第10讲 比例法解行程

合集下载

行程问题 方程比例法

行程问题  方程比例法
(3)相遇后,乙回到B地走了几份路程?此时甲走了几份?
(4)为什么会比乙迟到0.5小时了吗?1份花0.5小时
4、板书解题过程
5、总结:画图数比例数:当知识速度比时,画线段图时,就按照份数画准确。更能显示题中隐藏的条件。
学习例题4:(表格法+画图法)
1、读题:齐读
2、理解题意:两种情况
3、分析题:
(1)给出了两者速度,你们能得出什么?
授课教师
课题
行程问题—方程与比例法
授课班级
五年级创新班
教学目标
1、会分析行程问题中的相遇与追及问题中已知和未知之间的等量关系。
2、掌握运动中的物体,速度、时间、路程之间的数量关系,会利用路程、时间和速度三量关系,列方程解行程问题。
3、理解行程问题中的存在的正比与反比关系,并运用比例关系解决问题。
教学重点
1、课内题单——长方体
授新课
知识回顾
教师活动
学生活动
1、因数个数定理
2、行程问题:相遇与追及问题
积极回忆,抢答问题,答对有奖
体系说明
行程问题是小学应用题的难点,是升学考试中常见的压轴题,要想在小升初考试中取得好成绩,熟练掌握行程问题的几种解法是比不可少的。
比例和方程结合线段图是解决行程问题的最有效的方法。
1、会分析行程问题中的相遇与追及问题中已知和未知之间的相等关系。
2、理解行程问题中的存在的正比与反比关系:时间相同,速度比=路程比;速度相同,路程比=时间的比;路程相同,时间比= 速度的反比
教学难点
分析行程问题中的相遇与追及问题中已份对应关系
教具

教学过程
入门测
强调:正比反比只存在于乘除法中。
行程问题的正比与反比有前提条件:相同量。

第十讲--比与比例精华讲义

第十讲--比与比例精华讲义

第三讲 比和比例【名师导航】学习比和比例关系是提高小学数学综合能力的一个重要方面,深刻理解相关联的量是学习的基本要求。

比和比例的学习,也是为中学学习函数打下基础。

用比和比例解答的应用题有:1.按比例分配应用题。

把一个数量按一定的比进行分配,解答这类应用题的关键是根据题中所给的比,转化成求一个数的几分之几来做。

2.正、反比例应用题。

解答这类应用题,首先要找出相关联的量,然后判断成什么比例关系,建立比例式。

【例题精讲】例1 一个长方体的棱长总和是180厘米,它的长、宽、高之比是4:3:2。

这个长方形的体积是多少立方厘米?分析:长方体的长、宽、高各有 ,其一条长、宽、高之和是 (厘米),将45厘米按长、宽、高之比是4:3:2进行分配,分别求出长、宽、高,再求出这个长方形的表面积和体积。

解:(1)长、宽、高之和是: ;(2)长: ;宽: ;高: ;(3)长方体的体积是: 。

答:这个长方体的体积是3000平方厘米。

例2 兄弟俩共有85元,他们都买了一支价格相同的钢笔,哥哥花掉了自己钱数的34,弟弟花掉了自己钱数的23,哥哥还剩多少元? 分析:依题意,哥哥的钱数×34 =弟弟的钱数×23 ,那么哥哥的钱数:弟弟的钱数=23 :34=8:9(或哥哥的钱数×34 =弟弟的钱数×23 ,即哥哥的钱数×68 =弟弟的钱数×69,得到哥哥的钱数:弟弟的钱数=8:9)。

再将85元按比例分配,即可求得哥哥(或弟弟)的钱数,进而求出钢笔的单价。

解法一:(1)哥哥与弟弟的钱数之比是 ;(2)哥哥的钱数是: ;(3)哥哥还剩: 。

分析:可以把钢笔的价格看做单位“1”,那么哥哥的钱是钢笔价钱的43,弟弟的钱是钢笔价钱的32 ,再用85元除以它所对应的钢笔价格的(43 +32),就可以求出钢笔的价格,再求出哥哥剩下的钱。

解法二:把钢笔的价格看做单位“1”。

(1)钢笔的价格是 ;(2)哥哥剩下的钱是: 。

(完整版)六年级奥数比例解行程问题

(完整版)六年级奥数比例解行程问题

_________________个性化辅导讲义年 级:时 间年 月 日课 题比例解行程问题教学目标1.了解物体匀速运动的特点。

2.掌握运用比例知识解决行程问题的方法。

3.培养想像力,增强思维力。

教 学 内 容【知识梳理】我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:,,v v t ts s 乙乙乙甲甲甲,;;1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

,这里因为时间相同,即,所以由s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙t t t ==乙甲s s t t v v ==甲乙乙甲乙甲,得到,,甲乙在同一段时间t 内的路程之比等于速度比s s t v v ==甲乙乙甲s vs v=甲甲乙乙2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

,这里因为路程相同,即,由s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙s s s ==乙甲s v t s v t =⨯=⨯乙乙乙甲甲甲,得,,甲乙在同一段路程s 上的时间之比等于速度比的反比。

s v t v t =⨯=⨯乙乙甲甲v tv t =甲乙乙甲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

【例题精讲】例题1 甲、乙两人同时地出发,在、两地之间匀速往返行走,甲的速度大于乙的速度,A A B甲每次到达地、地或遇到乙都会调头往回走,除此以外,两人在之间行走方向不会改变,A B AB已知两人第一次相遇的地点距离地米,第三次的相遇点距离地米,那么第二次相遇B1800B800的地点距离地。

六年级奥数--比例解行程问题

六年级奥数--比例解行程问题
例题4甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?
【举一反三】
1.甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.
2.一辆汽车从甲地开往乙地,如果车速提高20%可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?
5.甲、乙两车分别从A,B两地同时相向开出,4时后两车相遇,然后各自继续行驶3时,此时甲车距B地10千米,乙车距A地80千米。问:甲车到达B地时,乙车还要经过多少时间才能到达A地?
6.一辆汽车按计划行驶了 小时,剩下的路程用计划速度的 继续行驶,到达目的地的时间比计划的时间迟了2时。如果按计划速度行驶的路程再增加60千米,那么到达目的地的时间比计划时间只迟1时。问:计划速度是多少?全程有多远?
例题3甲火车4分行进的路程等于乙火车5分行进的路程。乙火车上午8:00从B站开往A站,开出若干分后,甲火车从A站出发开往B站。上午9:00两列火车相遇,相遇的地点离A,B两站的距离的比是15∶16。甲火车从A站发车的时间是几点几分?
练习:甲、乙两列火车的速度比是5∶4。乙车先从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车开往B站。如果两列火车相遇的地方离A,B两站距离的比是3∶4,那么A,B两站之间的距离为多少千米?

