中心对称--PPT课件
合集下载
九年级数学中心对称图形课件
正方形中心对称图形的面积计算
总结词
正方形中心对称图形的面积计算与矩形类似,也是通过 计算一个正方形面积再除以2得到。
详细描述
正方形作为特殊的矩形,其中心对称图形的面积计算方 法与矩形相同。将正方形分成两个完全相同的部分,然 后计算一个正方形的面积,最后将结果除以2即可得到整 个中心对称图形的面积。假设正方形边长为a,则其面积 为a^2。所以,中心对称图形的面积为(a^2)/2。
THANKS
感谢观看
03
中心对称图形的判定
通过旋转判定中心对称图形
总结词
旋转法是判定中心对称图形的一种常 用方法。
详细描述
将图形绕着某点旋转180度,如果旋 转后的图形与原图形重合,则该图形 是中心对称图形。例如,正方形、圆 、正六边形等都是中心对称图形。
通过反射判定中心对称图形
总结词
反射法是通过图形的对称性来判定中心对称图形的方法。
05
中心对称图形的面积计算
矩形中心对称图形的面积计算
要点一
总结词
要点二
详细描述
矩形中心对称图形的面积计算相对简单,可以通过计算一 个矩形面积再除以2得到。
对于矩形中心对称图形,我们可以将其分成两个完全相同 的矩形,然后计算一个矩形的面积,最后将结果除以2即可 得到整个中心对称图形的面积。假设矩形长为a,宽为b, 则其面积为ab。所以,中心对称图形的面积为(ab)/2。
九年级数学中心对称图形ppt课件
目 录
• 中心对称图形的定义 • 中心对称图形的性质 • 中心对称图形的判定 • 中心对称图形的作图 • 中心对称图形的面积计算
01
中心对称图形的定义
中心对称图形的文字定义
总结词:简明扼要
23.2.1 中心对称(共43张PPT)
15 8
2
OF
15 8
同理OE 15 ,即 OF OE OF 15
8
4
A
D
C′
D′
O 重合
B′
A′
B
C
(4)将平行四边形ABCD绕中心O逆时针旋 转180°,这两个图形有怎样的位置关系?
有的轴对称, 有的重合。
绕中心旋转180°,旋转后的图 形与原图的位置关系有什么不同?
教学目标
【知识与能力】
了解中心对称、对称中心、关于中心的对称 点等概念。 通过具体实例认识两个图形关于某一点成中 心对称的本质:就是一个图形绕一点旋转180° 而成。 作出中心对称的图形。
它是轴对称图形吗? 不是轴对称图形。
这个图形是否能够通过某种图形运动与自 身重合?
探究
下列图形是否能够通过某种图形运动与自
身重合?图旋Biblioteka 形转绕后中与
线段绕中点旋转180°
心原 旋图
旋转后与原图重合
转重
180 合
°
知识要点
把一个图形绕着某一个点旋转180°, 如果它能够与另一个图形重合,那么就说 这两个图形关于这个点对称或中心对称 (central symmetry),这个点叫做对称中 心。这两个图形中的对应点叫做关于中心 的对称点。
经历对日常生活中与中心对称有关的图形进行 观察、分析、欣赏、动手操作、画图等过程,发 展审美能力,增强对图形的欣赏意识。
从图形变化过程中,树立正确的辩证唯物主义 观点。
认识几何图形的对称美,培养学生热爱数学, 热爱生活。
教学重难点
利用中心对称、对称中心、关于中心的 对称点的概念解决一些问题。 从一般旋转中导入中心对称。 中心对称的性质及初步应用。 中心对称与旋转之间的关系。
2中心对称PPT课件(人教版)
23.2 中心对称
锦囊妙计
判定中心对称图形的方法 若一个图形绕某个点旋转180°后能够与原 来的图形重合, 则这个图形就是中心对称图形.
