点,作∠OCD=∠COA,交AO于点D;(2)作一个角等于已知角的依据为SSS.【解答】解:(1)如图所示,∠OCD即为所求;(2)作图的依据为SSS.【点评】本题主要考查了基本作图,解决此类题目的关键是熟悉基本几何图形的性质,基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.28.按照下列要求画图并作答:如图,已知△ABC.(1)画出BC边上的高线AD;(2)画∠ADC的对顶角∠EDF,使点E在AD的延长线上,DE=AD,点F在CD的延长线上,DF=CD,连接EF,AF;(3)猜想线段AF与EF的大小关系是:AF=EF;直线AC与EF的位置关系是:AC∥EF.【分析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用圆规与直尺截取得出E,F位置进而得出答案;。
北师大七年级数学下册--第四章 4.4-4.5《用尺规作三角形、利用三角形全等测距离》同步练习(含答案)
4.4 用尺规作三角形同步练习:一、判断题1、只要知道三角形的三个基本元素,就可以作出唯一的三角形。
()2、用量角器作一个角等于已知角也是尺规作图的一种。
()3、已知两边和一角一定能做出唯一的三角形。
()4、作一个角等于已知角是尺规作图中的最常用的基本作图之一。
()二、填空题1、在几何里,把只用_________和_________画图的方法称为尺规作图。
2、完成下列作图语言:(1)作射线_________(2)以点O为圆心,以OB为半径画弧,交射线_________于点B.(3)延长线段_________到_________,使_________=_________。
(4)以______为圆心,以______为半径作弧,交_______于_______,交_______于_______。
三、选择题1、尺规作图的画图工具是()A.刻度尺、圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2、利用基本作图,不能作出唯一三角形的是()A.已知两边及其夹角B.已知两角及夹边C.已知两边及一边的对角D.已知三边3、已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和4、用尺规画直角的正确方法是()A.用量角器B.用三角板C.平分平角D.作两个锐角互余5、作△ABC的高AD,中线AE,角平分线AF,三者中有可能画在△ABC外的是()A.ADB.AEC.AFD.都有可能四、用尺规作图1、已知线段a及锐角α,求作:三角形ABC,使∠C=90°,∠B=∠α,BC=a.(1)(2)(3)图2作法:(1)作∠MCN=90°;(2)以_________为圆心,_________为半径,在CM上截取_________;(3)以_________为顶点,_________为一边作∠ABC =_________交CN 于点A .连结AB ,则△ABC 即为所作的三角形。
《同步课时卷》北师大版七年级数学(下册)4.4 用尺规作三角形(附参考答案)
《同步课时卷》北师大版七年级数学(下册)4.4 用尺规作三角形1.作三角形用到的基本作图是.2.已知线段a,如图4-4-1.求作:线段b,使b=a.(请写出作法,画出图形)图4-4-13.已知:∠α,如图4-4-2.求作:∠A,使∠A=∠α.图4-4-24.用尺规作图,不能作出唯一三角形的是( )A.已知两角和夹边B.已知两边和其中一边的对角C.已知两边和夹角D.已知三边5.已知三角形的两边及其夹角,求作这个三角形时,第一步为( )A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知线段或先作一个角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角6.已知线段a,∠α.求作:Rt△ABC,使∠C=90°,∠A=∠α,AB=a.作法:(1)作∠PAQ=∠α;(2)过B作AQ的垂线与∠PAQ的AQ边相交于C;(3)在∠PAQ的边AP上截取AB=a.其正确的作图顺序应为: .7.已知三角形的两角α,β,以及角α的对边a,求作这个三角形.图4-4-38.已知线段a,c,求作Rt△ABC,使∠C=90°,BC=a,AB=c.图4-4-49.小丽的作业本上画的三角形被墨迹污染了(如图4-4-5),她想画一个与原图完全一样的三角形,她该怎么办呢?请帮助小丽想出一个办法来,并说明你的理由.图4-4-510.作图:请你在下图中作出一个以线段AB为一边的等边△ABC(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论).图4-4-611.现有一块三角形模板,因不小心损坏了一个角,你能用尺规作出这块模板的形状吗?图4-4-712.如图4-4-8所示,已知线段b,m(m>b).求作Rt△ABC,使∠C=90°,AC=b,BC边上的中线AD=m.图4-4-813.如图4-4-9,在等腰△ABC中,AB=AC.请你用作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)图4-4-9参考答案1.作一条线段等于已知线段;作一个角等于已知角2.做法略.3.做法略.4.B5.D6.(1)、(3)、(2)7.解:第三个内角γ为(α+β)的补角,故先作γ=180°-(α+β).图略.8.略.9.解:因为未被墨水污染的有两条边及其夹角,所以根据“SAS”可以作一个与原来三角形全等的三角形.10.已知:线段AB.求作:△ABC,使AB=BC=CA.作图:如图△ABC就是所求作的三角形.11.解:如图,△ABC就是模板的形状.12.略.13.解:作BC的中点D,连接AD,则由SSS可得△ABD≌△ACD.。
北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷
北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.解答题(共50小题)1.已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.2.如图,在△ABC中,请用两种方法作出BC边的中线AD.(用直尺和圆规作图,不写作法,保留作图痕迹)3.如图,已知△ABC中,∠C=90°.在BC上求作点D,使AD=BD.当AC=4,CD=3时,求AB的长,(要求尺规作图,保留作图痕迹,不必写作法)4.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图.(不写作法,保留作图痕迹)①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并说明理由.5.已知:如图,在△ABC中,∠C=90°.(1)求作:△ABC的角平分线AD(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,求CD的长.6.已知:∠AOB,作出∠AOB的平分线OC.7.如图所示,已知锐角∠AOB及一点P.(1)过点P作OA、OB的垂线,垂足分别是M、N;(只作图,保留作图痕迹,不写作法)(2)猜想∠MPN与∠AOB之间的关系,并证明.8.如图,在△ABC中,∠C=90°,P是AB上任意一点(P与A不重合),PQ⊥BC,垂足为D.(1)操作:作∠BAC的平分线AE交PQ于点E(保留作图痕迹,不用写作法);(2)图中是否存在与AP相等的线段?若存在,请加以证明,若不存在,请说明理由.9.已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).10.平面上有四个点A、B、C、D,按照以下要求作图:(1)连接AB并延长AB至E,使BE=AB;(2)作射线CB;(3)在直线BD上确定点G,使得AG+GC最短.11.如图,已知点D为OB上的一点,按下列要求进行作图.(1)作∠AOB的平分线OC;(2)在OC上取一点P,使得OP=a;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP的数量关系,并说明理由.12.根据下列语句用圆规和直尺,在下面方框内作图,保留作图痕迹.已知:如图,∠MPN.求作:①∠AOB,使得∠AOB=∠MPN;②∠AOB的平分线OC.13.作图题如图,点C,E均在直线AB上,∠BCD=45°.(1)在图中作∠FEB,使∠BEF=∠DCB(保留作图痕迹,不写作法).(2)请直接说出直线EF与直线CD的位置关系.14.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.15.已知线段AB和CD,(1)请用尺规按要求作图;延长线段AB到E,使BE=2CD;(2)在(1)所作的图中,N为AE中点,若AB=6,CD=4,求BN.16.如图,每个小正方形的边长均为1个长度单位的网格中,有一个△ABC,三角形的三个顶点均在网格的顶点上.(1)在图中画线段CD,使CD=CB,点D在网格的格点上,并能组成四边形ABCD.(2)连接AD,请求出四边形ABCD的面积.17.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB,并证明作法:①在射线OA上取点C,以O为圆心,的长为半径画弧交OB于D②画一条射线O′A′,以O′为圆心,的长为半径画弧交O′A′于点C′③以点C′为圆心,的长为半径画弧与第②步中所画弧交于点D′④过点D′画射线O′B′,则∠A′O′B′=∠AOB.18.如图,在直线MN上找一点C点,使AC=BC.(不写作法,保留作图痕迹)19.已知:∠BAC,求作:(1)∠BAC的平分线AM.(2)在AM上任取一点P,过P作AC的垂线PE,垂足为E.(保留作图痕迹)20.如图,平面上有四个点A,B,C,D,按照以下要求完成问题:(1)连接AB并延长AB至E,使BE=AB;(2)作射线BC;(3)过点C作直线AD的垂线,垂足为F;(4)在直线BD上确定点G,使得AG+GC最短.21.如图,已知平面内A,B两点和线段m.(1)用尺规按下列要求作图:连接AB,并延长线段AB到C,使B是AC的中点;在射线AB上取一点E,使CE=m.(2)在完成(1)作图的条件下,如果AC=8,m=1.5,求BE的长度.22.如图,△ABC和△DCE都是等边三角形,且点C是线段AD的中点,请仅用无刻度直尺完成以下作图:(1)作BC的中点P;(2)过点C作AD的垂线.23.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB,并证明.作法:①以O为圆心,长为半径画弧分别交OA、OB于点M、N②画一条射线O′A′,以O′为圆心,长为半径画弧交O′A′于点M′③以点M′为圆心,长为半径画弧与第②步中所画弧交于点N′④过点N′画射线O′B′,则∠A′O′B′=∠AOB证明:24.已知∠AOB,利用尺规,求作∠A′O′B′,使得∠A′O′B′=∠AOB(保留作图痕迹).25.数学课上,老师要求同学们用一副三角板画一个钝角,并且画出它的角平分线.小强的作法如下:①先按照图1的方式摆放一副三角板,画出∠AOB;②在∠AOB处,再按照图2的方式摆放一副三角板,画出射线OC;③去掉三角板后得到的图形如图3.老师说小强的作法完全符合要求.请你回答:(1)小强画的∠AOB的度数是;(2)射线OC是∠AOB的平分线的依据是.26.尺规作图:(不写作法,保留清晰、完整的作图痕迹)已知直线AB和AB外一点P,利用尺规作一条经过点P的直线CD,使得CD平行于AB.27.如图,在△ABC中,AB=AC,点D为一边上一点,请你用量角器,在BC边上确定E,使CE=BD,简述你的作法.并说明理由.28.阅读下面材料:在数学课上,老师提出如下问题:尺规作图(图1):作一个角的平分线.已知:∠AOB.求作:∠AOB的平分线OP.小芸的作法如下:请你跟随小芸的叙述,在图中完成这个尺规作图.如图(图2),(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点P.(3)画射线OP,射线OP即为所求.老师说:“小芸的作法正确.”请回答:小芸的作图依据是.29.根据要求画图(1)直线l与直线m相交于点A,直线m与直线n相交于点C,直线n与直线l相交于点B.(2)用直尺和圆规作一条线段,使它等于已知线段.(要求保留作图痕迹,并写出作法)已知:线段a求作:线段AB,使AB=a.30.请用圆规和直尺作一个已知角的平分线,保留作图痕迹,并写出作法.已知:∠AOB求作:∠AOB的平分线作法:31.如图,已知线段a,b和∠O.(1)用直尺和圆规在∠O的一边上作线段OA=a,在另一边上作线段OB=b,并作直线AB(2)根据(1)中作出的图形,解答下列问题:①用大写字母表示所有的线段:②以点A为端点的射线共有条.32.画图题:直线AB,CD相交于点O,∠BOC=60°,点P在直线CD上,(1)利用学习用具过点P画PE∥AB,并说明理由.(2)过点P画AB的垂线段PE,垂足为E.(3)过点P画CD的垂线,与AB相交于F点.(4)说明线段PE、PO、FO三者的大小关系,其依据是什么?33.在∠AOB内部有一点P,过P点分别作OA、OB的平行线,并用“∥”表示出来.34.如图,已知∠AOB,C是OB上一点.(1)画OC的中点D;(2)画∠AOB的平分线OE;(3)过点D画DF⊥OE,垂足为F.35.如图,已知△ABC,请你按要求用尺规作出下列图形(不写作法,但要保留作图痕迹).(1)作出∠ABC的平分线BD;(2)作出BC边上的垂直平分线EF.36.如图,已知点C、点D分别在∠AOB的边上,请根据下列语句画出图形:(1)作∠AOB的余角∠AOE;(2)作射线DC与OE相交于点F;(3)取OD的中点M,连接CM.37.