第10讲比例的应用-2022-2023学年六年级数学下册易错题精编讲义(人教版)

第10讲比例的应用-2022-2023学年六年级数学下册易错题精编讲义(人教版)

第10讲比例的应用(讲义)(知识梳理+易错汇总+易错精讲+易错专练)1、比例尺的意义。

一幅图的图上距离和实际距离的比,叫作这幅图的比例尺。

温馨提示:比例尺是一个比,表示两个同类量间的倍比关系,不能带单位。

2、比例尺的分类。

分法一:按表现形式分,可以分为数值比例尺和线段比例尺。

分法二:按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。

3、已知图上距离和实际距离,求比例尺的方法。

先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成最简整数比,得出比例尺。

三者中知道任意两者,可求第三者。

4、应用比例尺画图的方法。

(1)确定比例尺。

(2)根据比例尺求出图上距离。

(3)画图。

(4)标出所画图的名称和比例尺。

5、图形放大与缩小的特点。

形状相同,大小不同。

6、将图形放大与缩小的方法。

一看,看图形每边各占几格;二算,按已知比计算出放大图或缩小图的每边各占几格;三画,按计算出的边长画出原图形的放大图或缩小图。

温馨提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。

7、用比例解决问题。

根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、反比例关系列出相应的比例并求解。

1、比例尺是图上距离与实际距离的比,是一个比值,没有单位。

2、通常缩小比例尺的前项为1,放大比例尺的后项为1。

3、图上距离一般用厘米做单位,实际距离一般用米或千米做单位,计算时要先统一单位。

4、把图形放大(或缩小)后,形状不变,相对应的角的度数也不变。

5、平均锯一次的时间一定,一共用的时间与锯的次数成正比例。

6、在路程一定时,速度和时间成反比例关系,速度越快,所用时间越短;反之所用时间越长。

【易错一】学校的操场是一个长方形,长是90米,宽是60米,小聪想把它画在练习本上,比较合适的比例尺是()。

A.1∶100 B.1∶1000 C.1∶10000 D.1∶1【分析】根据图上距离=实际距离×比例尺,先把单位换算成厘米后,把4个选项里的比例尺代入到数量关系中,分别求出练习本的长是多少,找出符合实际的答案即可。

比例法解行程问题

比例法解行程问题

相同时间内,甲乙两车的速度比与路程比相等
全程的60%,客车每小时比货车快15千米,两地的距离是多少千米?
A、4:3
B、4:5
C、5:4
D、3:4
9
2、货车的速度是客车的
那么有:7x-5x=42 解得x=21
10
,货车和客车分别从甲乙两地同时相向而行,在
设:离客车两到地达甲中地点时,3千货车米走处了x相千米遇得,: 相遇后,两车分别用原来的速度继续前行,到达甲乙
比例法解行程问题
课前回忆
甲、乙两辆汽车的速度比为3:4,它们分别行驶3小时之后的路程比 是多少?
解:设甲速为3x,乙速为4x 那么:甲3小时行驶的路程可表示为:3×3x=9x
乙3小时行驶的路程可表示为:3×4x=12x 那么:甲3小时行驶的路程:乙3小时行驶的路程
=9x:12x=3:4
相同时间内,甲乙两车的速度比与路程比相等
答:客车到达甲地时,货车离乙地还有11.4千米
活学活用:
1、客车3小时所行的路程是汽车4小时所行路程的60%,客车与小汽车的
速度比为:〔
〕〔2021年中大附中〕
A、4:3
B、4:5
C、5:4
D、3:4
2、甲、乙两辆船同时从A地开往B地,乙船的速度是甲船的1.2倍,经过12 小时,乙船到达B地,此时甲船离B地还有54千米,求A、B两地的路程。 〔2021年天河外国语〕
答:甲乙两地相距294千米。
相那同么时 有间10内x设-,9甲:x=乙6客两车车的解到速得度:达比x=甲与6 路地程时比相,等货车走了x千米得:
相设同:时 货间车内的,速5甲度4乙为: x两13车=x,的1客速0车度:9的比速与度路为程1比解5x相得等:x=48.6

比例法解行程问题(易淑珍)

比例法解行程问题(易淑珍)



3、甲乙两车分别从A,B两地同时出发相向而 行,甲车每小时行50千米,乙车每小时行60 千米,两车相遇时,甲车比乙车少行了50千 米, A,B两地相距多少千米?
例3:甲乙两车分别从A,B两地同时出发相向 1 而行,当甲车行了全程的 4 时,乙车行了全 程的 1 ,当乙车行完全程时,甲车距离终点 3 还有20千米,A,B两地相距多少千米? 1 分析:由条件“甲车行了全程的 时,乙车 4 1 行了全程的 ”可以求出两车在相同的时间 3 1 1 里所行的路程比是: 4 ÷ 3 =3:4 就是说乙车行完全程时,甲车距中点还有 4-3=1(份)的路程,这1份的路程就是20 千米。 1 因此AB两地相距:20÷ 4 =80(km) 答: A,B两地相距80千米。
趣味数学系列课(六年级)
比例法解答行程应用题
制作:宜春市实验小学

