工程弹塑性力学课件:第九章塑性力学基础
合集下载
弹塑性力学课件-塑性基本概念
ij yxx
xy y
xz yz
11 21
12 22
13
23
zx zy z 31 32 33
(4-1)
由于剪应力的互等性, yx xy zx xz zy yz
3.1应力—应变曲线的理想化模型
(1)理想弹性(perfectly elastic) (2)理想刚塑性(rigid-perfectly elastic) (3)刚—线性强化(rigid-linear strain-hardening) (4)理想弹塑性(elastic-perfectly plastic) (5)弹—线性强化(elastic-linear strain-hardening)
1.3静水压力实验
所谓静水压力就如同均匀流体从四面八方将压力作用于物体。 (1)体积变化 体积应变与压力的关系 (Bridgeman实验公式)
体积压缩模量 派生模量
铜:当p=1000MPa时,ap= 7.31×10-4,而bp2=2.7×10-6。 说明第二项远小于第一项,可以 略去不计。
Bridgeman的实验结果表明, 静水压力与材料的体积改变之 间近似地服从线性弹性规律。 若卸除压力,体积的变化可以 恢复,因而可以认为各向均压 时体积变化是弹性的,或者说 塑性变形不引起体积变化。试 验还表明,这种弹性的体积变 化是很小的,因此,对于金属 材料,当发生较大塑性变形时, 可以忽略弹性的体积变化,即 认为在塑性变形阶段材料是不 可压缩的。
s
n1
一般加载规律
( ) E[1 ( )]
A
其中
( )
工程弹塑性力学教学课件
感谢您的观看
THANKS
详细描述
有限差分法的基本思想是将时间和空间离散化为网格,每个网格点上的物理量 由其周围网格点的物理量通过差分方程近似计算。这种方法可以方便地处理动 态问题和偏微分方程,并且具有较高的计算效率和精度。
边界元法
总结词
边界元法是一种基于边界积分方程的数值模拟方法,它 通过将问题的边界离散化为有限个单元,并利用边界积 分方程近似描述边界上物理量的变化规律。
增量理论和全量理论
描述弹塑性力学中两种不同的分析方法。
增量理论是基于应力增量和应变增量的关系进行分析的方法,而全量理论则是基于应力全量和应变全 量的关系进行分析的方法。这两种理论在弹塑性力学中都有广泛的应用,适用于不同的分析场景。
03
工程弹塑性力学的应用
金属材料的弹塑性分析
总结词
金属材料的弹塑性分析是工程弹塑性力 学的一个重要应用领域,主要研究金属 材料在受力过程中发生的弹性变形和塑 性变形行为。
要点二
详细描述
有限元法的基本思想是将连续的求解域离散化为有限个小 的单元,这些单元通过节点相互连接。通过将每个单元的 解表示为节点解的线性组合,可以形成整个求解域的解。 这种方法能够处理复杂的边界条件和应力分布,并且可以 方便地处理非线性问题。
有限差分法
总结词
有限差分法是一种基于差分原理的数值模拟方法,它通过将连续的时间和空间 离散化为有限个离散点,并利用差分方程近似描述物理量在这些离散点上的变 化规律。
VS
详细描述
金属材料的弹塑性分析涉及对金属材料的 应力-应变关系的分析,包括弹性极限、 屈服点和强化阶段等特征。通过弹塑性分 析,可以预测金属材料在不同受力条件下 的变形和破坏行为,为金属结构的优化设 计和安全评估提供依据。
工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
弹塑性力学-第九章课件
弹塑性力学
第九章 塑性极限分析
重庆大学 土木工程学院
第九章 塑性极限分析
9.1 梁的弹塑性分析 9.2 梁和刚架的极限分析 9.3 梁和刚架极限荷载的上下限定理
9.0 绪论
极限状态: 荷载增加到某一数值不再继续增加,而结构的
变形仍会继续产生的状态。
极限荷载: 极限状态相应的荷载
(极限承载能力)
极限状态的重要性质:
(3
2)
(9.13)
9.1 梁的弹塑性分析
3、M>Me,塑性区向截面内扩展:图(c)
将 Ke 代入: K
M ( ) 1 [3 ( Ke )2 ]
Me 2
K
h
(9.14)
2
4、ζ→0,截面全部进入塑性状态:图(d)
s
s
h 2
Ms M Me
(c)
M Ms
(d)
M s 1.5,
Me
Ms M Me
(c)
在y ys处有 s
EKys
EK
h 2
s
将K 表示成 的函数
K
2 s
Eh
1
Ke
即:
Ke
K
(9.12)
h 2
M Ms
(d)
M
(
)
2b{
h 2
0
s h
y 2 dy
h
2 h
s
ydy
2
s
b( h)2
6
s
b[(
h 2
)
2
( h)2]