如图,四边形ABCD中,AD=BC,AB=CD,E,F分别是AB,CD上的点,且∠DAF =∠BCE,(1)求证:AE=CF;(2)若将此题中的条件改为:“E,F分别是AB,CD延长线上的点”,其余条件不变,此时,∠ABC=60°,∠BEC=40°,作∠ABC的平分线BN交AF于M,交AD于N,求∠AMN的度数(要求:画示意图,不写画法,写推理过程)38.(1)不用量角器,只利用刻度尺就能画出一个角的平分线,下面是小明的画法,你认为他的画法对吗?请你按照小明的画法,画出图形,说明理由.①利用刻度尺在∠AOB的两边上分别取OC=OD;②连接CD,利用刻度尺画出CD的中点E;③画射线OE,射线OE即为∠AOB的角平分线.(2)请你探索只利用你的三角尺(可以量长度、画直角)画出一个角的平分线的画法.(要求:①画出图形;②简要说明画法;③说明理由.)39.在如图所示的方格纸上过点P画直线AB的平行线.40.已知:直线AO、BO表示两条互相交叉的公路,Q是一个大型货物批发站,现在要建一个货物中转站P.要求它到AO、BO的距离相等,且PO=PQ.在图上画出满足条件的点P(保留作图痕迹)并写作法.41.如图,B是线段AD外一点,连接AB,AB与AD不垂直,过点B的直线l平行于AD,(1)请在直线l上求作一点C,使DC=AB(用尺规作图);(2)若AB=6,AD=4,∠B=60°.试求出四边形ABCD的周长.42.如图,∠AOB内有一点P.(1)过点P画PC∥OA,与OB交于点C;(2)过点P画PD⊥OA,垂足为D.43.已知直线l与直线l外一点P,求作:过点P且垂直于直线l的垂线a(尺规作图).现给出一种作法,如下:步骤一:在直线l外取一点E,以点P为圆心,以线段PE为半径画弧,交直线l于点M,N;步骤二:分别以点M、N为圆心,大于线段MN为半径画弧,过两弧的交点的直线a就是所求作的垂线.(符合要求的一种图形),(1)按上述操作步骤,请成功作出过点P且垂直于直线l的垂线a.并说明理由.(2)从你作图的过程中,思考要保证这种作法顺利作出,线段PE应该满足什么条件?(3)为了避免这种情况产生,小明说只要在直线l上取点E好了,并给出了画法,画法对吗?请说明理由.(作法:在直线l上取两点B、D,以P为圆心,以PD为半径画圆交直线l于点E,以P 为圆心,以PB为半径画圆交直线l于点F,其中较小圆分别交PB,PF于点M、N,连接E、N和D、M,EN和MD相交于点H,则PH就是所求的垂线.)(4)请在直线l上取点E,用直尺和圆规过点P且垂直于直线l的垂线a(与小明不同的方法,并要求尽可能简单).44.画图并解答问题(1)如图,已知△ABC,按下列步骤画图:①过点B画直线MN∥AC;②过点B画BD⊥AC,垂足为D点.(2)说明∠A+∠ABC+∠C=180°,并用刻度尺量出B到AC的距离.(精确到0.01cm)45.如图:(1)过C点画直线EF∥AB.(2)过A、B两点分别画AP⊥EF,BQ⊥EF,垂足分别是P、Q.(3)说明AP与BQ的位置关系及理由.46.作图,在梯形ABCD中,上底、下底分别为AD、BC,点M为AB中点,(1)过M点作MN∥AD交CD于N;(2)MN和BC平行吗?为什么?(3)用适当的方法度量并比较NC和ND的大小关系.47.读句画图并填空:(1)画直线AB;(2)在线段AB上取一点O,用量角器画∠BOC=40°;(3)由图形可知,∠AOC=;(4)画射线OC的反向延长线OD;(5)由图可知:∠AOD=,∠DOB=.48.在下图中,过P点分别向∠MON的两边作垂线.49.用三角板画出一个15°的角和一个105°的角.50.如图,已知△ABC,按要求操作.(1)过点A作AD⊥BC,垂足为D;(2)过点C作CE⊥AB,垂足为E;(3)量出线段AB、AD、AC的长度(精确到1mm),并比较线段AB、AD、AC大小.北师大新版七年级下学期《4.4 用尺规作三角形》2019年同步练习卷参考答案与试题解析一.解答题(共50小题)1.已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.【分析】(1)如图1,作BC的垂直平分线得到BC的中点D,从而得到BC边上的中线AD;(2)延长AD到E,使ED=AD,连接EB、EC,如图2,通过证明四边形ABEC为矩形得到AE=BC,从而得到BC=2AD.【解答】(1)解:如图1,AD为所作;(2)证明:延长AD到E,使ED=AD,连接EB、EC,如图2,∵CD=BD,AD=ED,∴四边形ABEC为平行四边形,∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的判定与性质.2.如图,在△ABC中,请用两种方法作出BC边的中线AD.(用直尺和圆规作图,不写作法,保留作图痕迹)【分析】作BC的垂直平分线得到BC的中点,从而得到中线AD,如图1;分别以B、C为圆心,AC、AB为半径画弧得到平行四边形,然后利用平行四边形的性质得到中线AD.【解答】解:如图1,如图2,AD为所作.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3.如图,已知△ABC中,∠C=90°.在BC上求作点D,使AD=BD.当AC=4,CD=3时,求AB的长,(要求尺规作图,保留作图痕迹,不必写作法)【分析】作AB的垂直平分线交BC于D,连接AD,先利用勾股定理计算出AD,从而得到BC的长,然后再利用勾股定理计算AB.【解答】解:如图,点D为所作,在Rt△ACD中,AD==5,∵AD=BD=5,∴BC=3+5=8,在Rt△ACB中,AB=42+82=4.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)4.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图.(不写作法,保留作图痕迹)①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并说明理由.【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM 的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1=∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.【解答】解:(1)如图所示.(2)BD=DE.理由如下:∵BD平分∠ABC,∴∠1=∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1=∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3=∠4.∴∠1=∠3.∴BD=DE.【点评】此题主要考查了复杂作图,以及等腰三角形的性质,关键是正确画出图形,掌握等边对等角和等角对等边.5.已知:如图,在△ABC中,∠C=90°.(1)求作:△ABC的角平分线AD(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB于点E,根据角平分线性质知DE=DC,继而可得AE=AC=6,设DE=DC=x,则BD=8﹣x,在Rt△BED中利用勾股定理可得x的值.【解答】解:(1)如图:(2)过点D作DE⊥AB于E.∵DE⊥AB,∠C=90°∴由题意可知DE=DC,∠DEB=90°又∵DE=DC,AD=AD∴AD2﹣ED2=AD2﹣DC2∴AE=AC=6∵AB=10,∴BE=AC﹣AE=4设DE=DC=x,则BD=8﹣x∴在Rt△BED中,(8﹣x)2=16+x2∴x=3,∴CD=3.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质、勾股定理等.6.已知:∠AOB,作出∠AOB的平分线OC.【分析】以点O为圆心,以任意长为半径画弧,与边OA、OB分别相交于点M、N,再以点M、N为圆心,以大于MN长为半径画弧,在∠AOB内部相交于点C,作射线OC 即为∠AOB的平分线.【解答】解:如图所示,OC即为所求作的∠AOB的平分线.【点评】本题考查了基本作图,主要是作角的平分线,是基本作图,需熟练掌握.7.如图所示,已知锐角∠AOB及一点P.(1)过点P作OA、OB的垂线,垂足分别是M、N;(只作图,保留作图痕迹,不写作法)(2)猜想∠MPN与∠AOB之间的关系,并证明.【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【解答】解:(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠AMJ=∠JNO=90°,∴∠MPN=∠AOB.【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,在△ABC中,∠C=90°,P是AB上任意一点(P与A不重合),PQ⊥BC,垂足为D.(1)操作:作∠BAC的平分线AE交PQ于点E(保留作图痕迹,不用写作法);(2)图中是否存在与AP相等的线段?若存在,请加以证明,若不存在,请说明理由.【分析】(1)利用尺规作出∠CAB的平分线即可;(2)存在.结论:P A=PE,只要证明∠P AE=∠PEA即可;【解答】解:(1)∠BAC的平分线如图所示;(2)存在.P A=PE.理由:∵PD⊥BC,∴∠C=∠PDB=90°,∴AC∥PE,∴∠CAE=∠AEP,∵∠EAB=∠EAC,∴∠P AE=∠PEA,∴P A=PE.【点评】本题考查作图、平行线的判定和性质、等腰三角形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.9.已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).【分析】根据过直线外一点作一直直线垂线的方法即可得出结论.【解答】解:如图所示,直线CD即为所求.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.平面上有四个点A、B、C、D,按照以下要求作图:(1)连接AB并延长AB至E,使BE=AB;(2)作射线CB;(3)在直线BD上确定点G,使得AG+GC最短.【分析】(1)连接AB并延长AB至E,使BE=AB即可;(2)作射线CB即可;(3)连接AC交BD于点G,则点G即为所求.【解答】解:(1)如图;(2)如图,射线CB即为所求;(3)如图,点G即为所求.【点评】本题考查的是作图﹣基本作图,熟知直线、射线的作法是解答此题的关键.11.如图,已知点D为OB上的一点,按下列要求进行作图.(1)作∠AOB的平分线OC;(2)在OC上取一点P,使得OP=a;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP的数量关系,并说明理由.【分析】(1)以点O为圆心,以任意长为半径画弧与∠AOB的两边分别相交,再以两交点为圆心,以大于两交点之间的距离的一半为半径画弧,相交于一点,过这一点与O作射线OC即可;(2)在OC上取一点P,使得OP=a;(3)以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN⊥OB于N,根据角平分线上的点到角的两边的距离相等可得PM=PN,利用HL证明△E2PM ≌△DPN,得出∠OE2P=∠ODP,再根据平角的定义即可求解.【解答】解:(1)如图,OC即为所求;(2)如图,OP=a;(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.理由是:以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN⊥OB于N,则PM=PN.在△E2PM和△DPN中,,∴△E2PM≌△DPN(HL),∴∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OA于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°.【点评】本题主要考查了角平分线的作法,作一个角等于已知角,过直线外一点作已知直线的垂线,都是基本作图,需要熟练掌握,另外还考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质.12.根据下列语句用圆规和直尺,在下面方框内作图,保留作图痕迹.已知:如图,∠MPN.求作:①∠AOB,使得∠AOB=∠MPN;②∠AOB的平分线OC.【分析】利用基本作图(作一个角等于已知角和作已知角的角平分线)作∠AOB=∠MPN 和作OC平分∠AOB.【解答】解:如图,∠AOB和OC为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).13.作图题如图,点C,E均在直线AB上,∠BCD=45°.(1)在图中作∠FEB,使∠BEF=∠DCB(保留作图痕迹,不写作法).(2)请直接说出直线EF与直线CD的位置关系.【分析】(1)根据射线EF与射线CD在直线AB的同侧,另一个则在直线AB的两侧得出两种情况;(2)分别利用若射线EF与射线CD在直线AB的同侧,则直线EF与直线CD平行;若射线EF与射线CD在直线AB的两侧,则直线EF与直线CD相交.【解答】解:(1)如图所示,∠BEF即为所求:(2)当射线EF与射线CD在直线AB的同侧时,由∠BEF=∠BCD知直线EF与直线CD 平行;当射线EF与射线CD在直线AB的两侧时,延长DC交EF于点G,∵∠BEF=∠BCD=∠ECG=45°,∴∠EGC=90°,∴EF⊥CD.【点评】主要考查了作一角等于已知角,注意分类讨论思想的应用,此题容易漏解.14.如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.