比例法解答行程应用题



在行程应用题中, 如果路程一定,那么时间和速度成反比; 如果时间一定,那么路程和速度成正比; 如果速度பைடு நூலகம்定,那么路程和时间成正比。 利用这些性质,我们可以很方便地解答一些行程应 用题。



3、A,B两地相距380千米,甲乙两车分别从A,B两地同 3 时出发相向而行,当甲车行了全程的 5 时,乙车行 了全程的 2 ,那么甲乙两车相遇时,各行多少千米?
3
例4: 甲.乙两车的速度分别是50千米/时.40千米/时, 乙车先从B站开住A站,当到离B站72千米的D 地时,甲车从A站开往B站,在C地与乙车相遇, 如下图,如果甲.乙两车相遇地C地离A,B两站 的路程比是2:4,那么A,B两站之间的路程是多 少千米? A 甲车 C D B 乙车

数学春季教案 六年级-10 行程问题(一)

数学春季教案 六年级-10 行程问题(一)

第10讲行程问题(一)[教学内容]春季六年级精英版,第10讲“行程问题(一)”。

[教学目标]知识与技能利用行程问题中的路程、速度、时间的关系,并结合分数、比、比例等的知识解行程类应用题,感知数学在实际生活中的用途。

数学思考理解数学的数形结合的思想,发展学生的抽象概括能力。

问题解决获得分析较复杂的行程问题和解决这类问题的一些基本方法,体验解决行程问题方法的多样性,发展创新意识。

情感与态度在学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心;在合作与交流中学会肯定自己和倾听他人的意见。

[教学重点和难点]教学重点:结合分数、比、比例等知识解决行程问题。

教学难点:寻找解决较复杂的行程问题的方法。

[教学准备]动画多媒体语言课件第一课时教学过程:第二课时教学过程:本讲内容参考答案:自主探究例1:2420米例2:1.75小时例3: 39千米/时例4: 126分例5: 315千米例6: 150千米大胆闯关1、675米2、308千米3、10分钟4、7时40分5、11秒本讲内容的补充习题及答案:1、邮递员去送信,已知回来时沿原路返回,但速度提高了25%。

并且来、回的时间差是小时。

求往返一次用多少小时?路程速度时间去 1 1 5回 1 125% 4÷(5-4)×(5+4)=小时2、甲、乙两人分别从A、B两地同时出发,相向而行。

出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。

这样,当甲到达B地时,乙离A地还有280km。

那么A、B两地的路程是多少千米?3×(1+20%)=3.62×(1+30%)=2.6280÷(-÷3.6×2.6)=900千米3、甲、乙两辆汽车同时从A去B,出发后,甲、乙两车的速度的比是5:4。

当甲车行至中点时,乙离中点还差60千米。

当乙车到达中点后,速度提高50%。

当甲到达B地时,乙离B地还有多少千米?÷5×4=—=60÷=600千米-÷4×5=4×(1+50%)=6÷5×6=600×(-)=30千米4、甲、乙两车同时从A、B两地相向而行,两车第一次在距A地32千米处相遇,相遇后两车继续行驶各自到达B、A两地后,立即沿原路返回,第二次在距A地64千米处相遇。

(完整版)比例解行程问题

(完整版)比例解行程问题

巧用比例解行程问题精品教案〖学情分析〗〖教学重点〗掌握比例法解行程问题的思路方法〖教学难点〗正确判断和转化题中成比例的量〖考点分析〗属课外拓展内容,用来对付较棘手的行程问题〖教学过程〗巧用比例解行程问题一、教学链接1、了解家长的反馈意见;2、检查学生的作业,及时指点3、捕捉学生的思想动态4、课前小测10分背∏值.二、教学内容方法指导:复杂行程问题经常运用到比例知识:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。

分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。

也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。

例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?甲乙两车的速度比是4:7,同一时间内两个物体经过的路程的比等于它们的速度的比,所以相遇时,甲乙两车所行的路程比也是4:7。

相遇时乙比甲多行了15*2=30千米两地相距(15+15)÷(7-4)=10 (4+7)×10=110千米边讲边练:1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?例2:两列火车同时从两个城市相对开出,6。

5小时相遇.相遇时甲车比乙车多行52千米,乙车的速度是甲车的错误!。

求两城之间的距离.6。

5×(52×2+52×3)=1690边讲边练:1、甲、乙两车分别从AB两地同时相向而行,3小时相遇。

已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。

AB两地相距多少千米?(420)2、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。

例3:甲、乙两车同时从AB 两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?已知甲、乙两车速度的比是2:3,则甲乙两车的时间比是3:2边讲边练:甲、乙两车同时从AB 两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?例4:客车和货车同时从AB 两地相对开出,客车每小时行60千米,货车每小时行全程的错误!,相遇时客车和货车所行路程的比是5:4。

六年级《比例法解行程问题》PPT

六年级《比例法解行程问题》PPT

拓展题: 一辆汽车从A地去B地。若速度提高20%,提前1小时到达;若以原速 行驶100干米后再将车速提高30%,也是提前1小时到达,求A,B两地 的距离。
拓展练习: 一辆车从甲地开往乙地。如果车速提高20%,可以比原定时间提 前1小时到达;如果以原速行驶120千米后,再将车速提高25%, 那么可以提前40分钟到达。那么甲、乙两地相距多少千米?
时间一定,路程和速度成正比
练习1-1
丁丁、牛牛两人同时从A地出发前往B地,丁丁骑车的速度是16米/秒, 牛牛骑车的速度是72千米/时。如果牛牛到达B地后立刻返回,那么 两人在哪里相遇?
练习1-2 甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15 千米处相遇,两地相距多少千米?
例2 丁丁、牛牛两人从A,B两地同时出发,相向而行。丁丁走到全程的 5 的地方与牛牛相遇,已知丁丁每小时走4. 5千米,牛牛每小时
11
走全程的1 。求A,B之间的路程。
3
练习2-1 丁丁从A地到B地用了4小时,牛牛从B地到A地用了3小时。若丁丁 每小时4.5千米,则牛牛每小时的速两地相对开出,客车每小时行60千米,货车每
小时行全程的 1 ,相遇时客车和货车所行路程的比是5:4。AB两地
15
相距多少千米?
例3 早上8:00,田田从家步行去上学,3分钟后,狗狗出发跑去追她,在 离家200米的地方追上了她;追上后立刻往家跑去,到家后又立刻回 去追田田,在离家400米的地方再次追上了她,追上后又往家跑去, 到家后又立刻去追田田,刚好在学校追上。那么田田到校时间是8点 多少分?
学会画线段图
练习3-1 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车 去追他,在离家4千米的地方追上了他。然后爸爸立即回家,到家 后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米, 这时是几点几分?

