2003年成人高考专升本高等数学一考试真题及参考答案

合集下载

2003年普通高等学校招生全国统一考试数学试卷(理工类)及答案

2003年普通高等学校招生全国统一考试数学试卷(理工类)及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54co s =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离D E KBC 1A 1B 1AFCG19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos(=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?东O21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{t s + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cos r r z +=,则复数.2rz 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞ 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a 整理得1)(2222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s ++=(r,t,s ),1073160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=资料由谢老师收集:了解初中,高中考试信息,做题技巧,解题思路可去谢老师博客/xiejunchao1。

2003年河南省专升本(高等数学)真题试卷(题后含答案及解析)

2003年河南省专升本(高等数学)真题试卷(题后含答案及解析)

2003年河南省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=(x-1)的定义域是( )A.(1,+∞)B.(2,+∞)C.[2,+∞)D.空集正确答案:C解析:因ln(x-1)≥0,得x-1≥1,即x≥2.2.函数y=1-arctanx是( )A.单调增加且有界函数B.单调减少且有界函数C.奇函数D.偶函数正确答案:B解析:因y’=<0,所以函数单调减少,且有界3.下列等式成立的是( )A.B.C.D.正确答案:C解析:根据两个重要极限,很显然C正确.4.当x→0时,无穷小量1-cosx2是比x4的( )A.等价无穷小B.同阶无穷小C.较高阶无穷小D.较低阶无穷小正确答案:B解析:因x→0时,所以1-cosx2是比x4的同阶无穷小.5.x=0是函数f(x)=-1的( )A.连续点B.可去间断点C.跳跃间断点D.第二类间断点正确答案:D解析:因为=+∞,所以x=0为第二类间断点.6.下列方程在[0,1]上有实根的是( )A.sinx+x-=0B.x2+3x+1=0C.arcsinx+3=0D.x-sinx+=0正确答案:A解析:对于A,函数f(x):sinx+x-满足在区间[0,1]上连续,且f(0)=<0,f(1)=sinl+>0,所以选A.7.若f(x)在点x0处不连续,则f(x)在点x0处( )A.必定不可导B.一定可导C.可能可导D.极限一定不存在正确答案:A解析:因连续为可导的必要条件,故f(x)在x0处不连续,则f(x)在x0处必不可导.8.曲线y=( )A.有水平渐近线,无垂直渐近线B.无水平渐近线,有垂直渐近线C.无水平渐近线,也无垂直渐近线D.有水平渐近线,也有垂直渐近线正确答案:B解析:因=∞,所以有垂直渐近线x=1;因=∞,所以无水平渐近线.9.已知f(x)=0,f’(0)=1,则( )A.2B.1C.0D.∞正确答案:B解析:10.若y=sine-x,则有( )A.dy=cose-xdxB.dy=e-xsine-xdxC.dy=-e-xcose-xdxD.dy=e-xcose-xdx正确答案:C解析:dy=(-1)cose-x.e-xdx.11.设( )A.B.2tC.1D.t正确答案:A解析:12.若f(x)在(a,b)内二阶可导,且f’(x)&gt;0,f’’(x)&lt;0,则f(x)在(a,b)内( )A.单调增加且是凸的B.单调增加且是凹的C.单调减少且是凸的D.单调减少且是凹的正确答案:A解析:因f’(x)>0,且f’’(x)<0,故曲线为单调增加且为凸的.13.已知f(x)在[0,+∞)上可导,且f’(x)&lt;0,f(0)&gt;0,则方程f(x)=0在[0,+∞)上( )A.有唯一根B.至少存在一个根C.不能确定有根D.没有根正确答案:C解析:题目所给条件无法判断是否有实根.14.函数f(x)=x-的极值点的个数是( )A.0个B.1个C.2个D.3个正确答案:C解析:y’=,x=1是驻点,x=0是不可导点,根据判断极值的第一充分条件,x=1,x=0都是极值点.15.下列函数中,在[1,e]上满足拉格朗日中值足理条件的是( ) A.y=lnlnxB.y=lnxC.y=D.y=|x-2|正确答案:B解析:因为y=lnx在[1,e]上连续,在(1,e)内可导,所以满足拉格朗日定理.16.若f(x)的一个原函数为ln2x,则f’(x)= ( )A.2xln2xB.ln2xC.D.正确答案:D解析:因f(x)=(ln2x)’=,所以f’(x)=17.dx =( )A.B.C.D.正确答案:B解析:因为18.设函数ψ(x)=,则ψ’(x)= ( )A.xeB.-xeC.D.正确答案:C解析:φ’(x)=2x.19.下列广义积分收敛的是( )A.B.C.D.正确答案:D解析:对于,当n>1时,广义积分收敛;当n≤1时,广义积分发散,故收敛.20.直线与平面x+2y-z+3=0的位置关系是( )A.互相垂直B.互相平行但直线不在平面上C.直线在平面上D.斜交正确答案:C解析:因为直线的方向向量和平面的法向量满足{1,2,-}.{3,-1,1}=1×3+2×(-1)+(-1)×1=0,所以这两个向量垂直,那么对应的直线与平面平行,又因为直线上的点(1,-1,2)在平面上,所以直线在平面上.21.方程x=确定二元隐函数z=f(x,y),则= ( )A.1B.exC.yexD.y正确答案:C解析:由x=得,z=yex,所以=yex22.设z=x3-3x-y,则它在点(1,0)处( )A.取得极大值B.无极值C.取得极小值D.无法判定是否有极值正确答案:B解析:因=-1,所以(1,0)不是驻点,函数不会存在极值.23.设D={(x,y)|1≤x2+y2≤4},则dxdy=( )A.B.C.D.正确答案:C解析:因为区域D:{(x,y)|≤x2+y2≤4},则可另表示为D:{(r,θ)|0≤θ<2π,1≤r≤2},所以原二重积分可化为24.设D由直线x+y=1,x=0,y=0所围成,则dxdy= ( )A.1B.2eC.e-1D.2e-1正确答案:A解析:25.设D={(x,y),)|(x-1)2+y2≤1},则dxdy= ( )A.3πB.4πC.πD.π2正确答案:C解析:dxdy即为圆(x-1)2+y2=1的面积,dxdy=π26.设L为从点(1,1)到点(0,0)的直线段,则∫L(x2-y2)dx+xydy= ( )A.B.3C.0D.正确答案:D解析:∫L(x2-y2)dx+xydy=27.正项级数满足下列哪一个条件时必定收敛( )A.B.C.D.正确答案:C解析:由正项级数敛散性比值判别法,当<1时,收敛,由选项C:28.的收敛性为( )A.发散B.条件收敛C.绝对收敛D.无法确定正确答案:B解析:因为级数为交错级数,且满足莱布尼兹条件,所以收敛,又因为加绝对值后所成的级数发散,故该级数为条件收敛29.下列微分方程中,通解为y=(C1+C2x)e-3x的二阶常系数齐次线性微分方程是( )A.y’’-6y’+9y=0B.y’’+6y’+9y=0C.y’’+6y’+9y:1D.y’’+6y’=0正确答案:B解析:因特征根r=-3为重根,所以对应的微分方程为y’’+6y’+9y=0.30.微分方程ylnxdx=xlnydy满足y|x=1=1的特解是( )A.In2+In2y=0B.In2x+In2y=1C.In2x=In2yD.ln2x=In2y+1正确答案:C解析:变量分离得+C,因当x=1时,y=1,所以C=0填空题31.设f(x)=arctanc,g(x)=sin,则g[f(x-1)]=_______正确答案:解析:f(-1)=,所以g[f(-1)]=g32.函数f(x)=1-ln(2x+1)的反函数f-1(x)=____正确答案:y=(e1-x-1),x∈R.解析:因ln(2x+1)=1-y,所以x=(e1-y-1),所以f-1(x)=(e1-x-1),x∈R33.[ln(1+x)-lnx]=________正确答案:1解析:原式=34.若f(x)=,在x=0处连续,则a=_______ 正确答案:解析:35.已知y=sinx,则y(10)=______正确答案:-sinx解析:由(sinx)(n)=sin(x+n.)知,y(10)=sin(x+)=-sinx36.设x2y-e2x=siny,则=_________正确答案:解析:方程两端分别对x求导,得2xy+x2y’-2e2x=cosy.y’所以y’= 37.设y=f(lntanx),且f(x)可微,则=______正确答案:f’(lntanx)解析:=f’(lntanx)(lntanx)’=f’(lntanx)(tanx)’=f’(Ilntanx)38.曲线y在点(1,1)处的切线方程为_______正确答案:x+y-2=0解析:因y’=,所以y’|x=1=-1,所求切线方程为:y-1=-(x-1),即x+y-2=0 39.函数f(x)=x-ln(1+x2)在[-1,2]上的最大值为________正确答案:2-ln5解析:因y’=1-≥0,所以函数y为单调增加,在区间[-l,2]上的最大值为f(2)=2-ln5.40.曲线y=6x2-x3的拐点为________正确答案:(2,16)解析:因y’=12x-3x2,y’’=12-6x,令y’’=0,得x=2,当x2时,y’’=________正确答案:0解析:奇函数在对称区间上的定积分为0.42.由向量a=(2,2,1),b=(4,5,3)为邻边构成的平行四边形面积为_________ 正确答案:3解析:因a×b=={1,-2,2},所以|a×b|=3.43.设z=ln(x2+y2),则=________正确答案:dx+dy解析:因dz=,则dz|(1,1)=+dy.44.若I=dy,则交换积分顺序后I=_______正确答案:解析:由题意可知积分区域D可表示为{(x,y)|1≤x≤e,0≤y≤lnx},转化为先对x后对y的积分,则积分区域D表示为{(x,y)1 0≤y≤1,ey≤x≤e},于是I=45.微分方程y”=24x的通解为_______正确答案:y=x4+c1x2+c2x+c3(其中c1,c2,c3为常数)解析:y’’=12x2+c1,y’=4x3+c1x+c2,y=x4+c1x2+c2x+c3解答题解答时应写出推理、演算步骤。

2003-2016历年真题数学

2003-2016历年真题数学

,试求 dy , d 2 y . dx dx2
15. 计算曲线积分 ex cos y 3y dx ex sin ydy ,其中积分路径 L 为圆周 x2 y 2 2x 的正向. L
16. 已知可导函数 f x 满足 f x x2
x
tf
t dt
,求
f
一项是符合题目要求的。
1.
已知
f
x


ln1 x
e x 1,
,
1 x 0

0 x 1
f x在 x
0 处(

A.无极限
B.有极限但不连续
C.连续但不可导
D.可导
2. 设函数 f x 满足 x f tdt ln 1 x2 ,则 f x ( ) 0
L
()
A. 2πa 2n
B. 2πa 2n1
C. πa n
D. πa n
5. 下列级数中,条件收敛的级数是( )
A. 1 1 n n1 10
B.