【分析】(1)利用尺规作∠C的平分线即可解决问题;(2)结论:FH=HC.只要证明∠HCF=∠HFC即可;(3)只要证明△EAD∽△HCD,可得∠ADE=∠CDH,推出∠EDH=∠ADC=90°即可;【解答】解:(1)如图所示:(2)结论:FH=HC.理由:∵FH∥BC,∴∠HFC=∠FCB,∵∠FCB=∠FCH,∴∠FCH=∠HFC,∴FH=HC.(3)∵AD是Rt△ABC斜边BC上的高,∴∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵∠AEF=∠B+∠ECB,∠AFE=∠CAD+∠ACF,∠ACF=∠ECB,∴∠AEF=∠AFE,∴AE=AF,∵FH∥CD,∴=,∵AF=AE,CH=FH,∴=,∴=,∵∠BAD=∠DCH,∴△EAD∽△HCD,∴∠ADE=∠CDH,∴∠EDH=∠ADC=90°,∴ED⊥DH.【点评】本题考查作图﹣基本作图,等腰三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,本题综合性比较强,属于中考常考题型.15.已知线段AB和CD,(1)请用尺规按要求作图;延长线段AB到E,使BE=2CD;(2)在(1)所作的图中,N为AE中点,若AB=6,CD=4,求BN.【分析】(1)依照尺规作图的顺序,即可画出图形,使得BE=2CD;(2)由N为AE中点得出各边的关系,即可求得BN的长度.【解答】解:(1)以B点为圆心,BC长为半径作圆,交AB延长线于点E′,以点E′为圆心,BC长为半径作圆,交AE′延长线于点E.如图:(2)BN=AE﹣AB=﹣AB=﹣6=1,答:BN的长度为1.【点评】本题考查的两点间的距离和尺规作图,解题的关键是牢记尺规作图的步骤以及利用中点解决线段的长度问题.16.如图,每个小正方形的边长均为1个长度单位的网格中,有一个△ABC,三角形的三个顶点均在网格的顶点上.(1)在图中画线段CD,使CD=CB,点D在网格的格点上,并能组成四边形ABCD.(2)连接AD,请求出四边形ABCD的面积.【分析】(1)把CB绕点C顺时针旋转90度可得到CD;(2)利用一个矩形的面积减去三个直角三角形的面积去计算四边形ABCD的面积.【解答】解:(1)如图,线段CD和四边形ABCD为所作;(2)四边形ABCD的面积=7×4﹣×3×4﹣×3×4﹣×2×1=15.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).17.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB,并证明作法:①在射线OA上取点C,以O为圆心,OC的长为半径画弧交OB于D②画一条射线O′A′,以O′为圆心,OC的长为半径画弧交O′A′于点C′③以点C′为圆心,CD的长为半径画弧与第②步中所画弧交于点D′④过点D′画射线O′B′,则∠A′O′B′=∠AOB.【分析】根据全等三角形的性质即可解决问题.【解答】解:作法:①在射线OA上取点C,以O为圆心,OC的长为半径画弧交OB于D②画一条射线O′A′,以O′为圆心,OC的长为半径画弧交O′A′于点C′③以点C′为圆心,CD的长为半径画弧与第②步中所画弧交于点D′④过点D′画射线O′B′,则∠A′O′B′=∠AOB.故答案为OC,OC,CD.理由:在△COD和△C′O′D′中,,∴△COD≌△C′O′D′(SSS),∴∠COD=∠C′O′D′.【点评】本题考查作图﹣基本作图,全等三角形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.18.如图,在直线MN上找一点C点,使AC=BC.(不写作法,保留作图痕迹)【分析】连接AB,作线段AB的垂直平分线,交MN于点C,则点C为所求的点.【解答】解:连接AB,作线段AB的垂直平分线,交MN于点C,则点C为所求的点.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段的中垂线的尺规作图及中垂线的性质.19.已知:∠BAC,求作:(1)∠BAC的平分线AM.(2)在AM上任取一点P,过P作AC的垂线PE,垂足为E.(保留作图痕迹)【分析】(1)根据角平分线的尺规作图可得;(2)根据过直线外一点作已知直线的垂线可得.【解答】解:(1)如图所示,射线AM即为所求;(2)如图所示,线段PE即为所求.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线和过直线外一点作已知直线的垂线的尺规作图步骤.20.如图,平面上有四个点A,B,C,D,按照以下要求完成问题:(1)连接AB并延长AB至E,使BE=AB;(2)作射线BC;(3)过点C作直线AD的垂线,垂足为F;(4)在直线BD上确定点G,使得AG+GC最短.【分析】(1)、(2)、(3)利用基本作图完成问题;(4)连接AC、BD,则它们的交点即为G点.【解答】解:(1)如图,点E为所作;(2)如图,射线BC为所作;(3)如图,CF为所作;(4)如图,点G为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.如图,已知平面内A,B两点和线段m.(1)用尺规按下列要求作图:连接AB,并延长线段AB到C,使B是AC的中点;在射线AB上取一点E,使CE=m.(2)在完成(1)作图的条件下,如果AC=8,m=1.5,求BE的长度.【分析】(1)根据题意画出图形即可;(2)分点E在线段AC上与点E在线段AC的延长线上两种情况进行讨论.【解答】解:(1)如图所示,;(2)当点E在线段AC上时,∵点B是AC的中点,∴BC=AC=×8=4,∴BE=BC﹣CE=4﹣1.5=2.5;当点E在线段AC的延长线上时,BE=BC+CE=4+1.5=5.5.【点评】本题考查的是作图﹣基本作图,在解答此题时要注意进行分类讨论,不要漏解.22.如图,△ABC和△DCE都是等边三角形,且点C是线段AD的中点,请仅用无刻度直尺完成以下作图:(1)作BC的中点P;(2)过点C作AD的垂线.【分析】(1)直接利用等腰三角形的性质,得出BC的中点;(2)连接BD,AE,进而得出其交点,进而得出答案.【解答】解:(1)如图1所示:点P即为所求;;(2)如图2所示:CQ即为所求.【点评】此题主要考查了基本作图,正确掌握等边三角形的性质是解题关键.23.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB,并证明.作法:①以O为圆心,任意长为半径画弧分别交OA、OB于点M、N②画一条射线O′A′,以O′为圆心,OM长为半径画弧交O′A′于点M′③以点M′为圆心,MN长为半径画弧与第②步中所画弧交于点N′④过点N′画射线O′B′,则∠A′O′B′=∠AOB证明:【分析】根据作一个角等于已知角的步骤作出∠A′O′B′=∠AOB,再由SSS定理得出△OMN≌△O′M′N′,根据全等三角形的性质即可得出结论.【解答】解:作法:①以O为圆心,任意长为半径画弧分别交OA、OB于点M、N②画一条射线O′A′,以O′为圆心,OM长为半径画弧交O′A′于点M′③以点M′为圆心,MN长为半径画弧与第②步中所画弧交于点N′④过点N′画射线O′B′,则∠A′O′B′=∠AOB.故答案为:任意,OM,MN.证明:在△OMN与△O′M′N′,∵,∴△OMN≌△O′M′N′(SSS),∴∠A′O′B′=∠AOB.【点评】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的步骤及全等三角形的判定与性质是解答此题的关键.24.已知∠AOB,利用尺规,求作∠A′O′B′,使得∠A′O′B′=∠AOB(保留作图痕迹).【分析】先以O为圆心,任意长为半径画弧分别交OA、OB于点M、N;画一条射线O′A′,以O′为圆心,OM长为半径画弧交O′A′于点M′;以点M′为圆心,MN长为半径画弧与以OM为半径的弧交于点N′;过点N′画射线O′B′,则∠A′O′B′=∠AOB.【解答】解:如图所示∠A′O′B′=∠AOB.。
【精品】数学七年级下北师大版4.4用尺规作三角形同步练习1
用尺规作三角形一、选择题1.已知△ABC内部有一点P,且点P到边AB、AC、BC的距离都相等,则这个点是()A.三条角平分线的交点 B.三边高线的交点C.三边中线的交点 D.三边中垂线的交点2.(2017·广西南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A. ∠DAE=∠BB. ∠EAC=∠CC. AE∥BCD. ∠DAE=∠EAC3. (2018·台湾)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确()A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确4.已知:∠AOB作法:(1)作射线O'A'.(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.(3)以点O'为圆心,以OC长为半径作弧,交O’A'于C'.(4)以点C'为圆心,以CD长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线5. (2018·山东潍坊)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A. ∠CBD=30°B. S△BDC=34 AB2C. 点C是△ABD的外心D. sin2A+cos2D=16.已知:直线AB和AB上一点C(图3-44).作法:作平角ACB的平分线CF.CF就是所求的垂线.这个作图是()A.平分已知角B.作一个角等于已知角C.过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线7.已知△ABC,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作线段BD的垂直平分线交AB于点E,交BC于点F.由⑴、⑵可得:线段EF与线段BD的关系为()A.相等B.垂直C.垂直且相等D. 互相垂直平分8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,符合要求的作图是()9. 已知点A(4,2),B(-2,2),则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.以上都有可能10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS) C.(ASA) D.(AAS)二、填空题11垂直于一条线段并且平分这条线段的,叫做这条线段的垂直平分线,或中垂线.12.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则折痕BD的长为__________.13. (2018·内蒙古通辽)如图,在△ABC中,按以下步骤作图:①分别以点A和点C 为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为________.三、解答题BC’14.已知:线段A,∠α.求作:△ABC,使AB=AC=A,∠B=∠α.15.(2018·甘肃白银)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.16.尺规作图:如图,已知△ABC.求作△A1B1C1,使A1B1=AB,∠B1=∠B,B1C1=BC.(作图要求:不写作法,不证明,保留作图痕迹)CBA参考答案1. 答案: D解析:解答:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选D . 故选:D .分析:本题主要考查了作图—基本作图,而且是三条线段的垂直平分线的交点,在三角形中,经常最到这个问题,简单易答. 2. D分析:本题主要考查了作图—基本作图,简单易答,分析此问题的关键考虑到同样长的半径. 3. D 4. 答案:B解析:解答:这个作图题属于基本作图中的作一个角等于已知角. 故选:B .分析:本题主要考查了作图—基本作图中的作一个角等于已知角,问题简单易解.5. D6. 答案:C解析:解答:这个作图题属于基本作图中的过直线上一点作此直线的垂线.故选:C.分析:本题主要考查了作图—基本作图中的过直线上一点作此直线的垂线,问题简单易解.7. 答案:D解析:解答:∵E F是BD的垂直平分线∴EB=ED,FB=FD易证BE=BF∴EB=ED=FB=FD∴四边形EBFD是菱形∴EF与BD互相垂直平分故选:D.分析:本题主要考查了作图知识,而且考察了菱形的判定和性质,是一道立意较好的作图综合性题目8.答案:D解析:解答: D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.分析:本题主要考查了作图知识,解题的关键是根据作图得出PA=PB.要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.9. 答案:A解析:解答:A(4,2),B(-2,2)∴点A到x轴的距离为2,点B到x轴的距离为2且A、B都在x轴上方∴AB平行于x轴分析:此题是研究平面直角坐标系中,两个点所连线段与坐标轴的位置关系,需要对点到直线的距离有着明确地理解,而且此题属于较简单的判断线与坐标轴位置关系的一类问题。
北师大版七年级下册4.4 用尺规作三角形同步测试