五年级奥数-用比例解行程问题(含答案解析)

五年级奥数-用比例解行程问题(含答案解析)

1. 理解行程问题中正比例和反比例关系.2. 用比例和份数思想解行程问题.本讲是在秋季所学的火车过桥和流水行船的行程问题基础上,讲解运用比例性质解多次相遇追及行程问题.体会比例解决问题的优势.距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系:⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲; ⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲; ⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.【例 1】 甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距___千米.用比例解行程问题用比例解多次相遇问题乙21BA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[铺垫] 甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?[分析] (方法一)10分钟两人共跑了(3+2)⨯60⨯10=3000 米 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,,29共15次. (方法二)第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一个相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.[拓展] 老师可以把【例 1】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2-1=5(个全程),甲走了:3⨯5=15(份)在B 点,第四次相遇甲乙共走:4⨯2-1=7(个全程),甲走了:3⨯7=21(份)在D 点,已知BD 是20千米,所以AB 的长度是20÷4⨯(2+3)=25(千米).【例 2】 甲、乙二人同时从A 地出发同向而行去往B 地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B 地后立即返回A 地.已知二人第三次相遇的地点距第一次相遇的地点是20千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.FE乙甲21DCBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此::30:203:2S S V V ===乙乙甲甲,设全程为5份,则一个全程中,甲走了3份,乙走了2份,第一次相遇,甲、乙一共行了两个全程,一个全程甲走3份,2个全程甲共走了326⨯=(份)所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,4个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[拓展] 老师可以把【例 2】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2=6(个全程),甲走了:3⨯6=18(份)在第D 点,第四次相遇甲乙共走:4⨯2=8(个全程),甲走了:3⨯8=24(份)在F 点,已知DF 是20千米,所以AB 的长度是20⨯(2+3)=100(千米).[总结] 设一个全程中甲走的路程为M ,乙走的路程为N⑴甲乙二人从两端出发的直线型多次相遇问题: ⑵ 同一出发点的直线型多次相遇问题【例 3】 甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2008次相遇的地点和第2009次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米? 20092008甲DBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008⨯2-1)⨯3=12045(份),120451012045÷=,所以第2008次相遇地点是在从A 地向右数5份的C 点,第2009次相遇时甲走:(2009⨯2-1)3⨯=12051(份),120511012051÷=,所以第2009次相遇地点在从B 点向左数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).[总结] 对于份数比较大找相遇地点时,用甲走的总份数除以全程份数,得到商和余数,当商为偶数时,从甲的出发点向终点数余数的份数即为相遇地点,当商为奇数时,从终点向甲的起点数余数的份数即为相遇地点[巩固] 甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?101100乙甲A相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 1 M N2 3 3M 3N3 5 5M 5N… … … …n 21n - (21)n M - (21)n N - 相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 2 M N 2 4 4M 4N 3 6 6M 6N … … … … n2n 2nM 2nN[分析]因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V====乙乙甲甲:S:,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷=,所以第100次相遇地点是在从B地向左数2份的C点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷=,所以第101次相遇地点在从A点向右数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是16047280÷⨯=(米).【例 4】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第六次相遇的地点离乙村多远(相遇指迎面相遇)?【分析】画示意图如下.2123.5乙甲第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5⨯3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).第六次相遇时,两人已共同走了两村距离26111⨯-=倍的行程.其中张走了3.51138.5⨯=(千米),38.58.54 4.5÷=,就知道第六次相遇处,离乙村4.5千米.[巩固]甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.[分析]第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4⨯3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米.【例 5】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?