1n
n1 n
C. 1n n2 n1 1 n 2
D. 1n
n1 n 2
二、填空题:本大题共 5 个小题,每小题 5 分,共 25 分。
高等数学试题
注意事项: 1.试卷分为试题和答题纸两部分。全卷共 页,其中试题 页,答题纸 页。 2.用墨迹为蓝(黑)色的钢笔、圆珠笔或签字笔将答案写在答题纸上,写在试题上的答案无效。 3.满分为 150 分。考试时间为 150 分钟。
一、单项选择题:本大题共 5 个小题,每小题 5 分,共 25 分。在每个小题给出的四个选项中,只有 一项是符合题目要求的。

2003年高等数学真题

2003年高等数学真题

f x 0 ,满足方程
f
x


9

x
0
f tsin t
1 cos t
dt
,求
f x.
17.
设z

e 3
arcsin
1 x

tan xy x2 y2
yf
3x
y
,其中
f
为可导函数,求 z . x
18. 求曲面 x 2 2 y 2 3z 2 36 在点 P1,2,3 处的切平面方程.

ln
x2

y2
确定的隐函数,则
dy dx
等于(

A.
y x yx
B.
y x yx
C.
x y x y
D.
x y x y
3. 函数 y xex 在 1,2上的最大值或最小值正确的是( )
A. 最大值为 e 1
B. 最小值为 0
C. 最小值为 e 1
D. 最小值为 2e 2
.
三、计算题:本大题共 10 个小题,每小题 8 分,共 80 分。计算题要有计算过程。
11.
求极限
lim
x0

e7 8
x sin
e 3
x
x

ex

1
cos
1 x

.
12.
已知参数方程

x y

at a1
sin t cos t
,求
dy dx
,
d2 dx
y
2
.
13. 求函数 z x3 3xy 2 15x 12 y 的极值.

高考高中起点(升本、专科)统一考试历年真题

高考高中起点(升本、专科)统一考试历年真题

2003年全国各类成人高考高中起点(升本、专科)统一考试数学(文科)第一部分 选择题一、选择题:本大题共15小题;每小题5分,共75分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与集合N 的关系是( )A.M N M =B.M N =∅C.M N ⊆D.N M ⊆2.函数51()x y x =+-∞<<+∞的反函数为( )A.5log (1),(1)y x x =-<B.15,()x y x -=-∞<<+∞C.5log (1),(1)y x x =->D.151,()x y x -=+-∞<<+∞3.下列函数中,偶函数是( )A.33x x y -=+B.233y x x =-C.1sin y x =+D.tan y x =4.已知ππ2θ<<=( )A.sin cos θθB.sin cos θθ-C.sin 2θD.sin 2θ-5.不等式12x +<的解集为( ) A.{}3或1x x x <-> B.{}31x x -<< C.{}3x x <- D.{}1x x >6.设01x <<,则在下列不等式中成立的是( )A.20.50.5log log x x >B.222x x > C.2sin sin x x > D.2x x > 7.用0,1,2,3,4组成的没有重复数字的不同的3位数共有( )A.64个B.16个C.48个D.12个8.设5log 4x =,则x 等于( )A.10B.12C.2D.49.设甲:1k =且1b =,乙:直线y kx b =+与y x =平行,则( )A.甲是乙的必要条件但不是乙的充分条件B.甲是乙的充分条件但不是乙的必要条件C.甲不是乙的充分条件也不是乙的必要条件D.甲是乙的充分必要条件10.函数3221y x x =-+在1x =处的导数为( )A.5B.2C.3D.411.函数y = ) A.{}1x x >- B.{}2x x < C.{}1或2x x x ≤-≥ D.空集12.从3个男生和3个女生中选出2个学生参加文艺汇演,选出的全是女生的概率是( )A.15 B.110 C.14 D.13 13.已知向量、a b 满足4=a ,3=b ,30o =a,b ,则⋅a b 等于( )B. C.6 D.1214.焦点为(5,0)-,(5,0)且过点(3,0)的双曲线的标准方程为( )A.221169y x -=B.22194x y -= C.221916x y -= D.22194y x -= 15.椭圆22149x y +=与圆22(4)2x y ++=的公共点个数是( )A.4B.2C.1D.0第二部分 非选择题二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.点(1,2)p 到直线21y x =+的距离为 .17.设函数2(1)22f t t t -=++,则函数()f x .18.某蓝球队参加全国甲级联赛,任选该队参赛的10场比赛,其得分情况如下:99,104,87,88,96,94,100,92,108,110,则该篮球队得分的样本方差为_______.19.函数cos3sin 3y x x =+的最大值是_______.三、解答题:本大题共5小题,共59分.解答应写出推理、演算步骤.20.设函数()f x ax =,()b g x x =,1(2)()82f g ⋅=-,11()(3)33f g +=,求,a b 的值.21.设二次函数22()2f x x ax a =-++满足条件(2)()f f a =,求此函数的最大值.22.如图,某观测点B在A地南偏西10o 方向,由A地出发有一条走向为南偏东12o 的公路,由观测点B发现公路上距观测点10km 的C点有一汽车沿公路向A地驶去.到达D点时,测得90DBC ∠=,10BC km =问这辆汽车还要行驶多少km 才能到达A地?(计算结果保留到小数点后两位).23.已知数列{}n a 的前n 项和23n n S a =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)设2n n n na b =,求数列{}n b 的前n 项和. 24.已知抛物线28y x =的焦点为F,点A、C在抛物线上(AC 与x 轴不垂直). (Ⅰ)若点B在该抛物线的准线上,且A、B、C三点的纵坐标成等差数列,求证:BF AC ⊥.(Ⅱ)若直线AC过点F,求证以AC为直径的圆与定圆22-+=相内x y(3)9切.2004年全国各类成人高考高中起点(升本、专科)统一考试数学(文科)第一部分选择题一、选择题:本大题共15小题;每小题5分,共75分.在每小题给出的四个项中,只有一项是符合题目要求的.1.设集合{,,,}N a b c=,则集合M N=( )M a b c d=,{,,}A. {a,b,c}B.{d}C.{a,b,c,d}D.空集2.设甲:四边形ABCD是平行四边形,乙:四边形ABCD是正方形,则( )A.甲是乙的充分条件但不是乙的必要条件B.甲是乙的必要条件但不是乙的充分条件C.甲是乙的充要条件D.甲不是乙的充分条件也不是乙的必要条件3.点(-1,3)关于点(1,0)的对称点的坐标是( )A.(1,-1)B.(3,-5)C.(0,0)D.(3,-3)4.到两定点和距离相等的点的轨迹方程为( )A.40x y+-=x y+-= B.50C.50-+=x yx y++= D.205.不等式123x-<的解集为( )A.{1215}-<<x xx x<< B.{1212}C.{915}x x<<< D.{15}x x6.以椭圆221169x y +=上的任一点(长轴两端除外)和两个焦点为顶点的三角形的周长等于( )A. 12B.8+C. 13D. 187.设{}n a 为等差数列,其中59a =,1539a =,则 10a =( )A. 24B. 27C. 30D. 338.十位同学互赠贺卡,每人给其他同学各寄出贺卡一张,那么他们共寄出贺卡的张数是( )A. 50B. 100C. 1010D. 90 9.sin cos 1212ππ=( )A.12B.14C.2 D.410.函数3()sin f x x x =+( ) A. 是偶函数 B. 是奇函数C. 既是奇函数又是偶函数D. 既不是奇函数又不是偶函数11.掷两枚硬币, 两枚的币值面都朝上的概率是( ) A.12 B. 13 C. 14 D.1812.通过点(3,1)且与直线1x y +=垂直的直线方程是( )A.20x y -+=B. 380x y --=C.320x y -+=D.20x y --=13.如果抛物线上一点到其焦点的距离为8,则这点到该抛物线准线的距离为( )A. 4B.20C. 16D.3214. 如果向量=(3,-2)a ,=(-1,2)b ,则(2)()+-⋅a b a b 等于( )A. 28B. 20C.24D.1015. 已知函数3()3f x x =+,则'(3)f =( )A.27B. 18C.16D.12第二部分 非选择题二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.求值:232164log ____16+= 17.函数5sin 12cos y x x =+的最小值为________18.已知点A(1,2),B(3,0),C(3,2),则_____BCA ∠=19.从篮球队中随机选出5名队员,其身高分别为(单位:cm )180,188,200,195,187,则身高的样本差为2____cm .三、解答题:本大题共5小题,共59分.解答应写出推理、演算步骤.20.设函数()y f x =为一次函数,已知(1)8f =,(2)1f -=-求(11)f .21.已知锐角ABC 的边长AB=10,BC=8,面积S=32,求AC 的长(用小数表示,结果保留小数点后两位).22.在某块地上种植葡萄,若种50株葡萄藤,每株葡萄藤将产出70kg 葡萄,若多种1株葡萄藤,每株产量平均下降1kg ,试问在这块地上种多少株葡萄藤才能使产量达到最大值,并求出这个最大值.23.设{}n a 为等差数列,且公差d 为正数,已知23415a a a ++=,又234,1,a a a -成等比数列,求1a 和d.24.设A 、B 两点在椭圆2214x y +=上,点1(1,)2M 是AB 的中点. (Ⅰ)求直线AB 的方程;(Ⅱ)若该椭圆上的点C 的横坐标为求ABC 的面积.2005年全国各类成人高考高中起点(升本、专科)统一考试数学(文科)第一部分 选择题一、选择题:本大题共15小题;每小题5分,共75分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,2,3,4,5P =,集合{}2,4,6,8,10Q =,则P Q =( )A.{2,4}B.{1,2,3,4,5,6,8,10}C.{2}D.{4}2.不等式组3274521x x ->⎧⎨->-⎩的解集为( ) A.(,3)(5,)-∞+∞ B.(,3][5,)-∞+∞ C.(3,5) D.[3,5]3.设函数2()1f x x =-,则(2)f x +=( )A.245x x ++B.243x x ++C.225x x ++D.223x x ++4.函数1sin 2y x =的最小正周期为( )A.8πB.4πC.2πD.π5.中心在原点,一个焦点为(0,4)且过点(3,0)的椭圆的方程是( ) A.221925x y += B.221916x y += C.2212541x y += D.22194x y +=6.函数y = ) A.{1}x x ≥ B.{1}x x ≤ C.{1}x x > D.{1或1}x x x ≤≥7.设命题甲:1k =, 命题乙:直线y kx =与直线1y x =+平行,则( )A.甲是乙的必要条件但不是乙的充分条件B.甲是乙的充分条件但不是乙的必要条件C.甲不是乙的充分条件但不是乙的必要条件D.甲是乙的充分必要条件8.双曲线221288x y -=的焦距是( )A. B. C.12 D.69.下列各选项中,正确的是( )A.sin y x x =+是偶函数B.sin y x x =+是奇函数C.sin y x x =+是偶函数D.sin y x x =+是奇函数10.设3(0,),cos 25παα∈=,则sin2α=( ) A.825 B.925 C.1225D.2425 11.从4本不同的书中任意选出2本, 不同的选法有( )A.12种B.8种C.6种D.4种12.设0m >且1m ≠,如果log 812m =,那么log 3m =( ) A.12 B.12- C.13 D.13-13.在等差数列{}n a 中,若31a =,811a =则13a 的值等于( )A.19B.20C.21D.2214.已知向量、a b 满足3,4==a b ,且a 和b 的夹角为120o ,则⋅a b =( )A. B.- C.6 D.6-15.8名选手在有8条跑道的运动场进行百米赛跑,其中有2名中国选手,按随机抽签方式决定选手的跑道,2名中国选手在相邻的跑道的概率为( ) A.12 B.14 C.18 D.116 第二部分 非选择题二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.过点(2,1)且与直线1y x=+垂直的直线的方程为.17.函数(1)y x x=+,在2x=处的导数值为_______.18.设函数()f x ax b=+且5(1),(2)42f f==则(4)f的值为_______.19.从一批袋装食品中抽取5袋分别称重,结果(单位:g)如下:99.6,100.1,101.4,99.5,102.2,则样本的方差为_______(2g)(精确到0.12g).三、解答题:本大题共5小题,共59分.解答应写出推理、演算步骤.20.(Ⅰ)把下面表中的角度值化为弧度值,计算的值并填入表中:(Ⅱ)参照上表中的数据,在下面的直角坐标系中画出函数tan siny x x=-在区间[0,]4π上的图象.21.求函数33y x x=-在区间[0,2]上的最大值和最小值.22.已知等比数列{}n a的各项都是正数,12a=,前3项的和为14.(Ⅰ)求{}na的通项公式;(Ⅱ)设2log n n b a =,求数列{}n b 的前20项的和.23.已知函数2125y x x =-+的图象交y 轴于点A ,它的对称轴为l ;函数2(1)x y a a =>的图象交y 轴于点B ,且交l 于点C .(Ⅰ)求ABC 的面积; (Ⅱ)设3a =,求AC 的长.24.如图,设1A 、2A 是椭圆1C :22143x y +=长轴的两个端点,l 是1C 的右准线.双曲线2C :22143x y -=.(Ⅰ)求l 的方程(Ⅱ)设P为与2C 的一个交点,直线1PA 与1C 的另一个交点为Q,直线2PA 与1C 的另一个交点为R,求QR .。