2
2
1 12
s
bh
2
[3
2]
Me 2
2、只有截面上的正应力是主要的,其它应力分量都 可忽略,问题就转化为简单应力状态问题。
第九章 塑性极限分析
重庆大学 土木工程学院
第九章 塑性极限分析
9.1 梁的弹塑性分析 9.2 梁和刚架的极限分析 9.3 梁和刚架极限荷载的上下限定理
9.0 绪论
极限状态: 荷载增加到某一数值不再继续增加,而结构的
变形仍会继续产生的状态。
极限荷载: 极限状态相应的荷载
(极限承载能力)
极限状态的重要性质:
(3
2)
(9.13)
9.1 梁的弹塑性分析
3、M>Me,塑性区向截面内扩展:图(c)
将 Ke 代入: K
M ( ) 1 [3 ( Ke )2 ]
Me 2
K
h
(9.14)
2
4、ζ→0,截面全部进入塑性状态:图(d)
s
s
h 2
Ms M Me
(c)
M Ms
(d)
M s 1.5,
Me
Ms M Me
(c)
在y ys处有 s
EKys
EK
h 2
s
将K 表示成 的函数
K
2 s
Eh
1
Ke
即:
Ke
K
(9.12)
h 2
M Ms
(d)
M
(
)
2b{
h 2
0
s h
y 2 dy
h
2 h
s
ydy
2
s
b( h)2
6
s
b[(
h 2
)
2
( h)2]
2
2
1 12
s
bh
2
[3
2]
Me 2
2、只有截面上的正应力是主要的,其它应力分量都 可忽略,问题就转化为简单应力状态问题。
塑性力学 ppt课件
或者
l l n ij i j S n ij l i 2 S n n
2 n
(求和约定的缩写形式)
一点的应力状态及应力张量
一点的应力状态:是指通过变形体内某点的单元体所有 截面上的应力的有无、大小、方向等情况。 一点的应力状态的描述: 数值表达:x=50MPa,xz=35MPa 图示表达:在单元体的三个正交面上标出(如图 1-2) 张量表达: (i,j=x,y,z) x xy xz
1 2 2 3 3 1
x
I3 . .
xy xz y yz . z
23 1
讨论:
1. 2. 3. 4. 5. 6. 可以证明,在应力空间,主应力平面是存在的; 三个主平面是相互正交的; 三个主应力均为实根,不可能为虚根; 应力特征方程的解是唯一的; 对于给定的应力状态,应力不变量也具有唯一性; 应力第一不变量I1反映变形体体积变形的剧烈程 度,与塑性变形无关;I3也与塑性变形无关; I2与塑性 变形有关。 7. 应力不变量不随坐标而改变,是点的确定性的判据。
弹性、塑性变形的力学特征
可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 与加载路径的关系:弹性——无关;塑性——有关 对组织和性能的影响:弹性变形——无影响;塑性变形—— 影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理:弹性变形——原子间距的变化; 塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。
金属塑性加工原理
《弹塑性力学》第九章空间轴对称问题
80%
物理方程
描述了材料在不同应力状态下表 现出的物理性质。
塑性力学的基本方程
流动法则
描述了塑性应变与应力之间的 关系。
屈服准则
描述了材料屈服的条件,即应 力达到屈服点时的状态。
强化准则
描述了材料在塑性变形过程中 的应力增强机制。
空间轴对称问题的边界条件和初始条件
边界条件
描述了物体在边界上的受力状态和位 移约束。
如旋转机械、航空航天器等的 设计和分析。
土木工程
如桥梁、高层建筑等大型结构 的分析。
石油工程
如油藏模拟、油气管道设计等 。
核工程
如核反应堆、核废料处理设施 等安全评估。
02
空间轴对称问题的数学模型
弹性力学的基本方程
80%
平衡方程
描述了物体内部各点的受力平衡 状态。
100%
几何方程
描述了物体在受力后产生的形变 和位移。
近原问题的解。
在处理空间轴对称问题时,有限元法能 够将复杂的空间几何形状和边界条件简 化为易于处理和计算的离散模型,从而
提高求解效率。
有限元法在空间轴对称问题中广泛应用 于弹性力学、塑性力学等领域,能够得
到高精度的数值解。
有限差分法在空间轴对称问题中的应用
有限差分法是一种将偏微分方程离散化为差分方程的方法,通过求解差分方程来逼近原问题
目
CONTENCT
录
• 空间轴对称问题的基本概念 • 空间轴对称问题的数学模型 • 空间轴对称问题的解析解法 • 空间轴对称问题的数值解法 • 空间轴对称问题的实验研究
01
空间轴对称问题的基本概念
定义与特性
定义