【分析】(300240)302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份,第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A地是全程的59,第二次相遇时两人共行了3个全程,甲行的距A地9(359)3-⨯-=份,所以第二次相遇地点距A地是全程的13,第三次相遇时两人共行了5个全程,55927⨯÷=甲行的距A地7份,所以第三次相遇地点距A地是全程的79,所以第二次相遇距A地最近,最近距离是124008003⨯=(米)【例 6】A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第二十一次相遇时,甲跑完几圈又几米?【分析】 甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了1003300⨯=米,此时甲差60米跑一圈,则可得0.5圈是30060240-=米,一圈是480米. 第一次相遇时甲跑了240100140-=米,以后每次相遇甲又跑了1402280⨯=米,所以第二十一次相遇时甲共跑了:140280(211)5740+⨯-=(米),574048011460÷=.即跑完11圈又460米.[铺垫] 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?[分析] 第一次相遇,两人共走了0.5圈;第二次相遇,两人共走了1.5圈.所以第二次相遇时,乙一共走了BAD 1003300=⨯=(米),又知到AD 60=(米),所以圆形场地的半周长为30060240-=(米),那么,周长为2402480⨯=米.【例 7】 A 、B 两地相距13.5千米,甲、乙两人分别由A 、B 两地同时相向而行,往返一次,甲比乙早返回原地,途中两人第一次相遇于C 点,第二次相遇于点D ,CD 相距3千米,则甲.乙两人的速度比是为多少?【分析】 方法一:根据题意画图如下乙甲21DB设甲、乙第一次相遇时分别走的路程为x 千米,y 千米,依题意列方程组得,3313.53313.5x y y x --=⎧⎨+-=⎩解得7.56x y =⎧⎨=⎩,所以甲乙的速度比,即为甲乙路程比7.5:65:4==方法二:用甲、乙代表两个人第一次相遇走的路程,可以整体的分析从开始到第二次相遇甲走的路程为:3⨯甲,乙走的路程为:3⨯乙,甲乙二人的路程差为:3⨯(甲-乙);分开考虑甲一共走的路程为:一个全程+乙+3,乙一共走的路程为:一个全程+甲-3,两个人的路程差为:(一个全程+乙+3)-(一个全程+甲-3)=乙-甲+6.综合列式为:3(甲-乙)=乙-甲+6,得到:甲-乙=1.5,由于,甲+乙=13.5,所以甲=7.5(千米),乙=6(千米),所以甲乙的速度比,即为甲乙路程比7.5:65:4==.【例 8】 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?DC 甲B A乙甲ABC乙甲AB【分析】 设右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点809090-=(米).因此相同时间内,甲乙所行路程比为180:902:1=,所以甲乙二人的速度比为2:1,因此乙每分行驶20210÷=(米),甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90(1020)3÷+=(分).[拓展] 如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[分析] 甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300(9070)15÷-=(分),此时甲走了9015300 4.5⨯÷=(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需2300590163⨯÷=分钟,即16分40秒.【例 9】 甲、乙二人分别从A 、B 两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A 、B 两地的距离.【分析】 先画图如下:C262666乙甲BA方法一: 若设甲、乙二人相遇地点为C ,甲追及乙的地点为D ,则由题意可知甲从A 到C 用6分钟.而从A 到D 则用26分钟,因此甲从C 走到D 之间的路程时,所用时间应为:26620-=(分).用比例解其他行程问题同理乙从C走到D之间的路程时,所用时间应为:26632+=(分),所以相同路程内甲乙所用时间比为20:325:8=,因此甲、乙二人的速度比为8:5,所以甲的速度为505880÷⨯=(米/分),A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)方法二:设甲的速度是x米/分钟那么有(50)26(50)6x x-⨯=+⨯解得80x=A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)[拓展]甲、乙两人分别从A、B两地同时相向出发.相遇后,甲继续向B地走,乙马上返回,往B地走.甲从A地到达B地.比乙返回B地迟0.5小时.已知甲的速度是乙的34.甲从A地到达地B共用了多少小时?[分析]相遇时,甲、乙两人所用时间相同.由题意知,甲乙二人速度比为3:4,所以甲乙二人所行的路程比为3:4,从相遇到返回B地,甲乙所行路程相同,所以返回所用时间比为4:3,又知甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时.可求出从相遇点到B地甲用了0.542⨯=(小时),相遇时,甲乙二人所行的路程比为3:4,甲用时为243 1.5÷⨯=(小时)甲从A地到达地B共用2 1.5 3.5+=(小时)【例10】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【分析】设原速度是1. 后来速度为(120%) 1.2+=,速度比值:1:(120%)5:6+=这是具体地反映:距离固定,时间与速度成反比.时间比值6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.原来时间就是1⨯6=6小时.同样道理,车速提高30%,速度比值:1:(130%)10:13+=时间比值:13:10这样节省了3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为13 3所以前后的时间比值为(6-133):1335:13=.所以总共行驶了全程的5135=+518.[巩固](第三届走美试题)从上海开车去南京,原计划中午11:30到达.但出发后车速提高了17,11点钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市的路程是千米.