4.4 用尺规作三角形(含答案)一.选择题:(四个选项中只有一个是正确的,选出正确答案填在题目括号内)1.已知三角形三边作三角形,用到的基本作图是( ) A .作一个角等于已知角 B .作已知线段的垂线C .作一条线段等于已知线段D .作一条线段等于已知线段的和 2.根据下列条件能作出唯一的三角形的是( )A .AB=5,BC=7,∠A=30°B .AB=4,BC=7,CA=9C .∠A=60°,∠B=45°,∠C=75°D .∠C=90°,AB=8 3.利用基本作图,不能作出唯一三角形的是( )A .已知三边B .已知两边及其夹角C .已知两角及其夹边D .已知两边及其中一边的对角 4.根据下列条件作出的三角形不唯一是( )A .AB=6,∠A=60°,∠C=40°B .AB=5,BC=4,CA=6C .AB=5,AC=4,∠C=40°D .∠A=50°,AB=8,AC=65.已知线段a ,b 和m ,求作△ABC ,使BC a =,AC b =,BC 边上的中线AD m =,作法合理的顺序依次为( )①延长CD 到B ,使BD CD =;②连接AB ;③作△ADC ,使12DC a =,AC b =,AD m =.A .③①②B .①②③C .②③①D .③②①6.如图是用直尺和圆规作一个角等于已知角的示意图,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .AASC .ASAD .SAS7.如图,小王做试题时,不小心把题目中的三角形用墨水弄污了一部分,他想在一张白纸上作一个完全一样的三角形,然后粘贴在上面,他作图的依据是( )DABC OO'A'B'C'D'A .SSSB .SASC .ASAD .AAS8.如图,△ABC 是不等边三角形,DE BC ,以D ,E 为两个顶点作位置不同的三角形,使所作△DEF 与△ABC 全等,这样的三角形最多可以画出( ) A .2个 B .4个 C .6个 D .8个第7题图 第8题图二.填空题:(把正确答案填在题目的横线上) 9.作三角形用到的基本作图是:(1)___________________________;(2)_______________________________; 10.尺规作三角形的类型:11. 如图,根据图中作图痕迹,可以得出作三角形的依据分别是:(1)__________;(2)___________;(3)__________;(图中虚线表示最后作出的线段)DAB C E12.如图,在△ABC ,∠C =90°,∠ABC =40°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径.画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 的长为半径画弧,两弧相交于点G ; ③作射线AG ,交BC 边于点D ,则∠ADC 的度数为 ;三.解答题:13.如图所示,已知线段AB ,∠α,∠β,分别过A 、B 作∠CAB=∠α,∠CBA=∠β; (不写作法,保留作图痕迹)14.已知:线段a 、c 、α∠;求作:△ABC ,使BC a =,AB c =,ABC α∠=∠;15.已知:线段a ,α∠,求作:ABC △,使AB AC a ==,B α∠=∠.16.如图,已知∠AOB ,按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E ;(2)分别以D ,E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C ;(3)画射线OC ;根据上述作图步骤,试说明为什么射线OC 平分∠AOB ?αca aα4.4 用尺规作三角形 参考答案:1~8 CBDCA ACB9.(1)作一个角等于已知角;(2)作一条线段等于已知线段; 10.SAS ,ASA ,SSS ;11.(1)SAS ;(2)SSS ;(3)ASA ; 12.65°; 13.作图略;14.如图△ABC 即为所求作:15.作图略; 16.连接CD 、CE , 可证 △OCD ≌△OCE∴∠DOC= ∠EOC ∴OC平分∠AOB;。
北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(1)
北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.填空题(共4小题)1.如图所示,求作一个角等于已知角∠AOB.作法:(1)作射线;(2)以为圆心,以为半径画弧,交OA于点C,交OB于点D;(3)以为圆心,以为半径画弧,交O′B′于点D′;(4)以点D′为圆心,以为半径画弧,交前面的弧于点C′;(5)过作射线O′A′.∠A′O′B′就是所求作的角.2.如图,使用直尺作图,看图填空:(1)过点和作直线AB;(2)连接线段;(3)以点为端点,过点作射线;(4)延长线段到,使BC=2AB.3.如图,使用圆规作图,看图填空:(1)在射线AM上线段=;(2)以点为圆心,以线段为半径作弧交于点;(3)分别以点和点为圆心,以大于PQ的长为半径作弧,两弧分别交于点和点;(4)以点为圆心,以任意长为半径作弧,分别交∠AOB两边,于点,点.4.要画出∠AOB的平分线,分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,那么∠AOB的平分线就是射线OP,要说明这个结论成立,可先说明△EOD ≌△,理由是,得到∠OED=∠,再说明△PEC≌△,理由是,得到PE=PF;最后说明△EOP≌△,理由是,从而说明了∠AOP=∠BOP,即OP平分∠AOB.二.解答题(共30小题)5.已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).6.已知:∠AOB,作出∠AOB的平分线OC.7.如图,已知点D为OB上的一点,按下列要求进行作图.(1)作∠AOB的平分线OC;(2)在OC上取一点P,使得OP=a;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE =PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP 的数量关系,并说明理由.8.如图,已知△ABC中,∠C=90°.在BC上求作点D,使AD=BD.当AC=4,CD=3时,求AB的长,(要求尺规作图,保留作图痕迹,不必写作法)9.已知:如图,在△ABC中,∠C=90°.(1)求作:△ABC的角平分线AD(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,求CD的长.10.如图,在△ABC中,请用两种方法作出BC边的中线AD.(用直尺和圆规作图,不写作法,保留作图痕迹)11.已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.12.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图.(不写作法,保留作图痕迹)①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并说明理由.13.如图,在△ABC中,∠C=90°,P是AB上任意一点(P与A不重合),PQ⊥BC,垂足为D.(1)操作:作∠BAC的平分线AE交PQ于点E(保留作图痕迹,不用写作法);(2)图中是否存在与AP相等的线段?若存在,请加以证明,若不存在,请说明理由.14.平面上有四个点A、B、C、D,按照以下要求作图:(1)连接AB并延长AB至E,使BE=AB;(2)作射线CB;(3)在直线BD上确定点G,使得AG+GC最短.15.如图所示,已知锐角∠AOB及一点P.(1)过点P作OA、OB的垂线,垂足分别是M、N;(只作图,保留作图痕迹,不写作法)(2)猜想∠MPN与∠AOB之间的关系,并证明.16.如图,∠AOB(1)用尺规作出∠AOB的平分线OD.(2)以OA为一边在∠AOB的外部画,∠AOB的余角∠AOC.(画图时不要求写出画法,但要保留画图痕迹)17.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.18.按要求完成下列问题如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB、CD交于E点,画线段AC、BD交于点F,并连接E、F交BC于点G;(2)连接AD,并在AD的反向延长线上截取一点M,使AM=AC;(3)画射线BC,并反射延长BC到N点,使BN=BC.19.如图:在∠AOB的边OB上有一点C.求证:过点C作CD∥OA(要求:尺规作图,不写作法,保留作图痕迹).20.如图,在Rt△ABC中,∠C=90°.(l)作∠ABC的角平分线BD交AC于点D;(要求:尺规作图,保留作图痕迹,不写作法)(2)若CD=3,AD=5,求AB的长.21.根据下列语句用圆规和直尺,在下面方框内作图,保留作图痕迹.已知:如图,∠MPN.求作:①∠AOB,使得∠AOB=∠MPN;②∠AOB的平分线OC.22.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.23.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.24.如图,已知∠AOB=120°.点C在∠AOB的内部,且∠BOC=30°;OP是∠AOB的角平分线.(1)作∠BOC;(2)尺规作图:作∠AOB的角平分线OP;(不写作法,保留作图痕迹.)(3)若射线OC、OA分别表示从点O出发的北、东两个方向,则射线OB表示方向;(4)在图中找出与∠AOP互余的角是;(5)在图中找出与∠AOB互补的角是.25.如图,直线AB、CD相交于O,P是CD上一点按要求画图并回答问题:(1)过P点画AB的垂线段PE,垂足为E;(2)过P点画CD的垂线段,与AB相交于F;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?26.如图,平面内有A,B,C,D四点,按下列语句画图.(1)画射线AB,直线BC,线段AC;(2)连接AD与BC相交于点E.27.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.28.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.29.如图,在△ABC中,∠ACB=90°.(1)用直尺和圆规过点C作边AB的垂线,交AB于点D(要求:不写作法,保留作图痕迹);(2)若AC=12,BC=5,求CD的长.30.已知∠AOB,求作∠A′O′B′=∠AOB,保留作图痕迹,并说明∠A′O′B′=∠AOB 的依据是.31.如图,在△ABC中,AB=3cm,AC=5cm.(1)作图:求作一条直线分别交AC,BC于点D、E.使得BD=CD,DE⊥BC.(用尺规作图法,保留作图痕迹,不要要求写作法):(2)在(1)的条件下,连接BD,求△ABD的周长.32.如图,直线AB、CD相交于点O,P是CD上一点,(1)过点P画PE⊥AB于E(2)过点P画PF⊥CD,与AB相交于点F(3)将线段PF、PE、FO从小到大排列为,这样排列的依据是.33.如图,用直尺和圆规作一个角等于已知角,使∠A′O′B′=∠AOB.34.尺规作图:已知∠AOB,求作∠A′O′B′.使∠A′O′B′=∠AOB.(保留作图痕迹,写出作法)北师大新版七年级下学期《4.4 用尺规作三角形》2019年同步练习卷参考答案与试题解析一.填空题(共4小题)1.如图所示,求作一个角等于已知角∠AOB.作法:(1)作射线O′B′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长(或OD的长)为半径画弧,交O′B′于点D′;(4)以点D′为圆心,以CD的长为半径画弧,交前面的弧于点C′;(5)过点C′作射线O′A′.∠A′O′B′就是所求作的角.【分析】求作一个角等于已知角∠AOB,只要在∠AOB的两边上取C,D,连接CD,在作射线O′B′,在O′B′上取点D′,使OD=O′D′,再利用圆的性质找出C′点,连接C′D′使△OCD≌△O′C′D′(SSS)即可.【解答】解:作法如下:(1)作射线O′B′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长(或OD的长)为半径画弧,交O′B′于点D′;(4)以点D′为圆心,以CD的长为半径画弧,交前面的弧于点C′;(5)过点C′作射线O′A′,则∠A′O′B′就是所求作的角.【点评】本题考查了运用三角形全等的判定与性质,结合圆的性质作等角的方法,需同学们熟练掌握.2.如图,使用直尺作图,看图填空:(1)过点A和B作直线AB;(2)连接线段AB;(3)以点O为端点,过点A作射线OA;(4)延长线段AB到C,使BC=2AB.【分析】(1)利用点与直线的位置关系即可求解;(2)连接线段AB即可;(3)利用射线的端点O积射线上的点A即可解决问题;(4)延长线段AB到C,使BC=2AB.【解答】解:(1)过点A和B作直线AB;(2)连接线段AB;(3)以点O为端点,过点A作射线OA;(4)延长线段AB到C,使BC=2AB.【点评】本题的解决需熟练掌握常见的作图语言.3.如图,使用圆规作图,看图填空:(1)在射线AM上截取线段AB=a;(2)以点A为圆心,以线段r为半径作弧交FB于点C;(3)分别以点P和点Q为圆心,以大于PQ的长为半径作弧,两弧分别交于点M和点N;(4)以点O为圆心,以任意长为半径作弧,分别交∠AOB两边OA,OB于点C,点D.【分析】(1)在射线AM上截取线段AB=a;(2)以点A为圆心,以线段r为半径作弧交FB于点C;(3)分别以点P和点Q为圆心,以大于PQ的长为半径作弧,两弧分别交于点M和点N;(4)以O点为圆心,以任意长为半径作弧,分别交∠AOB两边OA,OB于点C,点D.【解答】解:(1)截取,AB,a;(2)A,r,FB,C;(3)P,Q,M,N;(4)O,OA,OB,C,D.