空间轴对称问题是指物体在空间中关于某一直线或平面对称分布 的问题。
《弹塑性力学》课件
结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
弹塑性力学(浙大通用课件)通用课件
塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。
塑性力学基础知识ppt课件
• 由于材料的屈服极限是唯一 的,所以 应该用应力或应力的组合作为判断材 料是否进入了塑性状态的准则。
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
工程弹塑性力学教学课件
实验设备与实验原理介绍
实验设备
弹塑性力学实验中常用的设备包括压力机、拉伸机、压缩机 、弯曲机等。
实验原理
介绍弹塑性力学的基本原理,包括弹性变形和塑性变形的基 本概念、应力应变关系、屈服准则等。
实验操作与数据处理方法介绍
实验操作
详细介绍实验操作步骤,包括试样制备、加载方式选择、数据采集等。
数据处理方法
工程弹塑性力学教学 课件
目录
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学分析方法 • 弹塑性力学在工程中的应用案例 • 弹塑性力学实验与实践教学 • 总结与展望
01 弹塑性力学概述
弹塑性力学定义与分类
弹塑性力学定义
弹塑性力学是研究物体在受力状态下 ,弹性变形和塑性变形相互作用的学 科。
塑性力学的基本方程
包括屈服条件方程、流动法则方程、 强化法则方程等。
弹塑性力学基本原理
弹塑性本构关系
描述材料在弹塑性状态下的应力 应变关系。
弹塑性稳定性理论
研究结构在弹塑性状态下的稳定性 问题。
弹塑性极限分析
确定结构在弹塑性状态下的极限承 载能力。
03 弹塑性力学分析方法
弹性力学分析方法
弹性力学基本原理
弹塑性力学基础知识
02
弹性力学基础知识
弹性力学的基本假设
包括连续性假设、均匀性假设、各向同性假设 等。
弹性力学的基本概念
包括应力、应变、弹性模量等。
弹性力学的基本方程
包括平衡方程、几何方程和物理方程等。
塑性力学基础知识
塑性力学的基本概念
塑性力学的基本应用
包括屈服条件、流动法则、强化法则 等。
包括压力加工、材料强度、结构稳定 性等。
弹塑性力学弹性与塑性应力应变关系详解课件
有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具有优势。
05
弹塑性力学的数值模拟方法
有限元法
有限元法(Finite Element Method,简称 FEM)是一种广泛应用于解决复杂工程问题 的数值模拟方法。
它通过将连续的求解域离散化为有限个小的 单元,并对每个单元进行数学建模,从而将 复杂的连续场问题转化为离散的有限元问题。
有限元法具有灵活性和通用性,可以处理各 种复杂的几何形状和边界条件,广泛应用于 结构分析、热传导、流体动力学等领域。
与应变之间不再是线性关系。
重要性
03
了解塑性应力应变关系对于工程设计和结构安全评估具有重要
意义。
屈服准 则
屈服准则定义
描述材料开始进入塑性变形 阶段的条件。
常用屈服准则
例如,Von Mises屈服准则、 Tresca屈服准则等。
屈服准则的意义
为判断材料是否进入塑性变 形阶段提供依据,是弹塑性 力学中的重要概念。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基 础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质。
弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
弹塑性力学第九章
比较应力函数解法和love位移法知: (r,z)= (r,z)
2014-12-20 13
第二节 半空间体在边界上受法向集中力 (Boussinesq问题)
半空间体,体力不计,边界受法向集中力 P作用. 轴对称问题,P作用在坐标原点上。 已知,当z=0且r 0时, z=0 , zr= 0; 当R 时,R=(r2+z2)1/2, 应力、位移 0; 当R 0时,应力奇异。
应力:
2014-12-20
17
第二节 半空间体在边界上受法向集中力 (Boussinesq问题)
根据边界条件来确定A1和A2: 在z=0且r 0边界上, z=0 自然满足。 在z=0且r 0边界上, zr= 0
y
P
R
x
(1-2)A1+ A2 = 0—(a)
r z
z
2014-12-20
2014-12-20
36
第三节 半空间体在边界上受法向分布力q