历年成人高考专升本高等数学真题及答案汇总

历年成人高考专升本高等数学真题及答案汇总

第一章 函数与极限一. 基础题1. 设映射:,,.f X Y A X B Y →⊂⊂证明 (1) ()()();f A B f A f B ⋃=⋃ (2) ()()().f A B f A f B ⊂证 (1)(),y f A B x A B ∈⇔∃∈ 使得()y f x =x A ⇔∈或x B ∈,且()y f x =()y f A ⇔∈或()y f B ∈()()y f A f B ⇔∈ .(2)(),y f A B x A B ∈⇒∃∈ 使得()y f x =x A ⇒∈且x B ∈, ()y f x =()y f A ⇔∈且()y f B ∈()()y f A f B ⇒∈ .2. 设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内单调增加.证 设120l x x -<<<,则120x x l <-<-<,由()f x 在(0,)l 内单调增加得21()()f x f x -<-.又()f x 为(,)l l -内的奇函数,故21()()f x f x -<-,从而21()()f x f x >,即()f x 在(,0)l -内单调增加.3.设()ln(f x x =,讨论它的奇偶性. 解 显然()f x 的定义域是(,)-∞+∞.又因为()ln[ln(f x x x -=-+=-+ln=ln(()x f x ==-+=-.所以()f x 为奇函数.4. 设1(1),21xf x x +-=-求()f x . 解 设1,u x =-得1x u =-,于是()()()11221112u uf u u u+--==---,从而()212x f x x -=-.5. 设数列{}n x 的一般项为1sin 3n n x n π=.问lim n n x →∞=?求出N 使当n N >时n x 与其极限之差的绝对值小于ε.当0.001ε=时,求出N .解 lim 0n n x →∞=.我们证明如下:0,ε∀>为使110sin 3n n x n n πε-=≤<,只需1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有0n x ε-<.当0.001ε=时, 取1N ε⎡⎤=⎢⎥⎣⎦1000==1000,此时只要1000n >,就有00.001n x -<.6. 用极限定义证明:(1)1n →∞=; (2)lim0.99991n n→∞= . (3) 21214lim 2;21x x x →--=+(4)lim 0x =证 (1)0,ε∀>为使1a nn nε=≤=<,只需an ε>.取aN ε⎡⎤=⎢⎥⎣⎦,则当n N >时,1ε-<,即lim 1n n→∞=.(2) 0ε∀> (不妨设1ε<),为使10.9999110n nε-=<,只需1lg n ε>.取1lg N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有0.99991nε-< ,即 lim0.99991n n→∞=. (3) 因为11,22x x →-≠- 0ε∀>,为使214121222()212x x x x ε--=--=--<+,只需1()22x ε--<.取2εδ=,则当10()2x δ<--<时,就有214221x x ε--<+.故21214lim 2;21x x x →--=+ (4) 因为,x →-∞所以0x <.又10x-≤≤=-,为使0ε-<只需1x ε<-.所以0ε∀>,取1X ε=,则当x X <-时, 就有0ε-<.故21214lim 221x x x →--=+. 7. 设2()f x x =.问2lim ()x f x →=?求出δ使当2x δ-<时()f x 与其极限之差的绝对值小于ε.当0.001ε=时,求出δ.解 22lim 4x x →=.我们给出如下证明.0,ε∀>由于2,x →不妨设13x <<.为使2()44(2)(2)52f x x x x x ε-=-=+-≤-<,只需25x ε-<.取5εδ=,则当2x δ-<时,就有()4f x ε-<.当0.001ε=时, 取0.0002δ=,此时只要20.0002x -<,就有()40.001f x -<. 8.证明函数()f x x =当0x →时极限为零.证明 0,ε∀>为使()000f x x x x ε-=-==-<,只需取5εδ=,则当0x δ-<时,就有0x ε-<,即0lim 0x x →=.9.求(),()x xf x x x xϕ==当0x →时的左、右极限,并说明它们的极限是存在. 解 000l i m ()l i m l i m 11,x x x x f x x +++→→→=== 000l i m ()l i m l i m 11.x x x xf x x ---→→→=== 由于0lim ()x f x +→=0lim ()x f x -→1=知0lim ()1x f x →=;0000lim ()lim lim lim11,x x x x x x x x x ϕ++++→→→→====0000lim ()lim lim lim 1 1.x x x x x x x x x ϕ----→→→→-==-=-由于lim ()x x ϕ+→≠0lim ()x x ϕ-→1=知0lim ()x x ϕ→不存在. 10.根据定义证明: (1)21(1)sin (1)y x x =--为当0x →时的无穷小; (2)12xy x+=为当0x →时的无穷大.问x 应满足什么条件,能使410y >. 证(1)0,ε∀>为使22110(1)sin 0(1)sin 1(1)(1)y x x x x x ε-=--=-≤-<--,只需取δε=,则当01x δ<-<时,就有21(1)s i n 0(1)x x ε--<-,即21(1)sin(1)y x x =--为当0x →时的无穷小. (2)0M ∀>,为使121122x M x x x +=+≥->,只要12M x->,即12x M <+. 因此,取1,2M δ=+当00x δ<-<时,就有12xM x +>.故12x y x +=为当0x →时的无穷大.当410,M =取4112102M δ==++时,就能使41210xy x +=>.11.求极限21lim x x x →∞+并说明理由.解 21lim x x x →∞+=1lim(2)2x x→∞+=.理由:令()2f x α=+,其中1xα=.因为x →∞时,x 是无穷大,由无穷大与无穷小的关系知1xα=为无穷小.再由无穷小与极限的关系得1lim(2)2x x →∞+=.12. 计算下列极限:(1) 220()lim h x h x h→+-; (2) 22468lim 54x x x x x →-+-+;(3) 2468lim 31x x x x x →∞++-+; (4) 2lim(21)x x x →∞-+;(5) 32121lim()82x x x →---; (6)12(1)lim [()()()]n a a n ax x x n n n n→∞-++++++ ;解 (1) 22222000()2limlim lim(2)2h h h x h x x xh h x x h x h h →→→+-++-==+=. (2) 2244468(4)(2)22lim lim lim 54(4)(1)13x x x x x x x x x x x x x →→→-+---===-+---.(3) 223443416868lim lim031311x x x x x x x x x x x→∞→∞++++==-+-+ (4) 因为22211lim lim 011212x x x x x x x→∞→∞==-+-+,所以2lim(21)x x x →∞-+=∞.(5) 2332222121122(2)(4)lim()lim lim 828(2)(42)x x x x x x x x x x x x x →→→---+-==----++ 2241lim 422x x x x →+==++. (6) 原式=1lim [(1)(12(1)]n an x n n n →∞-++++-=1(1)lim [(1)]2n a n n n x n n →∞--+=2ax +. 13.利用有界变量与无穷小之积仍为无穷小计算下列极限:(1)201lim cosx x x →; (2)arctan lim x xx→∞.解 (1) 因为0,x →所以2x 0→,1cos 1x≤.故201lim cos 0x x x →=.(2) 因为,x →∞所以1x 0→,arctan 2x π<.故arctan 1limlim arctan 0x x x x xx →∞→∞==. 14.利用两个重要极限计算下列极限:(1) 0sin lim(0,0)x xxααββ→≠≠; (2) 20tan(1)lim 2x x x x →-+-;(3) 20cos 7cos5lim sin 3x x x x →-; (4) lim 2sin (2nn n x x →∞为不等于零的常数) (5)120lim(13)x x x →-; (6) 21lim()xx x x→∞+. 解 (1) 00sin sin limlim .x x x x x x x x ααααβαββ→→== (2) 2000tan(1)tan(1)tan(1)11lim lim lim 2(1)(2)122x x x x x x x x x x x x →→→---==∙=+--+-+. (3) 20cos 7cos5lim sin 3x x x x →-202sin 6sin lim sin 3x x xx→-=2220sin 6sin (3)642lim 6sin 3(3)3x x x x x x x x x x →⎛⎫=-=- ⎪⎝⎭. (4) 22sin 2lim 2sin lim 22n n n n x x x x x →∞→∞⎛⎫ ⎪== ⎪ ⎪⎝⎭.(5) 120lim(13)x x x →-=1(3)13232lim (13)e x xxx x ---→⎡⎤-=⎢⎥⎣⎦.(6) 21lim()x x x x →∞+=221lim e xx x x →∞⎡⎤⎛⎫=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 15.当0x →时,无穷小(1)x π-和(1)31x -,(2)sin x π是否同阶?是否等价?解 (1)因为322111(1)(1)lim lim lim 1(1)(1)13x x x x x x x x x x x ππππ→→→--===--++++,所以当0x →时,无穷小(1)x π-和31x -同阶,但不等价.(2) 因为111sin sin (1)sin (1)lim lim lim 1(1)(1)(1)x x x x x x x x x ππππππ→→→---===---,所以当0x →时,无穷小(1)x π-和sin x π是等价的.16.利用等价无穷小的性质,求下列极限:(1)0sin lim (,(sin )nm x x n mx →为正整数); (2)30sin tan lim sin x x x x→-;(3)0x →. 解 (1)000,,sin limlim 1,,(sin ).n n m m x x n m x x n m x x n m →→>⎧⎪===⎨∞<⎪⎩ (2) 因为332000sin tan sin (1sec )1sec lim lim lim sin sin sin x x x x x x x xx xx →→→---==,而2220002sin 1sec 1cos 112lim lim lim 1cos cos ()222x x x x x x x x x x x →→→⎡⎤⎡⎤⎢⎥⎢⎥--===⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦. 所以 233220000sin tan sin (1sec )1sec 12lim lim lim limsin 2x x x x x x x x x x x x →→→→----====-.(3)0x →=0x →201sin x x →=+ =201cos x x x →- =1114612-+=-. (21cos 12x x - ). 17.讨论下列函数的连续性:(1).()(11)f x x x =+-; (2) {,11,()1,1 1.x x f x x x -≤≤=<->或 解 (1) 222,1,(),1,,1.x x x f x x x x x ⎧-<⎪==⎨>⎪⎩当1x <或1x >时()f x 为初等连续函数,所以连续;当1x =时,有221111lim ()lim 1(1),lim ()lim(2)1(1),x x x x f x x f f x x x f ++--→→→→====-== 因此()f x 在1x =连续函数,故()f x 在定义域(,)-∞+∞内连续. (2) 显然()f x 在(,1)-∞-与(1,)-+∞内连续.而在1x =-11lim ()lim 1x x f x x ++→-→-==- ,但 11lim ()lim 11,x x f x --→-→-== 即 11lim ()lim ()x x f x f x +-→-→-≠.故()f x 在1x =-间断. 18.试确定,a b ,使函数1sin ,0,(),0,1sin .0.x x x f x b x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在(,)-∞+∞内连续.解 显然()f x 在(,0)-∞与(0,)+∞内连续.而在分断点0x =处,由于1lim ()lim sin 0.x x f x x x++→→== , 001lim ()lim (sin )1,x x f x x a a x--→→=+=+ 根据 0lim ()lim ()(0)x x f x f x f +-→→==, 得 10,a b +== 即 1,0a b =-=.19.求下列函数的间断点,并确定其类型.如果是可去间断点,则补充或改变函数的定义使它连续:(1) 1e ,0,()0,0,1arctan .0.x x f x x x x ⎧⎪<⎪==⎨⎪>⎪⎩(2) ()tan x f x x =; (3)221()lim1nnn x f x x x →∞-=+. 解 (1)()f x 为分段函数,当0x ≠时, ()f x 显然连续.当0x =时,因为11lim ()lim e 0,lim ()lim 2xx x x x f x f x arctan x π--++→→→→====. 所以0x =是()f x 的第一类间断点(跳跃间断点). (2) ()f x 的无定义点为(0,1,2,)2x k x k k πππ=+==±± 和.对0x =, 因为0lim 1,tan x xx→=所以0x =是()f x 的第一类间断点,且为可去间断点,重新定义函数:1,,,(0,1,2,)tan 2()1,0,x x k k k x f x x πππ⎧≠+=±±⎪⎪=⎨=⎪⎪⎩则1()f x 在0x =处连续. 对(0,1,2,)2x k k ππ=+=±± ,因为2lim0,tan x k xxππ→+=所以2x k ππ=+(0,1,k =±2,)± 是()f x 的第一类间断点,且为可去间断点,重新定义函数:2,,,tan 2()(0,1,2,)0,,2xx k k x f x k x k πππππ⎧≠+⎪⎪==±±⎨⎪=+⎪⎩.