23.2 中心对称
题型二 确定对称中心
例题3 如图23-2-12, 四边形ABCD与四边 形FGHE关于一个点中心对称,
则这个点是( ). A
A.O1 C.O3
分析
点A(3, a)和 点 B(b, 5)关 于原 点对称
3和b互为相 反数, a和5 互为相反数
求出 a, b 的值
将a,b 的值 代 入代数 式求值
23.2 中心对称
23.2 中心对称
锦囊妙计 对称与坐标的变化规律
x轴对称, 纵相反; y轴对称, 横相反; 原点对称, 都相反. 解释:若两个点关于x轴对称, 则这两个点 的横坐标相等, 纵坐标 互为相反数; 若两个点关于y轴对称, 则这两个点的纵坐 标相等, 横坐标互为相 反数; 若两个点关于原点对称, 则这两个点的 横、纵坐标均互为相反数.
谢 谢 观 看!
23.2 中心对称
题型五 运用图形变换作图
例题6 如图23-2-16, 在所给网格图(每小格 均是边长为1的正方形)
中完成下列各题:
(1) 作出△ ABC向左平移5格后得到的 △A1B1C1; (2)作出△ABC关于点O对称的△A2B2C2.
分析 根据平移与中心对称的作图方法在网 格 图中直接画图即可.
图23-2-16
23.2 中心对称
解 (1)△A1B1C1如图23-2-17. (2)△A2B2C2如图23-2-17.
图23-2-17
23.2 中心对称
锦囊妙计 中心对称作图的一般步骤
(1)连接原图形上一个关键点和对称中心; (2)延长该关键点和对称中心所连线段, 以 对称中心为端点在延长 线上截取一条线段, 使 其长度等于关键点到对称中心的距离, 则线段 的 另一个端点为关键点的对称点; (3)按照以上两步作出原图形上所有关键点 的对称点; (4)将各对称点按原图形的形状依次连接起 来, 就得到与原图形关 于对称中心对称的图形.
《中心对称图形》PPT优秀课件
书籍是巨大的力量。 ---列宁
好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 ---法奇(法国科学家)
中心对称PPT课件
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋
转180°,画出△A′B′C′;
第三步,移开三角板.
很显然画出的△ABC与
△A’B’C’关于点O对称. 分别连接AA’ ,BB’,CC’。 A’
点O在线段AA′上吗?
如果在,在什么位置? C’ △ABC与△A′B′C′有什么关
下图中△A′B′C′与 △ABC关于点O是成中心对 称的,你能从图中找到哪 些等量关系?
(1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△A′B′C′
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
中心对称
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
A'
则得B的对称点B'
连结 A' B' ,则线段A' B'是所画线段
B
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
例1 (3).如图.选择点O为对称中心,画出与
△ABC关于点O对称的△A′B′C′.
C
O
D
O
中心对称图形PPT课件演示教学
《中心对称图形》PPT课 件
中心对称图形
观察
将下面的图形绕O点旋转180°,你有
什么发现?
A
OB
o
(1)线段
(2)圆
O
O
(3)平行四边形
(4) 正方形
A
D
O
B
C
如果一个图形绕一个点旋转180°后,
能和原来的图形互相重合,那么这个图
形叫做中心对称图形;这个点叫做它的
对称中心;互相重合的点叫做对称点.
(2)下列多边形中,是中心对称图形而不是
轴对称图形的是( A)
A平行四边形 B矩形 C菱形 D正方形
下面的扑克牌中,哪些牌面是中心 对称图形?
在26个英文大写正体字母中,哪 些字母是中心对称图形?
ABCDEFGH I J KLM NOPQRSTUVWXYZ
3.如图,在矩形ABCD中,已知
AB=2,AD=4,对角线AC.BD交于
边数为偶数的正多边形都是中心对称图形。
O
等边三角形不是中心对称图形!
1.下面哪个图形是中心对称图形?
√
√
2.下列图形不是中心对称图形的是--( )
B
①
②
③
④
(A)① (B)② (C)③ (D)④
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形? (1) (3)哪些既是轴对称图形,又是中心对称图形?