2.位移:z轴上的ur= 0,仅存在w
2014-12-20
37
第三节 半空间体在边界上受法向分布力q
2014-12-20
38
第四节
两球体之间的接触压力
接触压力问题是在机械工程、土木工程中 经常碰到的问题,接触问题在 1881 年由德国 赫兹(Heinrich Herty)首先用数学弹性力学 导出了计算公式。 4.1 接触问题的特点: 1.两个弹性体互相接触,当无压力作用时,为 点接触或线接触。当有压力作用时,弹性体发 生变形,点接触(或线接触)变为面接触。
在Su上
位移边界:
力的边界:在 r=r0 在 z=z0 6.按应力解法 四个应力分量r、、z、
2014-12-20
2014-12-20 13
第二节 半空间体在边界上受法向集中力 (Boussinesq问题)
半空间体,体力不计,边界受法向集中力 P作用. 轴对称问题,P作用在坐标原点上。 已知,当z=0且r 0时, z=0 , zr= 0; 当R 时,R=(r2+z2)1/2, 应力、位移 0; 当R 0时,应力奇异。
应力:
2014-12-20
17
第二节 半空间体在边界上受法向集中力 (Boussinesq问题)
根据边界条件来确定A1和A2: 在z=0且r 0边界上, z=0 自然满足。 在z=0且r 0边界上, zr= 0
y
P
R
x
(1-2)A1+ A2 = 0—(a)
r z
z
2014-12-20
2014-12-20
36
第三节 半空间体在边界上受法向分布力q
2.位移:z轴上的ur= 0,仅存在w
2014-12-20
37
第三节 半空间体在边界上受法向分布力q
2014-12-20
38
第四节
两球体之间的接触压力
接触压力问题是在机械工程、土木工程中 经常碰到的问题,接触问题在 1881 年由德国 赫兹(Heinrich Herty)首先用数学弹性力学 导出了计算公式。 4.1 接触问题的特点: 1.两个弹性体互相接触,当无压力作用时,为 点接触或线接触。当有压力作用时,弹性体发 生变形,点接触(或线接触)变为面接触。
在Su上
位移边界:
力的边界:在 r=r0 在 z=z0 6.按应力解法 四个应力分量r、、z、
2014-12-20
工程弹塑性力学课件:第九章塑性力学基础
91塑性变形的特点塑性力学的假设和力学简化模型92屈服函数与屈服面93两个常用的屈服条件94加载准则与加载方式95塑性力学中的本构关系96应用举例第一节塑性变形的特点塑性力学的假设和力学简化模型一基本实验简单拉伸试验和静水压力试验是塑性力学中的两个基本试验塑性应力应变关系的建立是以这些实验资料为基础
s2
L直线
静水应力矢量
N
p平面 O
P
s1
Q
任一应力状态
主偏量应力矢量
s3
主应力空间、 L直线、 p平面
OP s1i s 2 j s 3k
OP s1i s2 j s3k (s i s j s k )
OQ ON
总在p平面上 与s1,s2,s3轴的夹角相等 (6.10)
L直线:
在主应力空间内,过原点且和三个坐标
J 2
2 s
或
s
3
(Mises)
(6.30)
Mises圆,且
max s (Tresca)
两种屈服条件的关系:
在主应力空间中,Mises屈服面 将是圆柱面,在s3=0的平面应 力情形,Mises屈服条件可写成:
s s s s s 2
2
2 (6.31)
1
12
2
s
s2 ss
O
s1
ss
Tresca屈服条件内接于Mises圆
第九章 塑性力学基础
9.1 塑性变形的特点 塑性力学的假设和力学简 化模型
9.2 屈服函数与屈服面 9.3 两个常用的屈服条件 9.4 加载准则与加载方式 9.5 塑性力学中的本构关系 9.6 应用举例
第一节 塑性变形的特点 塑性力学的假设和力学 简化模型
一、基本实验 简单拉伸试验和静水压力试验是塑
s2
L直线
静水应力矢量
N
p平面 O
P
s1
Q
任一应力状态
主偏量应力矢量
s3
主应力空间、 L直线、 p平面
OP s1i s 2 j s 3k
OP s1i s2 j s3k (s i s j s k )
OQ ON
总在p平面上 与s1,s2,s3轴的夹角相等 (6.10)
L直线:
在主应力空间内,过原点且和三个坐标
J 2
2 s
或
s
3
(Mises)
(6.30)
Mises圆,且
max s (Tresca)
两种屈服条件的关系:
在主应力空间中,Mises屈服面 将是圆柱面,在s3=0的平面应 力情形,Mises屈服条件可写成:
s s s s s 2
2
2 (6.31)
1
12
2
s
s2 ss
O
s1
ss
Tresca屈服条件内接于Mises圆