则2()f x 在(0,1,2,)2x k k ππ=+=±± 处连续.对(0,1,2,)x k k π==±± ,lim,tan x k xxπ→=∞所以(0,1,2,)x k k π==±± 是()f x 的第二类间断点(无穷间断点)(3) 221()lim1n nn x f x x x →∞-=+,1,0,1,,1.x x x x x ⎧->⎪==⎨⎪<⎩为分断函数. 在分断点1x =-处,因为1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-,11lim ()lim ()x x f x f x -+→-→-≠.所以1x =-为()f x 的第一类间断点(跳跃间断点).在分断点1x =处,因为1111lim ()lim 1,lim ()lim()1x x x x f x x f x x --++→→→→===-=-,11lim ()lim ()x x f x f x -+→→≠. 所以1x =为()f x 的第一类间断点(跳跃间断点).20.求函数32233()6x x x f x x x +--=+-的连续区间,并求极限03lim (),lim ()x x f x f x →→-及2lim ()x f x →.解 因为()f x 在123,2x x =-=点无意义,所以123,2x x =-=这两个点为间断点.故函数()f x 的连续区间为(,3),(3,2),(2,)-∞--+∞.32200331lim ()lim 62x x x x x f x x x →→+--==+-.32222333333(1)(3)(1)8lim ()lim lim lim 6(3)(2)(2)5x x x x x x x x x x f x x x x x x →-→-→-→-+---+-====-+-+--. 32222222233(1)(3)(1)lim ()lim lim lim 6(3)(2)(2)x x x x x x x x x x f x x x x x x →→→→+---+-====∞+-+--. 21.设函数()f x 与()g x 在点0x 处连续,证明函数{}{}()max (),(),()min (),()x f x g x x f x g x ϕψ==在点0x 处也连续.证 因为 {}1()max (),()[()()()()]2x f x g x f x g x f x g x ϕ==++-, {}1()m i n (),()[()()()()]2x f x g x f x g x f x g x ψ==+--, 而连续函数的绝对值、和、差仍连续,故(),()x x ϕψ在点0x 处也连续.22.利用复合函数的极限与连续定理计算下列极限(1) 1lim1x x →- (2)sin sin limx a x a x a →--;(3)lim x →+∞;(4) x →∞(5); ()()(2)()()lim ()x a x b x a b x x a x b x a b ++++→+∞++++;(6)0x →; 解(1) 12x x →→==.(2)2sin cos sinsin sin 222lim lim lim limcos cos 2x a x a x a x a x a x a x a x a x a a x a x a x a →→→→-+--+==⋅=---.(3) lim limx x →+∞=1lim2x==. (4)因为x x →∞=,而lim lim1x x →+∞==lim lim1x x →-∞==-故x →∞不存在.(5) ()()(2)()()lim ()x a x b x a b x x a x b x a b ++++→+∞++++()()()()()()lim lim ()()x a x b x a x b x x x a x b x a b x a b ++++→+∞→+∞++=⋅++++()()()()1111lim lim lim lim (1)(1)(1)(1)b a x x x x x a x b x a x b b ab a b a x a x b x a x b →+∞→+∞→+∞→+∞++++=⋅=⋅⎡⎤⎡⎤++++⎢⎥⎢⎥++++⎣⎦⎣⎦()11e .e ea b b a-+==(6) 00x x →→=0s i n l i m n x x x →=00s i n l i m l nx x x x x →→→=⋅=22220011)11112lim lim 1)2sin 2sin 22x x x x x x →→=⋅=. 23.证明方程sin x a x b =+,其中0,0a b >>,至少有一正根,并且它不越过a b +. 证 令()sin f x x a x b =--.显然()f x 在闭区间[0,]a b +上连续,(0)0,f b =-< ()[1sin()]f a b a a b +=-+.当sin()1a b +<时,()0f a b +>.由零点定理知,存在(0,)a b ξ∈+.使()0f ξ=,即ξ为原方程小于a b +的正根;当sin()1a b +=时, ()0f a b +=,a b +为原方程的正根.综合之, 方程sin x a x b =+至少有一正根,并且它不越过a b +.24.设函数()f x 对于闭区间[,]a b 上的任意两点,x y ,恒有()()f x f y L x y -≤-,其中L 为正常数,且()()0f a f b ⋅<.证明:至少有一点(,),a b ξ∈使得()0f ξ=.证 任取0(,),0,x a b ε∈∀>取00min ,,x a b x Lεδ⎧⎫=--⎨⎬⎩⎭,则当0x x δ-<时,依假设有00()()f x f x L x x L δε-≤-<≤.所以()f x 在0x 点连续.由0x 的任意性知, ()f x 在(,)a b 内连续. 当0x a =或0x b =时,取Lεδ=,当0x a δ<-<或0b x δ<-<时,有()()()f x f a L x a L x a L δε-≤-=-<≤.或 ()()()f x f b L x b L b x L δε-≤-=-<≤.故()f x 在x a =右连续, ()f x 在x b =左连续,从而()f x 在闭区间[,]a b 上连续.再借助()()0f a f b ⋅<及零点定理知,存在(,)a b ξ∈,使()0f ξ=.25. 若()f x 在闭区间[,]a b 上连续,12n a x x x b <<<<< , 1,2,,n C C C 为任意正数,1(,)n x x 内至少有一点ξ, 使112212()()()()n n nC f x C f x C f x f C C C ξ+++=+++ .证 因()f x 在闭区间[,]a b 上连续,又1[,][,]n x x a b ⊂,所以()f x 在1[,]n x x 上连续.设{}{}11max (),min ()n n M f x x x x m f x x x x =≤≤=≤≤.则有 112212()()()n n nC f x C f x C f x m M C C C +++≤≤+++ .若上面不等式为严格不等号,则由介值定理知, 存在1(,)n x x ξ∈,使112212()()()()n n nC f x C f x C f x f C C C ξ+++=+++ .若上面不等式中出现等号,如112212()()()n n nC f x C f x C f x M C C C +++=+++ ,则有1122[()][()][()]0n n C M f x C M f x C M f x -+-++-= . 于是 12()()()n f x f x f x M ==== .此时任取121,,,n x x x - 中任一点为ξ,即有1(,)n x x ξ∈,使112212()()()()n n nC f x C f x C f x f C C C ξ+++=+++ .同理可证112212()()()n n nC f x C f x C f x m C C C +++=+++ 的情形.26.证明:若()f x 在(,)-∞+∞内连续,且lim ()x f x →∞存在,则()f x 必在(,)-∞+∞内有界.证 设lim (),x f x A →∞=则给定10ε=>,可存在0X >,当x X >时,有()1f x A ε-<=.从而()()1f x f x A A ≤-+<+.由假设,显然()f x 在[,]X X -上连续,故()f x 在[,]X X -上有界,即存在K ,使[,]x X X ∀∈-,有().f x K ≤取 {}max ,1M K A =+,则(,)x ∀∈-∞+∞,有()f x M ≤.二. 提高题1. 设1,1,()0, 1.x f x x ⎧≤⎪=⎨>⎪⎩,()e xg x =,求[()]f g x .解 因为当0x ≤时,()e 1x g x =≤;当0x >时,()e 1xg x =>.所以1,0,(())0.0.x f g x x ≤⎧=⎨>⎩2. 计算下列极限.(1)n →∞; (2)2352limsin 53x x x x→∞++; (3)1101e lim ex x xx +→-+; (4)2013sin coslim (1cos )ln(1)x x x x x x →+++;(5) x →+∞;(6))n →∞);(7) 0lim x +→(8) 11lim ln x x x x x →- (9) 120e e e lim()x x nx x x n→+++ ; (10) 2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,求a ;(11)(0lim xx π+→;解(1)n→∞=limn→∞n==(2)当x→∞时, 有22sinx x.因此223523526lim sin lim53535x xx xx x x x→∞→∞++=⋅=++.(3)1111001e e1lim lim1e e1x xx xx xx x++-→→---==-++.(4)21 0013sin1 3sin cos cos3 lim lim(1cos)ln(1)2(1cos)ln(1)x xxxx x xx x xx xx x→→++== ++++.(5) 原式= limx→+∞lim0x→+∞==.(6))2) 1.n n nnπ→∞→∞→∞===(7) 由于当0x+→时,12x- ,21cos2xx- ,所以(200001cos1lim lim lim lim2122x x x xxxx++++→→→→-====⋅⋅+.(8) 由于当1x→时,lne1lnx x x x- ,所以xlnx1111e1lnlim lim lim1ln ln lnxx x xx x xx x x x x x→→→--===. (9) 当0x→时, 有ln(1),e1kxx x kx+-,于是22001e e e1e e elim ln lim ln(1)x x nx x x nxx xnx n x n→→++++++-=+22001e e e1(e1)(e1)(e1) lim ln lim lnx x nx x x nxx xnx n x n→→+++--+-++-==2121lim(1).2xx x nx nnnx n→++++++===+故12e e elim()x x nxxx n→+++=1(1)2e n+.(10) 因为333233l i m l i m1l i m1ex a a xx xa x aax x xx a a ax a x a x a-⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以328l i m exaxx ax a→∞+⎛⎫==⎪-⎝⎭,故ln2a=.(11) ()00lim lim11)x xx xππ++→→⎡⎤=+⎣⎦2lim11)e.xπ+-→⎡=+=⎣3.比较下列无穷小:(1).当0→时,xxx++是x的几阶无穷小?(2).已知当x→1时,)(xf是1-x的等价无穷小,则)]()(1ln[xxfxf+-是1-x的几阶无穷小?解:(1)81limxxxxx++→=1lim2141++→xxxxx=1所以当x→0时,xxx++是x的81阶无穷小.(2)当x→1时,)(xf 1-x,所以)]()(1ln[xxfxf+-=)()1(1ln[xfx-+ )1(-x)(xf 2)1(-x即当1x→时,)]()(1ln[xxfxf+-是1-x的二阶无穷小.4.根据条件,解答下列各题:(1)当x0→时,1)1(31-+ax与1cos-x是等价无穷小,求a;(2)已知)1(lim2baxxxx--+→=0,(ba,为常数),求ba,;(3)设)(25)(22bkxxxxxf+-+--=,若)(lim xfx∞→=0,求k与b的值;(4)已知1)sin)(1ln(lim0-+→xx axxf=3,(),1,0≠>aa求2)(limxxfx→;(5)若xx xxfx1))(1(lim++→=e,求xx xxf1))(1(lim+→;解(1)当0→x时,1)1(312-+ax≈23xa,1cos-x≈221x-,则当213-=a即a=23-时,两者是等价无穷小.(2因为1)()1(lim2+-+--∞→xbxbaxax=0,所以1=a,1-=-=ab.(3)由)(lim xfx∞→=2)2)(()5(lim2+++---∞→xxbkxxxx=225)21()1(lim2+--++--∞→xbxbkxkx=0.得01=-k,3,121-==⇒=++bkbk(4)由已知有,xxxfxx))(1ln(lim++→=3,所以0sin)(lim=→xxfx.从而=-+→1)sin)(1ln(lim0xx axxfaxxxfx lnsin)(lim→=axxfx ln)(lim2→=3,故2)(limxxfx→=aaaxxfxln3lnln)(lim2=⋅→.(5)由若xx xxfx1))(1(lim++→=3e,得()ln(1)lim3xf xxxx→++=.所以 0()lim()0x f x x x→+=.从而 00()()ln(1)limlim 3x x f x f x x x x x x x→→+++==.故 0()lim 2x f x x x→=,因此 0()lim0x f x x →=. 由是()1()2()()lim 1lim 1e f x x x x f x x x x x f x f x x x →→⎡⎤⎡⎤⎛⎫⎢⎥+=+= ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦.5.求下列函数的间断点,并判断其类型:(1)22(4),0,sin ()(1)0,,1x x x x f x x x x x π⎧-⎪<⎪=⎨+>⎪⎪-⎩ (2)11().1e xxf x -=- 解 (1)当0x <时,()f x 在1,2,x =-- 无定义.对于2x =-,28lim ()x f x π→-=,所以2x =-为()f x 的可去间断点.易验证1,3,4,x =--- 是()f x 的第二类间断点且为无穷间断点.当0x >时, ()f x 在1x =无定义,且1lim ()x f x →=∞,所以1x =是()f x 的第二类间断点且为无穷间断点.当0x =时,由于220000(1)(4)4lim ()lim 0,lim ()lim 1sin x x x x x x x x f x f x x x ππ++--→→→→+-====--,所以0x =是()f x 的第一类间断点且为跳跃间断点.