【点评】本题需熟练掌握作图语言才能解决问题.4.要画出∠AOB的平分线,分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,那么∠AOB的平分线就是射线OP,要说明这个结论成立,可先说明△EOD ≌△FOC,理由是SAS,得到∠OED=∠OFC,再说明△PEC≌△PFD,理由是ASA,得到PE=PF;最后说明△EOP≌△FOP,理由是SSS,从而说明了∠AOP=∠BOP,即OP平分∠AOB.【分析】求∠AOB的平分线可利用三角形全等的性质作图.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,∵OE=OF,∠EOF=∠EOF,OC=OD,∴△EOD≌△FOC,∠OED=∠OFC,在△PEC与△PFD中,∵∠OED=∠OFC,∠CPE=∠DPF,CE=DF,∴△PEC≌△PFD,故PE=PF,在△EOP与△FOP中,OE=OF,PE=PF,OP=OP,故△EOP≌△FOP,故∠AOP=∠BOP,即OP平分∠AOB.【点评】此题考查了利用三角形全等求角平分线的方法,比较简便,是常用的方法.二.解答题(共30小题)5.已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).【分析】根据过直线外一点作一直直线垂线的方法即可得出结论.【解答】解:如图所示,直线CD即为所求.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.6.已知:∠AOB,作出∠AOB的平分线OC.【分析】以点O为圆心,以任意长为半径画弧,与边OA、OB分别相交于点M、N,再以点M、N为圆心,以大于MN长为半径画弧,在∠AOB内部相交于点C,作射线OC 即为∠AOB的平分线.【解答】解:如图所示,OC即为所求作的∠AOB的平分线.【点评】本题考查了基本作图,主要是作角的平分线,是基本作图,需熟练掌握.7.如图,已知点D为OB上的一点,按下列要求进行作图.(1)作∠AOB的平分线OC;(2)在OC上取一点P,使得OP=a;(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OA上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间存在一定的数量关系,请写出∠OEP与∠ODP 的数量关系,并说明理由.【分析】(1)以点O为圆心,以任意长为半径画弧与∠AOB的两边分别相交,再以两交点为圆心,以大于两交点之间的距离的一半为半径画弧,相交于一点,过这一点与O作射线OC即可;(2)在OC上取一点P,使得OP=a;(3)以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN ⊥OB于N,根据角平分线上的点到角的两边的距离相等可得PM=PN,利用HL证明△E2PM≌△DPN,得出∠OE2P=∠ODP,再根据平角的定义即可求解.【解答】解:(1)如图,OC即为所求;(2)如图,OP=a;(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.理由是:以O为圆心,以OD为半径作弧,交OA于E2,连接PE2,作PM⊥OA于M,PN⊥OB于N,则PM=PN.在△E2PM和△DPN中,,∴△E2PM≌△DPN(HL),∴∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OA于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°.【点评】本题主要考查了角平分线的作法,作一个角等于已知角,过直线外一点作已知直线的垂线,都是基本作图,需要熟练掌握,另外还考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质.8.如图,已知△ABC中,∠C=90°.在BC上求作点D,使AD=BD.当AC=4,CD=3时,求AB的长,(要求尺规作图,保留作图痕迹,不必写作法)【分析】作AB的垂直平分线交BC于D,连接AD,先利用勾股定理计算出AD,从而得到BC的长,然后再利用勾股定理计算AB.【解答】解:如图,点D为所作,在Rt△ACD中,AD==5,∵AD=BD=5,∴BC=3+5=8,在Rt△ACB中,AB=42+82=4.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)9.已知:如图,在△ABC中,∠C=90°.(1)求作:△ABC的角平分线AD(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB于点E,根据角平分线性质知DE=DC,继而可得AE=AC=6,设DE =DC=x,则BD=8﹣x,在Rt△BED中利用勾股定理可得x的值.【解答】解:(1)如图:(2)过点D作DE⊥AB于E.∵DE⊥AB,∠C=90°∴由题意可知DE=DC,∠DEB=90°又∵DE=DC,AD=AD∴AD2﹣ED2=AD2﹣DC2∴AE=AC=6∵AB=10,∴BE=AC﹣AE=4设DE=DC=x,则BD=8﹣x∴在Rt△BED中,(8﹣x)2=16+x2∴x=3,∴CD=3.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质、勾股定理等.10.如图,在△ABC中,请用两种方法作出BC边的中线AD.(用直尺和圆规作图,不写作法,保留作图痕迹)【分析】作BC的垂直平分线得到BC的中点,从而得到中线AD,如图1;分别以B、C 为圆心,AC、AB为半径画弧得到平行四边形,然后利用平行四边形的性质得到中线AD.【解答】解:如图1,如图2,AD为所作.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).11.已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.【分析】(1)如图1,作BC的垂直平分线得到BC的中点D,从而得到BC边上的中线AD;(2)延长AD到E,使ED=AD,连接EB、EC,如图2,通过证明四边形ABEC为矩形得到AE=BC,从而得到BC=2AD.【解答】(1)解:如图1,AD为所作;(2)证明:延长AD到E,使ED=AD,连接EB、EC,如图2,∵CD=BD,AD=ED,∴四边形ABEC为平行四边形,∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的判定与性质.12.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图.(不写作法,保留作图痕迹)①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并说明理由.【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1=∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.【解答】解:(1)如图所示.(2)BD=DE.理由如下:∵BD平分∠ABC,∴∠1=∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1=∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3=∠4.∴∠1=∠3.∴BD=DE.【点评】此题主要考查了复杂作图,以及等腰三角形的性质,关键是正确画出图形,掌握等边对等角和等角对等边.13.如图,在△ABC中,∠C=90°,P是AB上任意一点(P与A不重合),PQ⊥BC,垂足为D.(1)操作:作∠BAC的平分线AE交PQ于点E(保留作图痕迹,不用写作法);(2)图中是否存在与AP相等的线段?若存在,请加以证明,若不存在,请说明理由.【分析】(1)利用尺规作出∠CAB的平分线即可;(2)存在.结论:P A=PE,只要证明∠P AE=∠PEA即可;【解答】解:(1)∠BAC的平分线如图所示;(2)存在.P A=PE.理由:∵PD⊥BC,∴∠C=∠PDB=90°,∴AC∥PE,∴∠CAE=∠AEP,∵∠EAB=∠EAC,∴∠P AE=∠PEA,∴P A=PE.【点评】本题考查作图、平行线的判定和性质、等腰三角形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.14.平面上有四个点A、B、C、D,按照以下要求作图:(1)连接AB并延长AB至E,使BE=AB;(2)作射线CB;(3)在直线BD上确定点G,使得AG+GC最短.【分析】(1)连接AB并延长AB至E,使BE=AB即可;(2)作射线CB即可;(3)连接AC交BD于点G,则点G即为所求.【解答】解:(1)如图;(2)如图,射线CB即为所求;(3)如图,点G即为所求.【点评】本题考查的是作图﹣基本作图,熟知直线、射线的作法是解答此题的关键.15.如图所示,已知锐角∠AOB及一点P.(1)过点P作OA、OB的垂线,垂足分别是M、N;(只作图,保留作图痕迹,不写作法)(2)猜想∠MPN与∠AOB之间的关系,并证明.【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【解答】解:(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠AMJ=∠JNO=90°,∴∠MPN=∠AOB.【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,∠AOB(1)用尺规作出∠AOB的平分线OD.(2)以OA为一边在∠AOB的外部画,∠AOB的余角∠AOC.(画图时不要求写出画法,但要保留画图痕迹)【分析】(1)利用角平分线的作法得出OD即可;(2)直接利用余角的定义进而得出符合题意的答案.【解答】解:(1)如图所示:OD即为所求;(2)如图所示:∠AOC即为所求.【点评】此题主要考查了基本作图以及余角的定义,正确掌握基本作图方法是解题关键.17.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有5条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.【分析】(1)根据题意画图即可;(2)连接AC、BD,交点记作O;(3)延长AD、BC,两延长线的交点记作P;(4)根据图形可得答案;(5)利用圆规在线段BC上截取即可.【解答】解:(1)(2)(3)(5)如图所示:(4)点C为一个端点的线段有AC,CD,CP,CB,CM,共5条,故答案为:5.【点评】此题主要考查了基本作图,关键是掌握线段有两个端点,本身不能向任何一方延伸.18.按要求完成下列问题如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB、CD交于E点,画线段AC、BD交于点F,并连接E、F交BC于点G;(2)连接AD,并在AD的反向延长线上截取一点M,使AM=AC;(3)画射线BC,并反射延长BC到N点,使BN=BC.【分析】(1)根据直线、线段的定义即可解决问题;(2)根据线段的性质即可解决问题;(3)根据射线的定义即可解决问题;【解答】解:(1)直线AB、CD等如图所示;(2)M如图所示;(3)射线BC,点N如图所示;【点评】本题考查基本作图、直线、线段、射线的定义等知识,解题的关键是理解题意,属于中考常考题型.19.如图:在∠AOB的边OB上有一点C.求证:过点C作CD∥OA(要求:尺规作图,不写作法,保留作图痕迹).【分析】作∠DCB=∠O即可.【解答】解:如图,CD为所作.【点评】本题考查了基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.20.如图,在Rt△ABC中,∠C=90°.(l)作∠ABC的角平分线BD交AC于点D;(要求:尺规作图,保留作图痕迹,不写作法)(2)若CD=3,AD=5,求AB的长.【分析】(1)利用尺规作出∠ABC的平分线即可;(2)只要证明△BDE≌△BDC,推出CD=DE=3,BC=BE,设BC=BE=x,在Rt△ADE中,AE==4,在Rt△ABC中,根据AC2+BC2=AB2,构建方程即可解决问题;【解答】解:(1)∠ABC的角平分线BD如图所示;(2)作DE⊥AB于E.∵BD平分∠ABC,∴∠DBE=∠DBC,∠DEB=∠C=90°,∵BD=BD,∴△BDE≌△BDC,∴CD=DE=3,BC=BE,设BC=BE=x,在Rt△ADE中,AE==4,在Rt△ABC中,∵AC2+BC2=AB2,∴x2+82=(x+4)2,∴x=6,∴AB=BE+AE=4+6=10.【点评】本题考查作图﹣基本作图,角平分线的性质定理,勾股定理等知识,解题的关键是熟练掌握五种基本作图,学会利用参数构建方程解决问题.21.根据下列语句用圆规和直尺,在下面方框内作图,保留作图痕迹.已知:如图,∠MPN.求作:①∠AOB,使得∠AOB=∠MPN;②∠AOB的平分线OC.【分析】利用基本作图(作一个角等于已知角和作已知角的角平分线)作∠AOB=∠MPN 和作OC平分∠AOB.【解答】解:如图,∠AOB和OC为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.【分析】(1)过点P作∠PQA=∠DCA即可.(2)过点P作∠QPR=90°即可.【解答】解:每对一问得(3分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(3分)(2)过点P作PR⊥CD,垂足为R.