2020-2021年高一数学解三角形的进一步讨论 新课标 人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高一数学解三角形的进一步讨论新课标人教版
●教学目标
知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
●教学重点
在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
三角形各种类型的判定方法;三角形面积定理的应用。
●教学难点
正、余弦定理与三角形的有关性质的综合运用。
●教学过程
Ⅰ.课题导入
[创设情景]
思考:在ABC中,已知,,,解三角形。
(由学生阅读课本第9页解答过程)
从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。
Ⅱ.讲授新课
[探索研究]
例1.在ABC中,已知,讨论三角形解的情况
分析:先由可进一步求出B;
则
从而
1.当A为钝角或直角时,必须才能有且只有一解;否则无解。
2.当A为锐角时,
如果≥,那么只有一解;
如果,那么可以分下面三种情况来讨论:
(1)若,则有两解;
(2)若,则只有一解;
(3)若,则无解。
(以上解答过程详见课本第910页)
评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且
时,有两解;其它情况时则只有一解或无解。
[随堂练习1]
(1)在ABC中,已知,,,试判断此三角形的解的情况。
(2)在ABC中,若,,,则符合题意的b的值有_____个。
(3)在ABC中,,,,如果利用正弦定理解三角形有两解,求x的取值范围。
(答案:(1)有两解;(2)0;(3))
例2.在ABC 中,已知,,,判断ABC 的类型。
分析:由余弦定理可知
222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形
∆
(注意:是锐角A ⇔ABC 是锐角三角形∆)
解:,即,
∴。
[随堂练习2]
(1)在ABC 中,已知sin :sin :sin 1:2:3A B C =,判断ABC 的类型。 (2)已知ABC 满足条件,判断ABC 的类型。
(答案:(1);(2)ABC 是等腰或直角三角形)
例3.在ABC 中,,,面积为,求的值
分析:可利用三角形面积定理111sin sin sin 222
S ab C ac B bc A ===以及正弦定理
解:由得,
则=3,即,
从而
Ⅲ.课堂练习
(1)在ABC 中,若,,且此三角形的面积,求角C
(2)在ABC 中,其三边分别为a 、b 、c ,且三角形的面积,求角C
(答案:(1)或;(2))
Ⅳ.课时小结
(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
(2)三角形各种类型的判定方法;
(3)三角形面积定理的应用。
Ⅴ.课后作业
(1)在ABC 中,已知,,,试判断此三角形的解的情况。
(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。
(3)在ABC 中,,,,判断ABC 的形状。
(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程的根,
求这个三角形的面积。
●板书设计
●授后记