(2)0,1x x ==是()f x 的间断点.因为0011lim ()lim ,1e x x x x f x →→-==∞-所以0x =是()f x 的第二类间断点且为无穷间断点; 又11111111lim ()lim 1,lim ()lim 01e 1e x xx x x x x xf x f x ++--→→→→--====--,所以1x =是()f x 的第一类间断点且为跳跃间断点.6.设2122()lim 1n n n x ax bxf x x -→∞++=+是连续函数,求,a b 的值.解 当1x <时,有lim 0n n x →∞=,从而21222()lim 1n n n x ax bx f x ax bx x -→∞++==++. 当1x >时,有lim nn x →∞=∞,从而21222212211()lim lim 111n n n n n n na b x ax bx x x x f x x x x---→∞→∞++++===++. 当1x =时,11(1),(1)22a b a bf f ++-+-=-=. 因为()f x 是连续函数,所以11lim ()lim ()(1),x x f x f x f +-→→==即112a ba b ++=+=.及11lim ()lim ()(1),x x f x f x f +-→-→-==- 即 112a ba b -+--=-=, 解之得0,1a b ==. 7.试确定,a b 的值,使e ()()()x bf x x a x b -=--有无穷间断点x e =,可去间断点1x =.解 因为x e =是()f x 无穷间断点,所以a e =或b e =.若a e =,e ()()()x bf x x e x b -=--,再由1x =为间断点知1b =.此时11e 1lim ()lim ,()(1)x x x f x x e x →→-==∞--即1x =是()f x 无穷间断点,这与假设矛盾. 若b e =,e ()()()x ef x x a x e -=--,再由1x =为间断点知1a =.此时11e e lim ()lim ,lim ()lim ()(1)1()(1)x x x x x ex e e e ef x f x x e x e x e x →→→→--====∞-----. 因此地当1,a b e ==时, ()f x 有无穷间断点x e =,可去间断点1x =.三. 考研试题1.(90,3分)设函数,1,1,0,1)(>≤⎪⎩⎪⎨⎧=x x x f 则)](([x f f = .解 由)(x f 的定义知,当1≤x 时,有1)(=x f .又1)1(=f ,于是当1≤x 时,复合函数1)](([=x f f .当1>x 时,有0)(=x f .又1)0(=f ,于是当1>x 时,复合函数1)](([=x f f . 因此,对任意),(+∞-∞∈x ,有1)](([=x f f .2.(03,4分)设{}n a ,{}n b ,{}n c 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立. (B) n n c b < 对任意n 成立. (C)极限0lim =∞→n n n c a 不存在. (D )极限0lim =∞→n n n c b 不存在.解 因为由数列极限的不等式只能得出数列“当n 充分大时”有相应的不等式,而不能得出“对于任意n ”成立的不等式,所以(A)、(B )不对.又因为“无穷小与无穷大之积”是未定型,极限可能存在也可能不存在,故(C)也不对.因此应选(D).3(92,3分).当1→x 时,函数112e 11---x x x 的极限 (A)等于2. (B)等于0.(C)为∞. (D)不存在但不为∞解 因为002e )1(lim e 11lim 1111121=⋅=+=---→-→--x x x x x x x , ∞=+=---→-→++1111121e )1(lim e 11lim x x x x x x x .所以当1→x 时,函数112e 11---x x x 的极限不存在,也不为∞.故应选(D). 4.(00,5分)求⎪⎪⎪⎭⎫ ⎝⎛+++→x x xx x sin e 1e 2lim 410.解 当0→x 时,对x1e 与x ,都必须考虑左、右根限.110sin e 1e e 2lim sin e 1e 2lim 4340410=+=⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫ ⎝⎛+++---→→++x x x x xx x x x x x , 110102sin e 1e 2lim sin e 1e 2lim 410410=-++=⎪⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎪⎭⎫ ⎝⎛+++--→→x x x x xx x x x x . 故 ⎪⎪⎪⎭⎫ ⎝⎛+++→x x x x x sin e 1e 2lim 410=1. 5.(93,5分)求xx xx )1cos 2(sin lim +∞→.解 )11cos 2(sin 1cos sin 1)11cos 2(sin 1[lim )1cos 2(sinlim -+⋅-+∞→∞→-++=+x x x xx x x x xx x x . 而 ⎪⎪⎪⎪⎭⎫ ⎝⎛-+=-+=-+∞→∞→∞→x x x x x x x x x x x x x 111cos 12sin lim 111cos 2sin lim)11cos 2(sin lim2021212sinlim 2=+=⎪⎪⎪⎪⎭⎫⎝⎛-+=∞→x x xx x . 故 2)11cos 2(sin 11cos 2sin 1e )11cos 2(sin 1[lim )1cos 2(sinlim =-++=+-+⋅-+∞→∞→x x x xx x x x xx x x .6.(03,4分)21ln(1)lim(cos )x x x +→=解 因为)1ln(1cos 1cos 10)1ln(1)]1(cos 1[lim )(cos lim x x x x x x x x +-⋅-→+→-+=.而212lim )1ln(1cos lim 22020-=-=+-→→x x x x x x .故 )1ln(1cos 1cos 10)1ln(122)]1(cos 1[lim )(cos lim x x x x xx x x +-⋅-→+→-+==21e-.7.(97,3分)求)1ln()cos 1(1cossin 3lim20x x x x x x +++→. 解 注意到,1)1ln(lim ,1sin lim00=+=→→xx x x x x 则 23)1ln()cos 1(1cossin 3lim )1ln()cos 1(1cos sin 3lim20=+++=+++→→x x x x x x x x x x x x x x . 8.(97,3分)设{=)(x f 0,0,)(cos 2=≠-x a x x x 在0=x 处连续,求a 的值.解 1e e lim )(cos lim )(lim 0cos ln 022=====-→-→→xxx x x x x x f a .9.(95,3分)⎥⎦⎤⎢⎣⎡+++++++++∞→n n n n n n n n 22222211lim . 解 记=n x n n n nn n n +++++++++22222211 ,则)21(11)21(2122n n x n n n n ++++≤≤++++ . 故由夹逼法则得21)21(11lim )21(21limlim 22=++++=++++=∞→∞→∞→n n n n n x n n n n .四.测试题1.单项选择题:(1)设22(),(())2,x f x x f x ϕ==则()()x ϕ=(A).2x ().2x B (C)2.log x (D).22log x .(2)函数()log ((1)a f x x a =+>为( )(A).有界函数 ().B 偶函数 (C).奇函数 (D).非奇非偶函数(3)011lim(sin sin )()x x x x x →+=.(A).0 (B )1 (C)2 (D).不存在.(4)0lim (xx x a x a →⎛⎫ ⎪+⎝⎭为常数)等于( ) (A).e a - (B).e a (C).1e a - (D). 1e a-(5)0ln(1sin )lim()x x x→-= (A).e B.e - C.1 D. 1- (6)设()232xxf x =+-,则当0x →时,有( )(A).()f x 与x 是等价无穷小 (B)()f x 与x 同阶但非等价无穷小 (C).()f x 是比x 高阶的无穷小 (D).()f x 是比x 低阶的无穷小2.填空题(1)设函数()f x 的定义域为[1,1]-,则(ln )f x 的定义域为 .(2)若214lim3,1x x ax x →-+=--则a = . (3)设22,11(),1x bx x x f x a x ⎧++≠⎪-⎪=⎨=⎪⎪⎩,在点1x =处连续,则 b = ,a = .3.计算题 (1)cos sin lim(0)cos sin 2n nn n n θθπθθθ→∞-≤≤+; (2)11021lim21xx x →-+; (3)10lim (0,0,0)3x x xxx a b c a b c →⎛⎫++>>>⎪⎝⎭; (4)()tan 2lim sin xx x π→. 3.设()lim e x x xxxn n n f x n n ---→∞-=+,研究()f x 的连续性. 5.证明下列各题:(1)设()f x 在[,]a b 连续,且a c d b <<<a c d b <<<,证明:在[,]a b 上至少存在一点ξ,使()()()()pf c qf d p q f ξ+=+其中,p q 为任意正常数.(2)设()f x 在[0,1]上连续,又设()f x 只取有理数,且1()22f =,试证()f x 在[0,1]上处处为()2f x =.测试题解答1.(1)(B);(2)(C );(3) (B );(4) (A);(5) (D );(6) (B ). 2.(1)1[,e]e;(2)5a =;(3)1a =,3b =-;3.(1)当04πθ≤≤时,有sin limlim tan 0cos n nn n n θθθ→∞→∞==,从而 sin 1cos sin os lim lim 1sin cos sin 1os n n n n n n n n n n c c θθθθθθθ→∞→∞--==++; 当4πθ=时,有sin cos 2θθ==,从而cos sin lim 0cos sin n n n n n θθθθ→∞-=+; 当42ππθ<≤时,有cos lim lim cot 0sin n nn n n θθθ→∞→∞==,从而os 1cos sin sin lim lim 1os cos sin 1sin n n n n n n n n n n c c θθθθθθθθ→∞→∞--==-++. (2) 因为11100111212lim lim 1,11212x x x x x x++→→--==++1102101lim 10121x x x -→--==-++,所以11021lim 21x x x →-+不存在. (3) 因为1111()1333003lim lim 133x x x x x x a b c x x xxxx x x x xa b c x x a b c a b c ---++++-→→⎡⎤⎛⎫⎛⎫++++-⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦,而3303lim 1e 3xxx x x xab c x a b c ++-→⎛⎫++-+= ⎪⎝⎭,000111limln ,lim ln ,lim ln x x x x x x a b c a b c x x x→→→---===. 故1111()1333003lim lim 133x x x x x x a b c x x xxxxx x x xa b c x x a b c a b c ---++++-→→⎡⎤⎛⎫⎛⎫++++-⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦11(ln ln ln )33e()a b c abc ++==.(4) 因为()()1tan (sin 1)tan sin 122lim sin lim 1(sin 1)xx x x x x x x ππ⋅-⋅-→→=+-()(sin 1)tan 1sin 12lim 1(sin 1)x xx x x π-⋅-→⎡⎤=+-⎢⎥⎣⎦.而 ()1s i n 12l i m 1(s i n 1)ex x x π-→+-=, 222sin (sin sin )2lim(sin 1)tan lim(sin 1)tan limsin()2x x x x x x x x x x πππππ→→→--=-=+2222sincos22limsin 222sin cos 22x x x x x x πππππ→-+=⋅++=2sin()24lim sin 0sin()24x x x x πππ→-=⋅=+. 故()tan 2lim sin 0xx x π→=.5.0x >时,有221()lim e lim e e 1x x x x x xx x xn n n n n f x n n n -------→∞→∞--===++;当0x =时,有11()lim e lim e 011x x x xxx n n n n f x n n ----→∞→∞--===++; 当0x <时,有221()lim e lim e e 1x x x x xx xx x n n n n n f x n n n -----→∞→∞--===-++. 故e ,0()0,0e ,0x xx f x x x --⎧-<⎪==⎨>⎪⎩.而0lim ()lim e 1,lim ()lim e 1x x x x x x f x f x --++--→→→→=-=-==,所以()f x 在(,)-∞+∞内除0x =为第一类间断点外,其余各点都连续.5.证(1)令()()()()()F x p q f x pf c qf d =+--,则()F x 在[,]c d 上连续,且()()()()()[()()]F c p q f c pf c qf d q f c f d =+--=-. ()()()()()[()()]F d p q f d pf c qf d q f d f c =+--=-.则当()()0f c f d -=时,可知,c d 均可取作ξ;而当()()0f c f d -≠时,又0,p >0q <,于是有2()()[()()]0F c F d p q f c f d =--<,由零点定理知,至少存在一点[,][,]c d a b ξ∈⊂,使()0F ξ=,即()()()()pf c qf d p q f ξ+=+.(2)设0x 为[0,1]上异于12的任意一点,因为()f x 在[0,1]上连续,如果01()()22f x f ≠=,则由介值定理知,()f x 必取得介于0()f x 与2之间的任何值,包括有理值和无理值.这与()f x 只取有理值矛盾,故01()()22f x f ==,因此在[0,1]上()2f x ≡.。