(6分)【点评】本题主要考查了最基本的作图﹣﹣﹣﹣平行线和垂线的画法.23.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.【分析】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【解答】解:作法:①做∠DO'B'=∠AOB;②在∠DO'B'的外部做∠A'OD=∠AOB,∠A'O'B'就是所求的角.【点评】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.24.如图,已知∠AOB=120°.点C在∠AOB的内部,且∠BOC=30°;OP是∠AOB的角平分线.(1)作∠BOC;(2)尺规作图:作∠AOB的角平分线OP;(不写作法,保留作图痕迹.)(3)若射线OC、OA分别表示从点O出发的北、东两个方向,则射线OB表示北偏西30°方向;(4)在图中找出与∠AOP互余的角是∠BOC和∠COP;(5)在图中找出与∠AOB互补的角是∠AOP和∠BOP.【分析】(1)以OB为边,在∠AOB的内部画∠BOC=30°;(2)利用尺规作图的方法,作∠AOB的角平分线OP;(3)把OC、OA看做方向标,那么OB指的是北偏西30°方向;(4)互余角是指两角角度和为90度,这两个角叫互为余角,据此找出;(5)互补角是指两角角度和为180度,这两个角叫互为补角,根据图形中角的度数特点即可解决.【解答】解:(1)以OB为边,在∠AOB的内部画∠BOC=30°,如图所示;(2)画出∠AOB的角平分线OP如图所示;(3)把射线OC、OA看做方向标,分别表示从点O出发的北、东两个方向,则射线OB 表示北偏西30°方向;(4)∠BOC=30°,∠AOP=∠BOP=60°,则∠C0P=60°﹣30°=30°,所以可得:∠AOP+∠BOC=90°,∠AOP+∠COP=90°所以∠AOP的余角是∠BOC和∠COP;(5)因为∠AOB=120°所以∠AOB+∠AOP=180°,∠AOB+∠BOP=180°,所以∠AOB的补角是:∠AOP和∠BOP.故答案为:(3)北偏西30°;(4)∠BOC和∠COP;(5)∠AOP和∠BOP.【点评】此题考查了画已知度数的角;利用尺规作图画角的平分线;根据方向标和角的度数表示方向;以及求一个角的余角和补角的方法的灵活应用.25.如图,直线AB、CD相交于O,P是CD上一点按要求画图并回答问题:(1)过P点画AB的垂线段PE,垂足为E;(2)过P点画CD的垂线段,与AB相交于F;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?【分析】(1)过直线外一点作已知直线的垂线即可得;(2)过直线上一点作已知直线的垂线可得;(3)根据点到直线上所有点的连线中垂线段最短解答可得.【解答】解:(1)如图,垂线段PE即为所求;(2)如图,垂线段PF即为所求;(3)PE<PO<FO,∵PE⊥AB,∴PE<PO,∵OP⊥PF,∴PO<OF,∴PE<PO<FO.【点评】本题主要考查作图﹣基本作图,熟练掌握作已知直线的垂线的尺规作图和垂线段的性质是解题的关键.26.如图,平面内有A,B,C,D四点,按下列语句画图.(1)画射线AB,直线BC,线段AC;(2)连接AD与BC相交于点E.【分析】(1)画射线AB,以A为端点向AB方向延长;画直线BC,连接BC并向两方无限延长;画线段AC,连接AB即可;(2)连接各点,其交点即为点E.【解答】解:画射线AB;画直线BC;画线段AC;连接AD与BC相交于点E.(8分)【点评】解答此题,要熟悉直线、射线、线段的概念,并熟悉基本工具的用法.27.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.【分析】(1)根据射线、直线的定义画出图形即可.(2)连接MN并延长MN至点R,截取NR=MN即可.(3)由题意可知∠PNR=∠PNM+100°,∠PNR+∠PNM=180°,即∠PNM+(∠PNM+100°)=180°,由此即可解决问题【解答】解:(1)射线NP、直线MP如图所示.(2)连接MN并延长MN至点R,使NR=MN,点R即为舍弃(如图).(3)∵∠PNR=∠PNM+100°,∠PNR+∠PNM=180°,∴∠PNM+(∠PNM+100°)=180°,∴2∠PNM=80°,∴∠PNM=40°.【点评】本题考查作图﹣基本作图、邻角互补等知识,解题的关键是熟练掌握射线、直线、线段的定义,学会用方程的思想思考问题,属于中考常考题型.28.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.【分析】(1)用角的度数除以转动速度即可得;(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;(3)∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=秒;如图:【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.29.如图,在△ABC中,∠ACB=90°.(1)用直尺和圆规过点C作边AB的垂线,交AB于点D(要求:不写作法,保留作图痕迹);(2)若AC=12,BC=5,求CD的长.【分析】(1)以点C为圆心,以任意长为半径画圆,交BA于点EF,再作EF的垂直平分线即可;(2)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论.【解答】解:(1)如图,线段CD即为所求;(2)∵在△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13,∴CD===.【点评】本题考查的是作图﹣基本作图,熟知过直线外一点作已知直线垂线的方法是解答此题的关键.30.已知∠AOB,求作∠A′O′B′=∠AOB,保留作图痕迹,并说明∠A′O′B′=∠AOB 的依据是SSS.。
北师大版七年级下册 4.4 用尺规作三角形 同步练习
第四章 三角形4.4 用尺规作三角形教学目标:1、会根据已知边、角作三角形一、知识点讲授:1. 已知三角形的两边及其夹角,求作这个三角形。
已知:线段a 、c ,∠α。
求作:△,使a ,c ,∠∠α。
2. 已知三角形的两角及其夹边,求作这个三角形。
已知:∠α、∠β和线段c 。
求作:△,使∠∠α,∠∠β,c 。
3. 已知三角形的三边,求作这个三角形。
已知:线段a 、b 、c 。
求作:△,使c ,b ,a 。
二、合作演练:1. 已知:线段a 、b 、∠α 。
求作:△,使得∠∠α ,a ,b 。
2. 已知:线段a 。
求作:△,使得a ,2a 。
3. 已知:线段a 、∠α 。
求作:△,使得a ,∠∠α,∠2∠α。
4. 如下图中的网格中画△,使得△≌△。
三、独立训练:1. 尺规作图的画图工具是( )A 、刻度尺、量角器B 、三角板、量角器C 、直尺、量角器D 、没有刻度的直尺和圆规2. 已知:∠1,线段a 、b 。
求作:△,使得∠∠1,,b 。
3. 已知:线段a 、b 以及∠α,求作:△,使得a ,b ,∠∠α。
4. 已知:线段a 和∠α,作一个△,使得a ,2a ,∠∠α。
5. 已知:线段a 、锐角∠α、直角∠β。
求作:△,使得∠∠α,∠∠β ,a 。
6. 已知:α∠、β∠、线段a 。
求作:△,使得∠B =∠α,∠C =∠β,2a 。
7. 已知:线段a 、b 。
求作:△,使得a ,b 。
8. 已知:∠α和线段c 。
求作:等腰△,使其顶角∠∠α,腰长为c 。
最新北师版初中七年级数学下册《用尺规作三角形》同步练习2
3.4 用尺规作三角形1.选择题(1)用尺规作图,下列条件中可能作出两个三角形的是( )A .已知两边和夹角B .已知两边及其一边的对角C .已知两角和夹边D .已知三条边(2)如图,在ABC ∆中BC 边上的高是( )A .CEB .CFC .AD D .AC2.作出下列三角形(1)ABC ∆中,cm 6,cm 5,cm 4===BC AC AB ;(2)ABC ∆中,3,30,120=︒=∠︒=∠AB B A cm ;(3)ABC ∆中,︒=∠==50,cm 7,cm 4A AC AB ;(4)ABC ∆中, 3,45,45=︒=∠︒=∠BC B A cm .3.已知:两条直角边分别为a 、c ,求作一个直角三角形(保留作图痕迹)4.已知线段a 、b ,求作ABC ∆,使得a AC b BC a AB ===,,25.作出下列三角形(1)ABC ∆中,︒=∠==30,cm 3,cm 5B AC AB ;(2)ABC ∆中,BC B ,30︒=∠边上的高cm 7,cm 4==AC h .6.亮亮书上的三角形被墨迹污染了一部分,他想在作业本上画一个与书上完全一样的三角形,他该怎么办?你能帮助他画出来吗?参考答案1.(1)B (2)C2.略3.∴Rt ABC∆即为所求作三角形4.∴ABC∆即为所求作三角形5.(1)提示:先作︒=AB cm,以A为圆心,以∠30=EBF,在BF上截取53cm为半径画弧交AA'就得到所求作三角形.∠的对于C、C'点,连结AC、C(2)提示:先作一条直线,在直线上任取一点作这条直线的垂线段等于4cm,这就是这个三角形的高.6.则ABC∆与书上三角形完全一样学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
天不言自高,地不语自厚。
2、学习如钻探石油,钻得愈深,愈能找到知识的精髓。
先学爬,然后学走。
北师大版初中数学七年级下册《4.4 用尺规作三角形》同步练习卷(含答案解析
北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷一.选择题(共14小题)1.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°2.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA3.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.AAS5.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①6.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°7.如图,用尺规作出∠OBF=∠AOB,所画痕迹是()A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.9.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.10.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS11.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS12.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④13.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.14.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC 于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是()A.20°B.25°C.30°D.40°二.填空题(共4小题)15.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.16.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F 为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.17.如图,依据尺规作图的痕迹,计算∠α=°.18.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.三.解答题(共22小题)19.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)20.如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到直线的距离,线段的长度是点C 到直线OB的距离;(4)线段PC、PH、OC这三条线段大小关系是.(用“<”号连接)21.作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.22.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.23.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.24.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.25.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.26.如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.27.作图并填空:如图,在∠AOB中,点P在边OB上,(1)过点P分别作直线OB、直线OA的垂线,交直线OA于点M、N;(2)点P到直线OA的距离是线段的长度;(3)点O到直线PN的距离是线段的长度.28.如图,在方格纸中,直线m与n相交于点C,(1)请过点A画直线AB,使AB⊥m,垂足为点B;(2)请过点A画直线AD,使AD∥m;交直线n于点D;(3)若方格纸中每个小正方形的边长为1,求四边形ABCD的面积.29.