[分析]由题意设原来速度和车速提高了17后速度比为7:8,则所用时间比为8:7,设原计划用时8份,提速后用时7份,差的一份正好是30分钟,,则原计划用时为240分钟,返回时间缩短20分钟,是由于车速提高16,原来计划速度与返回提速后速度比为6:7,则返回提速后这段路程内所用时间比为7:6,设这段路程原计划用时7份,提速后用时为6份,差的一份正好是20分钟,所以返回提速后用时120分钟,原计划用时140分钟,则原速行驶120千米用时240140100-=(分钟),上海、南京两市的路程是120100240288÷⨯=(千米)【例11】甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【分析】 因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为3:2,设第一次相遇时甲、乙两人行的路程分别是3份,2份相遇后,甲、乙两人的速度比为[][]3(120%):2(130%)18:13⨯+⨯+=,到达B 地时,即甲又行了2份的路程,这时乙行的路程和甲行的路程比是13:18,即乙的路程为21318⨯=419.乙从相遇后到达A 还要行3份的路程,还剩下4531199-=(份),正好还剩下14千米,所以1份这样的路程是514199÷=(千米).A 、B 两地有这样的325+=(份),因此A 、B 两地的总路程为:9545⨯=(千米)【例12】 (第五届走美决赛试题)小王8点骑摩托车从甲地出发前往乙地,8点15追上一个骑车人.小李开大客车8点15从甲地出发前往乙地,8点半追上这个骑车人.小张8点多也从甲地开小轿车出发前往乙地,速度是小李的1.25倍.当他追上骑车人后,速度提高了20%.结果小王、小李、小张三人一同于9点整到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是 点 分,小张从甲地出发时是8点 分 秒.【分析】9:009:009:009:00骑车人小张小李8:15小王8:00乙地15分15分由题意知小王与小李从甲地到乙地所用时间分别是60分、45分,因此小王与小李的速度比是3:4,又小张速度是小李的1.25倍,因此小王、小李、小张的速度比为3:4:5,设小王、小李、小张的速度分别为3、4、5.由上图可以看小李比小王15分钟多行的路程恰是骑车人15分钟的路程,因此骑车人的速度为(43)15151-⨯÷=,即小王的速度是骑车人的3倍,而小王追上骑车人要15分钟,所以骑车人行这段路程要45分钟,因此骑车人是8点30分出发的.小王从甲地到乙地要1小时,可知全程为603180⨯=,因此骑车人到乙地要3小时,骑车人在9点时恰好行了全程的一半,由题意小张追上骑车人后速度变为6,从追上骑车人到到达乙地小张比骑车人多行了180290÷=,因此小张以速度6行驶路程所用时间为90(61)18÷-=(分),所行路程为186108⨯=,则追赶骑车人所用时间为(180108)514.4-÷=(分),因此小张从甲地到乙地共用时间为1814.432.4+=(分)=32分24秒,即小张从甲地出发时是8点27分36秒[巩固] 甲从A 出发步行向B .同时,乙、丙两人从B 地驾车出发,向A 行驶.甲乙两人相遇在离A 地3千米的C 地,乙到A 地后立即调头,与丙在C 地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A 地7.5千米.求AB 两地距离. [分析] 设BC 间的路程为S ,甲的速度为v 甲,乙的速度为v 乙,丙的速度为v 丙,由题意知,3v v S=甲乙,6v S v S +=乙丙,则36)v S v S S ⨯+=⨯甲丙(,甲提速后速度变为2.5v 甲.则2.57.5(7.53)v v S =--甲丙,即34.5v v S =-甲丙,所以36)34.5S S S S ⨯+=⨯-(,解得18S =,所以AB 两地间路程为18321+=(千米)1.甲、乙两车同时分别从相距55千米的AB 两地相向开出,甲行驶了23千米后跟乙相遇,相遇后两车继续前进,到达对方出发地后立刻返回.问:⑴ 第2次相遇点距B 地多少千米?⑵第6次相遇点距A 地多少千米?【分析】 通过分析,我们可以发现:一个全程里甲走23千米,⑴ 第2次相遇共3全程,故甲走了23⨯3=69(千米),甲走了一个全程多了一点,故距离B 地就是69-55=14(千米).⑵第6次相遇总共是11个全程,故甲走了23⨯11=253(千米),25355433÷=,甲走了4个全程多点,多的那部分就是我们要求的距A 的距离为:33千米.2. 甲、乙两列车同时从A 、B 两地相对开出,第一次在离A 地75千米处相遇.相遇后继续前进,到达对方出发地后都又立刻返回,第二次相遇在离B 地55千米处,求A 、B 两地相距多远.【分析】 通过画图找出行程之间的关系.第一次相遇就相当于甲车和乙车一共走了一个全程,根据总结:第2次相遇总共走了3个全程,则甲就走了3个75千米,3⨯75=225千米,画图可以知道甲走了一个全程多了那55千米,所以全程为225-55=170千米.3. 甲、乙两车分别从A 、B 两地出发,并在A 、B 两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A 、B 两地的距离是多少千米?【分析】 甲、乙两车的速度比为:15:253:5=,所以可以把全程分成8份,每走一个全程甲走3份,乙走5份,第三次相遇甲乙共走:3215⨯-=(个全程),甲走了:3515⨯=(份),第四次相遇甲乙共走:4217⨯-=(个全程),甲走了:3721⨯=(份),画图知到两次相遇点100米是4份,所以AB 的长度是10048200÷⨯=(千米).4. 甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A 地出发去B 地,在A 、B 两地间往返而行,从开始走到第三次相遇,共用了6小时.A 、B 两地相距多少千米?【分析】 从开始走到第一次相遇,两车走的路程是两个AB 之长;而到第三次相遇,两车走的路程总共就是6个AB 之长是:(52+40)⨯6=552(千米),A 、B 两地相距的路程是:552÷6=92(千米).5. 一列火车从甲地开往乙地,如果将车速提高,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.【分析】 根据题意可知车速提高后与原来速度比为(1+20%) :1=6:5,由于所行路程相同,所以所用时间比为5:6,所差时间是1小时,即1份是1小时,所以原来行完全程需要6小时,同理可求出行完240千米后所用时间为40⨯5=200(分钟)=133(时),所以行240千米所用时间为6-133=83(时),火车速度为240÷83=90(千米/时),甲乙两地间的距离为90⨯6=540(千米)6.一只小船第一次顺流航行65千米,逆流航行21千米,一共用了10小时;第二次顺流航行20千米,逆流航行12千米,用了4小时.那么船在静水中航行64千米需要多长时间?【分析】如果把第二次航行中顺流和逆流的航程增加到2.5倍,显然时间会变成:4 2.510⨯=小时;顺流航行20 2.550⨯=千米;逆流航行12 2.530⨯=千米.而第一次航行也是花了10小时,但是顺流航程和逆流航程分别是65和21千米.通过比较很容易看出第二次航行比第一次少了,655015-=千米的顺流航程,但是多了30219-=千米的逆流航程.顺流走15千米所花的时间和逆流走9千米所花的时间相等,由此可知顺流速度和逆流速度比应该是15:95:3=,因此相同时间内顺水路程和逆水路程比为5:3,逆流航行21千米相当于顺流航行35千米,所以顺水速度为(6535)1010+÷=(千米/时),逆水速度为10536÷⨯=(千米/时),静水速度为(106)28+÷=(千米/时),船在静水中航行64千米需要6488÷=(小时)。