[专升本类试卷]2003年陕西省专升本(高等数学)真题试卷.doc

[专升本类试卷]2003年陕西省专升本(高等数学)真题试卷.doc

[专升本类试卷]2003年陕西省专升本(高等数学)真题试卷一、选择题在每小题给出的四个选项中,只有一项是符合要求的。

1 当x→0时,是无穷小量,则( ).(A)a是比2x高阶的无穷小量(B)a是比2x低阶的无穷小量(C)a与2x是同阶无穷小量,但不是等价无穷小量(D)a与2x是等价无穷小量2 设y=y(x)是由方程可确定的隐函数,则等于( ).(A)(B)(C)(D)3 函数y=xe-x在[一1,2]上的最大值或最小值正确的是( ).(A)最大值为e-1(B)最小值为0(C)最小值为e-1(D)最小值为2e-14 设曲线L的方程是x=acost,y=asint(a>0,0≤t≤2π),则曲线积分∮(x2+y2)n ds等于( ).(A)2πa2n(B)2πa2n+1(C)一πa n(D)πa n5 下列级数中,条件收敛的级数是( ).(A)(B)(C)(D)二、填空题6 已知函数,则g'(x)=_________.7 极限=_______.8 过点(一1,2,0)并且与平面x+y+2z=3垂直的直线方程为____________.9 设D是第一象限中由曲线y=x2,x+y一2=0和y=0所围成的区域,则=_________.10 y=x3lnx(x>0),则y(4)=________.三、综合题11 求极限12 已知参数方程13 求函数z=x3+3xy2一15x一12y的极值.14 求不定积分∫x.arctanxdx.15 设16 已知f(x)为可导函数,并且f(x)>0,满足方程求f(x).17 设18 求曲面x2+2y2+3z2=36在点P(1,2,3)处的切平面方程.19 将函数f(x)=xln(1+x2)展开为麦克劳林级数.20 求微分方程2y"一3y'一2y'一2+3e3x的通解.四、证明题21 求曲线x2+(y一2)2=1所围图形绕z轴旋转一周所得旋转体体积.22 设f(x),g(x)都是可导函数,且|f'(x)|<g'(x),证明:当x>a时,f(x)一f(a)<g(x)一g(a).。

03届普通高等学校招生全国统一考试数学试卷(理工类)及答案

03届普通高等学校招生全国统一考试数学试卷(理工类)及答案

03届普通高等学校招生全国统一考试数学试卷(理工类)及答案2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:正棱台、圆台的侧面积公式其中、分别表示上、下底面周长,表示斜高或母线长.球体的体积公式:,其中R表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.已知,0),,则()(A)(B)(C)(D)2.圆锥曲线的准线方程是()(A)(B)(C)(D)3.设函数,若,则的取值范围是()(A)(,1)(B)(,)(C)(,)(0,)(D)(,)(1,)4.函数的最大值为()(A)(B)(C)(D)25.已知圆C:()及直线:,当直线被C截得的弦长为时,则()(A)(B)(C)(D)6.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是()(A)(B)(C)(D)7.已知方程的四个根组成一个首项为的的等差数列,则()(A)1(B)(C)(D)8.已知双曲线中心在原点且一个焦点为F(,0),直线与其相交于M、N两点,MN中点的横坐标为,则此双曲线的方程是()(A)(B)(C)(D)9.函数,的反函数()(A),1](B),1](C),1](D),1]10.已知长方形的四个顶点A(0,0),B (2,0),C(2,1)和D(0,1),一质点从AB的中点沿与AB的夹角的方向射到BC上的点后,依次反射到CD、DA和AB上的点、和(入射角等于反射角),设的坐标为(,0),若,则tg的取值范围是()(A)(,1)(B)(,)(C)(,)(D)(,)11.()(A)3(B)(C)(D)612.一个四面体的所有棱长都为,四个顶点在同一球面上,则些球的表面积为()(A)(B)(C)(D)2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.的展开式中系数是14.使成立的的取值范围是2153415.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)PMNlPNMlNlPMlMNPNlPM16.下列5个正方体图形中,是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出面MNP的图形的序号是(写出所有符合要求的图形序号)①②③④⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤17.(本小题满分12分)已知复数的辐角为,且是和的等比中项,求18.(本小题满分12分)如图,在直三棱柱中,底面是等腰直角三角形,,侧棱,D、E分别是与的中点,点E在平面ABD上的射影是△ABD的重心G(I)求与平面ABD所成角的大小(结果用反三角函数值表示)DEKBC1A1B1AFCG(II)求点到平面AED的距离19.(本小题满分12分)已知,设P:函数在R上单调递减Q:不等式的解集为R如果P和Q有且仅有一个正确,求的取值范围20.(本小题满分12分)O北东Oy线岸OxOr(t)P海在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南)方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?21.(本小题满分14分)OPAGDFECBxy已知常数,在矩形ABCD中,,,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4分)(I)设是集合且}中所有的数从小到大排列成的数列,即,,,,,,…将数列各项按照上小下大,左小右大的原则写成如下的三角形数表:35691012————…………⑴写出这个三角形数表的第四行、第五行各数;⑵求(II)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设是集合,且中所有的数从小到大排列成的数列,已知,求.2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分.1.D2.C3.D4.A5.C6.B7.C8.D9.D10.C11.B12.A二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.14.(-1,0)15.7216.①④⑤三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.解:设,则复数由题设18.(Ⅰ)解:连结BG,则BG是BE在ABD的射影,即∠EBG是A1B与平面ABD所成的角.设F为AB中点,连结EF、FC,(Ⅱ)解:19.解:函数在R上单调递减不等式(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法)20.解:如图建立坐标系以O为原点,正东方向为x轴正向.在时刻:(1)台风中心P()的坐标为此时台风侵袭的区域是其中若在t时刻城市O受到台风的侵袭,则有即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在的两定点,使得点P到两点距离的和为定值.按题意有A(-2,0),B(2,0),C(2,4a),D (-2,4a)设由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak)直线OF的方程为:①直线GE的方程为:②从①,②消去参数k,得点P (x,y)坐标满足方程整理得当时,点P的轨迹为圆弧,所以不存在符合题意的两点.当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长当时,点P到椭圆两个焦点(的距离之和为定值当时,点P到椭圆两个焦点(0,的距离之和为定值2.22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示,下表的规律为3((0,1)=)5(0,2)6(1,2)9(0,3)10(1,3)12(2,3)————…………(i)第四行17(0,4)18(1,4)20(2,4)24(3,4)第五行33(0,5)34(1,5)36(2,5)40(3,5)48(4,5)(ii)解法一:因为100=(1+2+3+4+……+13)+9,所以(8,14)==16640解法二:设,只须确定正整数数列中小于的项构成的子集为其元素个数为满足等式的最大整数为14,所以取因为100-(Ⅱ)解:令因现在求M的元素个数:其元素个数为:某元素个数为某元素个数为另法:规定(r,t,s),=(3,7,10)则=(0,1,2)依次为(0,1,3)(0,2,3)(1,2,3)(0,1,4)(0,2,4)(1,2,4)(0,3,4)(1,3,4)(2,3,4)…………(0,1,9)(0,2,9)…………(6,8,9)(7,8,9)(0,1,10)(0,2,10)………(0,7,10)(1,7,10)(2,7,10)(3,7,10)……+4表达效果真心好。