合作交流探究新知
二 探究中心对称图形的性质
探究与归纳
D
A
O
C
B
归纳 (中1心)对中称心图对形称上图的形每的一对对称对点称连点线所都连经成过的_对_线_称_段_中_都_心_被对
中心对称图形
观察
将下面的图形绕O点旋转180°,你有
什么发现?
A
OB
o
(1)线段
(2)圆
O
O
(3)平行四边形
(4) 正方形
A
D
O
B
C
如果一个图形绕一个点旋转180°后,
能和原来的图形互相重合,那么这个图
形叫做中心对称图形;这个点叫做它的
对称中心;互相重合的点叫做对称点.
(2)下列多边形中,是中心对称图形而不是
轴对称图形的是( A)
A平行四边形 B矩形 C菱形 D正方形
下面的扑克牌中,哪些牌面是中心 对称图形?
在26个英文大写正体字母中,哪 些字母是中心对称图形?
ABCDEFGH I J KLM NOPQRSTUVWXYZ
3.如图,在矩形ABCD中,已知
AB=2,AD=4,对角线AC.BD交于
边数为偶数的正多边形都是中心对称图形。
O
等边三角形不是中心对称图形!
1.下面哪个图形是中心对称图形?
√
√
2.下列图形不是中心对称图形的是--( )
B
①
②
③
④
(A)① (B)② (C)③ (D)④
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形? (1) (3)哪些既是轴对称图形,又是中心对称图形?
合作交流探究新知
二 探究中心对称图形的性质
探究与归纳
D
A
O
C
B
归纳 (中1心)对中称心图对形称上图的形每的一对对称对点称连点线所都连经成过的_对_线_称_段_中_都_心_被对
23.中心对称PPT课件(人教版)
点对称,所以A错误;关于中心对称的两个图 形是全等的,所以B正确;关于中心对称的两 个图形,对称点的连线必过对称中心,所以C 正确;根据中心对称的性质可得D正确.故选 A.
检测反馈
1.关于中心对称的描述不正确的是( A )
A.把一个图形绕着某一点旋转,如果它能 与另一个图形重合,那么就说这两个图形对 称 B.关于中心对称的两个图形是全等的 C.关于中心对称的两个图形,对称点的连 线必过对称中心 D.如果两个图形关于点O对称,点A与A′是 对称点,那么OA=OA′
检测反馈
1.关于中心对称的描述不正确的是( ) A.把一个图形绕着某一点旋转,如果它能 与另一个图形重合,那么就说这两个图形对 称 B.关于中心对称的两个图形是全等的 C.关于中心对称的两个图形,对称点的连 线必过对称中心 D.如果两个图形关于点O对称,点A与A′是 对称点,那么OA=OA′
解析:一个图形绕某一点旋转180°后的能够 与另一个图形重合,那么这两个图形关于这个
1.中心对称的概念:
把一个图形绕某一个点旋转180°,如果它能够
与另一个图形重合,那么就说这两个图形关于 这个点对称或中心对称。
2.中心对称的性质:关于中心对称的两个图形,对称 点所连线段都经过对称中心,而且被对称中心所平 分;关于中心对称的两个图形是全等图形.
3.画中心对称图形方法:画出图形各个顶点关 于已知点的对称点,然后依次连接各个点即可.
九年级数学上 新课标 [人]
第二十三章 旋转
学习新知
检测反馈
1.什么是轴对称?轴对称有哪些性质? 2.什么是旋转、旋转角? 3.旋转角能不能是180°?
学习新知
(1)如图,把其中一个图案绕点 O 旋转180°, 你有什么发现?