第九章 塑性力学基础
9.1 塑性变形的特点 塑性力学的假设和力学简 化模型
9.2 屈服函数与屈服面 9.3 两个常用的屈服条件 9.4 加载准则与加载方式 9.5 塑性力学中的本构关系 9.6 应用举例
第一节 塑性变形的特点 塑性力学的假设和力学 简化模型
一、基本实验 简单拉伸试验和静水压力试验是塑
弹塑性力学9厚壁圆筒课件
。
加载方式选择
根据实验需求,选择静态或动 态加载方式,如拉伸、压缩、 弯曲等。
测试仪器准备
选用合适的测试仪器,如万能 试验机、引伸计、动态数据采 集系统等,确保测试精度和可 靠性。
实验过程记录
详细记录实验过程,包括加载 速度、试样变形、破坏形态等
,为后续分析提供依据。
数值模拟方法选择和建模过程
有限元软件选择
结果对比分析和讨论
实验与数值模拟结果对比
将实验测得的力与位移曲线、应力应变曲线等与数值模拟结果进 行对比分析,评估数值模拟的准确性。
误差来源分析
分析实验与数值模拟结果之间存在的误差来源,如材料性能差异、 几何尺寸偏差、边界条件设置等。
参数敏感性分析
针对不同参数进行敏感性分析,探讨各参数对厚壁圆筒弹塑性性能 的影响规律。
判断依据
可通过解析法、数值法或实验法求得圆筒的塑性失稳压力,若实际工作压力大于塑性失稳压力,则圆 筒将发生塑性变形并可能导致破裂。
防止失稳措施和建议
01
02
03
04
选择合适的材料
根据圆筒的实际工作条件和要 求,选择具有足够强度和稳定
性的材料。
优化圆筒结构设计
通过优化圆筒的几何尺寸、壁 厚等参数,提高其承载能力和
材料密度
选择低密度材料可减轻圆筒重量,降低应力集中现象。
结构参数对优化设计影响
圆筒厚度
01
增加圆筒厚度可提高承载能力和刚度,但也会增加重量和成本
。
圆筒长度
02
合适的圆筒长度可确保传力均匀,减小应力集中现象。
圆筒内外径比
03
合适的内外径比可确保圆筒在承受内压和外载时具有足够的稳
定性。
优化算法在厚壁圆筒中应用
加载方式选择
根据实验需求,选择静态或动 态加载方式,如拉伸、压缩、 弯曲等。
测试仪器准备
选用合适的测试仪器,如万能 试验机、引伸计、动态数据采 集系统等,确保测试精度和可 靠性。
实验过程记录
详细记录实验过程,包括加载 速度、试样变形、破坏形态等
,为后续分析提供依据。
数值模拟方法选择和建模过程
有限元软件选择
结果对比分析和讨论
实验与数值模拟结果对比
将实验测得的力与位移曲线、应力应变曲线等与数值模拟结果进 行对比分析,评估数值模拟的准确性。
误差来源分析
分析实验与数值模拟结果之间存在的误差来源,如材料性能差异、 几何尺寸偏差、边界条件设置等。
参数敏感性分析
针对不同参数进行敏感性分析,探讨各参数对厚壁圆筒弹塑性性能 的影响规律。
判断依据
可通过解析法、数值法或实验法求得圆筒的塑性失稳压力,若实际工作压力大于塑性失稳压力,则圆 筒将发生塑性变形并可能导致破裂。
防止失稳措施和建议
01
02
03
04
选择合适的材料
根据圆筒的实际工作条件和要 求,选择具有足够强度和稳定
性的材料。
优化圆筒结构设计
通过优化圆筒的几何尺寸、壁 厚等参数,提高其承载能力和
材料密度
选择低密度材料可减轻圆筒重量,降低应力集中现象。
结构参数对优化设计影响
圆筒厚度
01
增加圆筒厚度可提高承载能力和刚度,但也会增加重量和成本
。
圆筒长度
02
合适的圆筒长度可确保传力均匀,减小应力集中现象。
圆筒内外径比
03
合适的内外径比可确保圆筒在承受内压和外载时具有足够的稳
定性。
优化算法在厚壁圆筒中应用
弹塑性力学第9章—薄板的弯曲
Qx + ∂y =0
9.3 薄板的边界条件 写成挠度形式为
Qx +
O
∂M xy ∂y
=0
x
⎡ ∂3w ∂ 3w ⎤ ⎢ ∂x 3 + (2 − v ) ∂x∂y 2 ⎥ = 0 ⎣ ⎦ x=a
y
z
B
Myx
M xy dy
Mxy
dy
M yx dx
dy
dx
dx
RB = 2 M xy
当相邻两边都是自由边时,角点上的集中力不能被抵消,将 出现集中剪力,如果没有对应的支撑,该剪力也需为零,即
9.3 薄板的边界条件
薄板的边界条件可以分为以下三类, (1)位移边界条件,即在边界上给定挠度和转角; (2)静力边界条件:给定边界横向剪力、弯矩; (3)混合边界条件:在边界上同时给定广义力和广义位移。
9.3.1 固定边界
x
y
x
侧视图
( w ) x =0 = 0
⎛ ∂w ⎞ ⎜ ⎟ =0 ⎝ ∂x ⎠ x =0
9.2 薄板小挠度理论的基本方程
a
a
9.2.3 平衡方程
b
d
从承受表面压强q的薄板中取 出 一 个 微 小 单 元 体 , 尺 寸 为 h × dx × dy ,研究它的平衡。