2003年成人高考专升本高等数学一考试真题及参考答案

2003年成人高考专升本高等数学一考试真题及参考答案

2003年成人高考专升本高等数学一考试真题及参考答案一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。

第1题参考答案:D第2题参考答案:B第3题参考答案:A第4题参考答案:D第5题参考答案:C二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第6题参考答案:0第7题参考答案:-1/2第8题第9题曲线y=x/(2+x)的铅直渐近线为______参考答案:0第11题参考答案:(1/3)sin(3x+2)+C第12题参考答案:2xarctanx2第13题设函数f(x)=e5x,则f(x)的n阶导数f(n)(x)=____.参考答案:5n e5x第14题微分方程y′-3y =O的通解为______.参考答案:y=Ce3x第15题在直角坐标系Oxyz中,xOz平面上的抛物线z=4x2绕z轴旋转一周所生成的曲面方程为_______ 参考答案:z =4(x2+y2)三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第16题第18题第19题 设f(x)=xe -x,求函数f(x)的极值(6分)第20题 设函数y=x 2+tan2x ,求y′.(6分)第21题第22题第23题求微分方程y″+4y′= 2ex的通解.(6分)第24题将函数f(x)=1/(3-x)展开成(x+1)的幂级数并指出收敛区间(6分)第25题第26题第27题已知曲线C为y= 2x2,直线l为y= 4x.(10分)(1)求由曲线C与直线l所围成的平面图形的面积S;(2)求过曲线C且平行于直线l的切线方程.第28题。

2003年河北专接本高等数学答案

2003年河北专接本高等数学答案

河北省2003年专接本数学试卷参考答案 一、单项选择题 1、B解 定义域D ⎩⎨⎧161sin 02≥-≤≤xx ,⇒⎩⎨⎧≤≤≤41sin 0x x 借助三角函数的图像可得D :-4ππ≤≤-≤≤x x 0或,即 [][]ππ,0,4:⋃--D2、C解A 不对因为()()必连续在点存在,00'x x f x fB 不对,因为不连续也可能是因为左或右极限不存在,或存在但不相等引起的,而此时极限不存在。

D 不对,因为不连续可能是因为是极限值不等于函数值引起的。

C 对,因为不连续一定不可导。

3、A解 ()624222114*21lim12lim ---∞→+∞→==⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+-eeeX X x x XXx xx4、D解:32,23sin k 33'=-=-====法切k xy x x ππ5、A解:令0cot '==x y ,得驻点2πξ=,它属于区间)65,6(ππ。

6、C解:由)'()(3'02x dt t f x=⎪⎭⎫ ⎝⎛⎰ 得223)(x x f =,故x x f 3)(=于是⎰⎰==110233)(xdx dx x f7、D .解:平面及直线的法向量及方向向量分别为 )1,1,3(),1,2,1(-=-=s n因为0=∙s n ,所以n与垂直,从而平面与直线平行,又直线上点)2,1,1(-满足平面方程,这说明直线在平面内。

故选D 8、A解:πππ6)12(22dxdy 2dxdy 222DD=∙-∙===⎰⎰⎰⎰D S 。

9、B解:因为 ,212c o s u nnn n ≤=而∑∞=121n n收敛,从而∑∞=12cos n nn 绝对收敛。

故选B 。

10、C解:方程的特征方程为,0442=+-r r 特征根为221==r r ,方程有无关解xxxey ey 2221,==。

故选C 。

二、填空题 1、C x f +)(3132、23ln 解:由积分公式⎰+-=-a x a x aax dx ln2122,得:23ln )31ln 0(2111ln 211222=-=⎥⎦⎤⎢⎣⎡+-=-⎰∞++∞x x x dx。

03届,普通高等学校招生全国统一考试数学试卷(理工类)及答案

03届,普通高等学校招生全国统一考试数学试卷(理工类)及答案

03届,普通高等学校招生全国统一考试数学试卷(理工类)及答案2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:正棱台、圆台的侧面积公式其中、分别表示上、下底面周长,表示斜高或母线长. 球体的体积公式:,其中R 表示球的半径. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.已知,0),,则()(A)(B)(C)(D)2.圆锥曲线的准线方程是()(A)(B)(C)(D)3.设函数,若,则的取值范围是()(A)(,1)(B)(,)(C)(,)(0,)(D)(,)(1,)4.函数的最大值为()(A)(B)(C)(D)2 5.已知圆C:()及直线:,当直线被C截得的弦长为时,则()(A)(B)(C)(D)6.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是()(A)(B)(C)(D)7.已知方程的四个根组成一个首项为的的等差数列,则()(A)1 (B)(C)(D)8.已知双曲线中心在原点且一个焦点为F(,0),直线与其相交于M、N两点,MN中点的横坐标为,则此双曲线的方程是()(A)(B)(C)(D)9.函数,的反函数()(A),1] (B),1] (C),1] (D),1] 10.已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点沿与AB的夹角的方向射到BC上的点后,依次反射到CD、DA和AB上的点、和(入射角等于反射角),设的坐标为(,0),若,则tg的取值范围是()(A)(,1)(B)(,)(C)(,)(D)(,)11.()(A)3 (B)(C)(D)6 12.一个四面体的所有棱长都为,四个顶点在同一球面上,则些球的表面积为()(A)(B)(C)(D)2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.的展开式中系数是14.使成立的的取值范围是 2 1 5 3 4 15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)P M N l P N M l N l P M l M N P N l P M 16.下列5个正方体图形中,是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出面MNP的图形的序号是(写出所有符合要求的图形序号)① ② ③ ④⑤ 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤17.(本小题满分12分)已知复数的辐角为,且是和的等比中项,求18.(本小题满分12分)如图,在直三棱柱中,底面是等腰直角三角形,,侧棱,D、E分别是与的中点,点E在平面ABD上的射影是△ABD的重心G (I)求与平面ABD所成角的大小(结果用反三角函数值表示)D E K B C1 A1 B1 A F C G (II)求点到平面AED的距离19.(本小题满分12分)已知,设P:函数在R上单调递减Q:不等式的解集为R 如果P和Q有且仅有一个正确,求的取值范围20.(本小题满分12分)O 北东O y 线岸O x O r(t) P 海在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南)方向300km 的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?21.(本小题满分14分)O P A G D F E C B x y 已知常数,在矩形ABCD中,,,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4 分)(I)设是集合且}中所有的数从小到大排列成的数列,即,,,,,,。

2002年成人高考专升本高等数学一考试真题及参考答案 (1)

2002年成人高考专升本高等数学一考试真题及参考答案 (1)

一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。

第1题参考答案:A第2题参考答案:C第3题参考答案:B第4题参考答案:D第5题参考答案:B二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第6题设f(x)=1/x,则f(f(x))=______参考答案:x第7题参考答案:5/4第8题由曲线y=x3,y=0,x=-1,x=l所围图形的面积为____。

参考答案:1/2第9题曲线y =x3-3x2-x的拐点坐标为____。

参考答案:(1,-3)第10题设x2为f(x)的一个原函数,则f(x)=_______.参考答案:2x第11题设平面经过点(1,0,-1)且与平面4x-y+2z-8=0平行,则平面π的方程为____。

参考答案:4(x-l)-y+2(z+1) =0(或4x-y+2z-2=0)第12题参考答案:1第13题第14题参考答案:1第15题微分方程y″+y′=0的通解为____。

参考答案:y =C1+ C2e-x三、计算题:本大翘共10个小题,共60分。

解答应写出推理,演算步骤。

第16题第17题第18题第19题设函数y=y(x)由方程y+arcsinx=e x+y确定。

求dy.第20题第21题第22题第23题设函数;=arctan(xy)+2x2+y,求dz.第24题第25题将函数f(x)=x2e2x展开成x的幂级数。

四、综合题:本大题共3个小题,每小题10分,共30分。

第26题第27题设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。

(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。

第28题设平面薄板所占xOy平面上的区域D为1≤x2+y2≤4,*≥0,y≥0,其面密度为π(x,y)=x2+y2,求该薄板的质量m。

2003年普通高等学校招生全国统一考试数学试卷(理工类)及答案

2003年普通高等学校招生全国统一考试数学试卷(理工类)及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54co s =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设D E KBC 1A 1B 1AFCGP:函数x cy=在R上单调递减Q:不等式1|2|>-+cxx的解集为R如果P和Q有且仅有一个正确,求c的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东东O偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 6 9 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cos r r z +=,则复数.2rz 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞ 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C …………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=。

2003年普通高等学校招生全国统一考试数学试卷(理工类)含答案

2003年普通高等学校招生全国统一考试数学试卷(理工类)含答案

EF 2 = FG FD = 1 FD 2 , EF = 1, FD = 3.(4分) 3
于是ED = 2, EG = 1 2 = 6 . 33
FC = CD = 2, AB = 2 2, A1B = 2 3, EB = 3.
sin EBG = EG = 6 1 = 2 . EB 3 3 3
A1B与平面ABD所成的角是 arcsin
C1
(II)求点 A1 到平面 AED 的距离
B1
A1
D
E GC K
BABiblioteka F19.(本小题满分 12 分) 已知 c 0 ,设
P:函数 y = c x 在 R 上单调递减
Q:不等式 x+ | x − 2c | 1的解集为 R
如果 P 和 Q 有且仅有一个正确,求 c 的取值范围
20.(本小题满分 12 分) 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市 O(如图)的东偏南
=
1 2
(c +
c)l
其中 c 、 c 分别表示
上、下底面周长, l 表示斜高或母线长.
球体的体积公式:V球
=
4 R3 3
,其中 R
sin sin = − 1 [cos( + ) − cos( − )] 2
表示球的半径.
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 新疆 王新敞 奎屯
第Ⅰ卷(选择题共 60 分)
( = arccos 2 )方向 300km 的海面 P 处, 10
并以 20km/h 的速度向西偏北 45 方向移动,
台风侵袭的范围为圆形区域,当前半径为 60km,并以 10km/h 的速度不断增大,问几 小时后该城市开始受到台风的侵袭?