检测反馈
1.关于中心对称的描述不正确的是( A )
A.把一个图形绕着某一点旋转,如果它能 与另一个图形重合,那么就说这两个图形对 称 B.关于中心对称的两个图形是全等的 C.关于中心对称的两个图形,对称点的连 线必过对称中心 D.如果两个图形关于点O对称,点A与A′是 对称点,那么OA=OA′
检测反馈
1.关于中心对称的描述不正确的是( ) A.把一个图形绕着某一点旋转,如果它能 与另一个图形重合,那么就说这两个图形对 称 B.关于中心对称的两个图形是全等的 C.关于中心对称的两个图形,对称点的连 线必过对称中心 D.如果两个图形关于点O对称,点A与A′是 对称点,那么OA=OA′
解析:一个图形绕某一点旋转180°后的能够 与另一个图形重合,那么这两个图形关于这个
1.中心对称的概念:
把一个图形绕某一个点旋转180°,如果它能够
与另一个图形重合,那么就说这两个图形关于 这个点对称或中心对称。
2.中心对称的性质:关于中心对称的两个图形,对称 点所连线段都经过对称中心,而且被对称中心所平 分;关于中心对称的两个图形是全等图形.
3.画中心对称图形方法:画出图形各个顶点关 于已知点的对称点,然后依次连接各个点即可.
九年级数学上 新课标 [人]
第二十三章 旋转
学习新知
检测反馈
1.什么是轴对称?轴对称有哪些性质? 2.什么是旋转、旋转角? 3.旋转角能不能是180°?
学习新知
(1)如图,把其中一个图案绕点 O 旋转180°, 你有什么发现?
中心对称PPT课件
典型例题解析
例题1:已知△ABC和△A'B'C'关 于点O成中心对称,点A、B、C 的对应点分别是A'、B'、C',则
下列说法不正确的是( )
A. △ABC≌△A'B'C' B. △ABC和 △A'B'C'的面积相等
C. △ABC和△A'B'C'的周长相等 D. △ABC和△A'B'C'中,AB与A'B'不
判断下列图形是否是中心对称图形,并指出其对称中心。
解答过程
通过观察或旋转图形,可以判断每个图形是否是中心对称图 形,并确定其对称中心。
练习题目
绘制一个中心对称图形,并标出其对称中心和对称点。
解答过程
选择一个简单的图形(如正方形、圆等),以其中心点为对 称中心,绘制出对应的中心对称图形,并标出对称中心和对 称点。
学生自我评价和反思
自我评价
通过本节课的学习,我对中心对称的概念和性质有了更深入的理解,能够熟练判断 一个图形是否是中心对称图形,并掌握了绘制中心对称图形的方法。
反思与改进
在判断复杂图形的中心对称性时,我还需要更加细心和耐心,同时加强对中心对称 性质的理解和应用。在今后的学习中,我将更加注重实践和应用,通过多做练习题 来加深对知识点的掌握。
利用中心对称进行图案设计
设计中心对称图案
选择一个中心点,以该点为中心 设计出对称的图案,如圆形、正
方形等。
应用中心对称性质
利用中心对称的性质,如等距、等 角等,设计出具有美感的图案。
创意组合
将多个中心对称图案进行创意组合, 形成更加复杂的图案。
中心对称图形课件
06 总 结 与 思 考
中心对称图形的定
01
义和性质
中心对称图形的定义
中心对称图形是指一个图形绕着某个点旋转180度后,能够与原图形完全重合的图形。
这个点被称为中心对称图形的对称中心。
中心对称图形的对称中心可以是图形内部的任意一点,也可以是图形外部的任意一点。
中心对称图形的性质包括:图形的对称中心是唯一的,图形的对称中心到图形上任意一点 的距离相等。
平移对称图形:图形沿某一条直 线平移一定距离后与原图形重合, 如长方形、梯形等
中心对称图形的应
03
用
在几何图形中的应用
轴对称图形:如正方形、圆形、等边三角形等 旋转对称图形:如正六边形、正十二边形等 反射对称图形:如菱形、平行四边形等 平移对称图形:如矩形、梯形等
在建筑设计中的应用
室内设计:中心对称图形在 室内设计中的应用,如客厅、 餐厅等