b
q ( x, y )
x
c
y
x, u
dy
dx
h
y, v
qdxdy
z, w
qdxdy
Mxy
τ xz
My
Mx Qx
τ yz
h
M yx
Qy
dx
σx σy
dx
τ xy
dy
dy
9.3 薄板的边界条件 写成挠度形式为
Qx +
O
∂M xy ∂y
=0
x
⎡ ∂3w ∂ 3w ⎤ ⎢ ∂x 3 + (2 − v ) ∂x∂y 2 ⎥ = 0 ⎣ ⎦ x=a
y
z
B
Myx
M xy dy
Mxy
dy
M yx dx
dy
dx
dx
RB = 2 M xy
当相邻两边都是自由边时,角点上的集中力不能被抵消,将 出现集中剪力,如果没有对应的支撑,该剪力也需为零,即
9.3 薄板的边界条件
薄板的边界条件可以分为以下三类, (1)位移边界条件,即在边界上给定挠度和转角; (2)静力边界条件:给定边界横向剪力、弯矩; (3)混合边界条件:在边界上同时给定广义力和广义位移。
9.3.1 固定边界
x
y
x
侧视图
( w ) x =0 = 0
⎛ ∂w ⎞ ⎜ ⎟ =0 ⎝ ∂x ⎠ x =0
9.2 薄板小挠度理论的基本方程
a
a
9.2.3 平衡方程
b
d
从承受表面压强q的薄板中取 出 一 个 微 小 单 元 体 , 尺 寸 为 h × dx × dy ,研究它的平衡。
b
q ( x, y )
x
c
y
x, u
dy
dx
h
y, v
qdxdy
z, w
qdxdy
Mxy
τ xz
My
Mx Qx
τ yz
h
M yx
Qy
dx
σx σy
dx
τ xy
dy
dy
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴夹角相等的直线。方程: s1s2s3
p平面:
主应力空间内过原点且和L直线垂直
第九章 塑性力学基础
9.1 塑性变形的特点 塑性力学的假设和力学简 化模型
9.2 屈服函数与屈服面 9.3 两个常用的屈服条件 9.4 加载准则与加载方式 9.5 塑性力学中的本构关系 9.6 应用举例
第一节 塑性变形的特点 塑性力学的假设和力学 简化模型
一、基本实验 简单拉伸试验和静水压力试验是塑
简单拉伸试验 的塑性阶段:
加载 s ds 0 卸载 s ds 0
ds Etde
ds Ede
2、静水压力(各向均匀受压)试验—布里基曼(Bridgeman) (1) 静水压力对体积变化的影响
静水压力引起的体积应变基本上是弹性的,没有 残余的体积应变,而且这种应变的数值很小。因 此,对于较大的塑性变形完全可以认为材料是不 可压缩的。
2. 线性强化弹塑性模型
用应变表示的加载准则:
s
加载: s de 0, s [ss E(| e | es )]sign e
ss
E’
卸载: s de 0, ds Ede
E
O
es
| e | es, s Ee
在许多实际工程问题中, 弹性应变<<塑性应变, 因而可以忽略弹性应变。
e
3、刚塑性模型(忽略弹性变形)
变形规律); 在初次加载时,单向拉伸和压缩的应力-应变特性
一致; 材料特性符合Drucker公设(只考虑稳定材料); 变形规律符合均匀应力应变的实验结果。
四、塑性力学简化模型
1. 理想弹塑性模型
用应变表示的加载准则:
s
加载:
s de 0, s s s sign e
ss
卸载:
s de 0, ds Ede
性力学中的两个基本试验,塑性应力应 变关系的建立是以这些实验资料为基础。
1、单向拉伸曲线
s P
s
A0
屈服应力
ss A B
12
sa
O
D
ep ee
e ee e p s e p E
屈服应力
s
B
3
s0.2 A
e l l l0
l0
l0
D e
O
0.2%
D
ep ee
C
e
(a)有明显屈服流动阶段
如:低碳钢,铸铁,合金钢等
A E : 虎克定律
在e=0处与s轴相切
s A 理想刚塑性模型
只有两个参数A和n,因而也不可能 准确地表示材料的所有特征。但由 于解析式比较简单,而且n可以在较 大范围内变化,所以也经常被采用。
第二节 屈服函数和屈服面
1). 单向拉压应力状态的屈服条件 ss:屈服应力
s s s (6.1)
F (s ) s s s 0 (6.2)
s2
L直线
静水应力矢量
N
p平面 O
P
s1
Q
任一应力状态
主偏量应力矢量
s3
主应力空间、 L直线、 p平面
OP s1i s 2 j s 3k
OP s1i s2 j s3k (s i s j s k )
OQ ON
总在p平面上 与s1,s2,s3轴的夹角相等 (6.10)
L直线:
在主应力空间内,过原点且和三个坐标