行程问题比例法详解

行程问题比例法详解

行程问题比例法详解一、比例关系基础比例关系是数学中一种重要的概念,它描述了两个数或量之间的相对大小和关系。

比例关系可以通过简单的算术运算进行描述,其应用场景广泛,如工程、医学、经济等领域。

1.1 定义和理解比例比例可以定义为两个数或量之间的比值。

例如,若A与B成比例,可以表示为A:B=1:2,意味着A是B的一半。

理解比例关系的关键在于明白其表达的是两个数或量之间的相对大小和比例,而非绝对值。

1.2 比例的运算性质比例具有一些基本的运算性质,如交叉乘法、反比等。

例如,若A:B=C:D,则A×D=B×C,这个性质在解决行程问题时非常有用。

反比则描述了两个量之间的变化关系,若A与B成反比,则当A增加时,B减少,反之亦然。

1.3 比例的应用场景比例关系在现实生活中应用广泛。

例如,在购物时,价格和购买量之间的关系通常可以用比例来描述;在工程中,材料用量和成本之间的关系也可以用比例来描述。

此外,比例关系还经常出现在医学、物理学、经济学等领域。

二、行程问题中的比例关系在行程问题中,比例关系通常表现在距离、速度和时间的关系上。

下面将详细讨论这三个方面以及比例关系在行程问题中的表现。

2.1 距离、速度和时间的关系在行程问题中,距离是物体或人在一段时间内移动的直线距离。

速度则是单位时间内移动的距离,通常表示为距离除以时间。

时间则是物体或人移动所需的时间。

这三个量之间的关系可以用以下公式表示:距离=速度×时间。

2.2 比例关系在行程问题中的表现在行程问题中,比例关系通常表现在速度和时间的关系上。

例如,若一个人的速度是另一人的两倍,则他所需的时间是另一人的一半。

这种比例关系在追及问题、相遇问题和环行跑道问题等行程问题中都有体现。

2.3 比例关系在行程问题中的实际应用比例关系在行程问题中的应用可以帮助我们更好地理解和解决各种问题。

例如,在追及问题中,我们可以通过比较两个物体的速度和时间来计算它们何时相遇;在相遇问题中,我们可以利用比例关系计算两车在不同时间点上的位置;在环行跑道问题中,我们可以利用比例关系计算不同速度的车辆在相同时间内所行驶的距离。

六年级奥数行程比例解行程问题

六年级奥数行程比例解行程问题

六年级奥数行程比例解行程问题从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲,得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲,得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1) 理解行程问题中的各种比例关系. (2) 掌握寻找比例关系的方法来解行程问题.【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从比例解行程问题B城出发,并且甲车的速度是乙车速度的56。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出千米,乙车才出发。

甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的13加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是。

五年级春季第10讲——比例法解行程

五年级春季第10讲——比例法解行程
五年级春季知识点总结
吴超超
第十讲 比例法解行程
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优 势, 往往体现在方法的灵活性和思维的巧妙性上, 使得一道看似很难的题目变得 简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用 题也有广泛的应用。
一.基本概念与比例关系
������ ������
: 速度一定(即路程和时间的比值一定) ,路程与时间成正比。
s甲 s乙
即: ������甲 = =
t甲 t乙
: 时间一定(即路程和速度的比值一定) ,路程与速度成正比。
s甲 s乙
即: t甲 = t乙 :
=
v甲 v乙
1
五年级春季知识点总结
1.比和比例: 比:代表两个数相除的关系。也就是说“比”就是“除法”算式。 比例:表示两个比相等的式子。也就是说“比例”是个“等式” 。 2.正比例与反比例: 正比例:比值(或者商)一定的两个量成正比。 反比例:乘积一定的两个量成反比。 注意:①判断两个量成正比还是反比的唯一依据就是定义! ②若两个量成正比,则两个量同增同减;若两个量成反比,则两个量 一增一减。 但是并不是同方向变化的都叫成正比, 反方向变化的都叫 成反比。 3.行程中的比例关系: ⑴v =
通常, 在解这一类问题时, 只需要画图比较速度不同的部分。 画图时, 可按照 “不 同速度不同形” 的原则, 用不同形状的线表示不同速度下的路程, 帮助分析题目。
四.练习题
【练习 1 】 A、 B 两地相距 7200 米,甲、乙分别从 A, B 两地同时出发,结 果在距 B 地 2400 米处相遇.如果乙的速度提高到原来的 3 倍,那么两人可提 前 10 分钟相遇,则甲的速度是每分钟行多少米?

比例解行程问题(基本公式)

比例解行程问题(基本公式)

比例解行程问题(基本公式)基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间 关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s vt =⨯=⨯乙乙乙甲甲甲,得s v t v t =⨯=⨯乙乙甲甲, v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

小学数学比例解行程课件六年级小升初讲课上课PPT教学课件

小学数学比例解行程课件六年级小升初讲课上课PPT教学课件

比例解行程(笔记)
☆行程的正比模型
②当......时,时间相同,考虑路程与速度的正比例关系!
比例解行程(笔记)
☆行程的正比模型
②当......时,时间相同,考虑路程与速度的正比例关系!
例:②当甲行全程的一半时,乙还剩30%。
比例解行程(笔记)
☆行程的正比模型
①相遇、追及,考虑路程与速度的正比例关系! (并画线段图找全程的份数关系) ②当......时,时间相同,考虑路程与速度的正比例关系!
探索新知
练:甲从A地到B地要行10小时,乙从B地到A地要6小时。 现在两人同时从AB两地出发,相向而行,结果在离中点24 千米的地方相遇。求AB两地之间共多少千米?
探索新知
例8:甲、乙两人同时从A地去B地,他们各自的速度不变。 当甲行全程的一半时,乙还剩30%,当乙行完全程时,甲离B 地还有200千米。求A、B两地相距多少千米?
比例解行程(笔记)
☆行程的正比模型
比例解行程(笔记)
☆行程的正比模型
①相遇、追及,考虑路程与速度的正比例关系! (并画线段图找全程的份数关系)
比例解行程(笔记)
☆行程的正比模型
①相遇、追及,考虑路程与速度的正比例关系! (并画线段图找全程的份数关系)
例:①小明和小军同时从甲乙两地相向而行,他们的速度比是6:5
探索新知
练:哥哥和弟弟同时从家出发到学校,哥哥与弟弟的速度比 是5:4,弟弟到学校要要20分钟,哥哥到学校需要多少分钟?
探索新知
例4:小军上山每分钟行40米,沿原路下山每分钟行60米,比 上山少用8分钟,求上山走了多少米?
探索新知
练:小军上山每分钟行60米,沿原路下山每分钟行100米,比 上山少用10分钟,求下山走了多少米?