如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,∠BOC=70°(1)画出∠BOC的平分线OE;(2)求∠COD和∠DOE的度数.30.如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=°;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为.31.已知∠α、∠β,求作:∠AOB,使∠AOB=∠α+∠β(保留作图痕迹).32.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?33.如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.34.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.35.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.36.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.37.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD 的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)38.读题、画图、计算并作答:画线段AB=3cm,在线段AB上取一点K,使AK=BK,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线上取一点D,使AD=AB.(1)求线段BC、DC的长;(2)点K是哪些线段的中点.39.根据要求画图,并回答问题.已知:直线AB、CD相交于点O,且OE⊥AB(1)过点O画直线MN⊥CD;(2)若点F是(1)所画直线MN上任意一点(O点除外),且∠AOC=34°,求∠EOF的度数.40.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.北师大新版七年级下学期《4.4 用尺规作三角形》同步练习卷参考答案与试题解析一.选择题(共14小题)1.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.【点评】此题主要考查了基本作图,关键是掌握角平分线的作法,以及直角三角形的性质.关键是掌握直角三角形两锐角互余.2.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.【点评】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.3.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】运用作一个角等于已知角可得答案.【解答】解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.故选:D.【点评】本题主要考查了作图﹣基本作图,解题的关键是熟习作一个角等于已知角的方法.4.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.AAS【分析】根据角平分线的作图方法解答.【解答】解:根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”.故选:B.【点评】本题考查了全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.5.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①【分析】找出依据即可依此画出.【解答】解:角平分线的作法是:在OA和OB上分别截取OD,OE,使OD=OE;分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C;作射线OC.故其顺序为②③①.故选:C.【点评】本题很简单,只要找出其作图依据便可解答.6.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°【分析】首先根据作图过程得到MN垂直平分AB,然后利用中垂线的性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.【解答】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故选:A.【点评】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.7.如图,用尺规作出∠OBF=∠AOB,所画痕迹是()A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧【分析】根据作一个角等于已知角的作法进行解答即可.【解答】解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选:D.【点评】本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【点评】此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.9.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】此题考查了作图﹣基本作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.10.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选:D.【点评】本题考查的是作图﹣基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【分析】先证明三角形全等,再利用全等的性质证明角相等.【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.【点评】本题考查作图﹣基本作图、全等三角形的判定和性质,解题的关键是灵活应用所学知识解决问题,属于基础题.12.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.【点评】此题主要考查了基本作图,正确把握作图方法是解题关键.13.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选:B.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图14.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC 于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是()A.20°B.25°C.30°D.40°【分析】根据题意可得AH平分∠CAB,再根据平行线的性质可得∠CAB的度数,再根据角平分线的性质可得答案.【解答】解:由题意可得:AH平分∠CAB,∵AB∥CD,∴∠C+∠CAB=180°,∵∠ACD=140°,∴∠CAB=40°,∵AH平分∠CAB,∴∠HAB=20°,∴∠AHC=20°.故选:A.【点评】此题主要考查了平行线的性质,以及角平分线的作法,关键是掌握两直线平行,同旁内角互补,以及角平分线的做法.二.填空题(共4小题)15.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.16.如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F 为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为100°.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,故答案是:100.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键.17.如图,依据尺规作图的痕迹,计算∠α=56°.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.18.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是50°.【分析】由作图可知,MN是线段AC的垂直平分线,故可得出结论.【解答】解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50°,故答案为:50.【点评】本题考查的是线段垂直平分线的性质以及勾股定理的应用,熟知线段垂直平分线的性质是解答此题的关键.三.解答题(共22小题)19.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)【分析】(1)分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN就是所求的直线;(2)以点A为圆心,任意长为半径画弧,交AB,AC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线AE交AB于D即可.【解答】解:如图所示:【点评】本题考查李三角形角平分线及边垂直平分线的画法;掌握角平分线与线段垂直平分线的作法是解决本题的关键.20.如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到直线AO的距离,线段PC的长度是点C到直线OB的距离;(4)线段PC、PH、OC这三条线段大小关系是PH<PC<OC.(用“<”号连接)【分析】(1)(2)根据网格画图即可;(3)根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离可得答案;(4)根据垂线段最短进行比较即可.【解答】解:(1)如图所示;(2)如图所示;(3)线段PH的长度是点P到直线AO的距离,线段PC的长度是点C到直线OB 的距离;(4)根据垂线段最短可得PH<PC<OC.【点评】此题主要考查了基本作图,关键是掌握点到直线的距离:直线外一点到直线的垂线段的长度.21.作图题(要求:用尺规作图,保留作图痕迹,不写作法和证明)已知:(如图)线段a和∠α,求作:△ABC,使AB=AC=a,∠A=∠α.【分析】可做∠A=∠α,然后在∠A的两边上分别截取AC=AB=a,连接BC即可.【解答】解:【点评】本题考查作图﹣基本作图,用到的知识点为:边角边可判定两三角形全等;注意先画一个角等于已知角.22.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.【分析】(1)根据平行线的性质,可得∠AEB=∠EBC,根据角平分线的性质,可得∠EBC=∠ABE,根据等腰三角形的判定,可得答案;(2)根据三角形的内角和定理,可得∠AEB,根据平行线的性质,可得答案.【解答】(1)证明:∵AD∥BC,∴∠AEB=∠EBC.由BE是∠ABC的角平分线,∴∠EBC=∠ABE,∴∠AEB=∠ABE,∴AB=AE;(2)由∠A=100°,∠ABE=∠AEB,得∠ABE=∠AEB=40°.由AD∥BC,得∠EBC=∠AEB=40°.【点评】本题考查了等腰三角形的判定,利用了平行线的性质,角平分线的性质,等腰三角形的判定.23.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.【分析】分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N 两点;作直线MN,MN即为线段AB的垂直平分线.【解答】解:作法:(1)分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;(2)作直线MN,MN即为线段AB的垂直平分线.【点评】本题考查的是基本作图,熟知线段垂直平分线的作法是解答此题的关键.24.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.【分析】(1)利用基本作图(作已知角的角平分线)作BQ平分∠ABC即可;(2)证明∠AQP=∠AQP即可.【解答】(1)解:如图所示,BQ为所求作;(2)证明:∵BQ平分∠ABC,∴∠ABQ=∠CBQ,∵∠BAC=90°∴∠AQP+∠ABQ=90°,∵AD⊥BC,∴∠ADB=90°,∴∠CBQ+∠BPD=90°,∵∠ABQ=∠CBQ,∴∠AQP=∠BPD,又∵∠BPD=∠APQ,∴∠AQP=∠AQP,∴AP=AQ.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).25.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.【分析】(1)直接利用线段垂直平分线的性质得出符合题意的图形;(2)直接利用等腰三角形的性质结合三角形内角和定理得出答案.【解答】解:(1)如图所示:(2)设∠A=x,∵AD=BD,∴∠DBA=∠A=x,在△ABD中∠BDC=∠A+∠DBA=2x,又∵BD=BC,∴∠C=∠BDC=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,∴x=36°.【点评】此题主要考查了基本作图、等腰三角形的性质以及三角形内角和定理,正确掌握线段垂直平分线的性质是解题关键.26.如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.【分析】(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:(1)如图所示:PQ即为所求;(2)如图所示:PR即为所求;(3)∠PQC=60°理由:∵PQ∥CD,∴∠DCB+∠PQC=180°,∵∠DCB=120°,∴∠PQC=180°﹣120°=60°.【点评】本题主要考查了基本作图,熟练掌握基本作图,并能利用平行线的性质来解决问题是解题关键.27.作图并填空:如图,在∠AOB中,点P在边OB上,(1)过点P分别作直线OB、直线OA的垂线,交直线OA于点M、N;(2)点P到直线OA的距离是线段PN的长度;(3)点O到直线PN的距离是线段ON的长度.【分析】(1)首先利用直尺和三角板做出图形,然后再表上垂足和直角符号;(2)、(3)根据点到直线的距离的定义解答即可.【解答】解:(1)如图所示:(2)点P到直线OA的距离是PN线段的长度;(3)点O到直线PN的距离是线段ON的长度.【点评】本题主要考查的是点到直线的距离,掌握垂线的做法和点到直线的距离的定义是解题的关键.28.如图,在方格纸中,直线m与n相交于点C,(1)请过点A画直线AB,使AB⊥m,垂足为点B;(2)请过点A画直线AD,使AD∥m;交直线n于点D;(3)若方格纸中每个小正方形的边长为1,求四边形ABCD的面积.【分析】(1)(2)根据网格结构作出AB⊥m,AD∥m即可;。