定义:具有中心对称性质的图形 特点:图形关于中心对称点对称 例子:圆形、正方形、正三角形等 应用:建筑设计、艺术创作等领域
中心对称面图形
轴对称图形:图形沿某一条直线 对称,如正方形、圆形等
反射对称图形:图形沿某一条直 线反射后与原图形重合,如菱形、 平行四边形等
添加标题
添加标题
添加标题
添加标题
旋转对称图形:图形沿某一点旋 转一定角度后与原图形重合,如 正三角形、正六边形等
形”等形状
在“格式”选项卡中 选择“中心对称”选
项
调整形状的大小和位 置,使其成为中心对
称图形
在“格式”选项卡中 选择“填充”和“边 框”选项,设置图形
的颜色和样式
在“动画”选项卡中 选择“添加动画”, 为图形添加动画效果
保存PPT,完成中心 对称图形的制作
中心对称图形的定
01
义和性质
中心对称图形的定义
中心对称图形是指一个图形绕着某个点旋转180度后,能够与原图形完全重合的图形。
这个点被称为中心对称图形的对称中心。
中心对称图形的对称中心可以是图形内部的任意一点,也可以是图形外部的任意一点。
中心对称图形的性质包括:图形的对称中心是唯一的,图形的对称中心到图形上任意一点 的距离相等。
平移对称图形:图形沿某一条直 线平移一定距离后与原图形重合, 如长方形、梯形等
中心对称图形的应
03
用
在几何图形中的应用
轴对称图形:如正方形、圆形、等边三角形等 旋转对称图形:如正六边形、正十二边形等 反射对称图形:如菱形、平行四边形等 平移对称图形:如矩形、梯形等
在建筑设计中的应用
室内设计:中心对称图形在 室内设计中的应用,如客厅、 餐厅等
定义:具有中心对称性质的图形 特点:图形关于中心对称点对称 例子:圆形、正方形、正三角形等 应用:建筑设计、艺术创作等领域
中心对称面图形
轴对称图形:图形沿某一条直线 对称,如正方形、圆形等
反射对称图形:图形沿某一条直 线反射后与原图形重合,如菱形、 平行四边形等
添加标题
添加标题
添加标题
添加标题
旋转对称图形:图形沿某一点旋 转一定角度后与原图形重合,如 正三角形、正六边形等
形”等形状
在“格式”选项卡中 选择“中心对称”选
项
调整形状的大小和位 置,使其成为中心对
称图形
在“格式”选项卡中 选择“填充”和“边 框”选项,设置图形
的颜色和样式
在“动画”选项卡中 选择“添加动画”, 为图形添加动画效果
保存PPT,完成中心 对称图形的制作
人教版九年级数学上册 23.2.2 中心对称图形(22张PPT)课件
并且被对称中心平分
如果一个图形绕着一个 点旋转180后的图形能 够与原来的图形重合, 那么这个图形叫做中心 对称图形,这个点就是 它的对称中心
________
①两个图形的关系
区别
②对称点在两个图形上
①具有某种性质的一个图形 ②对称点在一个图形上
若把中心对称图形的两部分分别看作两图,则它们成中心对称. 联系 若把中心对称的两图看作一个整体,则成为中心对称图形.
(2)平行四边形、长方形和正方形都是中心对称 图形,对角线的交点是它们的对称中心. ( )
(3)角是轴对称图形也是中心对称图形. ( )
(4)在成中心对称的两个图形中,对应线段平行
(或在同一直线上)且相等.
()
3. 判断下列图形是否是中心对称图形:
√
√ ×
√
√
√
√
√
4. 观察图形,并回答下面的问题: (1)哪些只是轴对称图形?(3)(4)(6) (2)哪些只是中心对称图形?(1) (3)哪些既是轴对称图形,又是中心对称图形?
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的图形
互相重合,那么这个图形叫做中心对称图形;这个点
叫做它的对称中心;互相重合的点叫做对称点.
图中____A_B_C__D_是中心对称图形 对称中心是__点__O__
点A的对称点是_点__C___
点D的对称点是_点__B___
小练习
下列图形是中心对称图形吗?