比例解行程

比例解行程

1.基本公式:路程=速度×时间2.解题方法:解行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

3.比例解行程:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题,我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:(1)当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 (2)当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

二.例题精讲 例1: 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,多少分钟后两人相遇?点睛:相同的路程时,速度与时间成反比.两人的时间比为:36:12=3:1即速度比为:1:336÷(3+1)=9(分)例2:甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走多少米,乙每分钟走多少米.点睛:已知两速度之差与两速度之和,求单独的速度,可用和差公式.速度差=300×2÷30=20(米/分)速度和=2400×2÷30=160(米/分)甲:(160+20)÷2=90(米/分)乙:(160-20)÷2=70(米/分)例3:小李从A 城到B 城,速度是5千米/小时.小兰从B 城到A 城,速度是4千米/小时.两人同时出发,结果在离A 、B 两城的中点1千米的地方相遇,求A 、B 两城间的距离?点睛:小李和小兰的速度比是:5:4则路程比是:5:4在距离中点1千米处相遇,那么速度快的比速度慢的多走了2×1=2千米小李比小兰多走了1个单位=2千米所以两地距离=2×(4+5)=18千米答:两地距离为18千米.例4:一辆汽车从甲地开往乙地,每小时行50千米,返回时每小时行60千米,已知去时用了6小时,那么返回时用了多少小时?点睛:因为去时和返回时所行的路程一定,那么去时与返回时的速度和所用时间成反比.去时和返回时的速度比是:50:60=5:6所用的时间比与速度比是:6:5返回时用的时间为:6÷6×5=5(小时)答:返回时用了5小时.例5:甲乙两车分别从AB两地同时出发相向而行,甲车每小时行50千米,乙车的速度是甲车的4/5,当甲车行至全程的2/5时,乙车距中点还有36千米.AB两地相距多少千米?点睛:由题中条件可求出速度比,因为时间一定,所以两车所行的路程和它们的速度成正比.甲乙两车的速度比是:5:4两车在相同时间里所行的路程比是:5:4当甲车行至全程的2/5时,乙车响起了全程的2/5×4/5=8/25乙车距中点还有全程的:1/2-8/25=9/25AB两地相距:36÷9/25=200(千米)答:两地相距200千米.例6:甲乙两车同时分别从AB两地出发相向而行,当甲车行了全程的1/4时,乙车行了全程的1/3,当乙车行完全程时,甲车距终点还有20千米,AB两地相距多少千米?点睛:由条件”当甲车行了全程的1/4时,乙车行了全程的1/3”可求出两车在相同时间里所行的路程比.甲乙两车在相同时间里所行的路程比是:1/4:1/3=3:4就是说当乙车行完全程时,甲车距终点还有4-3=1(份)路程,这一份的路程就是20千米.因此,AB两地相距:20÷(4-3)×4=80(千米)答:AB两地相距80千米、例7:甲乙两车的速度分别是50千米每小时,40千米每小时,乙车先从B站开入A站,当到离B站72千米的D地时,甲车从A站开入B站,在C地与乙车相遇,如果甲乙两车相遇地C地离AB两站的路程比是3:4,那么AB两站之间的路程是多少千米?点睛:由题意知甲乙两车的速度比是:50:40=5:4甲乙两车在相同时间里所行路程比是:5:4所以AC:CD=5:4,又因为AC:CB=3:4,而5:4=15:12,3:4=15:20所以,AB两站之间的路程为:72÷(20-12)×(15+20)=315(千米)答:AB两站之间的路程是315千米。

奥数比例法解行程问题

奥数比例法解行程问题
【家长评价】 ____________________________________________ ____________________________________________ ________________________________________.
2
3 5
时,出了故障,修车用了5分钟,如果要想在预
订时间内到达乙地,那么,剩余路程需要每分钟提速多少米?
【例6】 (★★★★) 乐乐从家到学校平时需要45分钟.今天乐乐起晚了,她需要用1.5倍 的速度赶去学校,才刚好不会迟到.那么现在距离上课还有多少分 钟?实际上乐乐赶到学校,发现还有5分钟才上课.求乐乐今天与 平时的速度比是多少?
1
【例4】 (★★★☆) 一只小船,第一次顺流航行57千米,逆流航行45千米,共用时9小 时;第二次用同样的时间,顺流航行37千米,逆流航行60千米. 求 这只小船顺水航行130千米需要多长时间?
【例5】 (★★★☆)
一辆汽车从甲地开往乙地,每分钟行750米,计划50分钟到达. 但汽
车行驶到路程的
方与乙相遇.
已知甲每小时走4.5千米,乙每小时走全程的
1
11 .求
AB
3
之间的路程.
【例2】 (★★★) 客车和货车同时从甲、乙两地的中点向反向行驶,3小时后客车到达 甲地,货车离乙地还有22千米,已知客车与货车的速度比为6:5,甲、 乙两地相距多少千米?
【例3】 (★★★☆) A、B两地相距7200米,甲、乙分别从A、B两地同时出发,结果在 距B第2400米处相遇. 如果乙的速度提高到原来的3倍,那么两人可 提前10分钟相遇,则甲的速度是每分钟____米.
知识大总结 1. 正比例与反比例 2. 公式:路程=速度×时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4:48

全程150千米 甲 汽车

第二阶段:乙坐车,甲步行
S甲:S车=V甲:V车=1:12 第一阶段:甲坐车,乙步行 S乙:S车=V乙:V车=1:12
第二阶段:乙坐车,甲步行
S甲:S乙=V甲:V乙=1:12 第一阶段:甲坐车,乙步行 S甲:S乙=V甲:V乙=1:12
所以:车和人的路程差的份数为12-1=11 份 而 路程差= 汽车往返的路程/2 所以 汽车往返单程= 11/2=5.5份 设人走x千米,就可列出方程: x+5.5x+x=150 7.5x=150
谢谢!
比例法解行程
例4
甲班与乙班学生同时从学校出发去公园,两班的步行 的速度都是每小时4千米。学校有一辆汽车,它的速度 是每小时48千米,这辆汽车恰好能坐一个班的学生。 为了使两班学生在最短时间内到达公园,设两地相距 150千米,那么各个班的步行距离是多少千米?
思0千米 甲 汽车
相关文档
最新文档