2003年高数(一)试题与解答

2003年高数(一)试题与解答

2003年高数(一)试题与解答一、填空题 本题共6小题,每小题4分,满分24分.(1) )1ln(12)(cos lim x x x +→ =e1 .(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . (6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( . 二、选择题 本题共6小题,每小题4分,满分24分.(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D)[ C ](2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ](3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ] (4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ](5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ](6)设随机变量21),1)((~XY n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 三 、解答题 本题满分10分过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D. (1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【答案】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是 ).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey = 平面图形D 的面积⎰-=-=1.121)(e dy ey e A y (2) 切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy ee V y 212)(⎰-=π,因此所求旋转体的体积为 ).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四 、(本题满分【答案】 因为).21,21(,4)1(2412)(202-∈--=+-='∑∞=x x x x f nn n n 又f(0)=4π, 所以 dt t dt t f f x f n n xxn n ]4)1([24)()0()(20⎰⎰∑∞=--='+=π=).21,21(,124)1(24120-∈+--+∞=∑x x n n n n n π因为级数∑∞=+-012)1(n nn 收敛,函数f(x)在21=x 处连续,所以].21,21(,124)1(24)(120-∈+--=+∞=∑x x n x f n n n n π令21=x ,得 ∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n 五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xe x Ly 【答案】 (1) 左边=dx e dy e x y ⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x ,右边=⎰⎰--ππππ0sin sin dx e dy ex y=⎰-+ππ0sin sin )(dx e e x x ,所以dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--.(2) 由于2sin sin ≥+-x xe e ,故由(1)得.2)(20s i n s i n s i n s i n πππ≥+=-⎰⎰--dx e e dx yedy xexx xLy六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深?【答案】 (1) 设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以22101221a k x k k x d x W x ===⎰, ).(2)(22222122221a x k x x k kxdx W x x -=-==⎰由12rW W =可得 2222ra a x =-, 即 .)1(222a r x += ].)1([2)(22232223332a r x k x x k kxdx W x x +-=-==⎰由1223W r rW W ==可得 22223)1(a r a r x =+-,从而 a r r x 231++=,即汽锤击打3次后,可将桩打进地下am r r 21++.(2) 由归纳法,设a r r r x n n 121-++++= ,则)(222111nn x x n x x k kxdx W n n-==++⎰+ =].)1([22121a r r x k n n -++++- 由于1121W r W r rW W n n n n ====-+ ,故得22121)1(a r a rr x n n n =+++--+ , 从而 .11111a rr a r r x n nn --=+++=++于是 a rx n n -=+∞→11lim 1, 即若击打次数不限,汽锤至多能将桩打进地下a r-11m. 七 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【答案】 (1) 由反函数的求导公式知y dy dx '=1,于是有 )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21xxe C e C Y -+= 设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y xx -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.s i n 21x e e y xx --=- 八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性. (2) 证明当t>0时,).(2)(t G t F π>【答案】 (1) 因为⎰⎰⎰⎰⎰⎰⎰==ttttr d rr f drr r f rdrr f d drr r f d d t F 0202220022022)()(2)(sin )()(πππθϕϕθ,202022])([)()()(2)(r d rr f drr t r r f t tf t F tt⎰⎰-=',所以在),0(+∞上0)(>'t F ,故F(t) 在),0(+∞内单调增加.(2) 因 ⎰⎰=ttdrr f rdrr f t G 0202)()()(π,要证明t>0时)(2)(t G t F π>,只需证明t>0时,0)(2)(>-t G t F π,即.0])([)()(0202222>-⎰⎰⎰tttrdr r f dr r f dr r r f令 ⎰⎰⎰-=tttr d r r f dr r f dr r r f t g 0202222])([)()()(,则 0)()()()(2022>-='⎰dr r t r f t f t g t,故g(t)在),0(+∞内单调增加.因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0). 又g(0)=0, 故当t>0时,g(t)>0,因此,当t>0时,).(2)(t G t F π>九 、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求B+2E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.【答案】 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007.从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B ,)3()9(522472009)2(2--=---=+-λλλλλλE B E , 故B+2E 的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η 所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η, 所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 十 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【答案】必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A由于 ])[(6323232222bc ac ab c b a c b a ba ca c bcb aA ---++++=---==])()())[((3222a c cb b ac b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是, 秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学期望;(2) 从乙箱中任取一件产品是次品的概率.【答案】 (1) X 的可能取值为0,1,2,3,X 的概率分布为36333}{C C C k X P kk -==, k=0,1,2,3. 即 X 0 1 2 3 P 201 209 209 201 因此.232013209220912010=⨯+⨯+⨯+⨯=EX (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====30}{}{)(k k X A P k X P A P=∑∑====⋅=303}{616}{k k k X kP k k X P=.41236161=⋅=EX 十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ(1) 求总体X 的分布函数F(x); (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性. 【答案】 (1).,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ =}),,,{min(121x X X X P n >- =},,,{121x X x X x X P n >>>- =n x F )](1[1--=.,,0,1)(2θθθ≤>⎩⎨⎧---x x e x n(3) θˆ概率密度为 .,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n 因为 ⎰⎰+∞--+∞∞-==θθθθdx nxe dx x xf E x n )(2ˆ2)(ˆ=θθ≠+n21, 所以θˆ作为θ的估计量不具有无偏性.。

2003成考数学试卷及解答

2003成考数学试卷及解答

2003成考数学试卷一、选择题(共15小题,每小题5分)(1)设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与N 的关系是(A )M N=M (B )M N=∅ (C )N M Ø (D )M N Ø(2)函数51-x y x =+ ∞<<+∞()的反函数为 (A )5log (1), (1)y x x =-< (B )15, ()x y x -=-∞<<+∞(C )5log (1), (1)y x x =-> (D )151, ()x y x -=+-∞<<+∞ (3)下列函数中,偶函数是(A )33x x y -=+ (B )233yx x =- (C )1sin y x =+ (D )tan y x =(4)已知<<2πθπ(A )sin co θθ(C )sin 2θ (D )sin 2θ-注:,∵<<2πθπ,sin >0,cos <0θθ ,sin cos <0θθsin cos θθ-(5)不等式2|1|<+x 的解集为( )A .}13|{>-<x x x 或B .}13|{<<-x xC .}3|{-<x xD .}1|{>x x55555151log 5log (1)log (1)log (1)10,1x x x y y y x y x y y x x x ⎡⎤=+ ⇒=-⇒=-⇒=-⎢⎥ −−−−−−−−−−−→=--> >⎣⎦按习惯自变量和因变量分别用和表示定义域:; (6)设0<x<1,则下列不等式成立的是(A )20.50.5log log x x > (B )222x x > (C )2sin sin x x > (D )2x x > (A )20.50.5log log x x > (B )222xx > (C )2sin sin x x > (D )2x x >(7)用0,1,2,3,4组成的没有重复数字的不同3位数共有(A )64个 (B )16个(C )48个 (D )12个x{2201222220.50.50.5B C D A 2(0,2)2>2(1,2)201,sin <sin 0101,log log log x x x y x x y x x x x x x x x x x x X x x <<⎡⎤⎧⎫=−−−→⇒⇒⎨⎬⎢⎥=⎩⎭⎢⎥<<⇒<⎢⎥⎢⎥<<⇒<⎢⎥<<⇒<>⎣⎦为增函数值域排除();值域为增函数排除();排除();为减函数,故选(),,,,解法一 ①从0,1,2,3,4这五个数字中取出三个数字的总排列数为35P ; ②将0排在首位的排列数为24P ,而0不能排在首位;总排列数35P 减去0排在首位的排列数24P 即为所求。

2002年成人高考专升本高等数学一考试真题及参考答案

2002年成人高考专升本高等数学一考试真题及参考答案

2002年成人高考专升本高等数学一考试真题及参考答案
一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。

第1题
参考答案:A
第2题
参考答案:C
第3题
参考答案:B
第4题
参考答案:D
第5题
参考答案:B
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第6题设f(x)=1/x,则f(f(x))=______
参考答案:x
第7题
参考答案:5/4
第8题由曲线y=x3,y=0,x=-1,x=l所围图形的面积为____。

参考答案:1/2
第9题曲线y =x3-3x2-x的拐点坐标为____。

参考答案:(1,-3)
第10题设x2为f(x)的一个原函数,则f(x)=_______.
参考答案:2x
第11题设平面经过点(1,0,-1)且与平面4x-y+2z-8=0平行,则平面π的方程为____。

参考答案:4(x-l)-y+2(z+1) =0(或4x-y+2z-2=0)
第12题
参考答案:1
第13题
第14题
参考答案:1
第15题微分方程y″+y′=0的通解为____。

参考答案:y =C1+ C2e-x
三、计算题:本大翘共10个小题,共60分。

解答应写出推理,演算步骤。

第16题
第17题
第18题
第19题设函数y=y(x)由方程y+arcsinx=ex+y确定。

求dy.
第20题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。

第1题
参考答案:D
第2题
参考答案:B
第3题
参考答案:A
第4题
参考答案:D
第5题
参考答案:C
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第6题
参考答案:0
第7题
参考答案:-1/2
第8题
第9题曲线y=x/(2+x)的铅直渐近线为______
参考答案:0
第11题
参考答案:(1/3)sin(3x+2)+C
第12题
参考答案:2xarctanx2
第13题设函数f(x)=e5x,则f(x)的n阶导数f(n)(x)=____.
参考答案:5n e5x
第14题微分方程y′-3y =O的通解为______.
参考答案:y=Ce3x
第15题在直角坐标系Oxyz中,xOz平面上的抛物线z=4x2绕z轴旋转一周所生成的曲面方程为_______ 参考答案:z =4(x2+y2)
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第16题
第18题
第19题设f(x)=xe-x,求函数f(x)的极值(6分)
第20题设函数y=x2+tan2x,求y′.(6分)
第21题
第22题
第23题求微分方程y″+4y′= 2ex的通解.(6分)
第24题将函数f(x)=1/(3-x)展开成(x+1)的幂级数并指出收敛区间(6分)
第25题
第26题
第27题已知曲线C为y= 2x2,直线l为y= 4x.(10分)
(1)求由曲线C与直线l所围成的平面图形的面积S;
(2)求过曲线C且平行于直线l的切线方程.
第28题。

相关文档
最新文档