复习中心对称的概念
把一个图形绕着某一点旋转 180°,如果它能够与另一个 图形重合,那么就说这两个图形关于这个点对称或中心对 称.这个点叫做对称中心.
这两个图形在旋转后能重合的对应点叫做关于对称中心的 对称点.
23.2.1《中心对称》ppt课件
A O A′
点A′即为所求的点
(2)、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
A B′ O A′
B
(3)如图,选择点O为对称中心,画出与△ABC关于点O对称的 △A′B′C′.
解:
B′ A′
C′
△A′B′C′即为所求的三角形。
(4) 已知四边形ABCD和点O,画四边A′B′C′D′, 使它与已知四边形关于这一点对称。
我们已学过哪些图形变换? 旋转变换 平移变换 轴对称变换
这幅图案有哪些变换? 轴对称变换。 有旋转变换吗? 90°、180°、270°
23.2.1中心对称
(1)把其中一个图案绕点O旋转180°,你有什么发现?
O
重 合
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△CDO绕点O 旋转180°,你有什么发现?
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
合作探究:
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板.
B′
C′ A B C
A′
O
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
合作探究:
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板.
关于中心对称的两个图形,对称点所连线 段经过对称中心,而且被对称中心所平分. 关于中心对称中心的两个图形是全等图形.
下图中△A′B′C′与△ABC关于点O是成中心对称的,你 能从图中找到哪些等量关系?
(1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△A′B′C′
点A′即为所求的点
(2)、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
A B′ O A′
B
(3)如图,选择点O为对称中心,画出与△ABC关于点O对称的 △A′B′C′.
解:
B′ A′
C′
△A′B′C′即为所求的三角形。
(4) 已知四边形ABCD和点O,画四边A′B′C′D′, 使它与已知四边形关于这一点对称。
我们已学过哪些图形变换? 旋转变换 平移变换 轴对称变换
这幅图案有哪些变换? 轴对称变换。 有旋转变换吗? 90°、180°、270°
23.2.1中心对称
(1)把其中一个图案绕点O旋转180°,你有什么发现?
O
重 合
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△CDO绕点O 旋转180°,你有什么发现?
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
合作探究:
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板.
B′
C′ A B C
A′
O
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
合作探究:
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板.
关于中心对称的两个图形,对称点所连线 段经过对称中心,而且被对称中心所平分. 关于中心对称中心的两个图形是全等图形.
下图中△A′B′C′与△ABC关于点O是成中心对称的,你 能从图中找到哪些等量关系?
(1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△A′B′C′
中心对称PPT课件
B’
OB
C
系? A
(1)点O是线段AA ′的中点
(2)△ABC≌△A′B′C′
2020年9月28日 (为什?)
(为什么?)
11
证明:
(1). 点A′是绕点A旋转180°后得到的,即线段OA绕点O旋转
180°得到线段OA′,所以点O在线段AA′上,且OA= OA′,即点O 是线段AA′的中点. 同样地,点O是线段BB′ CC′的中点.
(2)关于中心对称的两个图形是全等形。
2020年9月28日
14
想一想 3.中心对称与轴对称有
什么区别?又有什么联系?
类比你能得到 什么结论?
4.中心对称的作图
例1、(1)已知A点和O点,画出点A关于点O的对称点A'
A
O
A'
连结OA, 并延长到A',使OA'=OA,
则A'是所求的点
例1.(2)、已知线段AB和O点,画出线段AB关于点O的对称线
找一找:
下图中△A′B′C′与△ABC 关于点O是成中心对称的, 你能从图中找到哪些等量 关系?
(1)OA=OA′、OB=OB′、 OC=OC′
(20220)年9月△28日ABC≌△A′B′C′
13
2.归纳:中心对称的性质
(1)关于中心对称的两个图形,对称点所 连线段都经过对称中心,并且被对称中心所 平分.
段A' B'
B'
连结AO并延长到A',使OA'=OA,A
则得A的对称点A' 连结BO并延长到B' ,使O B' =OB, 则得B的对称点B'
连结 A' B' ,则线段A' B'是所画线段
中心对称课件ppt
中心对称性质
中心对称
探索:
探索:
下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?
A’
B’
C’
A
B
C
O
(1)OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
归纳: 在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分. 反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.
知识目标:(1)理解中心对称图形和中心对称的概念,知道两者之间的关系,掌握它们的性质。(2)会画一个图形关于某一点的对称图形。
能力目标:通过对中心对称性质的发现,提高分析、类比、归纳等能力。
情感目标:经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活。
重点:中心对称图形的识别;应用中心对称性质画图。
教学过程
01
PEPORT ON WORK
理解中心对称图形和中心对称的概念,知道两者之间的辩证关系,并掌握它们的性质和判定。
01
会画一个图形关于某一点的对称图形。
02
学习目标
观察:下列图形,绕中心点旋转多少度能与自身重合?它们的旋转角度有什么相同点?
中心对称图形
(1) 这些图形有什么共同的特征?
A
D
E
中心对称图形
请你探究 中心对称图形与中心对称的区别: 中心对称 中心对称图形 VS
请你动手:将一个三角板放在纸上,画出△ABC,再将三角板绕一个顶点旋转180o,画出△A’B’C’,移开三角板,画出的△ABC与△A’B’C’关于点O对称。分别连接对称点AA’ 、BB’、CC’,点O在线段AA’上吗?如果在,在什么位置? △ABC与 △A’B’C’有什么关系?
中心对称
探索:
探索:
下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?
A’
B’
C’
A
B
C
O
(1)OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
归纳: 在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分. 反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.
知识目标:(1)理解中心对称图形和中心对称的概念,知道两者之间的关系,掌握它们的性质。(2)会画一个图形关于某一点的对称图形。
能力目标:通过对中心对称性质的发现,提高分析、类比、归纳等能力。
情感目标:经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活。
重点:中心对称图形的识别;应用中心对称性质画图。
教学过程
01
PEPORT ON WORK
理解中心对称图形和中心对称的概念,知道两者之间的辩证关系,并掌握它们的性质和判定。
01
会画一个图形关于某一点的对称图形。
02
学习目标
观察:下列图形,绕中心点旋转多少度能与自身重合?它们的旋转角度有什么相同点?
中心对称图形
(1) 这些图形有什么共同的特征?
A
D
E
中心对称图形
请你探究 中心对称图形与中心对称的区别: 中心对称 中心对称图形 VS
请你动手:将一个三角板放在纸上,画出△ABC,再将三角板绕一个顶点旋转180o,画出△A’B’C’,移开三角板,画出的△ABC与△A’B’C’关于点O对称。分别连接对称点AA’ 、BB’、CC’,点O在线段AA’上吗?如果在,在什么位置? △ABC与 △A’B’C’有什么关系?
中心对称ppt课件
总结词:间接证明
详细描述:假设两个图形不关于某点对称,然后推导出矛盾,从而证明两个图形关于该点对称。
04
中心对称的实例
生活中的实例
钟表
钟表的数字和指针围绕中心点对称,表现出 中心对称的特点。
圆桌
圆桌的边缘和中心点对称,使得每个位置都 与中心等距。
雪花
雪花晶体呈现出六边形的对称结构,也是中 心对称的一个实例。
重中心对称可以通过代数形式进行表示和描述,为代数和几何之
间的联系提供了基础。
数学分析
03
中心对称在数学分析中也有广泛应用,如在函数奇偶性、积分
等领域。
对科学的意义
01
物理学应用
中心对称在物理学中有重要应用 ,如晶体结构、电磁场、量子力 学等领域。
化学结构
02
03
工程学设计
中心对称在化学结构中也有广泛 应用,如有机化合物和无机化合 物的分子结构。
感谢您的观看
THANKS
分子结构
分子结构的中心对称
在分子结构中,中心对称是指分子中的原子或基团关于某一点呈对称分布的现 象。例如,甲烷分子呈正四面体结构,具有中心对称性。
中心对称在化学反应中的作用
在化学反应中,中心对称的概念有助于理解分子的稳定性和化学键的性质。具 有中心对称的分子往往具有较高的稳定性,因为它们具有更多的对称元素。
中心对称在工程学设计中也有应 用,如建筑设计、机械设计等领 域。
对艺术的意义
图案设计
中心对称在艺术设计中是一种常 见的构图手法,可以创造出平衡
、和谐的艺术效果。
绘画构图
许多艺术家在绘画中运用中心对称 的构图方式,以营造出更加完美的 视觉效果。
建筑美学
中心对称在建筑美学中也有广泛应 用,如古希腊和罗马的建筑风格。
详细描述:假设两个图形不关于某点对称,然后推导出矛盾,从而证明两个图形关于该点对称。
04
中心对称的实例
生活中的实例
钟表
钟表的数字和指针围绕中心点对称,表现出 中心对称的特点。
圆桌
圆桌的边缘和中心点对称,使得每个位置都 与中心等距。
雪花
雪花晶体呈现出六边形的对称结构,也是中 心对称的一个实例。
重中心对称可以通过代数形式进行表示和描述,为代数和几何之
间的联系提供了基础。
数学分析
03
中心对称在数学分析中也有广泛应用,如在函数奇偶性、积分
等领域。
对科学的意义
01
物理学应用
中心对称在物理学中有重要应用 ,如晶体结构、电磁场、量子力 学等领域。
化学结构
02
03
工程学设计
中心对称在化学结构中也有广泛 应用,如有机化合物和无机化合 物的分子结构。
感谢您的观看
THANKS
分子结构
分子结构的中心对称
在分子结构中,中心对称是指分子中的原子或基团关于某一点呈对称分布的现 象。例如,甲烷分子呈正四面体结构,具有中心对称性。
中心对称在化学反应中的作用
在化学反应中,中心对称的概念有助于理解分子的稳定性和化学键的性质。具 有中心对称的分子往往具有较高的稳定性,因为它们具有更多的对称元素。
中心对称在工程学设计中也有应 用,如建筑设计、机械设计等领 域。
对艺术的意义
图案设计
中心对称在艺术设计中是一种常 见的构图手法,可以创造出平衡
、和谐的艺术效果。
绘画构图
许多艺术家在绘画中运用中心对称 的构图方式,以营造出更加完美的 视觉效果。
建筑美学
中心对称在建筑美学中也有广泛应 用,如古希腊和罗马的建筑风格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,已知△ABC与△A’B’C’中心对称,求出它们 的对称中心O。
C
B A
A’ B’
C’
王母娘娘被考神说服,她表示作出下面这道题就解除对
懒星和美星的惩罚,就让她们见面,大家一起来帮帮她们 吧!
小结:
• 这节课你有那些收获?
• 请你说给大家听听
最后通过大家的帮助懒星和美星两姐妹终于又到了 一起!
结论:
1.关于中心对称的两个图形,对称点所连线段都经过对称 中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
△ABC与△ADE就是成中心对称的两个三角形,点 A是对称中心,点B关于对称中心A的对称点为点 ___D______,点C关于对称中心A的对称点为点 ___E_______。
23.2.1中心对称
你能给出中心对称的定义吗?
定义: 把一个图形绕着某一个点旋转180度,如果它能够与
另一个图形重合,那么就说这两个图形关于这个点对称或 中心对称,这个点叫做对称中心.
思考:如何作出已知图形关于某点的对称图形?
作该图形绕该点旋转180度后的图形即为 所求!
善良的你能帮助懒星根据自己和天宫找到她妹妹美星的 位置吗?
.
懒星
天宫
作出ΔABC关于点O的对称图形ΔDEF并说明作图
步骤
A
. 0
B
C
F E
D
辩一辩哪组同学的作图方法更好一点:
自己动手量一量,比一比,看一看你能得出哪些结论?
Ao=__O_D_____ BO=_O_E ______ co=__O_F______
ΔABC__≌___ΔDEF