(3)、当受力固体产生塑性变形时,将同时存在有产生弹性变形的 弹性区域和产生塑性变形的塑性区域。并且随着载荷的变化,两 区域的分界面也会产生变化。
三、基本假设
对一般应力状态的塑性理论,作以下基本假设: 忽略时间因素的影响(蠕变、应力松弛等) ; 连续性假设; 静水压力部分只产生弹性的体积变化(不影响塑性
应力和应变的变化在相应空间绘出的曲线。
屈服面:
应力空间内各屈服点连接成的,区分弹性和塑性状态的分界面。
3). 屈服条件/屈服函数 (描述屈服面的数学表达式)
F (s ij ) 0 :材料处于弹性状态 F (s ij ) 0 :材料开始屈服进入塑性状态
各向同性材料: 屈服条件应与方向无关,故屈服条件可用三个主应力或应力不变量表示:
总应变较大, e p
(a) 理想刚塑性模型
s
ss
(b) 线性强化刚塑性模型
s ss
e
O
s ss, 当e 0时
特别适宜于塑性极限载荷的分析。
e
O
s ss E1e , 当e 0时
4.幂次强化模型
s A | e |n sign e , (常数A 0, 0 n 1) (5.14) s Ae 理想弹性模型
符号函数:
E
1, s 0
sign e
0,
s 0
1, s 0
O
e
es | e | es s Ee
缺点: 公式只包括了材料常数E 和s,故不能描述应力应 变曲线的全部特征;
在e=es处解析式有变化, 给具体计算带来困难;
优点: 理想弹塑性模型抓住了韧 性材料的主要特征,因而 与实际情况符合得较好。
2). 复杂应力状态的屈服函数
F (s x ,s y ,s z , xy , yz , zx ) 0 (6.3) 或者: F (s ij ) 0 (6.4)
引入的概念:
应力空间、应变空间:
分别以应力分量和应变分量为坐标轴组成的空间,空间内的任 一点代表一个应力状态或应变状态。
应力路径、应变路径:
(2) 静水压力对屈服极限的影响
静水压力对屈服极限的影响常可忽略。
二、塑性变形有以下特点:
(1)、由于塑性应变不可恢复,所以外力所作的塑性功具有不可逆 性,或称为耗散性。在一个加载卸载的循环中外力作功恒大于零, 这一部分能量被材料的塑性变形损耗掉了。
(2)、由于应力—应变关系的非线性,应力与应变间不存在单值对 应关系,同一个应力可对应不同的应变,反过来也是如此。这种 非单值性是一种路径相关性,即需要考虑加载历史。
F (s1,s 2 ,s 3 ) 0
F(J1, J2, J3) 0
静水压力部分对塑性变形的影响可忽略,故屈服条件也可用主偏量应力 或其不变量表示:
F (S1, S2 , S3 ) 0
F
(
J' 1
,
J
' 2
,
J
' 3
)
0
由于J1' 0
F
(
J
' 2
,
J' 3
)
0
4)主应力空间
(以主应力s1,s2,s3为坐标轴而构成的应力空间)
(b)无明显屈服流动阶段
如:中碳钢,高强度合金钢, 有色金属等
经过屈服阶段后,材料又恢复了抵抗变形的能力。在第 二次加载过程中,弹性系数仍保持不变,但弹性极限及 屈服极限有升高现象,其升高程度与塑性变形的历史有 关,决定与前面塑性变形的程度。这种现象称为材料的
应变强化(或加工硬化)。
材料在塑性阶段的一个重要特点:在加载和卸载的过程 中应力和应变服从不同的规律:
p平面:
主应力空间内过原点且和L直线垂直
第九章 塑性力学基础
9.1 塑性变形的特点 塑性力学的假设和力学简 化模型
9.2 屈服函数与屈服面 9.3 两个常用的屈服条件 9.4 加载准则与加载方式 9.5 塑性力学中的本构关系 9.6 应用举例
第一节 塑性变形的特点 塑性力学的假设和力学 简化模型
一、基本实验 简单拉伸试验和静水压力试验是塑
简单拉伸试验 的塑性阶段:
加载 s ds 0 卸载 s ds 0
ds Etde
ds Ede
2、静水压力(各向均匀受压)试验—布里基曼(Bridgeman) (1) 静水压力对体积变化的影响
静水压力引起的体积应变基本上是弹性的,没有 残余的体积应变,而且这种应变的数值很小。因 此,对于较大的塑性变形完全可以认为材料是不 可压缩的。
2. 线性强化弹塑性模型
用应变表示的加载准则:
s
加载: s de 0, s [ss E(| e | es )]sign e
ss
E’
卸载: s de 0, ds Ede
E
O
es
| e | es, s Ee
在许多实际工程问题中, 弹性应变<<塑性应变, 因而可以忽略弹性应变。
e
3、刚塑性模型(忽略弹性变形)
变形规律); 在初次加载时,单向拉伸和压缩的应力-应变特性
一致; 材料特性符合Drucker公设(只考虑稳定材料); 变形规律符合均匀应力应变的实验结果。
四、塑性力学简化模型
1. 理想弹塑性模型