北师大版七年级下册数学4用尺规作三角形同步测试题
《用尺规作三角形》练习一、选择——基础知识运用1.一个角的平分线的尺规作图的理论依据是()A.SAS B.SSS C.ASA D.AAS2.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线3.已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A.SAS B.ASA C.AAS D.SSS4.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三边C.三角形的两个角和它们的夹边D.三角形的三个角5.利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A.已知三条边B.已知三个角C.已知两角和夹边D.已知两边和夹角二、解答——知识提高运用6.作图:画一个三角形与△ABC全等,保留作图痕迹。
7.已知线段BC=2,用尺规作△ABC,使∠A=45°,你能作出多少个满足条件的三角形?8.如图,已知a和∠α,用尺规作一个三角形ABC,使AB=AC=2a,∠BAC=180°-∠α。
9.尺规作图:小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想办法用尺规作图画一个出来,并说明,你的理由.10.作图:求作一个三角形,使它的两边分别为a和2a,其夹角为∠α。
(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法)11.利用尺规,用三种不同的方法作一个是三角形与已知直角三角形ABC全等,并简要说明理由。
参考答案一、选择——基础知识运用1.【答案】B【解析】连接NC,MC,在△ONC和△OMC中,∵ON=OM ,NC=MC,OC=OC ,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用尺规作三角形》一、选择题1.已知△ABC内部有一点P,且点P到边AB、AC、BC的距离都相等,则这个点是()。
A.三条角平分线的交点B.三边高线的交点C.三边中线的交点D.三边中垂线的交点2.已知:线段AB作法:(1)分别以点A和B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.(2)作直线CD.直线CD就是线段AB的().A.中线B.高线C.中垂线D.不确定3.数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形.这样的三角形最多能画( )个.A.1 B.2 C.3 D.44.已知:∠AOB作法:(1)作射线O'A'.(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.(3)以点O'为圆心,以OC长为半径作弧,交O’A'于C'.(4)以点C'为圆心,以CD长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线5.已知:∠AOB(图3-43).作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于1DE的长为半径作弧,在∠AOB内,两弧交于点C.2(3)作射线OC.OC就是所求的射线.这个作图是()A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线6.已知:直线AB和AB上一点C(图3-44).作法:作平角ACB的平分线CF.CF就是所求的垂线.这个作图是()A.平分已知角B.作一个角等于已知角C.过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线7.已知△ABC,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作线段BD的垂直平分线交AB于点E,交BC于点F.由⑴、⑵可得:线段EF与线段BD的关系为( )A.相等B.垂直C.垂直且相等D. 互相垂直平分8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,符合要求的作图是()9. 已知点A(4,2),B(-2,2),则直线AB ( )A.平行于x轴B.平行于y轴C.经过原点D.以上都有可能10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)11.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲) 作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求. (乙) 作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.则A. 两人都正确B.两人都错误C. 甲正确,乙错误D. 甲错误,乙正确。
12.如图,已知△ABC,别以A、C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连结AD,CD,则有( )A.∠ADC与∠BAD相等B.∠ADC与∠BAD互补C.∠ADC与∠ABC互补D.∠ADC与∠ABC互余13.尺规作图是指A.用直尺规范作图B.用刻度尺和尺规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具14.如图,已知△ABC,∠C=90°,按下列要求作图(尺规作图,保留作图痕迹):①作∠B的平分线,与AC相交于点D;②在AB边上取一点E,使BE=BC;③连结ED.根据所作图形,可以得到:A.AD=BD B.∠A=∠CBD C.△EBD≌△CBD D.AD=BC15. 已知:直线AB和AB外一点C(图3-45).作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F.(4)作直线CF.直线CF就是所求的垂线.这个作图是()BACA BCPA.平分已知角B.作一个角等于已知角C.过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线二、填空题16.垂直于一条线段并且平分这条线段的,叫做这条线段的垂直平分线,或中垂线.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD 折叠,使点C落在边AB上的点C′处,则折痕BD的长为__________.18.已知:AOB∠,求作AOB∠的平分线;根据第16题图所示,填写作法:②.②.③.19.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是()BC’20.如图,AB、AC分别是菱形ABCD的一条边和一条对角线,请用尺规把这个菱形补充完整。
作法:(1)连结BC(2)分别以A、C为圆心,( )为半径画弧在AC的另一侧交于点D.(3)连结AD、CD、BC则四边形ABCD即为所求作的菱形三、解答题21.已知:线段A,∠α.求作:△ABC,使AB=AC=A,∠B=∠α.22.如图, 在平面直角坐标系xOy 中, 点A (0,8), 点B (6 , 8 ).(1) 只用直尺(没有刻度)和圆规, 求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹, 不必写出作法):①点P 到A ,B 两点的距离相等;②点P 到∠xOy 的两边的距离相等.(2) 在(1)作出点P 后, 写出点P 的坐标.23.尺规作图:如图,已知△ABC .求作△A 1B 1C 1,使A 1B 1=AB ,∠B 1=∠B ,B 1C 1=BC .(作图要求:不写作法,不证明,保留作图痕迹)C BA24.求作等腰三角形,使它的底边和底边上的高等于同一条已知线段。
25.如图,有分别过A 、B 两个加油站的公路1l 、2l 相交于点O ,现准备在∠AOB 内建一个油库,要求油库的位置点P 满足到A 、B 两个加油站的距离相等,而且P 到两条公路1l 、2l 的距离也相等。
请用尺规作图作出点P (不写作法,保留作图痕迹).答案与解析一、选择题1. 答案:D解析:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选D.故选:D .分析:本题主要考查了作图—基本作图,而且是三条线段的垂直平分线的交点,在三角形中,经常最到这个问题,简单易答.2. 答案:C解析:本作图属于作图中的基本作图,作一条已知线段的垂直平分线,故选C.故选:C .分析:本题主要考查了作图—基本作图,简单易答,分析此问题的关键考虑到同样长的半径.3.答案:C解析:作图有以下几种情况:LNLNLN故选:C .分析:本题主要考查了作图—基本作图,且考察了对等腰直角三角形的理解,问题中容易忽视的是射线AN,而不是直线AN.4. 答案:B解析:这个作图题属于基本作图中的作一个角等于已知角.故选:B .分析:本题主要考查了作图—基本作图中的作一个角等于已知角,问题简单易解.5. 答案:A解析:这个作图题属于基本作图中的平分已知角.故选:A.分析:本题主要考查了作图—基本作图中的平分已知角,问题简单易解.6. 答案:C解析:这个作图题属于基本作图中的过直线上一点作此直线的垂线.故选:C.分析:本题主要考查了作图—基本作图中的过直线上一点作此直线的垂线,问题简单易解.7. 答案:D解析:∵E F是BD的垂直平分线∴EB=ED,FB=FD易证BE=BF∴EB=ED=FB=FD∴四边形EBFD是菱形∴EF与BD互相垂直平分故选:D.分析:本题主要考查了作图知识,而且考察了菱形的判定和性质,是一道立意较好的作图综合性题目8.答案:D解析:D选项中作的是AB的中垂线,∴P A=PB,∵PB+PC=BC,∴P A+PC=BC故选:D.分析:本题主要考查了作图知识,解题的关键是根据作图得出P A=PB.要使P A+PC=BC,必有P A=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.9. 答案:A解析:A(4,2),B(-2,2)∴点A到x轴的距离为2,点B到x轴的距离为2且A、B都在x轴上方∴AB平行于x轴分析:此题是研究平面直角坐标系中,两个点所连线段与坐标轴的位置关系,需要对点到直线的距离有着明确地理解,而且此题属于较简单的判断线与坐标轴位置关系的一类问题。
10.答案:B解析:作图的步骤:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以C′为圆心,CD长为半径画弧,交前弧于点D′;(4)过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,O′C′=OCO′D′=ODC′D′=CD,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.11. 答案:D解析:此题符合要求的作图完毕后,图形大体上是这样的:A B故应该是作AC、BC的垂直平分线∴选D分析:此题考察了尺规作图的中的基本作图,并且考察根据题意选择合适的作图方法.12. 答案:B解析:此题作图完毕后,图形大体上是这样的:DAB可以很清楚地得到,四边形ABCD 是一个平行四边形∴AB ∥DC∴∠ADC +∠BAD =180°∴选B分析:此题考察了尺规作图的中的基本作图,并且考察了平行四边形的判定及性质的应用.13. 答案:C解析:尺规作图是指用没有刻度的直尺和圆规作图.分析:此题考察了尺规作图的定义,内容单一容易.14. 答案:C解析:本题作完之后的图形为:DAB根据作图,有∠EBD =∠CBD ,BC =BE ,又BD =BD∴△EBD ≌△CBD∴选C分析:此题不但考察了学生的作图能力,而且同时考察了全等三角形的判定与性质的应用,是一道综合性较强的题目.15. 答案:D解析:这是一道作图题中的基本作图,过直线外一点作已知直线的垂线分析:此题属于基本作图,步骤简单易懂二、填空题16. 答案:直线解析:垂直于一条线段并且平分这条线段的 ,叫做这条线段的垂直平分线,或中垂线分析:此题线段的垂直平分线的定义。