用应变表示的加载准则:
s
加载:
s de 0, s s s sign e
ss
卸载:
s de 0, ds Ede
性力学中的两个基本试验,塑性应力应 变关系的建立是以这些实验资料为基础。
1、单向拉伸曲线
s P
s
A0
屈服应力
ss A B
12
sa
O
D
ep ee
e ee e p s e p E
屈服应力
s
B
3
s0.2 A
e l l l0
l0
l0
D e
O
0.2%
D
ep ee
C
e
(a)有明显屈服流动阶段
如:低碳钢,铸铁,合金钢等
A E : 虎克定律
在e=0处与s轴相切
s A 理想刚塑性模型
只有两个参数A和n,因而也不可能 准确地表示材料的所有特征。但由 于解析式比较简单,而且n可以在较 大范围内变化,所以也经常被采用。
第二节 屈服函数和屈服面
1). 单向拉压应力状态的屈服条件 ss:屈服应力
s s s (6.1)
F (s ) s s s 0 (6.2)
s2
L直线
静水应力矢量
N
p平面 O
P
s1
Q
任一应力状态
主偏量应力矢量
s3
主应力空间、 L直线、 p平面
OP s1i s 2 j s 3k
OP s1i s2 j s3k (s i s j s k )
OQ ON
总在p平面上 与s1,s2,s3轴的夹角相等 (6.10)
L直线:
在主应力空间内,过原点且和三个坐标
(3)、当受力固体产生塑性变形时,将同时存在有产生弹性变形的 弹性区域和产生塑性变形的塑性区域。并且随着载荷的变化,两 区域的分界面也会产生变化。
三、基本假设
对一般应力状态的塑性理论,作以下基本假设: 忽略时间因素的影响(蠕变、应力松弛等) ; 连续性假设; 静水压力部分只产生弹性的体积变化(不影响塑性
应力和应变的变化在相应空间绘出的曲线。
屈服面:
应力空间内各屈服点连接成的,区分弹性和塑性状态的分界面。
3). 屈服条件/屈服函数 (描述屈服面的数学表达式)
F (s ij ) 0 :材料处于弹性状态 F (s ij ) 0 :材料开始屈服进入塑性状态
各向同性材料: 屈服条件应与方向无关,故屈服条件可用三个主应力或应力不变量表示:
总应变较大, e p
(a) 理想刚塑性模型
s
ss
(b) 线性强化刚塑性模型
s ss
e
O
s ss, 当e 0时
特别适宜于塑性极限载荷的分析。
e
O
s ss E1e , 当e 0时
4.幂次强化模型
s A | e |n sign e , (常数A 0, 0 n 1) (5.14) s Ae 理想弹性模型
符号函数:
E
1, s 0
sign e
0,
s 0
1, s 0
O
e
es | e | es s Ee
缺点: 公式只包括了材料常数E 和s,故不能描述应力应 变曲线的全部特征;
在e=es处解析式有变化, 给具体计算带来困难;
优点: 理想弹塑性模型抓住了韧 性材料的主要特征,因而 与实际情况符合得较好。
2). 复杂应力状态的屈服函数
F (s x ,s y ,s z , xy , yz , zx ) 0 (6.3) 或者: F (s ij ) 0 (6.4)
引入的概念:
应力空间、应变空间:
分别以应力分量和应变分量为坐标轴组成的空间,空间内的任 一点代表一个应力状态或应变状态。
应力路径、应变路径:
(2) 静水压力对屈服极限的影响
静水压力对屈服极限的影响常可忽略。
二、塑性变形有以下特点:
(1)、由于塑性应变不可恢复,所以外力所作的塑性功具有不可逆 性,或称为耗散性。在一个加载卸载的循环中外力作功恒大于零, 这一部分能量被材料的塑性变形损耗掉了。
(2)、由于应力—应变关系的非线性,应力与应变间不存在单值对 应关系,同一个应力可对应不同的应变,反过来也是如此。这种 非单值性是一种路径相关性,即需要考虑加载历史。
F (s1,s 2 ,s 3 ) 0
F(J1, J2, J3) 0
静水压力部分对塑性变形的影响可忽略,故屈服条件也可用主偏量应力 或其不变量表示:
F (S1, S2 , S3 ) 0
F
(
J' 1
,
J
' 2
,
J
' 3
)
0
由于J1' 0
F
(
J
' 2
,
J' 3
)
0
4)主应力空间
(以主应力s1,s2,s3为坐标轴而构成的应力空间)
(b)无明显屈服流动阶段
如:中碳钢,高强度合金钢, 有色金属等
经过屈服阶段后,材料又恢复了抵抗变形的能力。在第 二次加载过程中,弹性系数仍保持不变,但弹性极限及 屈服极限有升高现象,其升高程度与塑性变形的历史有 关,决定与前面塑性变形的程度。这种现象称为材料的
应变强化(或加工硬化)。
材料在塑性阶段的一个重要特点:在加载和卸载的过程 中应力和应变服从不同的规律: